15-63 Pavel Exner and Sylwia Kondej
Strong coupling asymptotics for Schr\"odinger operators with an interaction supported by an open arc in three dimensions (568K, pdf) Jul 8, 15
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider Schr\"odinger operators with a strongly attractive singular interaction supported by a finite curve $\Gamma$ of lenghth $L$ in $\R^3$. We show that if $\Gamma$ is $C^4$-smooth and has regular endpoints, the $j$-th eigenvalue of such an operator has the asymptotic expansion $\lambda_j (H_{lpha,\Gamma})= \xi_lpha +\lambda _j(S)+\mathcal{O}(\mathrm{e}^{\pi lpha })$ as the coupling parameter $lpha o\infty$, where $\xi_lpha = -4\,\mathrm{e}^{2(-2\pilpha +\psi(1))}$ and $\lambda _j(S)$ is the $j$-th eigenvalue of the Schr\"odinger operator $S=- rac{\D^2}{\D s^2 }- rac14 \gamma^2(s)$ on $L^2(0,L)$ with Dirichlet condition at the interval endpoints in which $\gamma$ is the curvature of $\Gamma$.

Files: 15-63.src( 15-63.comments , 15-63.keywords , 3Darc150708.pdf.mm )