 06290 Mohammed Hichem MORTAD.
 On L^p Estimates for the TimeDependent Schrodinger Operator on L^2.
(1041K, PDF, Tex, Dvi.)
Oct 18, 06

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. Let L denote the timedependent Schrodinger operator in n space variables. We consider a variety of Lebesgue norms for functions u on R^{n+1}, and prove or disprove estimates for such norms of u in terms of the L^2norms of u and Lu. The results have implications for selfadjo intness of operators of the form L+V where V is a multiplication operator. The proofs are based mainly on the Strichartztype inequalities.
 Files:
06290.src(
06290.comments ,
06290.keywords ,
pap3.tex ,
pap3.pdf.mm ,
pap3.dvi.mm )