This is latex2e + AMSLaTeX 1.2. All document styles are available at any CTAN (Comprehensive TeX Archive Network) site, e.g.=20 ftp://cis.utovrm.it/tex/, but surely also at a site nearest to you. Any up-to-date installation of TeX should be able typeset this file.=20 BODY %File BM4.TEX %WARNING!! THIS IS LaTeX2e!! \documentclass[12pt,reqno,draft]{amsart} \usepackage{a4,amsmath,amsfonts} \raggedbottom \allowdisplaybreaks[4] %For the Journal %\renewcommand{\baselinestretch}{2} %New Commands and Shortcuts \newcommand{\eps}{\varepsilon} \renewcommand{\th}{\theta} \newcommand{\om}{\omega} \newcommand{\percent}{\%} %\def\eps{\varepsilon} %\def\th{\theta} %\def\om{\omega} %\def\percent{\%} \newcommand{\fC}{\mathbb{C}} \newcommand{\fD}{\mathbb{D}} \newcommand{\fH}{\mathbb{H}} \newcommand{\fN}{\mathbb{N}} \newcommand{\fQ}{\mathbb{Q}} \newcommand{\fR}{\mathbb{R}} \newcommand{\fT}{\mathbb{T}} \newcommand{\fZ}{\mathbb{Z}} \newcommand{\eg}{\textit{e. g. }} \newcommand{\ie}{\textit{i. e. }} \newcommand{\der}{\text{d}} %Operator Names \renewcommand{\Im}{\operatorname{Im}} \renewcommand{\Re}{\operatorname{Re}} \newcommand{\am}{\operatorname{am}} \newcommand{\sn}{\operatorname{sn}} \newcommand{\cn}{\operatorname{cn}} \newcommand{\dn}{\operatorname{dn}} %Theorems and Such \newtheorem{thm}{Theorem}[section] \newtheorem{lem}{Lemma}[section] \newtheorem{prop}{Proposition}[section] \newtheorem*{conj}{Conjecture}%\renewcommand{\theconj}{} \theoremstyle{definition} \newtheorem{defin}{Definition}[section] \newtheorem{rem}{Remark}[section] %Numberings \numberwithin{equation}{section} %End of Preamble \begin{document} \raggedbottom \title[Linearizations of Complex Dynamical Systems] {Limit at Resonances of Linearizations=20 \\ of Some Complex Analytic Dynamical Systems} \author{Alberto Berretti} \address{Alberto Berretti\\ Dipartimento di Matematica\\ II Universit\`{a} = di Roma (Tor Vergata)\\ Via della Ricerca Scientifica, 00133 Roma, Italy and I= NFN, Sez. Tor Vergata} \email{{\tt berretti@roma2.infn.it}} \author{Stefano Marmi} \address{Stefano Marmi\\ Dipartimento di Matematica ``U. Dini''\\ Universit= \`{a} di Firenze\\ Viale Morgagni 57a, 50134 Firenze, Italy and INFN, Sez. Firenz= e} \email{{\tt marmi@fi.infn.it}} \begin{abstract} We consider the behaviour near resonances of linearizations of=20 germs of holomorphic diffeomorphisms of $(\fC,0)$ and of=20 the semi--standard map.=20 We prove that there exists suitable scalings under which the=20 linearizations converge uniformly to some analytic function as the=20 multiplier, or rotation number, tends non--tangentially to a=20 resonance. This limit functions are computed analytically in the case=20 of germs and are related to the formal classifications of germs with a=20 parabolic fixed point. In the semi--standard map case we give a=20 heuristic argument to compute the limit. \end{abstract} \maketitle \section{Introduction} Problems in which series with small denominators appear are quite=20 frequent in the theory of dynamical systems: they typically appear=20 when one tries to conjugate the dynamics of the system to the one of=20 the corresponding linearized problem. As such, they appear in the=20 theory of Hamiltonian systems, in the theory of area--preserving twist=20 maps, in the theory of circle maps, in the costruction of normal forms=20 of differential equations in the neighborhood of a fixed point, in the=20 theory of iterated maps of $\fC^{n}$, and in many other, often=20 unexpected, cases. We refer the reader to the relevant, huge=20 literature on the topic for comprehensive references and background. Small denominators have the effect that the convergence of the series=20 which expresses the linearization is problematic, and the=20 linearization itself has a complicated analytic structure as a=20 function of the dynamical variables, of the perturbative parameter,=20 and of the characteristic frequencies of the motion we are trying to=20 conjugate to linear. In some specific cases, this analytic structure=20 has been the subject of numerical studies (\eg \cite{BM2} and=20 references quoted therein, \cite{LT}, \cite{BTT}).=20 In this article we prove some simple results for the linearization of=20 germs of holomorphic diffeomorphisms of $(\fC,0)$ (see \eg=20 \cite{Yoccoz}) and for the so called ``semi-standard map''=20 \cite{GreenePercival}, \cite{Percival}. In particular, for each of the systems we take into account, we prove=20 that the linearizations have well--defined limits as the multiplier,=20 or rotation number, tends to a rational value $p/q$, \textit{provided=20 the dynamical variable is suitably rescaled}. In the case of germs,=20 we actually compute this limit: this generalizes a result contained in=20 \cite{Yoccoz}, as this reference computes the limit only for the case=20 of quadratic polynomials. In the case of the semi-standard map, we=20 provide a heuristic argument for the limit function, obtaining a=20 result which fully explains the observed numerical evidence. We note=20 also that our results explain the numerical results of \cite{BTT}. Of course, it would be quite interesting to generalize these results=20 to more interesting, and complicated, systems like the standard map:=20 \cite{BM2} contains some partial results in this direction.=20 \section{Germs of holomorphic diffeomorphisms of $(\fC,0)$} Let $G$ denote the group of germs of holomorphic diffeomorphisms=20 of $(\fC,0)$ with a fixed point at $0$. An important problem=20 in complex dynamics is to describe the conjugacy classes of this group.=20 Since $0$ is a fixed point, one has some natural conjugacy invariants like= =20 the multiplier $\lambda=3Df'(0)$ of the germ $f$ at $0$ and=20 the holomorphic index:=20 $$ i(f,0) =3D \frac{1}{2\pi i}\oint\frac{\der z}{z - f(z)}, $$ where we integrate on a small loop in the positive direction around=20 $0$. If $\lambda \neq 1$, $0$ is a simple fixed point and one clearly has: $$ i(f,0) =3D \frac{1}{1-\lambda}. $$ Let $G_{\lambda}$ denote the set of $f \in G$ such that=20 $f'(0)=3D\lambda$. $f$ is \emph{linearizable} if it belongs to the=20 same conjugacy class of the rotation $R_{\lambda}(z)=3D\lambda z$.=20 If $|\lambda | \neq 1$, by the Poincar\'e--K\oe{}nigs linearization theore= m=20 \cite{Koenigs}, \cite{Poincare}, one knows that there exists a unique germ $h_{\lambda,f} \in G_{1}$ such th= at: \begin{equation} =09f \circ h_{\lambda,f}=3D h_{\lambda,f} \circ R_{\lambda}. =09\label{eq:conjugacy} \end{equation} The function $h_{\lambda,f}$ is called the \emph{linearization} of=20 $f$: attracting ($|\lambda| < 1$) and repelling ($|\lambda| > 1$)=20 fixed points of holomorphic diffeomorphisms are linearizable. If one=20 keeps $f-R_{\lambda}$ fixed as $\lambda$ varies, the linearization=20 $h_{\lambda ,f}$ depends holomorphically on the multiplier $\lambda$. =20 If $f_{\lambda}$ is an entire function and $|\lambda| > 1$ then=20 $h_{\lambda,f}$ is an entire function. When $|\lambda|=3D1$ the fixed point at the origin is \emph{indifferent}=20 and one must distinguish three different situations: \begin{enumerate} =09\item \emph{parabolic} or \emph{resonant case}:=20 =09=09=09$\lambda=3D\Lambda=3D\exp\left(2\pi i \frac{p}{q}\right)$, =09=09=09where $(p|q)$=3D1; \label{case:resonant} =09\item \emph{Brjuno's case}: $\lambda =3D \exp(2\pi i \om)$ and $\om$=20 =09=09=09is a \emph{Brjuno number} \cite{Brjuno}), \cite{MMY}: if=20 =09=09=09$\{p_{k}/q_{k}\}$ denotes the sequence of partial fractions of=20 =09=09=09the continued fraction expansion of $\om$, one requires the=20 =09=09=09convergence of the series $\sum_{k=3D0}^\infty \frac{\log=20 =09=09=09q_{k+1}}{q_{k}} < + \infty$; \label{case:brjuno} =09\item \emph{Cremer's case}: $\lambda =3D=09\exp(2\pi i=09\om)$ =09=09=09and=09$\om$ is \emph{not}=09a Brjuno number. \label{case:cremer} \end{enumerate} Actually, Cremer proved \cite{Cremer} that $G_\lambda$ is not a=20 conjugacy class if $\sup_{n}\frac{\log q_{n+1}}{q_{n}} =3D \infty$. =20 However we think that it is quite fair to give his name to the=20 complement of the Brjuno set. In case (\ref{case:resonant}) Ecalle \cite{Ecalle} and Voronin=20 \cite{Voronin} have given a complete classification of the=20 conjugacy classes of $G$ contained in $G_{\Lambda}$; $R_{\Lambda}$=20 belongs to the class of $G_{\Lambda}$ with all the elements of order=20 $q$, but other classes are also possible.=20 In 1987 Yoccoz \cite{Yoccoz} proved that in case=20 (\ref{case:brjuno}) above $G_{\lambda}$ is a conjugacy class of $G$,=20 whereas in case (\ref{case:cremer}) it is not a conjugacy class and=20 there exists at least a non-linearizable germ $f\in G_\lambda$. A=20 remarkable example is given by the quadratic polynomial:=20 $$ P_{\lambda}(z) =3D e^{2\pi i\om} (z-z^{2}) $$=20 which is linearizable if and only if $\om$ is a Brjuno number. An interesting property of the linearization $h_{\lambda,f}$ is that,=20 keeping $f-R_{\lambda}$ fixed as $\lambda$ varies in the unit disk=20 $\fD =3D \{ z \in \fC | |z| < 1 \}$, one can prove that it has=20 non-tangential limits at all Brjuno numbers. In what follows we shall=20 show the existence of suitable scalings under which $h_{\lambda,f}$=20 has non-tangential limits at resonances (\ie rational values of $\om$=20 or values equal to roots of unity for $\lambda$). We will also compute=20 these limits and show how they are reletad to the \emph{formal}=20 classification of conjugacy classes of $G_{\Lambda}$.=20 \subsection{The main theorem} Let us thus consider the one-parameter family of germs $f_{\lambda}=20 \in G_{\lambda}$: $$ f_{\lambda}(z) =3D \lambda z + \sum_{n=3D2}^{\infty}f_{n}z^{n}, $$ where we keep the coefficients $\{f_{n}\}_{n=3D2}^{\infty}$, \ie=20 $f_{\lambda} - R_{\lambda}$, fixed. We denote simply by $h_{\lambda}$=20 the corresponding linearization. We have the following theorem. \begin{thm} Let $V \subset \fD$ be a non-tangential sector with vertex=20 $\Lambda=3De^{2\pi i p/q}$; there exists a positive integer $k$ and a=20 complex number $A \in \fC^{*}$ such that, if we let: \begin{equation} =09\tilde{h}_{\lambda}(z) =3D \frac{1}{(\lambda-\Lambda)^{1/kq}} =09=09=09=09=09=09 =09 h_{(\lambda-\Lambda)^{1/kq}\lambda}(z), =09\label{eq:scallim} \end{equation} then, as $\lambda \rightarrow \Lambda$ in $V$, $\tilde{h}_{\lambda}$=20 tends uniformly on some small open disk around $0$ to the function: \begin{equation} =09\tilde{h}_{\Lambda}(z) =3D z \left( =09=09=09=09=09=09=09=09=09 1 - \frac{A}{q\Lambda^{q-1}}z^{kq} =09=09=09=09=09=09=09 \right)^{-1/kq}. =09\label{eq:limitlin} \end{equation} \end{thm} This theorem generalizes to germs a result of Yoccoz \cite{Yoccoz} for the= =20 linearization of the quadratic polynomial, obtained by different=20 techniques.=20 \begin{rem} Note that one may use any scaling $z \rightarrow=20 s((\lambda-\Lambda)^{\frac{1}{kq}}) z$ instead of $z \rightarrow=20 (\lambda-\Lambda)^{\frac{1}{kq}} z$, provided $s$ is analytic,=20 $s(0)=3D0$ and $s'(0) \neq 0$. In this case one finds: $$ \tilde{h}_{\Lambda} =3D z \left( =09=09=09=09=09=09=091 - \frac{A s'(0)}{q \Lambda^{q-1}} z^{kq} =09=09=09=09=09=09\right)^{-1/kq}. $$ \end{rem} Before proving this theorem we need to recall some properties of=20 parabolic fixed points.=20 \subsection{Parabolic Fixed Points} It is wel known \cite{Beardon} that if $f_{\Lambda}$ is a rational=20 function of degree $d \geq 2$ then $0$ belongs to the Julia set of=20 $f_{\Lambda}$. In a neighborhood of $0$ the dynamics is described in=20 terms of attracting and repelling petals.=20 We actually need a much weaker result, which holds for all germs=20 $f_{\Lambda} \in G_{\Lambda}$. In the following, we denote with=20 $f^{\circ q}$ the composition of the function $f$ with itself $q$=20 times. \begin{lem}\label{lem:mainlemma} There exists a positive integer $k \geq 1$ and a nonzero complex=20 number $A \in \fC^{*}$ such that: \begin{equation} =09f^{\circ q}_{\Lambda}(z) - z + A z ^{kq+1} + O(z^{kq+2}). =09\label{eq:mainlemma} \end{equation} If $f_{k}=3D0$, $k=3D2,\ldots,n$, then $kq+1 \geq n$.=20 \end{lem} \begin{proof} This is quite easily proved by comparing the series developments of=20 both sides in the equation $f_{\Lambda} \circ f^{\circ q}_{\Lambda} =3D=20 f^{\circ q}_{\Lambda}\circ f_{\Lambda}$.=20 \end{proof} \begin{rem} If $f_{\lambda}$ is a polynomial of degree $d$, then, by a result of=20 Douady and Hubbard (see=20 (\cite{DH}), sect. XX, prop. XX), $1 \leq k \leq d-1$.=20 \end{rem} \begin{rem} There exists a unique $B \in \fC^{*}$ such that $f^{\circ q}_{\Lambda}$=20 belongs to the same analytic conjugacy class of a germ $g_{B}$ of the=20 form: $$ g_{B}(z) =3D z + z^{kq+1} + B z^{2kq+1} + O(z^{2kq+2}). $$ Moreover $f^{\circ q}_{\Lambda}$ is \emph{formally} and=20 \emph{topologically} conjugated to the polynomial $z+z^{kq+1}+Bz^{2kq+1}$.= =20 Indeed, the existence of an analytic conjugation of $f^{\circ q}_{\Lambda}$= =20 to $g_{B}$ is proved by induction over a finite number of steps, starting with $f_{\lambda}$ and iterating conjugations by=20 polynomials $\phi_{j}(z)=3Dz+\beta_{j}z^{kq+j+1}$, with=20 $j=3D1,\ldots,kq-1$ and suitably chosen $\beta_{j}$. The formal=20 conjugation is proved by iterating conjugations by polynomials=20 $\phi_{l}(z)=3Dz+\beta_{l}z^{l}$, with $l \geq 2k+2$ and suitably=20 chosen $\beta_{l}$.=20 \end{rem} \begin{rem} Let: $$ f^{\circ q}_{\Lambda} =3D z + A z^{kq+1} + \sum_{j=3Dkq+2}^{\infty}A_{j}z^{= j}. $$ Then, since $i(f^{\circ q}_{\Lambda},0) =3D i(g_{B},0) =3D B$, we have: $$ B =3D -\frac{1}{A}\sum_{j=3D1}^{kq}\frac{(-1)^{j}}{A^{j}} =09\sum_{n_{1}+\ldots+n_{j}=3Dkq}A_{n_{1}+kq+1} \cdots A_{n_{j}+kq+1}. $$ \end{rem} \subsection{Germs with Almost Resonant Linear Part} We now consider the one-parameter family of germs $f_{\lambda} \in=20 G_{\lambda}$, with $\lambda$ close to $\Lambda$, and their iterates=20 $f^{\circ q}_{\lambda}$. Without any loss of generality, we can assume the= =20 following normalization condition: there exists $r > 0$ and $\rho > 0$=20 such that for all $\lambda \in \fC$, $|\lambda - \Lambda| < \rho$: \begin{enumerate} =09\item $f_{\lambda}, \; f^{\circ q}_{\lambda}: \fD_{r} \mapsto \fC$=20 =09injectively, where $\fD_{r} =3D \{ z \in \fC | |z| < r \}$; =09\item $f^{\circ q}_{\lambda} =3D \lambda^{q}z +=20 =09\sum_{j=3D2}^{\infty}f^{(q)}_{j}(\lambda)z^{j}$ and=20 =09$|f^{(q)}_{j}(\lambda)| \leq r^{1-j}$. \end{enumerate} \begin{rem}\label{rem:pollambda} $f^{(q)}_{j}(\lambda)$ is a polynomial in $\lambda$, with a zero at=20 $\Lambda$ if $2 \leq j \leq kq$. Thus we can assume that there exists=20 $c_{1}>0$ such that for all $|\lambda - \Lambda|<\rho$: $$ |f^{(q)}_{j}(\lambda)| \leq c_{1}|\lambda - \Lambda|r^{1-j} $$ for all $j=3D2,\ldots,kq$. \end{rem} Let $\alpha \in (0,\pi/2)$ and let $C(\Lambda,\alpha)$ denote the=20 complex cone with vertex at $\Lambda$ defined by: \begin{equation} =09C(\Lambda,\alpha) =3D \{\lambda | \arg\Lambda+\pi-\alpha < =09=09=09=09=09=09\arg(\lambda - \Lambda) < =09=09=09=09=09=09\arg\lambda+\pi+\alpha. =09\label{eq:sector} \end{equation} Let $C(\Lambda,\alpha,\rho) =3D C(\Lambda,\alpha) \cap=20 \{|\lambda-\Lambda|<\rho\}$, where $\rho>0$. We then have the=20 following. \begin{lem}\label{lem:estimlambda} For all $\alpha \in (0,\pi/2)$ and for all sufficiently small $\rho>0$=20 there exists $c_{2}>c_{1}>0$ such that, if $\lambda \in=20 C(\Lambda,\alpha,\rho)$, then: \begin{equation} =09|\lambda^{jq}-\lambda^{q}| \geq c_{2}|\lambda-\Lambda| =09\label{eq:estimlambda} \end{equation} for all $j \geq 2$. \end{lem} \begin{proof} If $j=3D2$ one has: $$ \frac{|\lambda^{2q}-\lambda^{q}|}{|\lambda-\Lambda|} =3D |\lambda^{q}|\frac{|\lambda^{q}-1|}{|\lambda-\Lambda|} \geq c_{3}(1-\rho)^{q}|q\Lambda^{q-1}| \geq c_{2}; $$ if $j>2$ instead: $$ \frac{|\lambda^{jq}-\lambda^{q}|}{|\lambda-\Lambda|} =3D |\lambda^{q}|\frac{|\lambda^{q}-1|}{|\lambda-\Lambda|} |1+\lambda^{q}+\ldots+\lambda^{(j-2)q}| \geq c_{4}(1-\rho)^{q}|q\Lambda^{q-1}|(j-2) \geq c_{2}, $$ where $c_{3}$ and $c_{4}$ are some positive constants. \end{proof} Note that one needs the assumption that $\lambda \rightarrow \Lambda$=20 non-tangentially in order to control the sum=20 $|1+\lambda^{q}+\ldots+\lambda^{(j-2)q}|$ which is clearly not=20 bounded below if $|\lambda|=3D1$.=20 The power series expansion: \begin{equation} =09h_{\lambda}(z) =3D z + \sum_{j=3D2}^{\infty}h_{j}(\lambda)z^{j} =09\label{eq:siegelseries} \end{equation} for the linearization $h_{\lambda}$ of $f_{\lambda}$ can be=20 recursively determined by means of (\ref{eq:conjugacy}). However one=20 also has: \begin{equation} =09f^{\circ q}_{\lambda} \circ h_{\lambda} =3D h_{\lambda} \circ f^{\circ q= }_{\lambda}, =09\label{eq:conjugacyqtimes} \end{equation} thus one gets: \begin{equation} =09h_{j}(\lambda) =3D \frac{1}{\lambda^{jq}-\lambda^{q}} =09=09\sum_{i=3D2}^{j} f^{\circ q}_{j}=20 =09=09\sum_{j_{1}+\ldots+j_{i}=3Dj}=20 =09=09h_{j_{1}}(\lambda) \cdots h_{j_{i}}(\lambda), =09\label{eq:siegelrecurqtimes} \end{equation} for all $j \geq 2$. Now let: \begin{eqnarray*} =09\sigma_{1} & =3D & 1 \\ =09\sigma_{j} & =3D & \sum_{i=3D2}^{j}\sum_{j_{1}+\ldots+j_{i}=3Dj} =09\sigma_{j_{1}}\cdots\sigma_{j_{i}} \quad \text{for all } j \geq 2. \end{eqnarray*} \begin{lem} There exists a positive constant $c_{5}$ such that: \begin{equation} =09\sigma_{j} \leq c_{5} (3-2\sqrt{2})^{1-j}, =09\label{eq:lemmasigma} \end{equation} for all $j \geq 1$. \end{lem} \begin{proof} The generating function=20 $\sigma(z)=3D\sum_{i=3D1}^{\infty}\sigma_{i}z^{i}$ satisfies the=20 functional equation: $$ \sigma(z)=3Dz+\frac{\sigma(z)^{2}}{1-\sigma(z)}, $$ so that: $$ \sigma(z)=3D\frac{1+z-\sqrt{1-6z+z^{2}}}{4} $$ is analytic in the disk $|z|<3-2\sqrt{2}$ and bounded and continuous=20 on its closure; (\ref{eq:lemmasigma}) then follows by Cauchy's=20 estimate.=20 \end{proof} \begin{lem}\label{lem:lemmah} Let $\rho>0$ be sufficiently small. For all $\lambda \in=20 C(\Lambda,\alpha,\rho)$ and for all $j \geq 1$ one has: \begin{equation} =09|h_{j}(\lambda)| \leq \sigma_{j}r^{j-1}\left( =09=09=09=09=09=09\frac{1}{c_{2}|\lambda-\Lambda|} =09=09\right)^{\lfloor\frac{j-1}{kq}\rfloor}, =09\label{eq:lemmah} \end{equation} where $\lfloor x \rfloor$ denotes the integer part of $x$. \end{lem} \begin{proof} We proceed by induction: (\ref{eq:lemmah}) is clearly true if $j=3D1$.=20 Assume it holds for all $j=3D1,\ldots,n-1$. If $n \leq kq$ then from=20 remark \ref{rem:pollambda} and lemma \ref{lem:estimlambda} it follows=20 that: \begin{multline*} |h_{n}(\lambda)| \leq \frac{1}{c_{2}|\lambda-\Lambda|} =09=09=09\sum_{i=3D2}^{n}c_{1}|\lambda-\Lambda|r^{i-1} \\ =09\sum_{n_{1}+\ldots+n_{i}=3Dn}\sigma_{n_{1}}\cdots\sigma_{n_{i}} =09=09=09r^{i-(n_{1}+\ldots+n_{i}} \leq \sigma_{n}r^{1-n}. \end{multline*} If $n>kq$ then we split the previous sum into two parts:=20 $2 \leq i \leq kq$ and $i > kq$. For the first part we remark that: $$ \lfloor\frac{n_{1}-1}{kq}\rfloor + \ldots + \lfloor\frac{n_{i}-1}{kq}\rfloor \leq \lfloor\frac{n-i}{kq}\rfloor \leq \lfloor\frac{n-1}{kq}\rfloor. $$ The induction assumption applied to the second part gives: $$ =09\frac{1}{c_{2}|\lambda-\Lambda|}\sum_{i=3Dkq+1}^{n}r^{1-i} =09=09\sum_{n_{1}+\ldots+n_{i}=3Dn}\sigma_{n_{1}}\cdots\sigma_{n_{i}} =09=09r^{i-(n_{1}+\ldots+n_{i})} =09=09\left( =09=09=09\frac{1}{c_{2}|\lambda-\Lambda|} =09=09\right)^{\lfloor\frac{n-i}{kq}\rfloor}. $$ Since $i>kq+1$ then=20 $\lfloor\frac{n-i}{kq}\rfloor\leq\lfloor\frac{n-1}{kq}\rfloor-1$, and=20 the proof is complete. \end{proof} As lemma \ref{lem:lemmah} clearly shows, as $\lambda \rightarrow=20 \Lambda$ non tangentially, the radius of convergence of $h_{\lambda}$=20 tends to $0$ as $|\lambda-\Lambda|^{1/kq}$. The dynamical reason for=20 this fact is given by the following simple lemma. \begin{lem} Suppose that $f_{2} \neq 0$. Then there exists $\eps_{1}>0$ and=20 $\rho_{1}>0$ such that $f^{\circ q}_{\lambda}$ has exactly $kq$ fixed point= s=20 in $\fD^{*}_{\eps_{1}}$ for all $\lambda\in\fC$ such that=20 $0<|\lambda-\Lambda|<\rho_{1}$. These $kq$ fixed points form $k$=20 cycles of period $q$ for $f_{\lambda}$.=20 \end{lem} \begin{proof} Note that $0$ is a simple fixed point for $f^{i}_{\lambda}$,=20 $i=3D1,\ldots,q-1$, whereas it is a fixed point of multiplicity $kq+1$=20 for $f^{\circ q}_{\lambda}$. The zeros of an analytic function are=20 isolated, and $f_{\lambda}$ depends analytically on $\lambda$, so=20 there exist $\eps_{1}>0$ and $\rho_{1}>0$ such that=20 $|f^{i}_{\lambda}(z)-z| \geq c_{5} > 0$ for all $z$ such that=20 $|z|=3D\eps_{1}$ or $|z|=3D2\eps_{1}$ and for all $\lambda$ such that=20 $\lambda-\Lambda|<\rho_{1}$. By the argument principle the number=20 $N(f^{i}_{\lambda},\delta)$ of fixed points of $f^{i}_{\lambda}$=20 contained in the disk $|z|<\delta$ is given by: $$ N(f^{i}_{\lambda},\delta) =3D \frac{1}{2\pi i} =09\oint_{|z|=3D\delta}\der z=20 =09\frac{(f^{i}_{\lambda})'(z)-1}{f^{i}_{\lambda}(z)-z}. $$ $N(f^{i}_{\lambda},\eps_{1})$ and $N(f^{i}_{\lambda},2\eps_{1})$ are=20 continuous functions of $\lambda$ with integer values, so they are=20 necessarily constant for $|\lambda-\Lambda|<\rho_{1}$ and $1 \leq i=20 \leq q$. Thus $N(f^{\circ q}_{\lambda},\eps_{1}) =3D=20 N(f^{\circ q}_{\lambda},2\eps_{1}) =3D N(f^{\circ q}_{\Lambda},2\eps_{1}) = =3D=20 N(f^{\circ q}_{\Lambda},\eps_{1}) =3D kq+1$. Therefore $f^{\circ q}_{\lambd= a}$ has=20 exactly $kq$ fixed points in $0<|z|<\eps_{1}$ and no other fixed=20 point in the annulus $\eps_{1}<|z|<2\eps_{1}$. On the other hand one=20 can choose $\eps_{1}$ and $\rho_{1}$ such that $|f_{\lambda}(z)| \leq=20 2\eps_{1}$ if $|z|<\eps_{1}$ and $|\lambda-\Lambda|<\rho_{1}$, thus=20 the $kq$ fixed points must form $k$ cycles of period $q$ for=20 $f_{\lambda}$.=20 \end{proof} \subsection{Proof of the Main Theorem} \begin{proof} Since $\lambda \rightarrow \Lambda$ non--tangentially, we can assume=20 that $\lambda \in C(\Lambda,\alpha,\rho)$ and $\rho>0$, sufficiently=20 small.=20 If $\tilde{h}_{j}(\lambda)$ denotes the $j$-th coefficient of the=20 power series expansion of $\tilde{h}_{\lambda}$, then: $$ |\tilde{h}_{J}(\lambda)| \leq \sigma_{j}r^{1-j} =09(\lambda-\Lambda)^{\frac{j-1}{kq}}\left( =09=09\frac{1}{c_{2}|\lambda-\Lambda|} =09\right)^{\lfloor \frac{j-1}{kq}\rfloor}, $$ and by (\ref{eq:siegelseries}) we have the uniform convergence of=20 $\tilde{h}_{\lambda}$ on a disk around $0$ of radius at least=20 $(3-2\sqrt{2})rc_{2}^{1/kq}$.=20 To compute the limit function $\tilde{h}_{\Lambda}$, note that: $$ \tilde{f}^{\circ q}_{\lambda} =3D=20 \lambda^{q}z + \sum_{j=3D2}^{kq} f^{\circ q}_{j} (\lambda)(\lambda-\Lambda)^{\frac{j-1}{kq}}z^{j} + f^{\circ q}_{kq+1} (\lambda)(\lambda-\Lambda)+O((\lambda-\Lambda)^{1+1/kq}), $$ and by lemma \ref{lem:mainlemma} and remark \ref{rem:pollambda} we have that $f^{\circ q}_{j}(\lambda) \rightarrow 0$ for=20 $j=3D2,\ldots,kq$ and $f^{\circ q}_{kq+1}(\lambda) \rightarrow A \neq=20 0$. Since: $$ \tilde{f}^{\circ q}_{\lambda} \circ \tilde{h}_{\lambda} =3D \tilde{h}_{\lambda} \circ \tilde{f}^{\circ q}_{\lambda}, $$ we easily find that $\tilde{h}_{\Lambda}$ is the solution of the=20 ordinary differential equation: $$ \tilde{h}_{\Lambda}(z) =3D z \tilde{h}'_{\Lambda}(z) -=20 \frac{A}{q\Lambda^{q-1}}(\tilde{h}_{\Lambda}(z))^{kq+1}, $$ with initial condition $\tilde{h}_{\Lambda}(0)=3D0$, whose solution is=20 just (\ref{eq:limitlin}). \end{proof} \section{The Semi--Standard Map} Now we generalize the results on the scaling at resonances of the=20 linearizations for holomorphic germs of $(\fC,0)$ to the one-parameter=20 family of biholomorphic symplectic diffeomorphisms=20 $(x',y')=3DF_{\eps}(x,y)$ of $\fC/2\pi\fZ\times\fC$=20 \cite{GreenePercival},\cite{Percival} given by: \begin{equation} =09\begin{cases}x' & =3D x+y+\eps e^{ix},\\ =09=09=09=09 y' & =3D y + \eps e^{ix}. =09\end{cases} =09\label{eq:ssm} \end{equation} Clearly $\der x' \wedge \der y' =3D \der x \wedge \der y$.=20 We look for an analytic embedding $H_{\lambda}$ of a one-dimensional=20 complex pointed disk $\fD^{*}_{r} =3D \{z \in \fC | 0<|z|0$, and from this estimate the theorem=20 clearly follows. \end{proof} \begin{rem} Note that $\tilde{\phi}_{\lambda}$ is actually a function of $z^{q}$.=20 \end{rem} \begin{rem} If $\lambda \rightarrow 1$ non-tangetially, one can easily compute=20 the limit $\tilde{\phi}_{1}$. Note that $\tilde{\phi}_{\lambda}$ is=20 the solution of: $$ D^{2}_{\lambda}\tilde{\phi}_{\lambda}(z) =3D=20 =09-(\lambda - 1)^{2}z e^{\tilde{\phi}_{\lambda}(z)}. $$ Since: \begin{eqnarray*} =09\tilde{\phi}_{\lambda}(\lambda z) & =3D & =09=09\tilde{\phi}_{\lambda}(z) +=20 =09=09(\lambda-1) z \tilde{\phi}'_{\lambda}(z) + =09=09\frac{1}{2}(\lambda-1)^{2}z^{2}\tilde{\phi}''_{\lambda}(z) + =09=09\ldots, \\ =09\tilde{\phi}_{\lambda}(\lambda^{-1} z) & =3D &=20 =09=09\tilde{\phi}_{\lambda}(z) + =09=09\frac{1-\lambda}{\lambda} z \tilde{\phi}'_{\lambda}(z) + =09=09\frac{1}{2}\frac{(1-\lambda)^{2}}{\lambda^{2}} =09=09=09z^{2}\tilde{\phi}''_{\lambda}(z) + =09=09\ldots, \end{eqnarray*} taking the limit $\lambda \rightarrow 1$ one finds: \begin{equation} =09z\tilde{\phi}'_{1}(z)+z^{2}\tilde{\phi}''_{1}(z) =3D=20 =09=09-ze^{\tilde{\phi}_{1}(z)}, =09\label{eq:eqforphi1} \end{equation} with the initial condition $\tilde{\phi}_{1}(0)=3D0$. Thus: \begin{equation} =09\tilde{\phi}_{1}(z) =3D -2\log\left(1+\frac{z}{2}\right). =09\label{eq:solphi1} \end{equation} \end{rem} \begin{rem} Replacing $\eps e^{ix}$ in (\ref{eq:ssm}) with an entire function $f$=20 of $\eps e^{ix}$ such that $f(0)=3D0$ the conjugacy equation=20 (\ref{eq:ssmconj2}) becomes: $$ (D^{2}_{\lambda}\phi)(z) =3D f(-ze^{\phi_{\lambda}(z)}) $$ and theorem \ref{thm:ssm} can be immediately proved also in this=20 (slightly) more general case.=20 \end{rem} \subsection{Calculation of the Limits at Resonances} We would like to compute exactly $\tilde{\phi}_{\Lambda}$ for all=20 $\Lambda =3D \exp\left(2\pi i \frac{p}{q}\right)$ with $(p,q)=3D1$. As a=20 preliminary step toward this result, we give an \emph{heuristic}=20 argument, reminiscent of the renormalization group method, which=20 provides just this. While all the combinatorics is handled rigorously,=20 we can't estimate the error terms that we neglect systematically at=20 each step of the ``renormalization''. We believe, though, that our=20 result are qualitatively accurate and quite likely exact, and that=20 the method could be turned into a tool for the rigorous analysis of=20 such maps.=20 The basic idea behind the procedure is similar to the one previously=20 used for germs, \ie that the behaviour of the semistandard map around=20 a resonance $p/q$ iterated $q$ times is ``roughly the same'' as the one=20 of the semistandard map around the ``main resonance'' $0/1$. The same=20 idea was used in \cite{BM2} to handle the resonance $1/2$ for the=20 standard map.=20 We need first the following combinatorial lemma. \begin{lem}\label{lem:arith} Consider the following recursively defined sequences: \begin{align} a^{(0)}_{k} & =3D \mu \delta_{k,0}, \quad \text{for } \mu \in \fC,\notag\\ b^{(r+1)}_{k} & =3D \Lambda^{k}a^{(r)}_{k},\\ a^{(r)}_{k} & =3D b^{(r)}_{k+1} - 2b^{(r)}_{k} + b^{(r)}_{k-1}.\notag \end{align} Then: \begin{enumerate} =09\item $a^{(r)}_{k} =3D 0$ if $|k|>r$; \label{case:a} =09\item $\sum_{k\in\fZ}a^{(r)}_{k} =3D 0$; \label{case:b} =09\item $\sum_{k\in\fZ}ka^{(r)}_{k} =3D 0$; \label{case:c} =09\item $a^{(q)}_{q} =3D a^{(q)}_{-q}=3D\mu$, $a^{(q)}_{0} =3D -2\mu$, an= d in all=20 =09for all other $k$ $a^{(q)}_{k} =3D 0$. \label{case:d} \end{enumerate} \end{lem} \begin{proof} (\ref{case:a}), (\ref{case:b}) and (\ref{case:c}) are most easily=20 proved by induction. In order to prove (\ref{case:d}) we use the=20 generating function: $$ f^{(r)}(z) =3D \sum_{k\in\fZ}a^{(r)}_{k}z^{k}. $$ $f^{(r)}$ is a rational function because of (\ref{case:a}). We also=20 have: $$ a^{(r)}_{k} =3D \Lambda^{k}\left( =09=09\Lambda a^{(r-1)}_{k+1}-2a^{(r-1)}_{k}+\Lambda^{-1}a^{(r-1)}_{k-1} =09=09\right), $$ from which it follows that: \begin{equation*} \begin{split} f^{(r)}(z) & =3D \sum_{k\in\fZ}z^{k}\Lambda^{k}\left( =09=09\Lambda a^{(r-1)}_{k+1}-2a^{(r-1)}_{k}+\Lambda^{-1}a^{(r-1)}_{k-1} =09=09\right)\\ =09& =3D \left(\frac{1}{z}-2+z\right) f^{(r-1)}(\Lambda z)\\ =09& =3D \frac{(z-1)^{2}}{z}f^{(r-1)}(\Lambda z). \end{split} \end{equation*} Now, clearly $f^{(0)}(z)=3D\mu$. Then: \begin{equation*} \begin{split} f^{(q)}(z) & =3D \mu\frac{\left(\prod_{k=3D1}^{q-1}(\Lambda^{k}z-1)\right)^= {2}} =09=09{z^{q}\Lambda^{q(q-1)/2}}\\ =09& =3D \mu\Lambda^{-q(q-1)/2}\frac{(1-z^{q})^{2}}{z^{q}}\\ =09& =3D \mu(z^{q}-2+z^{-q}), \end{split} \end{equation*} since $\Lambda$ is a primitive $q$-th root of $1$: this proves=20 (\ref{case:d}). \end{proof} Now we proceed with our heuristic argument. We have: \begin{equation*} =09D^{2}_{\lambda^{q}}\tilde{\phi}_{\lambda}(z) =3D=20 =09=09\sum_{-q}^{q}a^{(q)}_{k}\tilde{\phi}_{\lambda,k}, \end{equation*} where: \begin{align*} =09\tilde{\phi}_{\lambda,k} & =3D \tilde{\phi}_{\lambda}(z_{k}),\\ \intertext{and} =09z_{k} & =3D \lambda^{k}z. \end{align*} The coefficients $a$ are the one defined in lemma \ref{lem:arith},=20 with $\mu=3D1$. We have choosen our notations so that: $$ D^{2}_{k}\tilde{\phi}_{\lambda,k} =3D=20 \tilde{\phi}_{\lambda,k+1} - 2\tilde{\phi}_{\lambda,k} + \tilde{\phi}_{\lambda,k-1}. $$ We shall apply $q-1$ times a transformation defined in three steps: \begin{enumerate} =09\item write everything in terms of $\tilde{\phi}_{\lambda,k+1} -=20 =09=092\tilde{\phi}_{\lambda,k} + \tilde{\phi}_{\lambda,k-1}$; =09\item apply the functional equation for $\tilde{\phi}_{\lambda}$: =09$$ =09D^{2}_{\lambda}\tilde{\phi}_{\lambda}(z) =3D=20 =09=09-(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}(z)}; =09$$ =09\item linearize: =09$$ =09z_{k}e^{\tilde{\phi}_{\lambda}(z_{k})} \approx=20 =09=09\Lambda^{k}z_{0}e^{\tilde{\phi}_{\lambda,0}} =09=09\left(1+\left( \tilde{\phi}_{\lambda,k}-\tilde{\phi}_{\lambda,0}-k\log\frac{\lambda}{\Lamb= da} =09=09\right)\right). =09$$ \end{enumerate} Now we use lemma \ref{lem:arith} and in particular the fact that: $$ \sum_{k=3D-r}^{r}a^{(r)}_{k}\tilde{\phi}_{\lambda,k} =3D=20 \sum_{k=3D-r+1}^{r-1}b^{(r)}_{k} (\tilde{\phi}_{\lambda,k+1}-2\tilde{\phi}_{\lambda,k}+\tilde{\phi}_{\lambda= ,k-1}), $$ where the sequences $a^{(r)}$ and $b^{(r)}$ are those defined in the=20 lemma. Note that conditions (\ref{case:b}) and (\ref{case:c}) of=20 lemma \ref{lem:arith} are crucial for the following to work. Then we have: \begin{equation*} \begin{split} \sum_{k=3D-r}^{r} a^{(r)}_{k}\tilde{\phi}_{\lambda,k} & =3D =09=09\sum_{k=3D-r+1}^{r-1}b^{(r)}_{k} =09=09(\tilde{\phi}_{\lambda,k+1} - =09=092\tilde{\phi}_{\lambda,k} + =09=09\tilde{\phi}_{\lambda,k-1})\\ =09& \approx -(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}} =09=09\sum_{k=3D-r+1}^{r-1}b^{(r)}_{k}\Lambda^{-k} =09=09\left(1+\left(\tilde{\phi}_{\lambda,k} -=20 =09=09\tilde{\phi}_{\lambda,0} -=20 =09=09k\log\frac{\lambda}{\Lambda}\right)\right)\\ =09& =3D -(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}} =09=09\left(\sum_{k=3D-r+1}^{r-1}a^{(r-1)}_{k} -=09 \log\frac{\lambda}{\Lambda}\sum_{k=3D-r+1}^{r-1}ka^{(r-1)}_{k}\right)\\ =09& \quad -(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}} =09=09\sum_{k=3D-r+1}^{r-1}a^{(r-1)}_{k} =09=09(\tilde{\phi}_{\lambda,k}-\tilde{\phi}_{\lambda,0})\\ =09& =3D -(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}} =09=09\sum_{k=3D-r+1}^{r-1}a^{(r-1)}_{k}\tilde{\phi}_{\lambda,k}, \end{split} \end{equation*} and by keeping iterating this identity $q-1$ times (\ie by setting=20 sequentially $r=3Dq,\ldots,2$) we obtain: \begin{equation*} \begin{split} D^{2}_{\lambda^{q}}\tilde{\phi}_{\lambda} & =3D=20 =09\sum_{k=3D-q}^{q}a^{(q)}_{k}\tilde{\phi}_{\lambda,k}\\ & \approx=20 =09\left(-(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}(z)}\right)^{q-1= } =09\left(a^{(1)}_{1}\tilde{\phi}_{\lambda,1} =09+ a^{(1)}_{0}\tilde{\phi}_{\lambda,0} =09+ a^{(1)}_{-1}\tilde{\phi}_{\lambda,-1}\right). \end{split} \end{equation*} Since $a^{(1)}_{1}=3Da^{(1)}_{-1}=3D\Lambda$, $a^{(1)}_{0}=3D-2\Lambda$, we= =20 finally have: \begin{equation*} \begin{split} D^{2}_{\lambda^{q}}\tilde{\phi}_{\lambda} & \approx =09\left(-(\lambda-\Lambda)^{2/q}ze^{\tilde{\phi}_{\lambda}(z)}\right)^{q-1= } =09\Lambda (\tilde{\phi}_{\lambda,1} -=20 =092 \tilde{\phi}_{\lambda,0} + \tilde{\phi}_{\lambda,-1})\\ & =3D \Lambda=20 =09(-1)^{q}(\lambda-\Lambda)^{2}z^{q}e^{q\tilde{\phi}_{\lambda}(z)}. \end{split} \end{equation*} Taking the limit $\lambda\rightarrow\Lambda$ we have: $$ \frac{D^{2}_{\lambda^{q}}}{(\lambda-\Lambda)^{2}}\tilde{\phi}_{\lambda}=20 \rightarrow q^{2}\Lambda^{-2}z\frac{\der\tilde{\phi}_{\Lambda}}{\der z} + q^{2}\Lambda^{-2}z^{2}\frac{\der^{2}\tilde{\phi}_{\Lambda}}{\der z^{2}}, $$ so that: \begin{equation} =09\frac{\der}{\der z}\left( =09=09z\frac{\der\tilde{\phi}_{\Lambda}}{\der z}\right) =3D =09=09\frac{(-1)^{q}\Lambda^{3}}{q^{3}}z^{q-1}e^{q\tilde{\phi}_{\Lambda}(z)= }, =09\label{eq:linssmcalculated} \end{equation} with the initial condition $\tilde{\phi}_{\Lambda}(0)=3D0$. Note that=20 the transformation $\psi_{\Lambda}(w)=3Dq\tilde{\phi}_{\Lambda}(z)$ and=20 $w=3D\frac{(-1)^{q}\Lambda^{3}}{q^{3}}z^{q}$ applied to (\ref{eq:linssmcalc= ulated}) gives the simpler equation: $$ \frac{\der}{\der w}\left(w\frac{\der\psi_{\Lambda}}{\der w}\right) =3D e^{\psi_{\Lambda}}, $$ whose solution is $\psi_{\Lambda} =3D -2\log(1-w/2)$. Therefore we=20 finally have: \begin{equation} =09\tilde{\phi}_{\Lambda}(z) =3D=20 =09=09-\frac{2}{q}\log\left(1+\frac{(-1)^{q+1}\Lambda^{3}}{2q^{3}}z^{q}\rig= ht), =09\label{eq:linssmsolution} \end{equation} which agrees with (\ref{eq:solphi1}) for $q=3D1$. %End of Paper \vspace{1.5cm} \begin{thebibliography}{99} \bibitem{BM2} Berretti, A. and Marmi, S., \textit{Scaling near Resonances and Complex Rotation Numbers for the Standard Map}, Nonlinearity \textbf{7} 603 (1994) \bibitem{LT} de la Llave, R., and Tompaidis, S., {\textit Computation of domains of analyticity for some perturbative expansions of mechanics}, University of Texas at Austin Preprint (1992) \bibitem{BTT} Billi,~L., Todesco,~E., and Turchetti,~G.,=20 \textit{Singularity Analysis by Pad\'{e} Approximants of some=20 Holomorphic Maps}, J. Phys. A: Math. and Gen. \textbf{27} 6215-6229,=20 1994 \bibitem{Yoccoz} Yoccoz,~J.~C., \emph{Th\'{e}or\`{e}me de Siegel, Nombres= =20 de Brjuno et Pol\^{o}mes Quadratiques}, Ast\'{e}risque \textbf{231}=20 3-38, 1995 \bibitem{GreenePercival} Greene,~J.~M., and Percival,~I.~C.,=20 \textit{Hamiltonian Maps in the Complex Plane}, Physica D \textbf{3}=20 530-548, 1981 \bibitem{Percival} Percival,~I.~C., \textit{Chaotic Boundary of a=20 Hamiltonian Map}, Physica D \textbf{6} 67-74, 1982 \bibitem{Koenigs} K\"onigs,~G., \textit{Recherches sur les integrales=20 de certaines equations fonctionelles}, Ann. Sci. \'{E}c. Norm. Sup.=20 ($3^{\text{\`{e}me}}$ s\'{e}r.), 1 Suppl. 1--41, 1884 \bibitem{Poincare} Poincar\'{e},~H., \textit{\OE{}uvres} t. I, p.=20 XXXVI-CXXIX, Gauthier-Villars, Paris 1928-1956 \bibitem{Brjuno}Bjuno,~A.~D., \textit{Analytic Form of Differential=20 Equations}, Trans. Moscow Math. Soc. \textbf{25} 131--288, 1971 \bibitem{MMY} Marmi,~S., Moussa,~P., Yoccoz,~J.~C., \textit{The=20 Brjuno Functions and their Regularity Properties}, preprint Saclay=20 95/028, 1995 \bibitem{Cremer} Cremer,~H., \textit{\"{U}ber die H\"{a}ufigkeit der=20 Nichtzentren}, Math. Ann. \textbf{115}, 573-580, 1938 \bibitem{Ecalle} Ecalle,~J., \textit{Les Fonctions R\'{e}surgentes et leurs= =20 Applications. Tomes I, II, III}, Publications Math\'{e}matiques=20 d'Orsay \textbf{81-05}, \textbf{81-06}, \textbf{85-05}, 1981-1985 \bibitem{Voronin} Voronin,~S.~M., \textit{Analytical Classification of=20 Germs of Conformal Mappings $(\fC,0)\mapsto(\fC,0)$ with identity=20 linear part}, Funct. Anal. and its Appl. \textbf{15} 1-17, 1981 \bibitem{Beardon} Beardon,~A.~F., \textit{Iteration of Rational=20 Functions}, Graduate Text in Mathematics \textbf{138}, Springer, 1991 \bibitem{DH} Douady,~A., and Hubbard,~J.~H., \textit{On the Dynamics=20 of Polynomial Like Mappings}, Ann. Sc. E.N.S., 4\`{e}me S\'{e}rie,=20 \textbf{18} 287-343 (1985); see also Douady,~A., \textit{Syst\`{e}mes=20 Dynamiques Holomorphes}, S\'{e}minaire Bourbaki, Expos\'{e} 599,=20 Ast\'{e}risque \textbf{105-106}, 39-63 (1983) \bibitem{Marmi} Marmi,~S., \textit{Critical Functions for Complex=20 Analytic Maps}, Journ. of Physics A: Math. and Gen. \textbf{23}=20 3447-3474, 1990 \bibitem{Davie} Davie,~A.~M., \textit{Critical Functions for the=20 Semi--standard and Standard Maps}, Nonlinearity \textbf{7} 219-229,=20 1994 \bibitem{Herman} Herman,~M.~R., \textit{Recent Results and Some Open=20 Questions on Siegel's Linearization Theorem of Germs of Complex=20 Analytic Diffeomorphisms of $\fC^{n}$ near a Fixed Point}, Proc. VIII=20 Int. Conf. Math. Phys., Mebkhout and Seneor Eds., World Scientific, 1986 \end{thebibliography} \vspace{2cm} \end{document}