- 08-18 Albert Fathi, Alessandro Giuliani, Alfonso Sorrentino
- Uniqueness of Invariant Lagrangian Graphs in a Homology or
a Cohomology Class.
(115K, LATeX 2e)
Jan 23, 08
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Given a smooth compact Riemannian manifold $M$ and a Hamiltonian $H$
on the cotangent space $T^*M$, strictly convex and superlinear in the
momentum variables, we prove uniqueness of certain ergodic invariant
Lagrangian graphs within a given homology or cohomology class. In particular, in the context of quasi-integrable Hamiltonian systems, our result implies global uniqueness of Lagrangian KAM tori with rotation vector $\rho$. This result extends generically to the $C^0$-closure of KAM tori.
- Files:
08-18.src(
08-18.keywords ,
FaGiSo22-01-2008_Submitted_Version.tex )