17-10 Pavel Exner and Vladimir Lotoreichik
Optimization of the lowest eigenvalue for leaky star graphs (417K, pdf) Jan 24, 17
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider the problem of geometric optimization for the lowest eigenvalue of the two-dimensional Schr\"odinger operator with an attractive $\delta$-interaction of a fixed strength the support of which is a star graph with finitely many edges of an equal length $L \in (0,\infty]$. Under the constraint of fixed number of the edges and fixed length of them, we prove that the lowest eigenvalue is maximized by the fully symmetric star graph. The proof relies on the Birman-Schwinger principle, properties of the Macdonald function, and on a geometric inequality for polygons circumscribed into the unit circle.

Files: 17-10.src( 17-10.comments , 17-10.keywords , star-graph-6.pdf.mm )