INSTRUCTIONS The text between the lines BODY and ENDBODY is made of 2384 lines and 85250 bytes (not counting or ) In the following table this count is broken down by ASCII code; immediately following the code is the corresponding character. 49192 lowercase letters 3033 uppercase letters 3125 digits 10 ASCII characters 9 8769 ASCII characters 32 41 ASCII characters 33 ! 279 ASCII characters 34 " 110 ASCII characters 35 # 2190 ASCII characters 36 $ 880 ASCII characters 37 % 64 ASCII characters 38 & 170 ASCII characters 39 ' 939 ASCII characters 40 ( 944 ASCII characters 41 ) 17 ASCII characters 42 * 290 ASCII characters 43 + 796 ASCII characters 44 , 590 ASCII characters 45 - 800 ASCII characters 46 . 31 ASCII characters 47 / 169 ASCII characters 58 : 61 ASCII characters 59 ; 75 ASCII characters 60 < 728 ASCII characters 61 = 37 ASCII characters 62 > 9 ASCII characters 63 ? 278 ASCII characters 64 @ 147 ASCII characters 91 [ 6219 ASCII characters 92 \ 142 ASCII characters 93 ] 650 ASCII characters 94 ^ 1052 ASCII characters 95 _ 112 ASCII characters 96 ` 1419 ASCII characters 123 { 462 ASCII characters 124 | 1420 ASCII characters 125 } BODY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% This is a Plain TeX File. No special care is needed. %%% (The program will give a harmless "underfull" to be ignored.) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \magnification=\magstep1\hoffset=0.cm \lineskip=4pt\lineskiplimit=0.1pt %%%%%%% \tolerance=1600 \hfuzz=1pt \vsize=23.truecm \voffset=0.truecm \hsize=15.8 truecm \hoffset=0.4 truecm \normalbaselineskip=5.25mm %\baselineskip=5.25mm \baselineskip=14pt plus0.1pt minus0.1pt \parindent=19pt \parskip=0.1pt plus1pt \font\titlefont=cmbx10 scaled\magstep1 \font\sectionfont=cmbx10 scaled\magstep1 \font\subsectionfont=cmbx10 \font\small=cmr7 %%%%%%%% FONTS %%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%define sym \font\tenmsy=msym10 \font\sevenmsy=msym7 \font\fivemsy=msym5 \newfam\msyfam \font\ninerm=cmr9 \font\ninei=cmmi9 \font\ninesy=cmsy9 \font\ninebf=cmbx9 \font\ninett=cmtt9 \font\ninesl=cmsl9 \font\nineit=cmti9 \font\eightrm=cmr8 \font\eighti=cmmi8 \font\eightsy=cmsy8 \font\eightbf=cmbx8 \font\eighttt=cmtt8 \font\eightsl=cmsl8 \font\eightit=cmti8 \font\sixrm=cmr6 \font\sixbf=cmbx6 \font\sixi=cmmi6 \font\sixsy=cmsy6 \def \eightpoint{\def\rm{\fam0\eightrm}% switch to 8-point type \textfont0=\eightrm \scriptfont0=\sixrm \scriptscriptfont0=\fiverm \textfont1=\eighti \scriptfont1=\sixi \scriptscriptfont1=\fivei \textfont2=\eightsy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy \textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex \textfont\itfam=\eightit \def\it{\fam\itfam\eightit}% \textfont\slfam=\eightsl \def\sl{\fam\slfam\eightsl}% \textfont\ttfam=\eighttt \def\tt{\fam\ttfam\eighttt}% \textfont\bffam=\eightbf \scriptfont\bffam=\sixbf \scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\eightbf}% \tt \ttglue=.5em plus.25em minus.15em \setbox\strutbox=\hbox{\vrule height7pt depth2pt width0pt}% \normalbaselineskip=9pt \let\sc=\sixrm \let\big=\eightbig \normalbaselines\rm } % %%%%% constant subscript positions %%%%% % \fontdimen16\tensy=2.7pt %\fontdimen13\tensy=2.7pt \fontdimen13\tensy=4.3pt \fontdimen17\tensy=2.7pt \fontdimen14\tensy=4.3pt \fontdimen18\tensy=4.3pt \fontdimen16\eightsy=2.7pt \fontdimen13\eightsy=4.3pt \fontdimen17\eightsy=2.7pt \fontdimen14\eightsy=4.3pt \fontdimen18\eightsy=4.3pt % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \global\newcount\numsec\global\newcount\numfor \gdef\profonditastruttura{\dp\strutbox} \def\senondefinito#1{\expandafter\ifx\csname#1\endcsname\relax} \def\SIA #1,#2,#3 {\senondefinito{#1#2} \expandafter\xdef\csname #1#2\endcsname{#3} \else %\write16{???? ma #1,#2 e' gia' stato definito !!!!} \fi} \write-1{???? ma #1,#2 e' gia' stato definito !!!!} \fi} \def\etichetta(#1){(\veroparagrafo.\veraformula) \SIA e,#1,(\veroparagrafo.\veraformula) \global\advance\numfor by 1 % \write15{\string\FU (#1){\equ(#1)}} % \write16{ EQ \equ(#1) == #1 }} \write-1{ EQ \equ(#1) == #1 }} \def \FU(#1)#2{\SIA fu,#1,#2 } \def\etichettaa(#1){(A\veroparagrafo.\veraformula) \SIA e,#1,(A\veroparagrafo.\veraformula) \global\advance\numfor by 1 % \write15{\string\FU (#1){\equ(#1)}} % \write16{ EQ \equ(#1) == #1 }} \write-1{ EQ \equ(#1) == #1 }} \def\BOZZA{\def\alato(##1){ {\vtop to \profonditastruttura{\baselineskip \profonditastruttura\vss \rlap{\kern-\hsize\kern-1.2truecm{$\scriptstyle##1$}}}}}} \def\alato(#1){} \def\veroparagrafo{\number\numsec}\def\veraformula{\number\numfor} \def\Eq(#1){\eqno{\etichetta(#1)\alato(#1)}} \def\eq(#1){\etichetta(#1)\alato(#1)} \def\Eqa(#1){\eqno{\etichettaa(#1)\alato(#1)}} \def\eqa(#1){\etichettaa(#1)\alato(#1)} \def\eqv(#1){\senondefinito{fu#1}$\clubsuit$#1\write-1{No translation for #1}% \else\csname fu#1\endcsname\fi} %\def\eqv(#1){\senondefinito{fu#1}$\clubsuit$#1\else\csname fu#1\endcsname\fi} \def\equ(#1){\senondefinito{e#1}\eqv(#1)\else\csname e#1\endcsname\fi} %%%%%%%%%%%%%%%%%% %\openin14=d.aux \ifeof14 \relax \else %\input d.aux \fi %\openout15=d.aux %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%GRAFICA \def\ZzZ{\hbox{\vrule height0.4pt width0.4pt depth0.pt}}\newdimen\u \def\pp #1 #2 {\rlap{\kern#1\u\raise#2\u\ZzZ}} \def\hhh{\rlap{\hbox{{\vrule height1.cm width0.pt depth1.cm}}}} \def\ins #1 #2 #3 {\rlap{\kern#1\u\raise#2\u\hbox{$#3$}}} \def\alt#1#2{\rlap{\hbox{{\vrule height#1truecm width0.pt depth#2truecm}}}} \def\ds{\displaystyle}\def\st{\scriptstyle}\def\sst{\scriptscriptstyle} \def\pallina{{\kern-0.4mm\raise-0.02cm\hbox{$\scriptscriptstyle\bullet$}}} \def\palla{{\kern-0.6mm\raise-0.04cm\hbox{$\textstyle\bullet$}}} \def\pallona{{\kern-0.7mm\raise-0.06cm\hbox{$\displaystyle\bullet$}}} \newcount\page \def\figurainizio{\page=\pageno\nopagenumbers\special{xop=b}} \def\figurafine{\pageno=\page\special{xop=b} \footline={\hss\tenrm\folio\hss}\pageno=\page} %%%%%%%%%%%%%%%%%%%%%% % \catcode`@=11 % % % Simboli di minore o circa uguale, maggiore o circa uguale. % \def\lsim{\mathchoice {\mathrel{\lower.8ex\hbox{$\displaystyle\buildrel<\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\textstyle\buildrel<\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\scriptstyle\buildrel<\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\scriptscriptstyle\buildrel<\over\sim$}}} } \def\gsim{\mathchoice {\mathrel{\lower.8ex\hbox{$\displaystyle\buildrel>\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\textstyle\buildrel>\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\scriptstyle\buildrel>\over\sim$}}} {\mathrel{\lower.8ex\hbox{$\scriptscriptstyle\buildrel>\over\sim$}}} } % % % % %\def\quad@rato#1#2{{\vcenter{\vbox{ % \hrule height#2pt % \hbox{\vrule width#2pt height#1pt \kern#1pt \vrule width#2pt} % \hrule height#2pt} }}} %\def\quadratello{\mathchoice %\quad@rato5{.5}\quad@rato5{.5}\quad@rato{3.5}{.35}\quad@rato{2.5}{.25} } % % \font\s@=cmss10\font\s@b=cmss8 \def\reali{{\hbox{\s@ l\kern-.5mm R}}} \def\naturali{{\hbox{\s@ l\kern-.5mm N}}} \def\interi{{\mathchoice {\hbox{\s@ Z\kern-1.5mm Z}} {\hbox{\s@ Z\kern-1.5mm Z}} {\hbox{{\s@b Z\kern-1.2mm Z}}} {\hbox{{\s@b Z\kern-1.2mm Z}}} }} \def\complessi{{\hbox{\s@ C\kern-1.4mm\raise.2mm\hbox{\s@b l}\kern.8mm}}} \def\toro{{\hbox{\s@ T\kern-1.9mm T}}} \def\unita{{\hbox{\s@ 1\kern-.8mm l}}} % % \font\bold@mit=cmmib10 \def\setbmit{\textfont1=\bold@mit} \def\bmit#1{\hbox{\textfont1=\bold@mit$#1$}} % \catcode`@=12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Subj: tex-style/mssymb.tex % % ***** MSSYMB.TeX ***** 31 Mar 88 % % This file contains the definitions for the symbols in the two % "extra symbols" fonts created at the American Math. Society. \catcode`\@=11 \font\tenmsx=msxm10 \font\sevenmsx=msxm7 \font\fivemsx=msxm5 \font\tenmsy=msym10 \font\sevenmsy=msym7 \font\fivemsy=msym5 \newfam\msxfam \newfam\msyfam \textfont\msxfam=\tenmsx \scriptfont\msxfam=\sevenmsx \scriptscriptfont\msxfam=\fivemsx \textfont\msyfam=\tenmsy \scriptfont\msyfam=\sevenmsy \scriptscriptfont\msyfam=\fivemsy \def\hexnumber@#1{\ifcase#1 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or A\or B\or C\or D\or E\or F\fi } \def\relaxnext@{\let\next\relax} \def\noaccents@{\def\accentfam@{0}} % The following 13 lines establish the use of the Euler Fraktur font. % To use this font, remove % from beginning of these lines. %\font\teneuf=eufm10 %\font\seveneuf=eufm7 %\font\fiveeuf=eufm5 %\newfam\euffam %\textfont\euffam=\teneuf %\scriptfont\euffam=\seveneuf %\scriptscriptfont\euffam=\fiveeuf %\def\frak{\relaxnext@\ifmmode\let\next\frak@\else % \def\next{\Err@{Use \string\frak\space only in math mode}}\fi\next} %\def\goth{\relaxnext@\ifmmode\let\next\frak@\else % \def\next{\Err@{Use \string\goth\space only in math mode}}\fi\next} %\def\frak@#1{{\frak@@{#1}}} %\def\frak@@#1{\noaccents@\fam\euffam#1} % End definition of Euler Fraktur font. \edef\msx@{\hexnumber@\msxfam} \edef\msy@{\hexnumber@\msyfam} \mathchardef\boxdot="2\msx@00 \mathchardef\boxplus="2\msx@01 \mathchardef\boxtimes="2\msx@02 \mathchardef\square="0\msx@03 \mathchardef\blacksquare="0\msx@04 \mathchardef\centerdot="2\msx@05 \mathchardef\lozenge="0\msx@06 \mathchardef\blacklozenge="0\msx@07 \mathchardef\circlearrowright="3\msx@08 \mathchardef\circlearrowleft="3\msx@09 \mathchardef\rightleftharpoons="3\msx@0A \mathchardef\leftrightharpoons="3\msx@0B \mathchardef\boxminus="2\msx@0C \mathchardef\Vdash="3\msx@0D \mathchardef\Vvdash="3\msx@0E \mathchardef\vDash="3\msx@0F \mathchardef\twoheadrightarrow="3\msx@10 \mathchardef\twoheadleftarrow="3\msx@11 \mathchardef\leftleftarrows="3\msx@12 \mathchardef\rightrightarrows="3\msx@13 \mathchardef\upuparrows="3\msx@14 \mathchardef\downdownarrows="3\msx@15 \mathchardef\upharpoonright="3\msx@16 \let\restriction=\upharpoonright \mathchardef\downharpoonright="3\msx@17 \mathchardef\upharpoonleft="3\msx@18 \mathchardef\downharpoonleft="3\msx@19 \mathchardef\rightarrowtail="3\msx@1A \mathchardef\leftarrowtail="3\msx@1B \mathchardef\leftrightarrows="3\msx@1C \mathchardef\rightleftarrows="3\msx@1D \mathchardef\Lsh="3\msx@1E \mathchardef\Rsh="3\msx@1F \mathchardef\rightsquigarrow="3\msx@20 \mathchardef\leftrightsquigarrow="3\msx@21 \mathchardef\looparrowleft="3\msx@22 \mathchardef\looparrowright="3\msx@23 \mathchardef\circeq="3\msx@24 \mathchardef\succsim="3\msx@25 \mathchardef\gtrsim="3\msx@26 \mathchardef\gtrapprox="3\msx@27 \mathchardef\multimap="3\msx@28 \mathchardef\therefore="3\msx@29 \mathchardef\because="3\msx@2A \mathchardef\doteqdot="3\msx@2B \let\Doteq=\doteqdot \mathchardef\triangleq="3\msx@2C \mathchardef\precsim="3\msx@2D \mathchardef\lesssim="3\msx@2E \mathchardef\lessapprox="3\msx@2F \mathchardef\eqslantless="3\msx@30 \mathchardef\eqslantgtr="3\msx@31 \mathchardef\curlyeqprec="3\msx@32 \mathchardef\curlyeqsucc="3\msx@33 \mathchardef\preccurlyeq="3\msx@34 \mathchardef\leqq="3\msx@35 \mathchardef\leqslant="3\msx@36 \mathchardef\lessgtr="3\msx@37 \mathchardef\backprime="0\msx@38 \mathchardef\risingdotseq="3\msx@3A \mathchardef\fallingdotseq="3\msx@3B \mathchardef\succcurlyeq="3\msx@3C \mathchardef\geqq="3\msx@3D \mathchardef\geqslant="3\msx@3E \mathchardef\gtrless="3\msx@3F \mathchardef\sqsubset="3\msx@40 \mathchardef\sqsupset="3\msx@41 \mathchardef\vartriangleright="3\msx@42 \mathchardef\vartriangleleft="3\msx@43 \mathchardef\trianglerighteq="3\msx@44 \mathchardef\trianglelefteq="3\msx@45 \mathchardef\bigstar="0\msx@46 \mathchardef\between="3\msx@47 \mathchardef\blacktriangledown="0\msx@48 \mathchardef\blacktriangleright="3\msx@49 \mathchardef\blacktriangleleft="3\msx@4A \mathchardef\vartriangle="0\msx@4D \mathchardef\blacktriangle="0\msx@4E \mathchardef\triangledown="0\msx@4F \mathchardef\eqcirc="3\msx@50 \mathchardef\lesseqgtr="3\msx@51 \mathchardef\gtreqless="3\msx@52 \mathchardef\lesseqqgtr="3\msx@53 \mathchardef\gtreqqless="3\msx@54 \mathchardef\Rrightarrow="3\msx@56 \mathchardef\Lleftarrow="3\msx@57 \mathchardef\veebar="2\msx@59 \mathchardef\barwedge="2\msx@5A \mathchardef\doublebarwedge="2\msx@5B \mathchardef\angle="0\msx@5C \mathchardef\measuredangle="0\msx@5D \mathchardef\sphericalangle="0\msx@5E \mathchardef\varpropto="3\msx@5F \mathchardef\smallsmile="3\msx@60 \mathchardef\smallfrown="3\msx@61 \mathchardef\Subset="3\msx@62 \mathchardef\Supset="3\msx@63 \mathchardef\Cup="2\msx@64 \let\doublecup=\Cup \mathchardef\Cap="2\msx@65 \let\doublecap=\Cap \mathchardef\curlywedge="2\msx@66 \mathchardef\curlyvee="2\msx@67 \mathchardef\leftthreetimes="2\msx@68 \mathchardef\rightthreetimes="2\msx@69 \mathchardef\subseteqq="3\msx@6A \mathchardef\supseteqq="3\msx@6B \mathchardef\bumpeq="3\msx@6C \mathchardef\Bumpeq="3\msx@6D \mathchardef\lll="3\msx@6E \let\llless=\lll \mathchardef\ggg="3\msx@6F \let\gggtr=\ggg \mathchardef\circledS="0\msx@73 \mathchardef\pitchfork="3\msx@74 \mathchardef\dotplus="2\msx@75 \mathchardef\backsim="3\msx@76 \mathchardef\backsimeq="3\msx@77 \mathchardef\complement="0\msx@7B \mathchardef\intercal="2\msx@7C \mathchardef\circledcirc="2\msx@7D \mathchardef\circledast="2\msx@7E \mathchardef\circleddash="2\msx@7F \def\ulcorner{\delimiter"4\msx@70\msx@70 } \def\urcorner{\delimiter"5\msx@71\msx@71 } \def\llcorner{\delimiter"4\msx@78\msx@78 } \def\lrcorner{\delimiter"5\msx@79\msx@79 } \def\yen{\mathhexbox\msx@55 } \def\checkmark{\mathhexbox\msx@58 } \def\circledR{\mathhexbox\msx@72 } \def\maltese{\mathhexbox\msx@7A } \mathchardef\lvertneqq="3\msy@00 \mathchardef\gvertneqq="3\msy@01 \mathchardef\nleq="3\msy@02 \mathchardef\ngeq="3\msy@03 \mathchardef\nless="3\msy@04 \mathchardef\ngtr="3\msy@05 \mathchardef\nprec="3\msy@06 \mathchardef\nsucc="3\msy@07 \mathchardef\lneqq="3\msy@08 \mathchardef\gneqq="3\msy@09 \mathchardef\nleqslant="3\msy@0A \mathchardef\ngeqslant="3\msy@0B \mathchardef\lneq="3\msy@0C \mathchardef\gneq="3\msy@0D \mathchardef\npreceq="3\msy@0E \mathchardef\nsucceq="3\msy@0F \mathchardef\precnsim="3\msy@10 \mathchardef\succnsim="3\msy@11 \mathchardef\lnsim="3\msy@12 \mathchardef\gnsim="3\msy@13 \mathchardef\nleqq="3\msy@14 \mathchardef\ngeqq="3\msy@15 \mathchardef\precneqq="3\msy@16 \mathchardef\succneqq="3\msy@17 \mathchardef\precnapprox="3\msy@18 \mathchardef\succnapprox="3\msy@19 \mathchardef\lnapprox="3\msy@1A \mathchardef\gnapprox="3\msy@1B \mathchardef\nsim="3\msy@1C %\mathchardef\napprox="3\msy@1D \mathchardef\ncong="3\msy@1D \def\napprox{\not\approx} \mathchardef\varsubsetneq="3\msy@20 \mathchardef\varsupsetneq="3\msy@21 \mathchardef\nsubseteqq="3\msy@22 \mathchardef\nsupseteqq="3\msy@23 \mathchardef\subsetneqq="3\msy@24 \mathchardef\supsetneqq="3\msy@25 \mathchardef\varsubsetneqq="3\msy@26 \mathchardef\varsupsetneqq="3\msy@27 \mathchardef\subsetneq="3\msy@28 \mathchardef\supsetneq="3\msy@29 \mathchardef\nsubseteq="3\msy@2A \mathchardef\nsupseteq="3\msy@2B \mathchardef\nparallel="3\msy@2C \mathchardef\nmid="3\msy@2D \mathchardef\nshortmid="3\msy@2E \mathchardef\nshortparallel="3\msy@2F \mathchardef\nvdash="3\msy@30 \mathchardef\nVdash="3\msy@31 \mathchardef\nvDash="3\msy@32 \mathchardef\nVDash="3\msy@33 \mathchardef\ntrianglerighteq="3\msy@34 \mathchardef\ntrianglelefteq="3\msy@35 \mathchardef\ntriangleleft="3\msy@36 \mathchardef\ntriangleright="3\msy@37 \mathchardef\nleftarrow="3\msy@38 \mathchardef\nrightarrow="3\msy@39 \mathchardef\nLeftarrow="3\msy@3A \mathchardef\nRightarrow="3\msy@3B \mathchardef\nLeftrightarrow="3\msy@3C \mathchardef\nleftrightarrow="3\msy@3D \mathchardef\divideontimes="2\msy@3E \mathchardef\varnothing="0\msy@3F \mathchardef\nexists="0\msy@40 \mathchardef\mho="0\msy@66 \mathchardef\eth="0\msy@67 \mathchardef\eqsim="3\msy@68 \mathchardef\beth="0\msy@69 \mathchardef\gimel="0\msy@6A \mathchardef\daleth="0\msy@6B \mathchardef\lessdot="3\msy@6C \mathchardef\gtrdot="3\msy@6D \mathchardef\ltimes="2\msy@6E \mathchardef\rtimes="2\msy@6F \mathchardef\shortmid="3\msy@70 \mathchardef\shortparallel="3\msy@71 \mathchardef\smallsetminus="2\msy@72 \mathchardef\thicksim="3\msy@73 \mathchardef\thickapprox="3\msy@74 \mathchardef\approxeq="3\msy@75 \mathchardef\succapprox="3\msy@76 \mathchardef\precapprox="3\msy@77 \mathchardef\curvearrowleft="3\msy@78 \mathchardef\curvearrowright="3\msy@79 \mathchardef\digamma="0\msy@7A \mathchardef\varkappa="0\msy@7B \mathchardef\hslash="0\msy@7D \mathchardef\hbar="0\msy@7E \mathchardef\backepsilon="3\msy@7F % Use the next 4 lines with AMS-TeX: %\def\Bbb{\relaxnext@\ifmmode\let\next\Bbb@\else % \def\next{\Err@{Use \string\Bbb\space only in math mode}}\fi\next} %\def\Bbb@#1{{\Bbb@@{#1}}} %\def\Bbb@@#1{\noaccents@\fam\msyfam#1} % Use the next 4 lines if NOT using AMS-TeX: \def\Bbb{\ifmmode\let\next\Bbb@\else \def\next{\errmessage{Use \string\Bbb\space only in math mode}}\fi\next} \def\Bbb@#1{{\Bbb@@{#1}}} \def\Bbb@@#1{\fam\msyfam#1} \catcode`\@=12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\HB {\hfill\break} \def\HALF{{\textstyle{1\over 2}}} \def\half{{1\over 2}} \def\lis{\overline} \def\undertext#1{$\underline{\smash{\hbox{#1}}}$} \def\qed{\vrule width 1.7truemm height 3.5truemm depth 0.truemm} \def\qedd{\vrule width 1.7truemm height 1.7truemm depth 0.truemm} \def\QED{\hfill\smallskip \line{\hfill\vrule height 1.8ex width 2ex depth +.2ex \ \ \ \ \ \ } \bigskip} \def\Re{{\rm Re\,}} \def\Im{{\rm Im\,}} \def\implies{{\Longrightarrow}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\giu{{\vskip5truemm\noindent}} \def\Giu{{\vskip1truecm\noindent}} \def\nl{{\vskip3truemm\noindent}} \def\nin{{\noindent}} \def\vsk{{\vskip3truemm\noindent}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \let\a=\alpha \let\b=\beta \let\g=\gamma \let\d=\delta \let\e=\varepsilon \let\z=\zeta \let\h=\eta \let\th=\theta\let\k=\kappa \let\l=\lambda \let\m=\mu \let\n=\nu \let\x=\xi \let\p=\pi \let\r=\rho \let\s=\sigma \let\t=\tau \let\iu=\upsilon \let\f=\varphi\let\c=\chi \let\ps=\psi \let\o=\omega \let\y=\upsilon \let\G=\Gamma \let\D=\Delta \let\Th=\Theta \let\L=\Lambda\let\X=\Xi \let\P=\Pi \let\Si=\Sigma \let\F=\Phi \let\Ps=\Psi \let\O=\Omega \let\U=\Upsilon %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\AA{{\cal A}}\def\BB{{\cal B}} \def\DD{{\cal D}} \def\CC{{\cal C}} \def\II{{\cal I}} \def\EE{{\cal E}} \def\MM{{\cal M}} \def\LL{{\cal L}} \def\Sol{{\cal S}} \def\TT{{\cal T}} \def\OO{{\cal O}} \def\RR{{\cal R}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\={{ \; \equiv \; }} \def\ra{{\rightarrow}} \let\ii=\int \let\io=\infty \let\dpr=\partial \let\ciao=\bye \def\V#1{\vec#1} \def\guida{\leaders\hbox to 1em{\hss.\hss}\hfill} \def\tende#1{\vtop{\ialign{##\crcr\rightarrowfill\crcr \noalign{\kern-1pt\nointerlineskip} \hglue3.pt${\scriptstyle #1}$\hglue3.pt\crcr}}} \def\otto{{\kern-1.truept\leftarrow\kern-5.truept\to\kern-1.truept}} \def\pagina{\vfill\eject} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\etc{\hbox{\it etc.}}\def\eg{\hbox{\it e.g.\ }} \def\ap{\hbox{\it a priori\ }}\def\aps{\hbox{\it a posteriori\ }} \def\fiat{{}}\def\ie{\hbox{\it i.e.\ }} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\integer{{\Bbb Z}} \def\complex{{\Bbb C}} \def\real{{\Bbb R}} \def\natural{{\Bbb N}} \def\torus{{\Bbb T}} \def\Zd{{{\integer^d}}} \def\T{{\torus}}\def\R{{\real}}\def\C{{\complex}} \def\N{{\natural}} \def\Z{{\integer}} \def\iZd{{i\in\Z^d}} \def\Tw{{\TT_w}}\def\Bw{{\BB_w}} \def\IN{{{\rm Id}_N}} \def\INo{{{\rm Id}_{N_0}}} \def\xI{{ x^{(I)} }} \def\xo{{ x^{(0)} }} \def\NaN{{{\natural}^N}} \def\TN{{\torus^N }} \def\RN{{\real^N }} \def\CN{{\complex^N}} \def\TNN{{\torus^{N+1} }} \def\RNN{{\real^{N+1} }} \def\ZN{{\integer^N }} \def\ZNN{{\integer^{N+1} }} \def\ggt{{\ \gg\ }} \def\hb{{\bar\h}} \def\rb{{\bar r }} \def\po{{(0) }} \def\su{{\ \nearrow\ }} \def\giu{{\ \searrow\ }} \def\pk{{(k) }} \def\pkk{{(k+1) }} \def\Nk{{N_k }} \def\Nkk{{N_{k+1} }} \def\rk{{r_k }} \def\rkk{{r_{k+1} }} \def\Ok{{\O_k }} \def\Okk{{ \O_{k+1} }} \def\ok{{ \o_k }} \def\okk{{\o_{k+1} }} \def\ak{{\a_k }} \def\akk{{\a_{k+1} }} \def\uk{{u^{(k)} }} \def\ukk{{ u^{(k+1)} }} \def\thk{{ \th^{(k)} }} \def\thkk{{ \th^{(k+1)} }} \def\exist{{\exists}} \def\Vb{{\overline V}} \def\Ub{{\overline U}} \def\tu{{\tilde u}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Text of the Compuscript follows %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \centerline{\titlefont Second Order Hamiltonian Equations on $\T^\io$} \centerline{\titlefont and} \centerline{\titlefont Almost--Periodic Solutions} \vskip1.5truecm \centerline{\subsectionfont Luigi Chierchia$^*$ and Paolo Perfetti$^{**}$} \vskip.5truecm \centerline{\ninerm ${}^*$ Dipartimento di Matematica, Universit\`a di Genova, via L. B. Alberti 4, 16132 Genova, and} \centerline{\ninerm Centro ``Vito Volterra", II Universit\`a di Roma ``Tor Vergata", 00173 Roma} \centerline{ \ninerm ${}^{**}$ Dipartimento di Matematica, II Universit\`a di Roma ``Tor Vergata", 00173 Roma} \vskip1.5truecm\noindent {\subsectionfont Abstract}\quad {\ninerm Motivated by problems arising in nonlinear PDE's with a Hamiltonian structure and in high dimensional dynamical systems, we study a suitable generalization to infinite dimensions of second order Hamiltonian equations of the type $\ddot x=\dpr_x V$, [$x\in\TN$, $\dpr_x\=(\dpr_{x_1},..., \dpr_{x_N})$]. Extending methods from quantitative perturbation theory (Kolmogorov--Arnold--Moser theory, Nash--Moser implicit function theorem, \etc) we construct uncountably many almost--periodic solutions for the infinite dimensional system $\ddot x_i=f_i(x)$, $i\in \Zd$, $x\in \T^\Zd$ (endowed with the compact topology); the Hamiltonian structure is reflected by $f$ being a ``generalized gradient". Such result is derived under (suitable) analyticity assumptions on $f_i$ but without requiring any ``smallness conditions".} \vsk \vsk {\small {\bf Table of Contents} \vsk \nin 1. {Introduction\quad\dotfill\quad 2} \nin 2. {Second Order ODE's on $\T^\io$\quad\dotfill\quad 5} \nin 3. {Hamiltonian Structure and Averages\quad\dotfill\quad 7} \nin 4. {Almost--Periodic Solutions (Definitions)\quad\dotfill\quad 9} \nin 5. {Diophantine Sequences\quad\dotfill\quad 10} \nin 6. {Main Results\quad\dotfill\quad 12} \nin 7. {A (Finite--Dimensional) Average Theorem\quad\dotfill\quad 14} \nin 8. {Proof of Existence of Almost--Periodic Solutions\quad\dotfill\quad 19} \nin Appendix 1. {Full Measure of Diophantine vectors in $\RN$\quad\dotfill\quad 23} \nin Appendix 2. {A Short KAM Theory\quad\dotfill\quad 23} \nin References {\quad\dotfill\quad 29} \nin } \pagina \vglue2.truecm\penalty-200 \nin{\sectionfont 1. Introduction} \penalty10000 \vskip0.5truecm \numsec=1 \numfor=1 \penalty10000 \nin A natural approach to qualitative theory of nonlinear partial differential equations ``with a Hamiltonian structure", is to regard such PDE's as infinite dimensional conservative dynamical systems and to try to extend, whenever possible, results and methods from the well developed finite dimensional theory. One of the basic results in finite dimensions is the existence, under suitable assumptions, of maximal quasi--periodic solutions (see [A] and references therein). These are solutions, which, up to a change of coordinates, are described by a linear flow: $t\to\o t$, with $\o\in\RN$, $N\=$ number of degrees of freedom $\=$ $1/2$ dimension of the phase space (associated to the Hamiltonian system under consideration). Some generalizations to infinite dimensions of the existence of quasi--periodic solutions have been studied by several authors; see, \eg, [FSW], [VB], [Wa2], [P\"o], [Ku], [GW]. All these papers make use of quite stringent ``smallness assumptions" (a drawback already present in finite dimensions). \vsk In this paper we study the following infinite dimensional ``second order Hamiltonian" system of equations on $\T^\io$, ($\T\=\R/2\p \Z$): $$ \ddot x_i=f_i(x)\ ,\qquad i\in \Zd\ ,\qquad x\in\T^\Zd\=\TT \Eq(1.1)$$ where $\TT$, equipped with the weak topology, is regarded as an infinite dimensional (analytic) manifold and $f$ is a (uniformly) Lipschitz map from $\TT$ to its tangent space; the Hamiltonian structure comes from $f$ being a {\it generalized gradient} (see below). For such systems we will construct uncountably many almost--periodic solutions under suitably analyticity assumptions on $f$ but {\it without requiring any smallness condition}. Such solutions will have the form: $$ t\to x(t)\=\{x_i(t)\}_{i\in \Zd}\ ,\quad{\rm with}\quad x_i(t)= [\o_i t + u_i([\o t])] \Eq(1.2)$$ where $[\cdot]$ denotes the standard projection of $\R$ onto $\T$, $u$ is a smooth function, and $\o\in\R^\Zd$ is a ``Diophantine sequence" [ \ie $\exists$ $\g>0$ and a isomorphism, $i_k$, from $\Z_+$ onto $\Zd$ such that, $\forall$ $N\ge 1$, $|\sum_{k=1}^N \o_{i_k} n_{i_k}|^{-1}\le \g (\sum_{k=1}^N|n_{i_k}|)^N$, with $n_{i_k}\in \Z$, $\sum_{k=1}^N|n_{i_k}|>0$ ]. Notice that, as a consequence of a classical number theoretical theorem by Liouville, $|\o_i|\to\io$ as $|i|\to\io$. For the construction of quasi--periodic solutions for the finite dimensional situation, namely: $$ \ddot x=V_x(x)\ ,\quad\qquad x\in\TN \Eq(1.3)$$ we refer the reader to [A] (and references therein), [M1], [M2], [SZ], [CC1], [CC2] and especially [CZ]. Our interest in a qualitative analysis of \equ(1.1) has been motivated mainly by: (i) regular motions for nearly--integrable PDE's with a Hamiltonian structure; (ii) discrete approximations of, say, nonlinear wave equations in $\R^d$ (\eg Sine--Gordon); (iii) many particle systems interacting via conservative forces. \vsk (i) Important examples of nonlinear PDE's, such as the Korteweg--de--Vries equation and the non--linear Schr\"odinger equation, fall in the class of (infinite dimensional) {\it integrable Hamiltonian systems} (see, \eg, [AN] and references therein). An integrable aspect of these equations (with suitable boundary conditions) may be described, up to a change of coordinates, by a linear flow $t\to(\o_1 t,...,\o_i t,...)$ $\in \T^\io$, where the ``frequencies" $\o_i\su\io$ as $i\to\io$ (typically $\o_i\sim C i^k$ with $k>1$). Recently, it has been established ([Ku]) the existence, for perturbation of the above models, of special solutions described by a {\it finite number} of frequencies $t\to (\o'_1 t,...,\o'_N t)$. The problem of the persistence (under small perturbations) of solutions with {\it infinitely many} frequencies is open. The model we study is {\it not} directly related to the above models but it might be regarded as a {\it model problem} mimicking some of the basic features coming into play: Hamiltonian structure, ``compactness" of the configuration space, regularity, ``frequency growth". We point out, however, that, in our model, the frequencies associated to the constructed almost--periodic solutions, grow {\it very} rapidly as $|i|\to\io$: Such a fast growth is related to the Diophantine property and it is conceivable that relaxing this property one could establish, for \equ(1.1), the existence of almost--periodic solutions having frequencies growing at ``more interesting" rates (such as the polynomial rate mentioned above). \vsk (ii) It is well known since Lagrange that the $d$--dimensional wave equation can be derived as (a suitable) limit, as $\e\to 0$, of harmonic oscillators vibrating orthogonally to a lattice $\Z^d_\e$ $\=$ $\{ n\e$, $n\in \Zd\}$ (see, \eg, [G]). Such limit is not affected by replacing the harmonic potential $(x_{i+1}-x_i)^2/2$, $i\in \Z^d_\e$, by $-\cos(x_{i+1}-x_i)$. For example, the so--called Sine--Gordon equation on (a domain of) $\R^d$, $$ w_{tt}=\D w + \sin w\ ,\qquad w=w(\x,t)\ ,\ \x\in\R^d\ ,\ t\in \R \Eq(SG)$$ is obtained as limit as $\e\to 0$ of $$ \ddot x_i= \e^{-2} \sum_{\|j-i\|=1} \sin(x_j-x_i)\ +\ \sin x_i\ ,\quad i\in \Zd \Eq(SGa)$$ if one sets, for $\x\in\R^d$, $\x\=i \e$, ($i\in \Zd$), and $w(\x,t)=x_i(t)$. The finite approximation \equ(SGa) is, for any fixed $\e>0$, an example of system \equ(1.1) treatable with our techniques. We do not discuss here boundary conditions [ and hence a proper formulation of a problem associated to \equ(SG) ]. \vsk (iii) Models of many particles interacting via conservative forces provide natural concrete examples of systems \equ(1.1). More precisely, one can regard \equ(1.1) as describing a system of {\it infinitely many coupled rotators} (\ie particles ideally constrained to move on ``circles") centered on the site $i\in \Zd$ and interacting (``coupled") via the ``forces" $f_i$; ``conservative" meaning that such forces are, in a suitable sense (see below), gradients of ``potentials". An example generalizing \equ(SGa) is the following. Fix $L\ge 1$ and consider, for $j\in\Zd$, a collection of functions $g_j$ depending on sites of the lattice within (Euclidean) distance $L$ from $j$; in formulae: $$ g_j\=g_j(x^{(L)})\ ,\quad x^{(L)}\=\{x_k\}_{k\in B_j(L)}\ , \quad B_j(L)\=\{k:\|k-j\|\le L\} \Eq(gj)$$ We assume that the ``localized potentials" $g_j$ are {\it real--analytic} functions from $\T^{|B_j(L)|}$ $\to\R$ and that, for some positive $M$: $$ \sup_{j,x^{(L)}\in\T^{|B_j(L)|}} |g_j(x^{(L)})|\le M \Eq(M)$$ Then we set $$ f_i\=\sum_{\|j-i\|\le L}\dpr_{x_i} g_j \Eq(Ex1)$$ The system \equ(1.1) with such $f_i$ is called a finite range system of infinitely many coupled rotators (see also [Wa1] and [VB]). Example \equ(SGa) is obtained by letting $$ g_j\= \e^{-2} \sum_{h=1}^d \cos(x_{j+e_h}-x_j) \ \ -\cos x_j \Eq(Ex1')$$ where $e_1\=(1,0,...,0)$,...,$e_d\=(0,...,0,1)$. An example, with $d=1$, of ``long range interaction" is given by \equ(1.1) with: $$ f_i\=\cos x_i \sum_{j\in\Z} a_j\prod_{k\ne 0} (1+a_{j+k} \sin x_{i+k}) \ ,\quad\sum_{j\in\Z}|a_j|<\io \Eq(Ex2)$$ We remark that to the above examples one could associated the {\it formal Hamiltonians}: $$ H_{\rm short}(y,x)\=\sum_{j} {y_j^2 \over 2} -\sum_j g_j \Eq(H1)$$ for \equ(1.1), \equ(Ex1), and: $$ H_{\rm long}(y,x)\=\sum_{j} {y_j^2 \over 2} -\sum_j\prod_k (1+a_k \sin x_{j+k}) \Eq(H2)$$ for \equ(1.1), \equ(Ex2); in fact, it is immediate to check that the {\it formal Hamilton equations} (associated to the {\it formal symplectic form} $\sum_{i\in\Zd}dy_i\wedge dx_i$) yield the respective \equ(1.1). Rather than trying to give a precise meaning to such formal objects, we shall use the notion of {\it generalized gradients}, which shall allow us to treat directly the differential equations \equ(1.1). Roughly speaking, a generalized gradient is a vector field (\ie a continuous map from $\TT$ to its tangent space) such that when {\it averaged} (with respect to the natural probability measure associated to $\TT$) over $x_j$ with $j\notin I$ with $I$ a finite subset of $\Zd$, the function (of finite variables) thus obtained, is a gradient of a periodic function. \vsk The rest of the paper is organized as follows: In \S 2 we give a precise notion of solutions of \equ(1.1) for Lipschitz vector field (so that existence and uniqueness for all time of the Cauchy problem trivially follow); in \S 3 we introduce the Hamiltonian structure via generalized gradients; in \S 4 we define (maximal) almost--periodic solutions and in \S 5 we define Diophantine sequences and prove their abundance; \S 6 contains the statements of the main results; \S 7 is devoted to a finite dimensional ``average theorem", which allows to construct quasi-periodic solutions for a system over $\T^{N+1}$ starting from a quasi--periodic solution of a subsystem over $\TN$ obtained by averaging the potential associated to the original $(N+1)$--dimensional system: iterating suitably one obtains the proof in infinite dimensions, which is spelled out in \S 8. The average theorem of \S 7 is, in turn, based on tools from perturbation theory (such as Kolmogorov--Arnold--Moser theory, Nash--Moser implicit function theorems, \etc): a short summary (with complete proofs) of KAM theory is given in Appendix 2 while Appendix 1 contains a classical results concerning the full (Lebesgue) measure of Diophantine vectors in $\RN$. \vglue2.truecm\penalty-200 \nin{\sectionfont 2. Second Order ODE's on $\torus^\io$} \penalty10000 \vskip0.5truecm \numsec=2\numfor=1 \penalty10000 \nin Denote by $\TT$ the Cartesian product of infinitely many copies of the one dimensional (flat) torus $$ \TT\=\bigotimes_{i\in \Zd} \=\T^\Zd\ ,\qquad \T_i\=\T\=\R/2\p\Z \Eq(2.1)$$ ($d$ being a positive integer) and endow $\TT$ with the standard weak topology (see, \eg, [ Ke ] ). Such topology is also induced by {\it metrics}: To any summable positive sequence $$ w: \ \Zd\to(0,\io) \quad {\rm s.t.} \quad \sum_{i\in\Zd} w_i<\io\ , \qquad (w_i>0\ \forall i) \Eq(2.2)$$ which we shall call a {\it weight}, we can associate a metric $\r_w$ by setting, $\forall$ $x,y$ $\in \TT$ ($x=\{x_i\}_{i\in\Zd}$, $y=\{y_i\}_{i\in\Zd}$, $x_i,y_i\in \T$): $$ \r_w(x,y)\=\sum_{i\in \Zd} \r(x_i,y_i) \ w_i \Eq(2.3)$$ where $\r$ is the standard (flat) metric on $\T\=\T_i$: $$ \r( [ a ] , [ b ] )\= \inf_{n\in \Z} |a-b+2\p n| \Eq(2.4)$$ here $a,b\in\R$ and $ [ \cdot ] $ denote equivalence (mod. $2\p$) class. The pair $(\TT,\r_w)$, denoted also $\TT_w$, is actually a (real--analytic) {\it infinite dimensional manifold} (with respect to the obvious atlas obtained by taking the $\bigotimes_{i\in\Zd}$ of the atlas making $\T$ a real--analytic one--dimensional manifold; for general informations see [La]). The tangent space of $\TT_w$ is the Banach space $\BB_w$ formed by the sequences $a\in \R^\Zd$ having finite norm $$ \|a\|_w\=\sum_\iZd |a_i|\ w_i <\io \Eq(2.5)$$ We can now give a precise meaning to second order ODE's on $\Tw$: Given a continuous map $f:\Tw\to\Bw$ consider the system: $$ \ddot x_i = f_i(x)\ ,\qquad \iZd \Eq(2.6)$$ where $f_i\=\p_i\circ f$ ($\p_i:\Tw\to\T_i$ being the standard projection). A {\it solution of \equ(2.6)} is just a continuous map $t\in\R\to x(t)\in\Tw$, with $x_i\in C^2(\R)$, $\forall i$, and satisfying the system \equ(2.6). \vsk {\bf Remarks 2.1 \quad} (i) In some sense the notion of solution we have just introduced is a ``weak notion" (as opposed to looking at $\ddot x=f$ as an equation on the cotangent bundle of $\Tw$). (ii) Let $f\=0$ and $x(t)\= [ \o t ] \=\{ [ \o_i t ] \}_\iZd$. Then $x(t)$ is a solution for {\rm any} $\o\in\R^\Zd$ (not necessarily in $\Bw$). Notice in particular that $t\in\R\to [ \o t ] \in \Tw$ is continuous for any $\o\in\R^\Zd$. These facts are no longer true if one considers stronger topologies; for example, if $|\o_i|\to\io$ as $|i|\to\io$, $ [ \o t ] $ is not continuous with respect to the uniform topology [ $\r_{\rm uniform}(x,y)\=\sup_\iZd \r(x_i,y_i)$ ] . Thus, our interest in solutions $x(t)$ with $x_i$ ``close" to $\o_i t$ with $|\o_i|$ $\to \io$ as $|i|\to\io$ explains the choice of the compact topology. \vsk Global existence and uniqueness for the Cauchy problem associated to \equ(2.6), with $f$ Lipschitz, are an elementary application of standard contraction techniques (see [Pe]). We just stress that the ``initial velocities" can be taken to be completely arbitrary (and not necessarily in the tangent space $\Bw$): \vsk {\bf Proposition 2.2\quad} {\sl Let $f\colon{\cal T}_w\to{\cal B}_w$ be a Lipschitz map (\ie $\exists$ $C>0$ s.t. $\Vert f(x)-f(y)\Vert_w\le C\rho_w(x,y),\ \forall x,y\in{\cal T}_w$). Given any $x^0\in{\cal T}_w$ and any $y^0\in{\R}^{{\Z}^d}$, there exists a unique solution, global in time, of the Cauchy problem} $$ \left\{\eqalign{ &\ddot x_i(t)=f_i(x(t))\ ,\quad\quad\quad i\in{\Z}^d\cr &x_i(0)=x_i^0\ ,\quad\quad\dot x_i(0)=y_i^0.\cr}\right. \Eq(2.7)$$ \vsk The property of being Lipschitz depends of course from the metric, as shown by example \equ(Ex2) of \S 1. In fact, consider two cases: (1) $a_j\=b^{-|j|}$, $b>1$; (2) $a_j=(1+|j|^p)^{-1}$, $p>1$. Then, in the first case (1), $f$ is Lipschitz if we take $w_j\=c^{-|j|}$ with any $10$ such that for any finite set $I\subset{\Z}^d$, $V^{(I)}(x)$ is real-analytic on ${\T}^{\vert I\vert}$ and can be analytically continued to the set }$\{z\in {\C}^{\left\vert I\right\vert}: \ \left\vert{\rm Im}\,z_i\right\vert\le\xi\}$. \vsk {\bf Remarks 3.3\quad} (i) In fact we could deal with more general classes of vector fields allowing the width of analyticity of $V^{(I)}$ to tend to zero as $|I|\to\io$ (the allowed rate of decay would then be dictated by the quantitative analysis carried out below). (ii) Example \equ(Ex2) in \S 1 is uniformly weakly analytic and as parameter $\x$ one could take any positive number; example \equ(Ex1) is uniformly weakly analytic for some (small enough) $\x>0$. \vglue2.truecm\penalty-200 \nin{\sectionfont 4. Almost--Periodic Solutions (Definitions)} \penalty10000 \vskip0.5truecm \numsec=4 \numfor=1 \penalty10000 \nin We start with the definition of maximal almost--periodic functions with ``rationally independent" frequency $\o\in\R^\Zd$. \vsk {\bf Definition 4.1\quad} {\sl A sequence $\o\in\R^\Zd$ is said to be {\rm rationally independent} if for any finite subset $I$ of $\Zd$ and for any $n_i\in\Z$ $$ \sum_{i\in I} \o_i n_i\neq 0 \quad {\rm unless} \quad n_i=0 \ \forall\ i\in I \Eq(4.1)$$ } \vsk In other words, $\o$ is rationally independent if any finite vector $\o^{(I)}\=\{\o_i\}_{i\in I}$ $\in \R^{|I|}$ is rationally independent. \vsk {\bf Definition 4.2\quad} {\sl A continuous real function $q(t)$ is called {\rm almost--periodic over $\Tw$} (with frequency $\o$) if there exist a rationally independent sequence $\o\in\R^\Zd$ and a continuous function $Q:\Tw\to\R$ such that $q(t)=Q([\o t])$. A solution $x(t)$ of \equ(2.6) is called {\rm maximal almost--periodic} if $x_i(t)-[\o_i t]$ is, for all $i$, almost--periodic over $\Tw$ with frequency $\o$.} \vsk {\bf Remarks 4.3\quad} (i) Recall [see Remark 2.1, (i)] that $t\to[\o t]$ is continuous $\forall$ $\o\in\R^\Zd$. (ii) A function $q$ almost--periodic over $\Tw$ is almost--periodic in the sense of H. Bohr with frequency modulus given by $$ \sigma(q)=\big\{r\in \R: \ r=\sum_{i\in I}\omega_i n_i\quad {\rm for\quad some\quad} \ I\subset{\Z}^d, \ \vert I\vert<\infty,\ n_i\in {\Z}\big\} \Eq(4.2)$$ (see [Ka]). (iii) The word ``maximal" in the above definition refers to the rationally independence of the frequency $\o$. Indeed, one can consider {\it quasi--periodic} solutions of \equ(2.6): these are almost--periodic solutions with the associated frequency modulus being generated by a fixed vector $\o^{(N)}\in \R^N$. The existence of such solutions has been established in a somewhat different context by [Wa2] and [Ku], (see also [P\"o]). \vglue2.truecm\penalty-200 \nin{\sectionfont 5. Diophantine Sequences} \penalty10000 \vskip0.5truecm \numsec=5 \numfor=1 \penalty10000 \nin Actually the almost--periodic solutions constructed below will have frequencies $\o$ verifying much stronger numerical properties than just being rationally independent: {\it They will be Diophantine} in the sense of the following definition. \vsk {\bf Definition 5.1\quad} {\sl A rationally independent sequence $\o\in\R^\Zd$ is called {\rm Diophantine} if for any finite set $I\subset \Zd$, there exist constants $\g>0$ and $\t$ ($\ge |I|$) such that for any choice of $n_i\in \Z$ with $\sum_{i\in I}|n_i|>0$ it is: $$ |\sum_{i\in I} \o_i n_i|\ge {1 \over \g \big(\sum_{i\in I} |n_i|\big)^\t} \Eq(5.1)$$ } \vsk It is well known that Diophantine vectors in $\R^N$ form a set of full Lebesgue measure (for completeness we reproduce this elementary result in Appendix 1), but also in infinite dimensions Diophantine frequencies are rather abundant. One can in fact construct many Diophantine sequences with the help of the following Lemma (compare with Lemma 3 of [CZ]). We recall that a vector $\o\in\R^N$ is called {\it $(\g,\t)$--Diophantine} if $$ |\o\cdot n|\ge {1\over \g|n|^\t}\ ; \quad \forall n\in \ZN\backslash\{0\} \Eq(5.2)$$ where $\o\cdot n$ denotes the standard scalar product in $\R^N$ and $|n|\= \sum_{i=1}^N|n_i|$. \vsk {\bf Lemma 5.2\quad} {\sl Let $\o\in \R^N$ be $(\g,N)$--Diophantine; let $\O$ be a positive number satisfying $$ \O\ge 4 \sqrt{N} |\o|\ ;\qquad\qquad \big(|\o|\=\sum_{i=1}^N|\o_i|\big) \Eq(5.3)$$ and define the following subset of $[\O,\io)$: $$ \AA_N\=\AA_N(\o,\O)\=\{\a\ge \O:\ |\o\cdot n+\a h|\ge \O/[ 2(|n|+|h|)^{N+1}]\ ,\ \forall n\in \Z^N, \forall 0\neq h\in \Z\} \Eq(5.4)$$ There exists a universal number $K>1$ such that: $$ \ell\big( [\O,\io)\backslash \AA_N \big) < K |\o| \Eq(5.5)$$ where $\ell$ denotes Lebesgue measure.} \vsk {\bf Remarks 5.3\quad} (i) Since by definition $\O> 2/\g$, [as $|\o|\ge |\o_i|\ge \g^{-1}$ by \equ(5.2)], $(\o,\a)$ is $(\g,N+1)$--Diophantine whenever $\a\in\AA_N$. (ii) Whence, in particular, the above Lemma tells us that given a $(\g,N)$--Diophantine vector $\o$ in $\R^N$ (and almost all vector in $\R^N$ are $(\g,N)$--Diophantine for some $\g$: see Appendix 1) we can pick $\a$ in $\AA_N\subset [\O,\io)$ [ whose complementary measure in $[\O,\io)$ is of $O(|\o|)$ ] so that the vector $(\o,\a)$ is $(\g,N+1)$--Diophantine. (iii) In the above statement and in its proof we could replace $N$ with any $\t>N-1$, however to avoid introducing too many parameters we consider only the case $\t=N$. (iv) It is now easy to construct many Diophantine sequences. Fix $I_0\in\Zd$, $|I_0|=N<\io$; pick a $(\g_0,N)$--Diophantine vector $\o^{(N)}\in\R^N$ (with some $\g_0>0$); and fix a one--to--one map, $j_h$, from $\Z_+$ onto $\Zd\backslash I_0$. Now set $\o_i\= \o_i^{(N)}$ $\forall i\in I_0$ and define $\o_{j_h}$, $h\ge 1$, inductively as follows. Let $\O_1\=4\sqrt{N}|\o^{(N)}|$ and choose $\o_{j_1}$ in $\AA_N(\o^{(N)},\O_1)$ so that, by the above Lemma, $\o^{(N+1)}\=(\o^{(N)},\o_{j_1})$ is $(\g_0,N+1)$--Diophantine. Analogously, given $\o^{(N+h)}\=(\o^{(N)},...,\o_{j_h})$ $\in \R^{N+h}$, $(\g_0, N+h)$--Diophantine, we let $\O_h\= 4\sqrt{N+h} \big(|\o^{(N)}|+\sum_{k=1}^h|\o_{j_k}|\big)$ and pick $\o_{j_{h+1}}\in \AA_{N+h}(\o^{(N+h)},\O_h)$. It is clear that in this way one constructs many Diophantine sequences satisfying \equ(5.1) with $\g\=\g_0$ and $\t=N+k$ where $k\=0$ if $I\subset I_0$, and otherwise $k\=\max\{h: {j_h}\in I\}$. \vsk {\bf Proof of Lemma 5.2\quad} For vectors in $\R^m$, we denote by $\|\cdot\|$ the Euclidean norm and by $|\cdot|$ the $1$--norm (sum of absolute values of components). Set $a\=\O/(2\|\o\|)$, $e\=\o/\|\o\|$, and let $\s_N$ be the area of the unit-sphere $S^{N-1}\=\{x\in \R^N: \|x\|=1\}$. Finally denote by $n$ a generic vector in $\Z^N$ and by $h$ a generic integer number and for a vector $y\in \R^N$, let $\bar y$ $\=$ $(y_2,...,y_N)$. Now, let first $N\ge 2$; then: $$\eqalignno{ \ell \big([\O,\io)\backslash \AA_N\big) &= \ell \{\a\ge\O : |\o\cdot n+\a h|< {\O \over 2(|n|+|h|)^{N+1}} \ {\rm for\ \ some\ } h\neq 0\}\cr &\le \sum_{n\neq 0, h\neq 0} \ell \{\a \ge \O: |{\o\cdot n\over h}+\a| < {\O\over 2 |h|\ (|n|+|h|)^{N+1}} \} \cr &\le 2 \O \sum_{h\ge 1} {1\over h} \sum_{|\o\cdot {n\over h}|\ge {\O\over 2}} {1 \over (|n|+|h|)^{N+1}}\cr &= 2 \O \sum_{h\ge 1} {1\over h} \sum_{|e\cdot n|\ge a h} {1 \over (|n|+h)^{N+1}}\cr &\le 2 \O \sum_{h\ge 1} {1\over h} \ \ii_{\{ x\in \R^N:\ |e\cdot x|\ge a h -\sqrt{N}\}} \ {dx \over (|x|+h)^{N+1}}\cr &\le 2 \O \sum_{h\ge 1} {1\over h} \ \ii_{\{ y\in \R^N:\ |y_1|\ge a h -\sqrt{N}\}} \ {dy \over (\|y\|+h)^{N+1}}\cr &\le 2 \O \sum_{h\ge 1} {1\over h} \ 2^{{N+1\over 2}} \ii_{\{ y\in \R^N:\ |y_1|\ge a h -\sqrt{N}\}} \ {dy \over (|y_1| + \|\bar y\|+h)^{N+1}}\cr &= 2 \O \sum_{h\ge 1} {1\over h} \ {2^{{N+3\over 2}} \over N} \ii_{\R^{N-1}} {d\bar y \over (\|\bar y\|+(a+1)h - \sqrt{N})^{N}}\cr &\le 2 \O \sum_{h\ge 1} {1\over h} \ {2^{{N+3\over 2}} \over N} \s_{N-1} \ii_0^\io {r^{N-2} \over (r +{a\over 2}h )^{N}} \ dr\cr &\le 2 \O \sum_{h\ge 1} {1\over h} \ {2^{{N+3\over 2}} \over N} \s_{N-1} \ii_0^\io {1 \over (r +{a\over 2}h )^{2}} \ dr\cr &\le K |\o|\cr} $$ where: in the sum after the first inequality we have $n\neq 0$ as $\O >2/\g$ [see Remark 5.3, (i)]; in the fourth inequality we set $By=x$ with $B$ a unitary matrix sending the vector $(1,0,...,0)$ to $e$; in the sixth inequality we used the assumption that $\O\ge 4 |\o| \sqrt{N}$ and we have taken: $$ K\= 2^{9/2} \big( \sum_{h\ge 1} h^{-2}\big) \ \sup_N \{ {2^{N/2} \s_{N-1} \over N} \} \Eq(5.K)$$ The case $N=1$ is just shorter. \qed \vglue2.truecm\penalty-200 \nin{\sectionfont 6. Main Results} \penalty10000 \vskip0.5truecm \numsec=6 \numfor=1 \penalty10000 \nin {\bf Theorem 6.1\quad} {\sl Let $f:\Tw\to\Bw$ be a uniformly weakly analytic g--gradient (Definitions 3.1, 3.2). Then there exist uncountably many maximal almost--periodic solutions of \equ(2.6) (Definition 4.2) with Diophantine frequencies (Definition 5.1).} \vsk This result is a simple corollary of the next more detailed theorem. \vsk Recall that a {\it non--degenerate (maximal) quasi--periodic solution} of $$ \ddot x = V_x(x)\ ,\qquad\quad x\in \T^N \Eq(6.1)$$ with frequency $\o\in \R^N$ is a solution of the form $$ x(t)=\big[\o t + u([\o t])\big] \Eq(6.2)$$ for a suitable function $u:\T^N\to\R^N$ satisfying $$ \det \big( \IN +u_\th(\th) \big) \neq 0\ , \qquad\quad \forall \ \th\in\T^N \Eq(6.3)$$ where $\IN$ is the identity $(N\times N)$--matrix and $(u_\th)_{hk}\=$ $\dpr_{\th_k} u_h$, $h,k=1,...,N$; the word maximal refers to the maximal dimension of the frequency $\o$. \vsk {\bf Remarks 6.2 (On quasi--periodic solutions)\quad} (i) To any quasi--periodic solution with $\o$ rationally independent (\ie $\o\cdot n=0$ for some $n\in\Z^N$ $\implies n=0$) one can associate an $N$--parameter family of solutions obtained by ``phase--translation": for each $\th\in \T^N$, $x(t;\th)\=$ $[\th+\o t + u( [\th + \o t])]$ is still a solution (as the flow $t\to [\o t]$ is dense in $\T^N$). (ii) From now on we shall often omit the projection $[\cdot]$ [see \equ(1.2), \equ(2.4) and (ii) of Remark 2.1 ] in the notation. (iii) Indeed, the above family corresponds to an {\it invariant $N$--torus}, embedded in the phase--space $\R^N\times \T^N$, given by $$ \TT^N_\o\= \{ (y,x) \in \R^N\times \T^N : (y,x)=\big(\o+ D_\o u(\th), \th + u(\th)\big)\ ,\ \th \in \T^N\} \Eq(6.4)$$ where $D_\o\=\o\cdot\dpr_\th\=\sum_{i=1}^N\o_i\dpr_{\th_i}$; the $y$--component is just the velocity vector corresponding to the point $x$ (as $D_\o$ corresponds to ${d\over dt}$ along the linear flow $t\to \th +\o t$). The non--degeneracy \equ(6.3) of the solution \equ(6.2) allows to see $\TT^N_\o$ as a regular embedded torus in the ambient space $\R^N\times\T^N$. (iv) In view of the above observations it is clear that to find non--degenerate quasi--periodic solutions of \equ(6.1) {\it is equivalent to find solutions of the following non--linear PDE on $\T^N$}: $$ D_\o^2 u(\th)=V_x(\th+u(\th))\ ,\quad\qquad \min_{\th\in\T^N} |\det (\IN + u_\th)|>0 \Eq(6.5)$$ (just substitute \equ(6.2) in \equ(6.1) and use the rationally independence of $\o$ to replace $\o t$ with the generic point $\th$). For investigations on \equ(6.5) see [M2], [SZ], [CC1], [CC2], [CZ]. \vsk {\bf Theorem 6.3\quad} {\sl Let $f$ be as in Theorem 6.1 and assume that for some finite $I_0\subset \Zd$ the equation $$ \ddot x^{(0)} = \dpr_\xo V^{(0)} (\xo)\ , \quad\qquad \xo\in \T^{N_0} \ ,\quad N_0\=|I_0| \Eq(6.6)$$ admits a (maximal) non--degenerate quasi--periodic solution with a $(\g,N_0)$-- Diophantine frequency vector $\o^{(0)}\in\R^{N_0}$ [see \equ(6.1) $\div$ \equ(6.3) and \equ(5.2)]. Then for any $\e>0$ there exist uncountably many maximal almost--periodic solutions, $x(t)$, of \equ(2.6) with Diophantine frequencies $\o\in\R^\Zd$ such that $\o_i=\o_i^{(0)}$ for $i\in I_0$ ($|\o_i|\to\io$ as $|i|\to\io$) and: $$\eqalign{ & \sup_{{t\in \R}\atop{ p=0,1}} |{d^p\over dt^p} [x_i(t)-x_i^{(0)}(t)]|\le \e\qquad {\rm for}\quad i\in I_0\cr &\sup_{{t\in \R}\atop{p=0,1}} |{d^p\over dt^p} [x_i(t)-\o_i t]|\le \e \quad\qquad\ {\rm for}\quad i\notin I_0\cr} \Eq(6.7)$$ } \vsk The proof of the above theorems will be given in \S 8. \vglue2.truecm\penalty-200 \nin{\sectionfont 7. A (Finite--Dimensional) Average Theorem} \penalty10000 \vskip0.5truecm \numsec=7 \numfor=1 \penalty10000 \nin In this section we discuss a finite--dimensional problem, which may have some interest by itself, and whose solution will constitute the main step of the proof of Theorem 6.3. Roughly speaking the question is how to construct quasi--periodic solutions for a (second order) Hamiltonian system on $\T^{N+1}$ if you know the existence of quasi--periodic solutions for a ``subsystem" obtained from the original one by averaging out some variables. More precisely, let $V:\TNN\to\R$, ($N\ge 1$), be real--analytic and consider the ``Hamiltonian" equations: $$ \ddot x'=V_{x'} (x')\ ,\qquad\quad x' \in \TNN \Eq(7.1)$$ Let also $\Vb(x)$, $x\in \TN$, denote the ``averaged potential" $$ \Vb(x)\={1\over 2\p} \ii_0^{2\p} V(x')dx_{N+1}\ , \quad\qquad x'\=(x,x_{N+1})\in\TN\times\T \Eq(7.2)$$ and consider the Hamiltonian equations in $\TN$ associated to $\Vb$: $$ \ddot x=\Vb_{x} (x)\ ,\qquad\quad x \in \TN \Eq(7.3)$$ Now {\it assume that \equ(7.3) admits a non--degenerate (maximal) quasi--periodic solution} $$ x=\o t + u(\o t)\ ,\quad\quad \o\in\RN\ ,\qquad u:\TN\to\RN \Eq(7.4)$$ with $\o$ $(\g,N)$--Diophantine and $u$ real--analytic. The question is: Can one find quasi--periodic solutions for \equ(7.1) ``close" (in some sense) to \equ(7.4)? The answer is positive {\it provided} the looked after quasi--periodic solutions have frequencies $\o'\=(\o,\a)$ with $\a\ggt |\o|$ and suitable. To formulate a precise and {\it quantitative} result, we need some notations. Given $N,M\ge 1$ and a function $g:\TN\to\R^M$ real--analytic on $$ \D^N_\x\=\{\th\in\CN:\ |\Im \th_i|\le \x\ ,\quad i=1,...,N\} \Eq(7.5)$$ [ this means that the components $g_h$, for $h=1,...,M$, admit a holomorphic extension to some open domain containing $\D^N_\x$ ] we set: $$ \|g\|_{\D^N_\x}\=\|g\|_\x\=\sum_{h=1}^M\ \sup_{\D^N_\x} |g_h| \Eq(7.6)$$ Now let $\LL^p(\CN)$, for $p\in\N$, be the space of linear maps from $\CN$ into $\LL^{p-1}(\CN)$, ($\LL^0(\CN)\=\CN$, $\LL^1(\CN)\=\LL(\CN)\=$ $(N\times N)$--matrices,...). If $T:\TN\to\LL^p(\CN)$ is real--analytic on $\D^N_\x$ [this means that $\forall$ $c_1,...,c_p\in\CN$, the function $\th\to(...((Tc_1)c_2)...c_N)$ is a real--analytic $\CN$--valued function on $\D^N_\x$ ] then we set (inductively): $$ \|T\|_{\D^N_\x}\=\|T\|_\x\=\sup_{ {c\in\CN}\atop{|c|=1}} \|Tc\|_\x\ ,\quad\qquad \big(|c|\=\sum_{h=1}^N|c_h|\ {\rm for}\ \ c\in\CN\big) \Eq(7.7)$$ Finally, observe that, without loss of generality, {\it we can assume that $u$ in \equ(7.4) has vanishing mean value over $\TN$} (as we can replace $u(\th)$ with $c+u(c+\th)$ with $c=-\langle u \rangle$, $\langle\cdot\rangle$ denoting average over $\TN$). \vsk {\bf Proposition 7.1\quad} {\sl Let $V:\TNN\to\R$ be a real--analytic function, let $\Vb$ be as in \equ(7.2) and assume that \equ(7.3) admits a (maximal) non--degenerate quasi--periodic solution \equ(7.4) with a $(\g,N)$--Diophantine frequency vector $\o$. Fix $01$ is a suitable universal constant. Then for any $\a\in\AA_N(\o,\O)$ [see \equ(5.4)] there exists a (maximal) quasi--periodic solution of \equ(7.1), $x'=\o' t+ u'(\o' t)$, with $\o'\=(\o,\a)$ and $u':\TNN\to\RNN$ real--analytic on $\D^{N+1}_{r'}$. Furthermore $\langle u'\rangle=0$ and: $$\eqalign{ & \{\th'+u'(\th'):\ \th'\in \D^{N+1}_{r'}\}\subset \D^{N+1}_{\r'}\ , \qquad \r'\=\r+{\bar\d\over (\g\O)^2}<\x_0\cr & \max_{p=0,1} \|\dpr^p_{\th'} [u'-(u,0)]\|_{r'} \le \bar \d (\g\O)^{-2}\cr & \| D_{\o'} [u'-(u,0)]\|_{r'} \le \d (\g \O)^{-1}\cr } \Eq(7.10)$$ where $D_{\o'}\=\o'\cdot \dpr_{\th'}\=\sum_{h=1}^N \o_h\dpr_{\th_h} +\a\dpr_{\th_{N+1}}$. } \vsk In the following we will not need the explicit (certainly not optimal) dependence upon $N$ given in \equ(7.9), nevertheless we shall pay some attention to constants for the sake of concreteness and also because it may help the reader to keep track of the various estimates. The proof is based on a result \`a la Nash--Moser from KAM theory which guarantees the existence of solutions of the equation \equ(6.5) provided the frequency vector $\o$ is Diophantine and provided one can find a ``good enough {\it approximate solution}": \vsk {\bf Lemma 7.2\quad} {\sl Let: $\x<\x_0'<\x_0<1$, $V:\TN\to\R$ be a real--analytic function on $\D^N_{\x_0}$, $v:\TN\to\RN$ be real--analytic on $\D^N_\x$ and such that $\{\th+v(\th): \th\in \D^N_\x\}$ $\subset \D^N_{\x_0'}$, $\o\in\RN$ be a $(\g,N)$--Diophantine vector; finally let also: $$\eqalign{ &\|\IN+v_\th\|_\x\=\h\ ,\qquad \|(\IN+v_\th)^{-1}\|_\x\=\hb <\io\cr &\g^2\|D^2v-V_x(\th+v)\|_\x\=\e\ ,\qquad \max_{p=1,2,3} \{1,\g^2\|\dpr^p_xV\|_{\x_0}\}\=\b\cr} \Eq(7.11)$$ ($D\=D_\o\=\o\cdot\dpr_\th$). Fix $0<\x'<\x$. There exists a universal constant $B>1$ such that if $$ B\ N!^4\ 2^{40 N} \h^{10} \hb^8\ \b\ (\x-\x')^{-8N} (\x_0-\x_0')^{-1}\ \e\le 1 \Eq(7.12)$$ then there exists a function $u:\TN\to\RN$, real--analytic on $\D^N_{\x'}$, which is solution of $$ D^2u=V_x(\th+u)\ ,\qquad\quad \langle u \rangle =\langle v \rangle \Eq(7.13)$$ Furthermore the following estimates hold: $$\eqalign{ & \|\IN+u_\th\|_{\x'}\le 2\h\ ,\qquad \|(\IN+u_\th)^{-1}\|_{\x'}\le2\hb \cr & \max_{{p=0,1}\atop{q=0,1,2}}\{\|\dpr_\th^p(u-v)\|_{\x'}\ ,\ \g^q\| D^q(u-v)\|_{\x'}\}\le A\e\cr} \Eq(7.14)$$ where $A\=B\ N!^4 2^{40 N} \h^{10}\hb^8\b (\x-\x')^{-8 N}$.} \vsk One can actually show that the above solution $u$ is ``locally" unique (see [CC2]). This lemma is a refinement of Lemma 6 of [CC1] (see also [M2], [SZ], [CC2]); the main difference is that we need here to leave the width of the domain of analyticity of the solution $u$ as a {\it free parameter} (while in [CC1] was fixed to be half of $\x$). Rather than indicating the (tiny but dense) adjustments to the proof in [CC1] we present a complete (and short) proof in Appendix 2. \vsk {\bf Proof of Proposition 7.1\quad} We shall use Lemma 7.2 [ with $N,\o$ replaced by, respectively, $N+1,\o'\=(\o,\a)$]: We shall construct an approximate solution $v$ so that the ``error function" $e\=D_{\o'}^2 v-V_{x'}(\th'+v)$ has norm bounded by $O(1/\O^2)$ when $\o'\=(\o,\a)$, $\a\in\AA_N(\o,\O)$ with $\O$ chosen so large [\equ(7.9)] that the condition \equ(7.12) is satisfied. We start by observing that the average over $\TNN$ of the vector --valued function $$ W(\th')\=V_{x'}(\th+u,\th_{N+1})\ ,\qquad \th'\=(\th,\th_{N+1})\in \TN \times\T \Eq(7.15)$$ is zero; in fact $\langle W_{N+1}\rangle=0$ because $$ \ii_0^{2\p} \dpr_{x_{_{N+1}}} V(\th+u,\th_{N+1})d\th_{N+1}=0 \Eq(7.16)$$ while the average of the first $N$ component of $W$ are given by ($x'\=(x,x_{N+1})\in\TN\times\T$ and $\th'\=(\th,\th_{N+1})\in\TN\times\T$): $$\eqalign{ \ii_\TNN \dpr_x V(\th+u,\th_{N+1}) {d\th'\over (2\p)^{N+1}} &\=\ii_\TN \dpr_x \Vb(\th+u) {d\th\over (2\p)^N}\cr &= \ii_\TN D^2_\o u(\th) {d\th\over(2\p)^N}=0\cr} \Eq(7.17)$$ Now, denoting, for a function $G$ with $\langle G\rangle=0$, $D^{-p}G$ the unique solution with zero average of $D^p g=G$, we set $$ v(\th') \= D_{\o'}^{-2} W(\th')\= -\sum_{{n'=(n,h)\in\ZN\times\Z}\atop {n'\neq 0}} {W_{n'}\over (\o\cdot n+\a h)^2} e^{in'\cdot\th'} \Eq(7.18)$$ where $W_n$ denote Fourier coefficients; [ and recall that $\o'\=(\o,\a)$ with a fixed $\a\in\AA_N(\o,\O)$]. Notice that, because $u$ satisfies $D_\o^2u=\Vb(\th+u)$, $v$ can be written in the form: $$ v=-\sum_{n\in\ZN,h\neq 0} {W_{n'}\over (\o\cdot n+\a h)^2} e^{i n'\cdot \th'} +(u,0)\=\tilde v + (u,0) \Eq(7.19)$$ and therefore $$ e\=D^2_{\o'} v- V_{x'}(\th'+v)= V_{x'}(\th+u,\th_{N+1})-V_{x'}\big((\th+u,\th_{N+1})+\tilde v\big) \Eq(7.20)$$ Next, we estimate $\tilde v$, $v$ and $e$ on $\D^{N+1}_\rb$ for any $r'<\rbFrom $\d\le(\g\O)$, [see \equ(7.9)], it then follows [ recall that $U,\Ub\ge 1$ while $\x_0<1$; and again $p=0,1$]: $$ \|\dpr_{\th'}^p\tilde v\|_\rb \le {\hat \d \over (\g \O)^2} <{\x_0-\r\over2}\ ,\qquad \h\le 2U\ ,\qquad \hb\le 2\Ub \Eq(7.25)$$ We are now in a position to apply Lemma 7.2 with $\x\= \bar r\= (r+r')/2$, $\x_0'\=\r+\|\tilde v\|_{\bar r}$ $\le (\r+\x_0)/2$, $\x'\=r'$, and $N$ replaced by $(N+1)$ and $u$ by $u'$: using the above estimates [ and bounding $(2N+3)!$ by a constant times $2^{3N} (N+1)!^2$ ] we see that the condition \equ(7.12) in Lemma 7.2 is implied (for a suitable $C>B$) by $\d^2(\g\O)^{-2}\le 1$, which is verified because of our choice of $\O$: In fact, by \equ(7.14), \equ(7.25), \equ(7.24) it is: $$ A \e \le {\d^2\over 2} (\g \O)^{-2} (\x_0-\r) \= {\bar \d \over 2} (\g \O)^{-2} \Eq(7.26)$$ and condition \equ(7.12) reads just $A\e(\x_0-\r)^{-1}\le 1$. Furthermore we see that $$ \{\th'+u':\th'\in\D^{N+1}_{r'}\}\subset\D^{N+1}_{\r+\|\tilde v\|_\rb+A\e} \subset\D^{N+1}_{\r+{\bar \d \over (\g\O)^2}}\= \D^{N+1}_{\r'} \Eq(7.27)$$ [ recall \equ(7.14), \equ(7.23), \equ(7.24) and the definition of $\bar \d$ in \equ(7.10) ], where we used $\hat \d<\d^2 (\x_0-\r)/2\=\bar \d/2$; the fact that $\r'<\x_0$ [ see \equ(7.10) ] follows from $\d^2(\g \O)^{-2}\le 1$ and from the first of \equ(7.25). Now, for $p=0,1$, using \equ(7.14), \equ(7.26) and $\hat \d< \bar \d/2$, we get $$\eqalign{ \|\dpr_{\th'}^p \big( u'-(u,0) \big)\|_{r'} & = \|\dpr_{\th'}^p \big (u'-v+\tilde v \big)\|_{r'}\cr &\le A\e + {\hat \d \over (\g \O)^2} \le {\bar \d \over (\g\O)^2}\cr} \Eq(7.28)$$ Finally, mimicking the bounds \equ(7.21)$\div$\equ(7.24), one obtains $$ \|D_{\o'}\tilde v\|_{\bar r} \le \g^{-1} {\hat \d \over \g\O} \Eq(7.29)$$ thus, by \equ(7.14), \equ(7.28) and [ see \equ(7.9) ] using $\d (\g \O)^{-1}\le 1$, $\hat \d \le \d/2$, also the bound on $\|D_{\o'}\big(u'-(u,0)\big)\|$ follows easily. \qquad \qed \vglue2.truecm\penalty-200 \nin{\sectionfont 8. Proof of Existence of Almost--Periodic Solutions} \penalty10000 \vskip0.5truecm \numsec=8 \numfor=1 \penalty10000 \nin Here we prove Theorem 6.3. Theorem 6.1 follows immediately from Theorem 6.3 and from Corollary A2.4 (see Appendix 2). \vsk {\bf Proof of Theorem 6.3}\quad The idea is to use iteratively the results of \S 7 to construct quasi--periodic solutions for larger and larger subsystems and to obtain, in the limit, almost periodic--solutions. By hypothesis we are given a real--analytic quasi--periodic solution $y(t)\=\o^\po t+u^\po(\o^\po t)$ of the subsystem: $$ \ddot y=V_y^{(I_0)}(y)\ ,\qquad y\in \T^{N_0}\ ,\quad N_0\=|I_0| \Eq(8.1)$$ the frequency vector $\o^\po$ being $(\g,N_0)$--Diophantine. Thus calling $\x_0$ the analyticity parameter associated to the field $f$ (see Definition 3.2), we can assume that there exist $00$. We shall take: $$ r_k\= r_0 \big(1-\m \sum_{h=1}^k {1\over h^{\n}}\big)\ ,\qquad \m\= \big(2 \sum_{h=1}^\io {1\over h^{\n}}\big)^{-1} \Eq(8.7)$$ where $\n>1$ is a prefixed number (thus $r_\io=r_0/2$). Now, imagine that $u^{(k)}$, ($k\ge 0$), is given together with $\o^\pk$ $\in$ $\R^\Nk$, that $u^\pk$ is real--analytic on $\D^\Nk_\rk$, that $\o^\pk$ is $(\g,N_k)$--Diophantine and denote $N_k, U_k, \Ub_k, \r_k, \d_k, \bar \d_k, \b_k$ the (obviously) corresponding objects (see Proposition 7.1; notice that $C,\g,\x_0$ remain fixed in the construction). Finally, let, for $0<\s\le 3\sqrt{5}/\p^2$ ($\=[2\sum_{k\ge 1} k^{-4}]^{-{1\over 2}}$) $$ \Ok\=\max\{4\sqrt{\Nk}\ |\ok|\ ,\ {\d_k (1+k)^2\over \g \s}\} \Eq(8.8)$$ and choose $$ \ak\in\hat \AA_k\=[\Ok, \Ok +K |\ok|]\cap\AA_\Nk(\ok,\Ok) \Eq(8.9)$$ (recall from \equ(5.5) that $\hat\AA_k$ has positive Lebesgue measure). >From \equ(8.8) it follows $$ \sum_{k\ge 0} {\bar \d _k\over (\g\O_k)^2} \= \sum_{k\ge 0} \Big( {\d_k\over \g \O_k} \Big)^2 (\x_0-\r_k) < \sum_{k\ge 0} {\d_k\over \g\O_k} \le \s{\p^2\over 6} \Eq(+)$$ Under the above positions, Proposition 7.1 guarantees the existence of a non--degenerate quasi--periodic solution with $\ukk:\R^\Nkk\to\T^\Nkk$ (in Proposition 7.1 we set $u\=\uk$, $u'\=\ukk$, $r\=\rk$, $r'\=\rkk$, \etc) and $\okk\=(\ok,\ak)$; notice in fact that the first of \equ(+) implies that (recall that $\r_0\=\x_0/2$): $$ \r_{k+1} \=\r_k + {\bar \d_k \over (\g \O_k)^2} < {\x_0\over 2} + \x_0 \s^2 \sum_{k\ge 1} {1\over k^4} \le \x_0\ ,\qquad \forall\ k \Eq(*)$$ Now, if we denote by $L$ either the identity operator, or $\dpr_\thkk$, [$\thkk\=(\th_1,...,\th_\Nkk)$], or $\g D_\okk$, then the bounds in \equ(7.10) and \equ(+) yield: $$\eqalign{ \|L\ukk\|_\rkk & \le \|L u^\po\| +\sum_{h=0}^k\| L\big(u^{(h+1)}-(u^{(h)},0) \big) \ \|_\rkk\cr &\le \|Lu^\po\|_{r_0}+ \sum_{k\ge 0} {\d_k\over \g\O_k}\cr &\le \|L u^\po\|_{r_0} + \s {\p^2\over 6}\cr} \Eq(8.11)$$ This bound implies, in particular, that, for any $h>0$: $$ \lim_{k\su \io}\ \sup_{\T^{N_{h+k}}} \| L[ u^{(h+k)}-(u^{(k)},\underbrace{0,...,0}_{h \rm \ times})] \|=0 \Eq(8.12)$$ (recall that $\|a\|\=\sum_{h=1}^N|a_h|$ for $a\in \RN$). Thus we can {\it define two functions}, $u,Du$, on $\Tw$ as the uniform limits of, respectively, $\uk$, $D_\ok \uk$: here $Du$ is just a symbol for a function and $D$ must not be interpreted as a differential operator. The functions $u,Du$ are continuous from $\Tw$ into $\Bw$ {\it for any weight $w$}. In fact, if $\th_h\in\Tw$ converges (in the metric $\r_w$) to $\th$, and if $\tu$ denote here either $u$ or $Du$, letting $\bar w$ denote $\sup_i w_i$, we see that: $$\eqalign{ {1\over\bar w} \sum_{i\in\Zd}|\tu_i(\th_h)-\tu_i(\th)| w_i& \le \sum_{i\in\Zd}|\tu_i(\th_h)-\tu_i(\th)| \cr &\le \sum_{i\in\Zd}|\tu_i(\th_h)-\tu_i^{(k)}(\th_h)| + \sum_{i\in I_k}|\tu_i^{(k)}(\th_h)-\tu_i^{(k)}(\th)| \cr &\qquad\quad + \sum_{i\in\Zd}|\tu_i^{(k)}(\th)-\tu_i(\th)|\cr} \Eq(8.13)$$ a quantity that can be made small as we please by taking, first, $k$ large enough [recall \equ(8.12)] and, then, considering $h$ large enough. Define also, for each $i\in\Zd$, a function $D^2u_i$ as: $$ D^2u_i(\th) \= f_i(\th+ u(\th))\ , \qquad \th\in \Tw \Eq(@)$$ As above $D^2u_i$ is just a symbol for a new function; notice that the functions $D^2u_i$ are continuous from $\Tw$ into $\R$ (but we dot consider the ``vector--valued" function $\{D^2u_i\}_{i\in\Zd}$). Finally define, for any $\th\in\Tw$: $$ x(t)\=x(t;\th)\=[\th+\o t+ u([\th + \o t])] \Eq(8.14)$$ where $$ \o_i\=\left\{ \eqalign{& \o^\po_i\ ,\quad\qquad\qquad i\in I_0\cr & \o_{j_k}\=\a_{k}\ ,\qquad i\=j_k\notin I_0\cr} \right. \Eq(8.15)$$ >From the above construction follow immediately the following facts: $$ {\rm (i):}\quad{d\over dt} x_i(t)=\o_i+Du_i([\th + \o t])\ ,\qquad {d^2\over dt^2} x_i(t)= D^2u_i([\th + \o t]) \Eq(8.15+)$$ (ii): $x(t;\th)$ is solution of \equ(2.6); and (iii): denoting, for $i\in I_0$, $x_i^\po(t;\th)\=\th_i+\o^\po_i t+ u_i^\po(\th^{(I_0)}+\o^\po t)$ [see \equ(7.10), \equ(8.11), \equ(8.13)]: $$\eqalign{ & \sup_{{t\in\R}\atop{p=0,1}} |{d^p\over dt^p} \big(x_i(t;\th)-x_i^\po(t;\th)\big)|\le \s {\p^2\over 6} \ ,\qquad i\in I_0\cr & \sup_{{t\in\R}\atop{p=0,1}} |{d^p\over dt^p} \big(x_i(t;\th)-\o_i t\big)|\le \s {\p^2\over 6} \ ,\ \qquad\qquad i\notin I_0\cr} \Eq(8.17)$$ The proof of Theorem 6.3 is completed by taking $\s\= \min\{ 6\e/\p^2, 3\sqrt{5}/\p^2\}$. \qed \vsk {\bf Remarks 8.1}\quad (i) The above estimates imply that (choosing $\n$ in \equ(8.7) close enough to $1$) $\Ok\ge (\e\g)^{-1} k!^{9}$, for all $k$ big enough (the exponent $9$ comes from the fact that $\g\O_k\ge \d_k (1+k)^2/\s>\d_k \e^{-1}$, from the $6^{\rm th}$ power of the factorial in \equ(7.9) and from the factor $(r-r')^{-[11(N+1)+1]}$ $\sim$ $k!^{11 \n}$). It is also easy to see that, for the examples \equ(SGa) and \equ(Ex2) discussed in \S 1, it holds the upper bound $\Ok\le$ $(\e\g)^{-1} b^k$ $k!^{9}$ for a suitable constant $b$ (depending also on $x^\po(t)$; see [Pe]); thus, in such examples $$ (\e\g)^{-1} k!^{9}<\o_{j_{k+1}}<(\e\g)^{-1} \bar b^k k!^{9} \Eq(8.18)$$ for $k$ large enough and for a suitable constant $\bar b$ (recall that $\e>0$ is arbitrary). As already noticed, this fast growth is intimately related to the property of $\o$ of being a Diophantine sequence; and (obviously) $9$ is far from optimal. (ii) The regularity properties of the almost--periodic solutions, $x(t)$, constructed above are much stronger than just being continuous and having $C^2(\R)$ components $x_i(t)$ (such properties are best reflected by the approximations via the real--analytic functions $u^{(k)}$). Notice however that $x_i(t)$ {\it is not $C^3$}. \vglue2.truecm\penalty-200 \nin{\sectionfont Appendix 1. Full Measure of Diophantine vectors in $\RN$} \penalty10000 \vskip0.5truecm \numsec=1 \numfor=1 \penalty10000 \nin Let $\DD_\t$ denote the set of vectors $\o$ in $\RN$ which are $(\g,\t)$--Diophantine [see \equ(5.3)] for some $\g>0$ and let $\ell$ be Lebesgue measure. \vsk {\bf Proposition A1.1\quad} {\sl $\ell(\RN\backslash \DD_\t)$=0 provided $\t>N-1$.} \vsk {\bf Proof}\quad It is enough to check that $\lis \DD_{R,\t}\=\{\o:\|\o\|\le R$, $\o\notin \DD_\t\}$ has Lebesgue measure zero for any $R>0$. Now, if $$ \CC_{R,\g}\=\{\o: \|\o\|\le R\ \ {\rm and}\ \ \exist\ 0\neq n\in \ZN: \ |\o\cdot n|<{1\over \g |n|^\t} \} \Eqa(a1.1)$$ (recall that $\|\cdot\|$ is the Euclidean norm in $\RN$ while $|\cdot|$ is the sum of absolute values), then $\lis \DD_{R,\t} =\cap_{\g>0}\CC_{R,\g}$ and the claim follows from the following estimate: $$\eqalign{ \ell(\CC_{R,\g}) & \le \sum_{n\neq 0} \ell (\{ \o: \|\o\|\le R\ ,\ |\o\cdot n|<{1\over \g |n|^\t}\})\cr & \le \sum_{n\neq 0} {b_1 R^{N-1}\over \g |n|^\t \|n\|} < {b_2 R^{N-1}\over \g}\cr} \Eqa(a1.2)$$ where $b_1,b_2$ are suitable ($N,\t$--dependent) positive constants. \qed \vglue2.truecm\penalty-200 \nin{\sectionfont Appendix 2. A Short KAM Theory} \penalty10000 \vskip0.5truecm \numsec=2 \numfor=1 \penalty10000 \nin Here we want to prove in all details Lemma 7.2. As usual, for vectors in $\CN$ (or $\RN$ or $\ZN$) we denote by $\|\cdot\|$ the Euclidean norm and by $|\cdot|$ the $1$--norm (sum of absolute values of components); recall also the definition of norms of analytic functions given in \S 7 [\equ(7.5)$\div$\equ(7.7)]. We start with a basic (elementary) tool (a ``Cauchy estimate"): \vsk {\bf Lemma A2.1}\quad{\sl Let $g$ be an analytic function from $\DD\subset \CN\to\C$ ($\dpr \DD$ smooth). Then for any subdomain $\DD'\subset \DD$ with $\d\=$ dist.$(\DD',\dpr \DD)>0$ and any $n\in \NaN$, one has: $$ \|\dpr_z^n g\|_{\DD'}\=\sup_{\DD'}|{\dpr^{|n|} g\over \dpr_{z_1}^{n_1}\cdot\cdot\cdot\dpr_{z_N}^{n_N}}|\le |n|!\ \d^{-|n|} \ \|g\|_\DD \Eqa(a2.1)$$ If $g$ is analytic from $\DD$ into $\LL^p(\CN)$, $p\in\N$, then for any $q\in \Z_+$, $\dpr^q_zg \in \LL^{p+q}(\CN)$ and $$\|\dpr_z^q g\|_{\DD'}\le q!\ \d^{-q}\ \|g\|_\DD \Eqa(a2.2)$$} \vsk The proof is a straightforward exercise based upon Cauchy's integral formula using the contour $|\z_h-z_h|=\d$, $h=1,...,N$ ($z\in \DD'$ fixed and $\z\in \DD$ variable of integration. The exercise is carried out, \eg, in [CC2]). As an application of Lemma A2.1 we prove a useful bound. If $r\in(0,1)$, $p\in \N$ and $N\in \Z_+$, one has: $$ \Si^N_p(r)\=\sum_{n\in\ZN} |n|^pe^{-r|n|}\ \le\ p!\ \big({4\over r}\big)^{p+N} \Eqa(a2.4)$$ \vsk {\bf Proof of \equ(a2.4)}\quad For any $r>0$ $$ \Si_p^N=(-1)^p \dpr^p_r \ \sum_{n\in\ZN} e^{-r|n|}= (-1)^p\dpr^p_r \big({e^r+1\over e^r-1}\big)^N \= (-1)^p \dpr_r^p E(r)^N \Eqa(a2.5)$$ Now, the function $g(x)\=(-1)^pE(x)^N$ is analytic and bounded in $B_{r-s}(r)\=\{x\in \C:\ |x-r|