98-754 Maes C.
The Fluctuation Theorem as a Gibbs Property. (547K, PostScript) Dec 18, 98
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. Common ground to recent studies exploiting relations between dynamical systems and non-equilibrium statistical mechanics is, so we argue, the standard Gibbs formalism applied on the level of space-time histories. The assumptions (chaoticity principle) underlying the Gallavotti-Cohen fluctuation theorem make it possible, using symbolic dynamics, to employ the theory of one-dimensional lattice spin systems. The Kurchan and Lebowitz-Spohn analysis of this fluctuation theorem for stochastic dynamics can be restated on the level of the space-time measure which is a Gibbs measure for an interaction determined by the transition probabilities. In this note we understand the fluctuation theorem as a Gibbs property as it follows from the very definition of Gibbs state. We give a local version of the fluctuation theorem in the Gibbsian context and we derive from this a version also for some class of spatially extended stochastic dynamics.

Files: 98-754.src( desc , 98-754.ps )