 95188 Anton Bovier, V\'eronique Gayrard
 An almost sure large deviation principle for the Hopfield model
(326K, PS)
Apr 3, 95

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. We prove a large deviation principle for the finite dimensional
marginals of the Gibbs distribution of the macroscopic `overlap'parameters
in the Hopfield model in the case where the number of random patterns, $M$,
as a function of the system size $N$ satisfies $\limsup M(N)/N=0$.
In this case the rate function (or free energy as a function of the overlap
parameters) is independent of the disorder for almost all realization
of the patterns and given by an explicit variational formula.
 Files:
95188.src(
desc ,
95188.ps )