98-367 Fu X.C., Duan Jinqiao
Infinite-Dimensional Linear Dynamical Systems with Chaoticity (41K, LaTeX) May 25, 98
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fr\'{e}chet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.

Files: 98-367.tex