%%%%%%%%%%% % 33 K, Plain Tex, 5 pages, 1 figure (automatically generated) for a %% postscript printer driven by dvips: %% see instructions (in the first few lines below) %% for other solutions. The figure is generated %% with the name gvnn.ps. BODY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %TO PRINT THE POSTCRIPT FIGURES THE DRIVER NUMBER MIGHT HAVE TO BE %ADJUSTED. IF the 4 choices 0,1,2,3 do not work set in the following line %the \driver variable to =5. Setting it =0 works with dvilaser setting it %=1 works with dvips, =2 with psprint, =3 with dvitps, (hopefully). %Using =5 prints incomplete figures (but still understandable from the %text). The value MUST be set =5 if the printer is not a postscript one. \newcount\driver \driver=1 %%%this is the value to set!!! %%% the values =0,1 have been tested. The figures are automatically %%% generated. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FORMATO \newcount\mgnf\newcount\tipi\newcount\tipoformule \mgnf=0 %ingrandimento \tipi=2 %uso caratteri: 2=cmcompleti, 1=cmparziali, 0=amparziali \tipoformule=1 %=0 da numeroparagrafo.numeroformula; se no numero %assoluto %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCIPIT\ \ifnum\mgnf=0 \magnification=\magstep0\hoffset=0.cm \voffset=-0.5truecm\hsize=16.5truecm\vsize=24.truecm \parindent=4.pt\fi \ifnum\mgnf=1 \magnification=\magstep1\hoffset=0.truecm \voffset=-0.5truecm\hsize=16.5truecm\vsize=24.truecm \baselineskip=14pt plus0.1pt minus0.1pt \parindent=12pt \lineskip=4pt\lineskiplimit=0.1pt \parskip=0.1pt plus1pt\fi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\overfullrule=10pt % %%%%%GRECO%%%%%%%%% % \let\a=\alpha \let\b=\beta \let\g=\gamma \let\d=\delta \let\e=\varepsilon \let\z=\zeta \let\h=\eta \let\th=\vartheta\let\k=\kappa \let\l=\lambda \let\m=\mu \let\n=\nu \let\x=\xi \let\p=\pi \let\r=\rho \let\s=\sigma \let\t=\tau \let\iu=\upsilon \let\f=\varphi\let\ch=\chi \let\ps=\psi \let\o=\omega \let\y=\upsilon \let\G=\Gamma \let\D=\Delta \let\Th=\Theta \let\L=\Lambda\let\X=\Xi \let\P=\Pi \let\Si=\Sigma \let\F=\Phi \let\Ps=\Psi \let\O=\Omega \let\U=\Upsilon %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% Numerazione pagine %%%%%%%%%%%%%%%%%%%%% NUMERAZIONE PAGINE {\count255=\time\divide\count255 by 60 \xdef\oramin{\number\count255} \multiply\count255 by-60\advance\count255 by\time \xdef\oramin{\oramin:\ifnum\count255<10 0\fi\the\count255}} \def\ora{\oramin } \def\data{\number\day/\ifcase\month\or gennaio \or febbraio \or marzo \or aprile \or maggio \or giugno \or luglio \or agosto \or settembre \or ottobre \or novembre \or dicembre \fi/\number\year;\ \ora} \setbox200\hbox{$\scriptscriptstyle \data $} \newcount\pgn \pgn=1 \def\foglio{\number\numsec:\number\pgn \global\advance\pgn by 1} \def\foglioa{A\number\numsec:\number\pgn \global\advance\pgn by 1} %\footline={\rlap{\hbox{\copy200}\ $\st[\number\pageno]$}\hss\tenrm %\foglio\hss} %\footline={\rlap{\hbox{\copy200}\ $\st[\number\pageno]$}\hss\tenrm %\foglioa\hss} % %%%%%%%%%%%%%%%%% EQUAZIONI CON NOMI SIMBOLICI %%% %%% per assegnare un nome simbolico ad una equazione basta %%% scrivere \Eq(...) o, in \eqalignno, \eq(...) o, %%% nelle appendici, \Eqa(...) o \eqa(...): %%% dentro le parentesi e al posto dei ... %%% si puo' scrivere qualsiasi commento; %%% per assegnare un nome simbolico ad una figura, basta scrivere %%% \geq(...); per avere i nomi %%% simbolici segnati a sinistra delle formule e delle figure si deve %%% dichiarare il documento come bozza, iniziando il testo con %%% \BOZZA. Sinonimi \Eq,\EQ,\EQS; \eq,\eqs; \Eqa,\Eqas;\eqa,\eqas. %%% All' inizio di ogni paragrafo si devono definire il %%% numero del paragrafo e della prima formula dichiarando %%% \numsec=... \numfor=... (brevetto Eckmannn); all'inizio del lavoro %%% bisogna porre \numfig=1 (il numero delle figure non contiene la sezione. %%% Si possono citare formule o figure seguenti; le corrispondenze fra nomi %%% simbolici e numeri effettivi sono memorizzate nel file \jobname.aux, che %%% viene letto all'inizio, se gia' presente. E' possibile citare anche %%% formule o figure che appaiono in altri file, purche' sia presente il %%% corrispondente file .aux; basta includere all'inizio l'istruzione %%% \include{nomefile} %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \global\newcount\numsec\global\newcount\numfor \global\newcount\numfig \gdef\profonditastruttura{\dp\strutbox} \def\senondefinito#1{\expandafter\ifx\csname#1\endcsname\relax} \def\SIA #1,#2,#3 {\senondefinito{#1#2} \expandafter\xdef\csname #1#2\endcsname{#3} \else \write16{???? ma #1,#2 e' gia' stato definito !!!!} \fi} \def\etichetta(#1){(\veroparagrafo.\veraformula) \SIA e,#1,(\veroparagrafo.\veraformula) \global\advance\numfor by 1 % \write15{\string\FU (#1){\equ(#1)}} \write16{ EQ \equ(#1) == #1 }} \def \FU(#1)#2{\SIA fu,#1,#2 } \def\etichettaa(#1){(A\veroparagrafo.\veraformula) \SIA e,#1,(A\veroparagrafo.\veraformula) \global\advance\numfor by 1 % \write15{\string\FU (#1){\equ(#1)}} \write16{ EQ \equ(#1) == #1 }} \def\getichetta(#1){Fig. \verafigura \SIA e,#1,{\verafigura} \global\advance\numfig by 1 % \write15{\string\FU (#1){\equ(#1)}} \write16{ Fig. \equ(#1) ha simbolo #1 }} \newdimen\gwidth \def\BOZZA{ \def\alato(##1){ {\vtop to \profonditastruttura{\baselineskip \profonditastruttura\vss \rlap{\kern-\hsize\kern-1.2truecm{$\scriptstyle##1$}}}}} \def\galato(##1){ \gwidth=\hsize \divide\gwidth by 2 {\vtop to \profonditastruttura{\baselineskip \profonditastruttura\vss \rlap{\kern-\gwidth\kern-1.2truecm{$\scriptstyle##1$}}}}} \footline={\rlap{\hbox{\copy200}\ $\st[\number\pageno]$}\hss\tenrm \foglio\hss} } \def\alato(#1){} \def\galato(#1){} \def\veroparagrafo{\number\numsec}\def\veraformula{\number\numfor} \def\verafigura{\number\numfig} \def\geq(#1){\getichetta(#1)\galato(#1)} \def\Eq(#1){\eqno{\etichetta(#1)\alato(#1)}} \def\eq(#1){\etichetta(#1)\alato(#1)} \def\Eqa(#1){\eqno{\etichettaa(#1)\alato(#1)}} \def\eqa(#1){\etichettaa(#1)\alato(#1)} \def\eqv(#1){\senondefinito{fu#1}$\clubsuit$#1\write16{No translation for #1}% \else\csname fu#1\endcsname\fi} \def\equ(#1){\senondefinito{e#1}\eqv(#1)\else\csname e#1\endcsname\fi} \let\EQS=\Eq\let\EQ=\Eq \let\eqs=\eq \let\Eqas=\Eqa \let\eqas=\eqa %%%%%%%%% %\newcount\tipoformule %\tipoformule=1 %=0 da numeroparagrafo.numeroformula; se no numero % %assegnato \ifnum\tipoformule=1\let\Eq=\eqno\def\eq{}\let\Eqa=\eqno\def\eqa{} \def\equ{{}}\fi \def\include#1{ \openin13=#1.aux \ifeof13 \relax \else \input #1.aux \closein13 \fi} \openin14=\jobname.aux \ifeof14 \relax \else \input \jobname.aux \closein14 \fi %\openout15=\jobname.aux %\write15 % %%%%%%%%%%% GRAFICA %%%%%%%%% % % Inizializza le macro postscript e il tipo di driver di stampa. % Attualmente le istruzioni postscript vengono utilizzate solo se il driver % e' DVILASER ( \driver=0 ), DVIPS ( \driver=1) o PSPRINT ( \driver=2); % o DVITPS (\driver=3) % qualunque altro valore di \driver produce un output in cui le figure % contengono solo i caratteri inseriti con istruzioni TEX (vedi avanti). % %\newcount\driver \driver=1 %\ifnum\driver=0 \special{ps: plotfile ini.pst global} \fi %\ifnum\driver=1 \special{header=ini.pst} \fi \newdimen\xshift \newdimen\xwidth % % inserisce una scatola contenente #3 in modo che l'angolo superiore sinistro % occupi la posizione (#1,#2) % \def\ins#1#2#3{\vbox to0pt{\kern-#2 \hbox{\kern#1 #3}\vss}\nointerlineskip} % % Crea una scatola di dimensioni #1x#2 contenente il disegno descritto in % #4.pst; in questo disegno si possono introdurre delle stringhe usando \ins % e mettendo le istruzioni relative nel file #4.tex (che puo' anche mancare); % al disotto del disegno, al centro, e' inserito il numero della figura % calcolato tramite \geq(#3). % Il file #4.pst contiene le istruzioni postscript, che devono essere scritte % presupponendo che l'origine sia nell'angolo inferiore sinistro della % scatola, mentre per il resto l'ambiente grafico e' quello standard. % Se \driver=2, e' necessario dilatare la figura in accordo al valore di % \magnification, correggendo i parametri P1 e P2 nell'istruzione % \special{#4.ps P1 P2 scale} % \def\insertplot#1#2#3#4{ \par \xwidth=#1 \xshift=\hsize \advance\xshift by-\xwidth \divide\xshift by 2 \vbox{ \line{} \hbox{ \hskip\xshift \vbox to #2{\vfil \ifnum\driver=0 #3 \special{ps::[local,begin] gsave currentpoint translate} \special{ps: plotfile #4.ps} \special{ps::[end]grestore} \fi \ifnum\driver=1 #3 \special{psfile=#4.ps} \fi \ifnum\driver=2 #3 \ifnum\mgnf=0 \special{#4.ps 1. 1. scale}\fi \ifnum\mgnf=1 \special{#4.ps 1.2 1.2 scale}\fi\fi \ifnum\driver=3 \ifnum\mgnf=0 \psfig{figure=#4.ps,height=#2,width=#1,scale=1.} \kern-\baselineskip #3\fi \ifnum\mgnf=1 \psfig{figure=#4.ps,height=#2,width=#1,scale=1.2} \kern-\baselineskip #3\fi \ifnum\driver=5 #3 \fi \fi} \hfil}}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newskip\ttglue %%cm semplificato \def\TIPI{ \font\ottorm=cmr8 \font\ottoi=cmmi8 \font\ottosy=cmsy8 \font\ottobf=cmbx8 \font\ottott=cmtt8 %\font\ottosl=cmsl8 \font\ottoit=cmti8 %%%%% cambiamento di formato%%%%%% \def \ottopunti{\def\rm{\fam0\ottorm}% passaggio a tipi da 8-punti \textfont0=\ottorm \textfont1=\ottoi \textfont2=\ottosy \textfont3=\ottoit \textfont4=\ottott \textfont\itfam=\ottoit \def\it{\fam\itfam\ottoit}% \textfont\ttfam=\ottott \def\tt{\fam\ttfam\ottott}% \textfont\bffam=\ottobf \normalbaselineskip=9pt\normalbaselines\rm} \let\nota=\ottopunti} %%%%%%%% %%am \def\TIPIO{ \font\setterm=amr7 %\font\settei=ammi7 \font\settesy=amsy7 \font\settebf=ambx7 %\font\setteit=amit7 %%%%% cambiamenti di formato %%% \def \settepunti{\def\rm{\fam0\setterm}% passaggio a tipi da 7-punti \textfont0=\setterm %\textfont1=\settei \textfont2=\settesy %\textfont3=\setteit %\textfont\itfam=\setteit \def\it{\fam\itfam\setteit} \textfont\bffam=\settebf \def\bf{\fam\bffam\settebf} \normalbaselineskip=9pt\normalbaselines\rm }\let\nota=\settepunti} %%%%%%% %%cm completo \def\TIPITOT{ \font\twelverm=cmr12 \font\twelvei=cmmi12 \font\twelvesy=cmsy10 scaled\magstep1 \font\twelveex=cmex10 scaled\magstep1 \font\twelveit=cmti12 \font\twelvett=cmtt12 \font\twelvebf=cmbx12 \font\twelvesl=cmsl12 \font\ninerm=cmr9 \font\ninesy=cmsy9 \font\eightrm=cmr8 \font\eighti=cmmi8 \font\eightsy=cmsy8 \font\eightbf=cmbx8 \font\eighttt=cmtt8 \font\eightsl=cmsl8 \font\eightit=cmti8 \font\sixrm=cmr6 \font\sixbf=cmbx6 \font\sixi=cmmi6 \font\sixsy=cmsy6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \font\twelvetruecmr=cmr10 scaled\magstep1 \font\twelvetruecmsy=cmsy10 scaled\magstep1 \font\tentruecmr=cmr10 \font\tentruecmsy=cmsy10 \font\eighttruecmr=cmr8 \font\eighttruecmsy=cmsy8 \font\seventruecmr=cmr7 \font\seventruecmsy=cmsy7 \font\sixtruecmr=cmr6 \font\sixtruecmsy=cmsy6 \font\fivetruecmr=cmr5 \font\fivetruecmsy=cmsy5 %%%% definizioni per 10pt %%%%%%%% \textfont\truecmr=\tentruecmr \scriptfont\truecmr=\seventruecmr \scriptscriptfont\truecmr=\fivetruecmr \textfont\truecmsy=\tentruecmsy \scriptfont\truecmsy=\seventruecmsy \scriptscriptfont\truecmr=\fivetruecmr \scriptscriptfont\truecmsy=\fivetruecmsy %%%%% cambio grandezza %%%%%% \def \eightpoint{\def\rm{\fam0\eightrm}% switch to 8-point type \textfont0=\eightrm \scriptfont0=\sixrm \scriptscriptfont0=\fiverm \textfont1=\eighti \scriptfont1=\sixi \scriptscriptfont1=\fivei \textfont2=\eightsy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy \textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex \textfont\itfam=\eightit \def\it{\fam\itfam\eightit}% \textfont\slfam=\eightsl \def\sl{\fam\slfam\eightsl}% \textfont\ttfam=\eighttt \def\tt{\fam\ttfam\eighttt}% \textfont\bffam=\eightbf \scriptfont\bffam=\sixbf \scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\eightbf}% \tt \ttglue=.5em plus.25em minus.15em \setbox\strutbox=\hbox{\vrule height7pt depth2pt width0pt}% \normalbaselineskip=9pt \let\sc=\sixrm \let\big=\eightbig \normalbaselines\rm \textfont\truecmr=\eighttruecmr \scriptfont\truecmr=\sixtruecmr \scriptscriptfont\truecmr=\fivetruecmr \textfont\truecmsy=\eighttruecmsy \scriptfont\truecmsy=\sixtruecmsy }\let\nota=\eightpoint} \newfam\msbfam %per uso in \TIPITOT \newfam\truecmr %per uso in \TIPITOT \newfam\truecmsy %per uso in \TIPITOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%Scelta dei caratteri %\newcount\tipi \tipi=0 %e' definito all'inizio \newskip\ttglue \ifnum\tipi=0\TIPIO \else\ifnum\tipi=1 \TIPI\else \TIPITOT\fi\fi \def\didascalia#1{\vbox{\nota\0#1\hfill}\vskip0.3truecm} %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEFINIZIONI VARIE % \def\V#1{\vec#1} \def\T#1{#1\kern-4pt\lower9pt\hbox{$\widetilde{}$}\kern4pt{}} \let\dpr=\partial\let\io=\infty\let\ig=\int \def\fra#1#2{{#1\over#2}}\def\media#1{\langle{#1}\rangle} \let\0=\noindent \def\guida{\leaders\hbox to 1em{\hss.\hss}\hfill} \def\tende#1{\vtop{\ialign{##\crcr\rightarrowfill\crcr \noalign{\kern-1pt\nointerlineskip} \hglue3.pt${\scriptstyle #1}$\hglue3.pt\crcr}}} \def\otto{{\kern-1.truept\leftarrow\kern-5.truept\to\kern-1.truept}} \let\implica=\Rightarrow\def\tto{{\Rightarrow}} \def\pagina{\vfill\eject}\def\acapo{\hfill\break} \let\ciao=\bye %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%LATINORUM \def\etc{\hbox{\it etc}}\def\eg{\hbox{\it e.g.\ }} \def\ap{\hbox{\it a priori\ }}\def\aps{\hbox{\it a posteriori\ }} \def\ie{\hbox{\it i.e.\ }} \def\fiat{{}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DEFINIZIONI LOCALI \def\AA{{\V A}}\def\aa{{\V\a}}\def\nn{{\V\n}}\def\oo{{\V\o}} \def\mm{{\V m}}\def\nn{{\V\n}}\def\lis#1{{\overline #1}} \def\NN{{\cal N}}\def\FF{{\cal F}} \def\={{ \; \equiv \; }}\def\su{{\uparrow}}\def\giu{{\downarrow}} \def\Dpr{{\V \dpr}\,} \def\Im{{\rm\,Im\,}}\def\Re{{\rm\,Re\,}} \def\sign{{\rm sign\,}} \def\atan{{\,\rm arctg\,}} \def\pps{{\V\ps{\,}}} \let\dt=\displaystyle \def\2{{1\over2}} \def\txt{\textstyle}\def\OO{{\cal O}} \def\tst{\textstyle} \def\st{\scriptscriptstyle} \let\\=\noindent \def\*{\vskip0.3truecm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \catcode`\%=12\catcode`\}=12\catcode`\{=12 \catcode`\<=1\catcode`\>=2 \openout13=gvnn.ps \write13<%%BoundingBox: 0 0 240 170> \write13<% fig.pst> \write13 \write13<0 90 punto > \write13<70 90 punto > \write13<120 60 punto > \write13<160 130 punto > \write13<200 110 punto > \write13<240 170 punto > \write13<240 130 punto > \write13<240 90 punto > \write13<240 0 punto > \write13<240 30 punto > \write13<210 70 punto > \write13<240 70 punto > \write13<240 50 punto > \write13<0 90 moveto 70 90 lineto> \write13<70 90 moveto 120 60 lineto> \write13<70 90 moveto 160 130 lineto> \write13<160 130 moveto 200 110 lineto> \write13<160 130 moveto 240 170 lineto> \write13<200 110 moveto 240 130 lineto> \write13<200 110 moveto 240 90 lineto> \write13<120 60 moveto 240 0 lineto> \write13<120 60 moveto 240 30 lineto> \write13<120 60 moveto 210 70 lineto> \write13<210 70 moveto 240 70 lineto> \write13<210 70 moveto 240 50 lineto> \write13 \closeout13 \catcode`\%=14\catcode`\{=1 \catcode`\}=2\catcode`\<=12\catcode`\>=12 %\input cfiat %\footline={\rlap{\hbox{\copy200}\ $\st[\number\pageno]$}\hss\tenrm %\foglio\hss} \vglue0.truecm %\BOZZA \0{\bf Twistless KAM tori.}\footnote{${}^*$}{\nota Archived in {\tt mp\_arc@math.utexas.edu}; to get a TeX version, send an empty E-mail message.} \vskip1.truecm \0{\bf Giovanni Gallavotti\acapo \rm CNRS-CPT Luminy, case 907\acapo F-13288 Marseille}\footnote{${}^1$}{\nota E-mail: {\tt gallavotti\%40221.hepnet@lbl.gov}; permanent address: Dipartimento di Fisica, Universit\`a di Roma, ``La Sa\-pi\-en\-za", P. Moro 2, 00185 Roma, Italia.} \vskip0.5truecm \0{\bf Abstract:} {\sl A selfcontained proof of the KAM theorem in the Thirring model is discussed.} \vskip0.5truecm \0{\sl Keywords:\it\ KAM, invariant tori, classical mechanics, perturbation theory, chaos} \vskip0.5truecm \numsec=1\numfor=1\pgn=1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%****** I shall particularize the Eliasson method, [E], for KAM tori to a special model, of great interest, whose relevance for the KAM problem was pointed out by Thirring, [T] (see [G] for a short discussion of the model). The idea of exposing Eliasson's method through simple particular cases appears in [V], where results of the type of the ones discussed here, and more general ones, are announced. The connection between the methods of [E] and the tree expansions in the renormalization group approaches to quantum field theory and many body theory can be found also in [G[. The connection between the tree expansions and the breakdown of invariant tori is discussed in [PV]. The Thirring model is a system of rotators interacting via a potential. It is described by the hamiltonian (see [G] for a motivation of the name): % $$\fra12 J^{-1}\AA\cdot\AA\,+\,\e f(\aa)\Eq(1)$$ % where $J$ is the (diagonal) matrix of the inertia moments, $\AA=(A_1,\ldots,A_l)\in R^l$ are their angular momenta and $\aa=(\a_1,\ldots,\a_l)\in T^l$ are the angles describing their positions: the matrix $J$ will be supposed non singular; but we only suppose that $\min_{j=1,\ldots,l}J_j=J_0>0$, and {\it no assumption} is made on the size of the {\it twist rate} $T=\min J_j^{-1}$: the results will be uniform in $T$ (hence the name ``twistless'': this is not a contradiction with the necessity of a twist rate in the general problems, see problems 1, 16, 17 in \S5.11 of [G2], and [G]). We suppose $f$ to be an even trigonometric polynomial of degree $N$: % $$f(\aa)=\sum_{0<|\nn|\le N} f_\nn\,\cos\nn\cdot\aa, \qquad f_\nn=f_{-\nn}\Eq(2)$$ % We shall consider a "rotation vector" $\oo_0=(\o_1,\ldots,\o_l)\in R^l$ verifying a {\it strong diophantine property} (see, however, the final comments) with dophantine constants $C_0,\t,\g,c$; this means that: % $$\eqalign{ 1)\kern1.truecm& C_0|\oo_0\cdot\nn|\ge |\nn|^{-\t},\kern3.5cm\V0\ne\nn\in Z^l\cr 2)\kern1.truecm& \min_{0\ge p\ge n}\big|C_0|\oo_0\cdot\nn|-\g^{p}\big|>\g^{n+1}\qquad {\rm if}\ n\le0,\ 0<|\nn|\le (\g^{n+c})^{-\t^{-1}}\cr} \Eq(3)$$ % and it is easy to see that the {\it strongly diophantine vectors} have full measure in $R^l$ if $\g>1$ and $c$ are fixed and if $\t$ is fixed $\t>l-1$: we take $\g=2,c=3$ for simplicity; note that 2) is empty if $n>-3$ or $p0}\fra1{\prod_{s=1}^l m_s!} \dpr_{\a_j}\, \dpr^{m_1+\ldots+m_l}_{\a_1^{m_1}\ldots\a_l^{m_l}} f(\oo_0 t)\cdot{\sum}^*\prod_{s=1}^l\prod_{j=1}^{m_s} h^{(k^s_j)}_s(\oo_0 t)\Eq(6)$$ % where the $\sum^*$ denotes summation over the integers $k^s_j\ge1$ with: $\sum_{s=1}^l\sum_{j=1}^{m_s}k^s_j=k-1$. The trigonometric polynomial $\V h^{(k)}(\pps)$ will be completely determined (if possible at all) by requiring it to have $\V0$ average over $\pps$, (note that $\V H^{(k)}$ has to have zero average over $\pps$). For $k=1$ one easily finds: % $$\tst\V h^{(1)}(\pps)=-\sum_{\nn\ne\V0} \fra{J^{-1}\nn}{(i\oo_0\cdot\nn)^2}f_\nn\,e^{i\nn\cdot\pps}\Eq(7)$$ % Suppose that $\V h^{(k)}(\pps)$ is a trigonometric polynomial of degree $\le k N$, odd in $t$, for $1\le k< k_0$. Then we see immediately that the r.h.s. of \equ(6) is odd in $t$. This means that the r.h.s. of \equ(6) has zero average in $t$, hence in $\pps$, and the second of \equ(6) can be solved for $k=k_0$. It yields an even function $\V H^{(k_0)}(\pps)$ which is defined up to a constant which, however, must be taken such that $\V H^{(k_0)}(\pps)$ has zero average, to make $\oo\cdot\Dpr h^{(k)}_j=J_j^{-1} H^{(k)}_j$ soluble. Hence the equation for $\V h^{(k)}$ can be solved (because the r.h.s. has zero average) and its solution is a trigonometric polynomial in $\pps$, odd if $\V h^{(k)}$ is determined by imposing that its average over $\pps$ vanishes. Hence the \equ(7) provide an algorithm to evaluate a formal power series solution to our problem. It has been remarked, [E],[V], see also [G], that \equ(6) yields a {\it diagrammatic expansion} of $\V h^{(k)}$. We simply "iterate" it until only $h^{(1)}$, given by \equ(7), appears. Let $\th$ be a tree diagram: it will consist of a family of "lines" (\ie segments) numbered from $1$ to $k$ arranged to form a (rooted) tree diagram as in the figure: % \insertplot{240pt}{170pt}{%gvnn.tex \ins{-35pt}{90pt}{\it root} \ins{25pt}{110pt}{$j$} \ins{60pt}{85pt}{$v_0$} \ins{55pt}{115pt}{$\nn_{v_0}$} \ins{115pt}{132pt}{$j_{1}$} \ins{152pt}{120pt}{$v_1$} \ins{145pt}{155pt}{$\nn_{v_1}$} \ins{110pt}{50pt}{$v_2$} \ins{190pt}{100pt}{$v_3$} \ins{230pt}{160pt}{$v_5$} \ins{230pt}{120pt}{$v_6$} \ins{230pt}{85pt}{$v_7$} \ins{230pt}{-10pt}{$v_{11}$} \ins{230pt}{20pt}{$v_{10}$} \ins{200pt}{65pt}{$v_4$} \ins{230pt}{65pt}{$v_8$} \ins{230pt}{45pt}{$v_9$} }{gvnn} \kern1.3cm \didascalia{fig. 1: A tree diagram $\th$ with $m_{v_0}=2,m_{v_1}=2,m_{v_2}=3,m_{v_3}=2,m_{v_4}=2$ and $m=12$, $\prod m_v!=2^4\cdot6$, and some decorations. The line numbers, distinguishing the lines, are not shown.} To each vertex $v$ we attach a "mode label" $\nn_v\in Z^l,\,|\nn_v|\le N$ and to each branch leading to $v$ we attach a "branch label" $j_v=1,\ldots,l$. The order of the diagram will be $k=$ number of vertices $=$ number of branches (the tree root will not be regarded as a vertex). We imagine that all the diagram lines have the same length (even though they are drawn with arbitrary length in fig. 1). A group acts on the set of diagrams, generated by the permutations of the subdiagrams having the same vertex as root. Two diagrams that can be superposed by the action of a transformation of the group will be regarded as identical (recall however that the diagram lines are numbered, \ie are regarded as distinct, and the superpositon has to be such that all the decorations of the diagram match). Trees diagrams are regarded as partially ordered sets of vertices (or lines) with a minimal element given by the root (or the root line). We shall imagine that each branch carries also an arrow pointing to the root (``gravity'' direction, opposite to the order). We define the "momentum" entering $v$ as $\nn(v)=\sum_{w\ge v}\nn_w$. If from a vertex $v$ emerge $m_1$ lines carrying a label $j=1$, $m_2$ lines carrying $j=2$, $\ldots$, it follows that \equ(6) can be rewritten: % $$\V h^{(k)}_{\nn j}=\fra1{k!} {\sum}^*\prod_{v\in\th}\fra{(i J^{-1}\nn_v)_{j_v}\, f_{\nn_v}\prod_{s=1}^l(i\nn_v)^{m_s}_s}{(i\oo_0\cdot\nn(v))^2} \Eq(8)$$ % with the sum running over the diagrams $\th$ of order $k$ and with $\nn(v_0)=\nn$; and the combinatorics can be checked from \equ(6), by taking into account that we regard the diagram lines as all different (to fix the factorials). The ${}^*$ recalls that the diagram $\th$ can and will be supposed such that $\nn(v)\ne\V0$ for all $v\in\th$ (by the above remarked parity properties). Note that \equ(8) is implied by the corresponding (6.23) of [G]: one can check that the two formulae coincide (by summing over what in [G] are called the ``fruit values''). The theory in [G] is in fact a little more general, although it is really applied to the same Thirring model. There are other diagrams, however, which we would like to eliminate. They are the diagrams with nodes $v',v$, with $v'0$. Denoting $T$ a cluster of scale $n$ let $m_T$ be the number of resonances of scale $n$ contained in $T$ (\ie with incoming lines of scale $n$), we have the following inequality, valid for any diagram $\th$: % $$N_n\le\fra{3k}{E\,2^{-\e n}}+\sum_{T, \,n_T=n} (-1+m_T)\Eq(11)$$ % with $E=N^{-1}2^{-3\e},\e=\t^{-1}$. This is a version of Brjuno's lemma: a proof is in appendix. Consider a diagram $\th^1$ we define the family $\FF(\th^1)$ generated by $\th^1$ as follows. Given a resonance $V$ of $\th^1$ we detach the part of $\th^1$ above $\l_V$ and attach it successively to the points $w\in\tilde V$, where $\tilde V$ is the set of vertices of $V$ (including the endpoint $w_1$ of $\l_V$ contained in $V$) outside the resonances contained in $V$. Note that all the lines $\l$ in $\tilde V$ have a scale $n_\l\ge n_V$. For each resonance $V$ of $\th^1$ we shall call $M_V$ the number of vertices in $\tilde V$. To the just defined set of diagrams we add the diagrams obtained by reversing simoultaneously the signs of the vertex modes $\nn_w$, for $w\in \tilde V$: the change of sign is performed independently for the various resonant clusters. This defines a family of $\prod 2M_V$ diagrams that we call $\FF(\th_1)$. The number $\prod 2M_V$ will be bounded by $\exp\sum2M_V\le e^{2k}$. It is important to note that the definition of resonance is such that the above operation (of shift of the vertex to which the line entering $V$ is attached) does not change too much the scales of the diagram lines inside the resonances: the reason is simply that inside a resonance of scale $n$ the number of lines is not very large being $\le\lis N_n\=E\,2^{-n\e}$. Let $\l$ be a line, in a cluster $T$, contained inside the resonances $V=V_1\subset V_2\subset\ldots$ of scales $n=n_1>n_2>\ldots$; then the shifting of the lines $\l_{V_i}$ can cause at most a change in the size of the propagator of $\l$ by at most $2^{n_1}+2^{n_2}+\ldots< 2^{n+1}$. Since the number of lines inside $V$ is smaller than $\lis N_n$ the quantity $\oo\cdot\nn_\l$ of $\l$ has the form $\oo\cdot\nn^0_\l+\s_\l\oo\cdot\nn_{\l_V}$ if $\nn^0_\l$ is the momentum of the line $\l$ "inside the resonance $V$", \ie it is the sum of all the vertex modes of the vertices preceding $\l$ in the sense of the line arrows, but contained in $V$; and $\s_\l=0,\pm1$. Therefore not only $|\oo\cdot\nn^0_\l|\ge 2^{n+3}$ (because $\nn^0_\l$ is a sum of $\le \lis N_n$ vertex modes, so that $|\nn^0_\l|\le N\lis N_n$) but $\oo\cdot\nn^0_\l$ is "in the middle" of the diadic interval containing it and by \equ(3) does not get out of it if we add a quantity bounded by $2^{n+1}$ (like $\s_\l\oo\cdot\nn_{\l_V}$). Hence no line changes scale as $\th$ varies in $\FF(\th^1)$, if $\oo_0$ verifies \equ(3). {\it This implies, by the strong diophantine hypothesis on $\oo_0$, \equ(3), that the resonant clusters of the diagrams in $\FF(\th^1)$ all contain the same sets of lines, and the same lines go in or out of each resonance (although they are attached to generally distinct vertices inside the resonances: the identity of the lines is here defined by the number label that each of them carries in $\th^1$). Furthermore the resonance scales and the scales of the resonant clusters, and of all the lines, do not change.} Let $\th^2$ be a diagram not in $\FF(\th^1)$ and construct $\FF(\th^2)$, \etc. We define a collection $\{\FF(\th^i)\}_{i=1,2,\ldots}$ of pairwise disjoint families of diagrams. We shall sum all the contributions to $\V h^{(k)}$ coming from the individual members of each family. This is the {\it Eliasson's resummation}. We call $\e_V$ the quantity $\oo\cdot\nn_{\l_V}$ associated with the resonance $V$. If $\l$ is a line with both extremes in $\tilde V$ we can imagine to write the quantity $\oo\cdot\nn_\l$ as $\oo\cdot\nn^0_\l+\s_\l\e_V$, with $\s_\l=0,\pm1$. Since $|\oo\cdot\nn_\l|> 2^{n_V-1}$ we see that the product of the propagators is holomorphic in $\e_V$ for $|\e_V|<2^{n_V-3}$.\ \footnote{${}^2$}{ In fact $|\oo\cdot\nn^0_\l|\ge 2^{n+3}$ because $V$ is a resonance; therefore $|\oo\cdot\nn_\l|\ge 2^{n+3}-2^{n+1}\ge 2^{n+2}$ so that $n_V\ge n+3$. On the other hand note that $|\oo\cdot\nn^0_\l|> 2^{n_V-1}-2^{n+1}$ so that $|\oo\cdot\nn_\l^0+\s_\l\e_V|\ge 2^{n_V-1}-2^{n+1}-2^{n_V-3}\ge 2^{n_V-1}-2^{n_V-3}\ge 2^{n_V-2}$, for $|\e_V|< 2^{n_V-3}$.} While $\e_V$ varies in such complex disk the quantity $|\oo\cdot\nn_\l|$ does not become smaller than $2^{n_V-1}- 2\,2^{n_V-3}\ge2^{n_V-2}$. Note the main point here: the quantity $2^{n_V-3}$ will usually be $\gg 2^{n_{\l_V}-1}$ which is the value $\e_V$ actually can reach in every diagram in $\FF(\th^1)$; this can be exploited in applying the maximum priciple, as done below. It follows that, calling $n_\l$ the scale of the line $\l$ in $\th^1$, each of the $\prod 2 M_V\le e^{2k}$ products of propagators of the members of the family $\FF(\th^1)$ can be bounded above by $\prod_\l\,2^{-2(n_\l-2)}=2^{4k}\prod_\l\,2^{-2n_\l}$, if regarded as a function of the quantities $\e_V=\oo\cdot\nn_{\l_V}$, for $|\e_V|\le \,2^{n_V-3}$, associated with the resonant clusters $V$. This even holds if the $\e_V$ are regarded as independent complex parameters. By construction it is clear that the sum of the $\prod 2M_V\le e^{2k}$ terms, giving the contribution to $\V h^{(k)}$ from the trees in $\FF(\th^1)$, vanishes to second order in the $\e_V$ parameters (by the approximate cancellation discussed above). Hence by the maximum principle, and recalling that each of the scalar products in \equ(8) can be bounded by $N^2$, we can bound the contribution from the family $\FF(\th^1)$ by: % $$\left[\fra1{k!} N\Big(\fra{f_0 C_0^2 N^2}{J_0}\Big)^k 2^{4k} e^{2k} \prod_{n\le0}2^{-2nN_n}\right]\left[\prod_{n\le0}\prod_{T,\,n_T=n} \prod_{i=1}^{m_T}\,2^{2(n-n_{i}+3)}\right]\Eq(12)$$ % where: % \acapo 1) $N_n$ is the number of propagators of scale $n$ in $\th^1$ ($n=1$ does not appear as $|\oo\cdot\nn|\ge1$ in such cases),\acapo 2) the first square bracket is the bound on the product of individual elements in the family $\FF(\th^1)$ times the bound $e^{2k}$ on their number, % \acapo 3) The second term is the part coming from the maximum principle, applied to bound the resummations, and is explained as follows. % \acapo i) the dependence on the variables $\e_{V_i}\=\e_i$ relative to resonances $V_i\subset T$ with scale $n_{\l_V}=n$ is holomorphic for for $|\e_i|<\,2^{ n_i-3}$ if $n_i\=n_{V_i}$, provided $n_i>n+3$ (see above). \acapo % ii) the resummation says that the dependence on the $\e_i$'s has a second order zero in each. Hence the maximum principle tells us that we can improve the bound given by the first factor in \equ(12) by the product of factors $(|\e_i|\,2^{-n_i+3})^2$ if $n_i>n+3$. If $ n_i\le n+3$ we cannot gain anything: but since the contribution to the bound from such terms in \equ(12) is $>1$ we can leave them in it to simplify the notation, (of course this means that the gain factor can be important only when $\ll1$). Hence substituting \equ(11) into \equ(12) we see that the $m_T$ is taken away by the first factor in $\,2^{2n}2^{-2n_{i}}$, while the remaining $\,2^{-2n_i}$ are compensated by the $-1$ before the $+m_T$ in \equ(11), taken from the factors with $T=V_i$, (note that there are always enough $-1$'s). Hence the product \equ(12) is bounded by: % $$\fra1{k!}N\,(C_0^2J_0^{-1}f_0 N^2)^k e^{2k}2^{4k}2^{6k} \prod_n\,2^{-6 n k E^{-1}\,2^{\e n}}\le \fra1{k!}N\, B_0^k\Eq(13)$$ % with: $B_0=2^{10}e^2 C_0^2 f_0 N^2 \exp [N\, (2^{2+2\t^{-1}}\log2\big)\sum_{p=1}^\io p 2^{-p\t^{-1}}]$. To sum over the trees we note that, fixed $\th$ the collection of clusters is fixed. Therefore we only have to multiply \equ(13) by the number of diagram shapes for $\th$, ($\le 2^{2k}k!$), by the number of ways of attaching mode labels, ($\le (3N)^{lk}$), so that we can bound $|h^{(k)}_{\nn j}|$ by \equ(5). \* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%********* \0{\it Comments.} \* The strong diophantine condition is quite unpleasant as it seems to put an extra requirement on $\oo_0$: I think that in fact such condition is not necessary. Given $\oo_0$ verifying the first of \equ(3) with some constant $\bar C_0$ and some $\t$ we can imagine to define $C_0\=2^\t \bar C_0$: this leaves the first of \equ(3) still valid. One should then note that the $0<|\nn|\le(2^{n+3})^{-\t^{-1}}$ will imply that if $0<|\nn|\le(2^{n+3})^{-\t^{-1}}$ the numbers $|\oo\cdot\nn|$ are spaced by at least $(2(2^\t 2^{n+3})^{-\t^{-1}})^{-\t}=2^{n+3}$. Hence we can find a sequence $\g_n$ such that $1\le\g_n 2^{-n}\le2$ and $||\oo\cdot\nn|-\g_p|\ge 2^{n+2}$ for $0\ge p\ge n$. Defining a propagator $x^{-2}$ to have "scale $n$" if $\g_{n-1}<|x|\le\g_n$ it should be possible to perform the proof without the second assumption in \equ(3). This will be interesting to check if it really works as it would be fully constructive, given $\oo_0$ verifying the first of \equ(3), and as it would cover the most studied cases like the case $l=2$ and $\oo=(\o_1,\o_2)=(1,\o)$ with $\o$ a quadratic irrational, or a number with uniformly bounded continued fraction entries. It has also the conceptual advantage that the sequence of scales $\g_n$ is not ``prescribed a priori'' but it is determined by the arithmetic properties of the rotation vector $\oo_0$. % \penalty-200\vskip1.truecm {\bf Appendix A1: Resonant Siegel-Brjuno bound.} \penalty10000\vskip0.5truecm Calling $N^*_n$ the number of non resonant lines carrying a scale label $\le n$. We shall prove first that $N^*_n\le 2k (E 2^{-\e n})^{-1}$ if $N^*_n>0$. If $\th$ has the root line with scale $>n$ then calling $\th_1,\th_2,\ldots,\th_m$ the subdiagrams of $\th$ emerging from the first vertex of $\th$ and with $k_j>E\,2^{-\e n}$ lines, it is $N^*(\th)=N^*(\th_1)+\ldots+N^*(\th_m)$ and the statement is inductively implied from its validity for $k'k-\fra12 E\,2^{-n\e}$. Finally, and this is the real problem as the analysis of a few examples shows, we claim that in the latter case the root line is either a resonance or it has scale $>n$. Accepting the last statement it will be: $N^*(\th)=1+N^*(\th_1)= 1+N^*(\th'_1)+\ldots+N^*(\th'_{m'})$, with $\th'_j$ being the $m'$ subdiagrams emerging from the first node of $\th'_1$ with orders $k'_j>E\,2^{-\e n}$: this is so because the root line of $\th_1$ will not contribute its unit to $N^*(\th_1)$. Going once more through the analysis the only non trivial case is if $m'=1$ and in that case $N(\th'_1)=N^*(\th"_1)+\ldots+N(\th"_{m"})$, \etc, until we reach a trivial case or a diagram of order $\le k-\fra12 E\,2^{-n\e}$. It remains to check that if $k_1>k-\fra12E\,2^{-n\e}$ then the root line of $\th_1$ has scale $>n$, unless it is entering a resonance. Suppose that the root line of $\th_1$ is not entering a resonance. Note that $|\oo\cdot\nn(v_0)|\le\,2^n,|\oo\cdot\nn(v)|\le \,2^n$, if $v_0,v_1$ are the first vertices of $\th$ and $\th_1$ respectively. Hence $\d\=|(\oo\cdot(\nn(v_0)-\nn(v_1))|\le2\,2^n$ and the diophantine assumption implies that $|\nn(v_0)-\nn(v_1)|> (2\,2^n)^{-\t^{-1}}$, or $\nn(v_0)=\nn(v_1)$. The latter case being discarded as $k-k_1<\fra12E\,2^{-n\e}$ (and we are not considering the resonances), it follows that $k-k_1<\fra12E\,2^{-n\e}$ is inconsistent: it would in fact imply that $\nn(v_0)-\nn(v_1)$ is a sum of $k-k_1$ vertex modes and therefore $|\nn(v_0)-\nn(v_1)|< \fra12NE\,2^{-n\e}$ hence $\d>2^3\,2^n$ which is contradictory with the above opposite inequality. A similar, far easier, induction can be used to prove that if $N^*_n>0$ then the number $p$ of clusters of scale $n$ verifies the bound $p< k \,(E2^{-\e n})^{-1}-1$. Thus \equ(11) is proved. {\it Remark}: the above argument is a minor adaptation of Brjiuno's proof of Siegel's theorem, as remarkably exposed by P\"oschel, [P]. \penalty-200 \* {\it Acknowledgements: I am indebted to J. Bricmont and M. Vittot for many clarifying discussions; and in particular to S. Miracle-Sol\'e for the same reasons and for his interest and suggestions..} \* %\ciao \vskip0.5truecm \penalty-200 {\bf References} \vskip0.5truecm \penalty10000 \item{[A] } Arnold, V.: {\it Proof of a A.N. Kolmogorov theorem on conservation of conditionally periodic motions under small perturbations of the hamiltonian function}, Uspeki Matematicheskii Nauk, 18, 13-- 40, 1963. \item{[BG] } Benfatto, G., Gallavotti, G.: {\it Perturbation theory of the Fermi surface in a quantum liquid. A general quasi particle formalism and one dimensional systems}, Journal of Statistical Physics, 59, 541- 664, 1990. Benfatto, G., Gallavotti, G.: {\it Renormalization group application tot he theory of the Fermi surface}, Physical Review, B, 42, 9967-- 9972, (1990). \item{[B] } Brjuno, A.: {\it The analytic form of differential equations}, I: Transactions of the Moscow Mathematical Society, 25, 131-- 288, 1971; and II: 26, 199--239, 1972. And \item{[E] } Eliasson L. H.: {\it Hamiltonian systems with linear normal form near an invariant torus}, ed. G. Turchetti, Bologna Conference, 30/5 to 3/6 1988, World Scientific, 1989. And {\it Generalization of an estimate of small divisors by Siegel}, ed. E. Zehnder, P. Rabinowitz, book in honor of J. Moser, Academic press, 1990. But mainly: {\it Absolutely convergent series expansions for quasi--periodic motions}, report 2--88, Dept. of Math., University of Stockholm, 1988. \item{[G] } Gallavotti, G.: {\it Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable hamiltonian systems. A review.}, deposited in the archive {\tt mp\_arc@math.utexas.edu}. \item{[G2] } Gallavotti, G.: {\it The elements of Mechanics}, Springer, 1983. \item{[G3] } Gallavotti, G.: {\it Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods}, Reviews in Modern Physics, 57, 471- 572, 1985. See also, Gallavotti, G.: {\it Quasi integrable mechanical systems}, Les Houches, XLIII (1984), vol. II, p. 539-- 624, Ed. K. Osterwalder, R. Stora, North Holland, 1986. \item{[K] } Kolmogorov, N.: {\it On the preservation of conditionally periodic motions}, Doklady Aka\-de\-mia Nauk SSSR, 96, 527-- 530, 1954. See also: Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: {\it A proof of Kolmogorov theorem on invariant tori using canonical transormations defined by the Lie method}, Nuovo Cimento, 79B, 201-- 223, 1984. \item{[M] } Moser, J.: {\it On invariant curves of an area preserving mapping of the annulus}, Nach\-rich\-ten Akademie Wiss. G\"ottingen, 11, 1-- 20, 1962. \item{[P] } P\"oschel, J.: {\it Invariant manifolds of complex analytic mappings}, Les Houches, XLIII (1984), vol. II, p. 949-- 964, Ed. K. Osterwalder, R. Stora, North Holland, 1986. \item{[PV] } Percival, I., Vivaldi, F.: {\it Critical dynamics and diagrams}, Physica, D33, 304-- 313, 1988. \item{[S] } Siegel, K.: {\it Iterations of analytic functions}, Annals of Mathematics, {\bf 43}, 607-- 612, 1943. \penalty10000 \item{[T] } Thirring, W.: {\it Course in Mathematical Physics}, vol. 1, p. 133, Springer, Wien, 1983. \item{[V]} Vittot, M.: {\it Lindstedt perturbation series in hamiltonian mechanics: explicit formulation via a multidimensional Burmann--Lagrange formula}, Preprint CNRS-- Luminy, case 907, F-13288, Marseille 1992. \ciao