- 11-25 Jitendriya Swain, M Krishna
- Szego limit theorem on the lattice
(289K, pdf)
Feb 20, 11
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. In this paper, we prove a Szeg\"{o} type limit theorem
on $\ell^2(\ZZ^d)$. We consider
operators of the form $H=
ho\Delta+|\xi|^k, 0\leq
ho,~0<k<2$ on $\ell^2(\ZZ^d)
$ and
$\pi_{\lambda}$ the orthogonal projection of $\ell^2(\mathbb{Z}^d)$ on to
the space of eigenfunctions of $H$ with eigenvalues $\leq \lambda$.
We take $A$ be a $0$th order self adjoint pseudo difference
operator with symbol
$a(\xi,x)$ satisfying $[A, H](H + 1)^{-\sigma}$ bounded for some
$0 < \sigma < rac{1}{2}.$ Then for
$f\in \mathcal{C}(\mathbb{R})$ and
$(\xi,x)\in \mathbb{Z}^d imes\mathbb{T}^d,$
$$\lim_{\lambda o \infty}\dfrac{
m{tr}~ f(\pi_\lambda A \pi_\lambda)}{
m{rank}~ \pi_\lambda}=\lim_{\lambda o\infty}\dfrac{1}{(2\pi)^d}\dfrac{1}{vol(h(\xi,x)\leq\lambda)}\sum_{(\xi,x): h(\xi,x)\leq\lambda} \int f(a(\xi,x))dx
$$
assuming one of the limits exists. The limits are invariant under compact
perturbation of $A$.
- Files:
11-25.src(
11-25.keywords ,
szego3.pdf.mm )