%INSTRUCTIONS LaTeX 2e %INFORMATION 38K BODY % Geometric Approach to Inverse Scattering for Hydrogen-like Systems in a % Homogeneous Magnetic Field % Silke Arians % % This paper is also available by anonymous ftp from, % work1.iram.rwth-aachen.de (134.130.161.65), % in the directory /pub/papers/arians as a LaTeX 2e, % tex, dvi or ps file ar-97-1.*. \documentclass[12pt,a4paper]{article} \usepackage{amsmath} \usepackage{amsfonts} \newcommand{\A}{{\bf{A}}} \newcommand{\B}{{\bf{B}}} \newcommand{\F}{{\bf{F}}} \newcommand{\R}{{\bf{R}}} \renewcommand{\L}{{\bf{L}}} \renewcommand{\d}{{\bf{d}}} \renewcommand{\j}{{\bf{j}}} \newcommand{\p}{{\bf{p}}} \newcommand{\q}{{\bf{q}}} \renewcommand{\r}{{\bf{r}}} \renewcommand{\u}{{\bf{u}}} \renewcommand{\v}{{\bf{v}}} \newcommand{\w}{{\bf{w}}} \newcommand{\omegavec}{\boldsymbol{\omega}} \newcommand{\rhovec}{\boldsymbol{\rho}} \newcommand{\pivec}{\boldsymbol{\pi}} \newcommand{\hatv}{{\bf{\hat{v}}}} \newcommand{\qed}{{\,\,\,\hbox{\vrule height 6pt width 6pt}}\hfill} \newcommand{\slim}{\mathop{\mbox{\rm s-lim}}_{t\to\pm\infty}} \newcommand{\E}{1\mskip -4mu{\rm l}} \newcommand{\RR}{\mathop{\rm I\! R}\nolimits} \newcommand{\bew}{{\bf{Proof: }}} \newcommand{\nn}{\nonumber} \newcommand{\supp}{\mathop{\rm supp}\nolimits} \newcommand{\dist}{\mathop{\rm dist}\nolimits} \newcommand{\rot}{\mathop{\rm {\bf rot}}\nolimits} \renewcommand{\div}{\mathop{\rm div}\nolimits} \newcommand{\const}{\mathop{\rm const}\nolimits} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\beqa}{\begin{eqnarray}} \newcommand{\eeqa}{\end{eqnarray}} \newtheorem % (Theorems) {theorem}{Theorem} \newtheorem % (Propositions) {prop}[theorem]{Proposition} \newtheorem % (Lemmata) {la}[theorem]{Lemma} \newtheorem % (Remarks) {rem}[theorem]{Remark} \newtheorem % (Corollaries) {cor}[theorem]{Corollary} \newtheorem % (Definitions) {defi}[theorem]{Definition} \def\theequation{\thesection.\arabic{equation}} \begin{document} \parindent=0cm \baselineskip=14pt \parskip=12pt \sloppy \title{Geometric Approach to Inverse Scattering for Hydrogen--like Systems in a Homogeneous Magnetic Field} \author{Silke Arians\thanks{This research was supported by a grant from Deutsche Forschungsgemeinschaft, hereby gratefully acknowledged, and is in partial fulfillment of the requirements for a Ph.D. degree at the RWTH Aachen.}\\ Institut f\"ur Reine und Angewandte Mathematik\\ RWTH Aachen\\ D-52056 Aachen, Germany\\ e-mail: silke@iram.rwth-aachen.de} \date{} \maketitle \begin{abstract} \noindent We consider the Hamiltonian of one quantum particle in a homogeneous magnetic field $B$ and a potential $V$ in space dimensions $\nu =3$. If the magnetic field $B$ is given and $V$ is of short range then the high velocity limit of the scattering operator uniquely determines the potential $V$.\\ If, in addition, long--range potentials $V^l$ are present, some knowledge of (the far out tail of) $V^l$ is needed to define a modified Dollard wave operator and a scattering operator $S^D$. Again its high velocity limit uniquely determines $V=V^s+V^l$, if $B$ is given.\\ We generalize our results to a system of two interacting quantum particles with opposite electric charges. \end{abstract} \section{Introduction} \setcounter{equation}{0} We study a system of one quantum particle in a homogeneous magnetic field in $\nu =3$ dimensions. As an example of such a one--body system we mention a hydrogen atom with infinitely heavy proton. The interactions are given by a vector potential $\A$ with $\rot\A=\B$ and a scalar potential $V$. We chose the coordinates $(x,y,z)\in\RR^3$ so that the magnetic field is pointed along the $z$--axis, i.e., $\B=(0,0,b)$ for $b>0$ constant. In the transversal gauge the corresponding vector potential is \beq \A(\r)=\left(-b y/2, b x/2,0\right)\mbox{ for a vector }\r=(x,y,z)\in\RR^3. \end{equation} A classical particle with mass $m$, charge $e$ and velocity $\v$ in a constant magnetic field $\B$ moves in helix with the Larmour radius \beq \R(t)=\mbox{}-\frac{m}{e}\,\frac{\v(t)\times\B}{\B^2}, \end{equation} i.e., $|\R(t)|=(\v_x^2+\v_y^2)^{1/2}m\,|e|/b$ and the radius is proportional to the velocity in the $(x,y)$--direction. Then in the high velocity limit the radius tends to infinity, such that the particle moves in a straight line. The Larmour frequency is \beq \boldsymbol{\omega}=\mbox{}-\frac{e\,\B}{m}, \end{equation} such that the minimal period of the particle $|T|=|2\pi /\boldsymbol{\omega}|=2\pi\,m/(|e|\,b)$ is independent of the velocity. Thus for increasing velocity the particle moves in circles with increasing radius, but needs the same time for each circle. Therefore we have to assume that the particle moves parallel to the magnetic field with velocity $|\v_z|>0$, such that the potential is hit only once.\par Let $H_0:=\frac{1}{2m}\p^2$ be the free Hamiltonian. By \beq H_A:=\frac{1}{2m}(\p-\A(\r))^2 \end{equation} we denote the Hamiltonian with the magnetic field alone and by $H=H_A+V$ the interacting Hamiltonian with mass $m$, charge $e=1$, momentum $\p=-i\nabla_{\r}$ and position $\r$. We abbreviate the first and second component of the position $\r$ with $\rhovec$ and of the momentum $\p$ with $\pivec$: \beq \rhovec:=(x,y)\quad\mbox{and}\quad\pivec:=(\p_x,\p_y). \end{equation} It is useful to introduce the following representation (see \cite{L95} for the notation): \beqa H_A & = & H_0+\frac{1}{2m}\left\{\frac{b^2}{4}\left(\frac{\B}{|\B|}\times \r \right)^2- \B\L\right\} \\ & = & H_0+\frac{1}{2m}\left\{\frac{b^2}{4}(x^2+y^2)-b\,\L_{z}\right\}\\ & = & \frac{1}{2m}\p_{z}^2+H_{osc}-\frac{1}{2m}b\,\L_{z} \eeqa with the $z$--component of the angular momentum $\L_{z}=x \p_{y}-y \p_{x}$ and \beq H_{osc}=\frac{1}{2m}\left\{(\p_{x}^2+\p_{y}^2)+\frac{b^2}{4}(x^2+y^2)\right\}. \end{equation} We consider $H$ acting on ${\cal{H}}=L^2(X)$ for $X=\RR^3$. It is known (see \cite{AHS} for details) that $H_{xy}=H_{osc}- \frac{1}{2m}b\,\L_{z}$, acting on the Hilbert space $L^2(\RR^2)$, has a complete set of eigenfunctions $\{\Theta_{ln}(x,y)\}_{l=0,\pm 1,\dots;\,n=0,1,\dots}$ with corresponding eigenvalues \beq E_{ln}=(2m)^{-1}b\,(2n+|l|- l+1), \end{equation} where $E_{ln}$ and $\Theta_{ln}$ are often referred to as Landau energy levels and Landau orbits. %The trajectories $\exp[-iH_A t]\Phi$ are superpositions of %bound states in the $(x,y)$--plane and free motion in the %$z$--direction. As $H_{xy}$ does not act on the $z$--variable, we have $\exp[-iH_A t]=\exp[-iH_{xy}t]\exp[-i\p_z^2/(2m)]$. The scalar potential can be split into a short--range and into a long--range part: $V=V^s+V^l$. $V^s$ is assumed to be short--range: $V^s\in{\cal{V}}_{SR}$ with \beqa\!\!\!\!\!\!\!\!\label{defsr} {\cal{V}}_{SR}&\! := \!& \left\{V^s\,|\, |V^s(\r)|\le \const\, (1+|z|)^{-(1+\varepsilon)}\right\}. \eeqa We mention that our results remain valid for unbounded short--range potentials, see Section \ref{genun}.\\ $V^l$ is assumed to be long--range: $V^l\in{\cal{V}}_{LR}$ with \beqa \!\!\!\!\!\!\!\!\!\!\!\!{\cal{V}}_{LR}&\!\! := \!\!&\left\{V^l\,|\,V^l\in C^1(\RR^3),\,V^l \mbox{ tends to zero for $|z|\to\infty$ and} \right.\nn\\ \!\!\!\!\!\!\!\!\!\!\!\!& \!\!\!\! & \label{deflr}\left. \quad\quad |\nabla V^l(\r)|\le \const\,(1+|z|)^{-\gamma} \mbox{ with } \gamma>3/2 \right\}. \eeqa We remark that we only assume decay in the $z$--direction. The splitting into short-- and long--range parts is not unique. But without loss of generality we can make it in such a way that in addition \beq\label{laplaceVl} |D^{\alpha} V^l(\r)|\le \const\,(1+|z|)^{-1-|\alpha|(\delta+1/2)} \end{equation} for $1 \le |\alpha|\le 4$, $0<\delta<1/2$ (see \cite{H}).\\ Under these assumptions the interacting Hamiltonian is self--adjoint on its domain ${\cal{D}}(H)={\cal{D}}(H_A)=W^{2,2}(X)$ in ${\cal{H}}=L^2(X)$. \par In the special case, when $V$ is of short range the following wave operators, which measure for a given $\A$ the additional effect on scattering due to $V^s$, \beq \Omega_\pm:=\Omega_\pm(\A):=\slim e^{iHt}e^{-iH_A t} \end{equation} exist and are complete (see \cite[Chapter 4]{AHS}). % for the one--body system and %\cite[Theorem 7.1]{L95} for the two--body system %Existence also follows from our Theorem \ref{omme}, see Corollary \ref{cor1}. The scattering operator $S$ is \beq S:=S(\A;V^s):=(\Omega_+)^*\Omega_-. \end{equation} As wave functions we chose asymptotic configurations $\Phi_0\in{\cal{H}}=L^2(X)$ with compact momentum support in the ball around the origin with radius $m\eta,\,\eta>0$, and momentum space wave function $\hat{\phi}_0\in C_0^\infty(B_{m\eta}(0))$. These functions are dense in ${\cal{H}}$ and we can find a function $g\in C_0^\infty(\RR^3)$ with $\Phi_0=g(\p)\Phi_0$ and especially a function $f\in C_0^\infty(\RR)$ with $\Phi_0=f(\p_z)\Phi_0$.\par By $\Phi_\v$ we denote the boosted configuration translated by $m\v$ in momentum space, where $\v=(\v_x,\v_y,\v_z)$ is the velocity: \beqa \label{phiv} \Phi_\v=e^{im\v\r}\Phi_0 & \Leftrightarrow & \hat{\phi}_\v(\p)= \hat{\phi}_0(\p-m\v),\quad \v_z\ne 0, \eeqa where $\Phi_\v$ has compact velocity support in $B_\eta(\v)$. Let $v:=|\v|$. We will obtain asymptotics of $S$ for the high velocity limit in an arbitrary direction $\hatv=(\hatv_x,\hatv_y,\hatv_z):=\v/v$, $v\rightarrow\infty$ with $\hatv_z\ne 0$.\par Regarding $S$ as a mapping from the set of short--range potentials ${\cal{V}}_{SR}$ into the set of bounded operators $L({\cal{H}})$ we have the following \begin{theorem}\label{th2} Suppose that $V^s\in{\cal{V}}_{SR}$ and $V^l=0$. Then the following reconstruction formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa \lim_{v\to\infty}iv((S-\E)\Phi_\v,\Psi_\v) & = & \label{ffVs} \int_{-\infty}^\infty (V^s(\r+\tau\hatv)\Phi_0,\Psi_0)\, d\tau. \eeqa In particular, the scattering map \[ S(\A;\cdot):{\cal{V}}_{SR}\rightarrow L({\cal{H}}) \] is injective. \end{theorem} The modified Dollard wave operators \beqa \!\!\!\!\!\!\Omega^D_\pm := \Omega^D_\pm(\A)& := & \slim e^{iHt}U^D(t) \quad\mbox{with}\\ \!\!\!\!\!\!U^D(t) & := & \exp[-iH_A t -i\int_0^t V^l(\hat{\rhovec}_\v(s),s\p_z/m)\,ds] \\ \!\!\!\!\!\!\label{defxhat} \mbox{where}\quad\hat{x}_\v(s) & := & \omega^{-1} \left\{\v_x\sin(\omega\,s)+\v_y(1-\cos(\omega\,s))\right\}, \\ \!\!\!\!\!\!\label{defyhat} \hat{y}_\v(s) & := & \omega^{-1} \left\{\v_y\sin(\omega\,s)-\v_x(1-\cos(\omega\,s))\right\}\mbox{ and}\\ \!\!\!\!\!\!\label{defrhohat}\rhovec_\v(s) & := & (\hat{x}_\v(s),\hat{y}_\v(s)) \eeqa with $\omega:=|\boldsymbol{\omega}|=b/m$ exist and are complete (see \cite[Theorem 7.1]{L95}) for a Dollard correction with $\hat{\rhovec}_\v=0$). \beq S^D:=S^D(\A,V^l;V^s):=(\Omega^D_+)^*\Omega^D_- \end{equation} is the scattering operator $S^D$. Since the splitting of $V$ into a short-- and a long--range part is not unique the Dollard wave operators are not uniquely defined. Nevertheless, the scalar potential is uniquely obtained from {\em any} of the scattering operators $S^D$. \begin{theorem}\label{th4} Suppose that $V^s\in{\cal{V}}_{SR}$ and $V^l\in{\cal{V}}_{LR}$. Then the following reconstruction formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa \!\!\!\!\!\!\!\!\!\!&& \lim_{v\to\infty}iv((S^D-\E)\Phi_\v,\Psi_\v) -(\{V^l(\r+\tau\hatv)-V^l(\tau\hatv)\}\,\Phi_0,\Psi_0)\nn\\ \!\!\!\!\!\!\!\!\!\!& = & \label{ffVsD} \int_{-\infty}^\infty (V^s(\r+\tau\hatv)\Phi_0,\Psi_0)\, d\tau. \eeqa In particular, for a given long--range potential $V^l$ the scattering map \[ S^D(\A,V^l;\cdot):{\cal{V}}_{SR}\rightarrow L({\cal{H}}) \] is injective.\\ Moreover, the following formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa && \lim_{v\to\infty}iv([S^D,\p_z]\Phi_\v,\Psi_\v)\nn\\ & = & \int_{-\infty}^\infty \{(V^s(\r+\tau\hatv)\p_z\Phi_0,\Psi_0) -(V^s(\r+\tau\hatv)\Phi_0,\p_z\Psi_0) \nn\\ & & \label{ffV} \mbox{}+i((\partial_z V^l)(\r+\tau\hatv)\Phi_0,\Psi_0)\}\, d\tau. \eeqa In particular, any of the scattering operators $S^D$ uniquely determines the total potential $V$. \end{theorem} \begin{rem} We only need the knowledge of $\B$, in particular of $b$, and fixing a gauge $\A$ for the definition of the wave operators $\Omega_{\pm}^{(D)}$ and the scattering operator $S^{(D)}$. The reconstruction formulae (\ref{ffVs}), (\ref{ffVsD}) and (\ref{ffV}) are independent of $\B$. \end{rem} \begin{rem} The reconstruction formulae of Theorem \ref{th2} and \ref{th4} for $\B=0$ are the same as in the case without magnetic field in \cite{EW 95}. \end{rem} \begin{rem} Our results are also valid for a system of two interacting quantum particles with opposite charges, see Section \ref{tbc}. \end{rem} Our proofs use a geometric, time--dependent method developed by Enss and Weder. This method has been used in \cite{EW 95} to prove Theorems \ref{th2} and \ref{th4} in the case without magnetic field.\\ To our knowledge the case with decaying magnetic fields was previously treated by Novikov and Khenkin in \cite{NK} where they proved that bounded, rapidly decreasing and sufficiently smooth potentials are uniquely obtained from the scattering operator at fixed energy. Eskin and Ralston proved in \cite{ER} that the scattering operator at fixed energy uniquely determines the magnetic field and the scalar potential by stationary phase methods for exponentially decaying $\A$ and $V^s$. By stationary methods Nicoleau proves in \cite{N 96} that the high energy limit uniquely determines the magnetic field and the scalar potential, where the potentials have to be $C^\infty$\,--\,functions with decay assumptions on the potentials and all derivatives. In \cite{AP1} and \cite{AP2} we prove a similar result with less decay assumptions on the scalar potential with the geometric, time--dependent method.\\ As far as we know, there are no rigorous results on inverse scattering for one--body and many--body (including two--body) systems in a homogeneous magnetic field. \section{Proof in the Short--Range Case $V=V^s$} \label{sec:srone} \setcounter{equation}{0} Since $S-\E = (\Omega_+-\Omega_-)^* \Omega_- $ we obtain \beqa & & v((S-\E)\Phi_\v,\Psi_\v) \nn\\ & = & \label{error}\underbrace{v((\Omega_--\E)\Phi_\v, (\Omega_+-\Omega_-)\Psi_\v)}_{=:\,R(\v)} +\underbrace{v(\Phi_\v, (\Omega_+-\Omega_-)\Psi_\v)}_{=:\,l(\v)}. \eeqa In the following we will show that $R(\v)={\cal{O}}(v^{-1})$ and that the high velocity limit $\lim_{v\to\infty}l(\v)$ exists. For that purpose we need the following Lemma which is a propagation property expressing the fact that the solutions of the (one--dimensional) free Schr\"odinger equation have rapid decay away from the classically allowed region: \begin{la}\label{la2} For any $f\in C_0^\infty(\RR^1)$ with $\supp f\subset B_{m\eta}(0)$, for some $\eta>0$ and any $l=1,2,3,\dots$, there is a constant $C_l$ such that \beq \left\|F(z\in{\cal{M}}) \,e^{-i\frac{1}{2m}\p_z^2 t}f(\p_z-m\v_z)F(z\in{\cal{M}}')\right\| \le C_l \,(1+s+|t|)^{-l} \end{equation} for every $\v_z,\,t\in\RR$ and any measurable sets ${\cal{M}}$ and ${\cal{M}}'$ with $s:=\dist({\cal{M}},{\cal{M}}'+\v_z t)-\eta |t|\ge 0$. \end{la} \bew see \cite[Proposition 2.10]{E 83}. \qed \begin{prop}\label{omme} Assume that $V^s\in{\cal{V}}_{SR}$. Then for all $\Phi_\v$ as in Eq. (\ref{phiv}) \beq \|(\Omega_\pm -\E)\Phi_\v\|={\cal{O}}(v^{-1}). \end{equation} \end{prop} \bew We compute the difference \beqa & & (\Omega_\pm -\E)\Phi_\v \nn\\ & = & \int_0^{\pm\infty}dt\,\frac{d}{dt}\left(e^{iHt}e^{-iH_A t}\right)\Phi_\v \nn\\ & = & \int_0^{\pm\infty}dt\,e^{iHt}i(H-H_A)\,e^{-iH_A t}\Phi_\v \nn\\ & = & \label{int1}v^{-1} \int_0^{\pm\infty}d\tau\,e^{iH\tau/v}iV^s(\r) \,e^{-iH_A\tau/v}\Phi_\v \eeqa with the substitution $\tau=v\,t$. If we can show that the norm of the integrand in (\ref{int1}) is bounded uniformly in $\v$ by an integrable function $h\in L^1((\pm\infty,0],d\tau)$, we finished the proof. To show integrability we will use $f(\p_z-m\v_z)\Phi_\v=\Phi_\v$ and $\|(1+|z|)^{2}\Phi_\v\|\le\const<\infty$. %Let $\bar{f}\in C_0^\infty(\RR^1)$ a function with $\bar{f}\equiv 1$ on the %support of $f$. In addition, we use that the particle moves in the direction parallel to the magnetic field with velocity $|\v_z|=v\,|\hatv_z|>0$. Then \beqa \!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\label{intVs}\left\|V^s(\r) e^{-iH_A\tau/v}\,\Phi_\v\right\| \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!& \le & \!\! \left\|V^s(\r) e^{-iH_{xy}\tau/v}e^{-i\frac{1}{2m}\p_z^2\tau/v}f(\p_z-m\v_z) (1+|z|)^ {-2}\right\| \left\|(1+|z|)^{2}\,\Phi_\v\right\| \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!& \le & \!\! \label{term1}\const\left\{\left\|F(|z|>|\tau\hatv_z|/4) (1+|z|)^{-2}\right\|\right. \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\label{term2}\mbox{}+ \left\|F(|z-\tau\hatv_z|\ge|\tau\hatv_z|/2)\, e^{-i\frac{1}{2m}\p_z^2\tau/v} f(\p_z-m\v_z) F(|z|\le|\tau\hatv_z|/4)\right\| \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\label{term3}\left.\mbox{}+\left\|V^s(\r) F(|z-\tau\hatv_z|<|\tau\hatv_z|/2) \right\|\right\} \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!& \le & \!\!\label{insg} h(|\tau\hatv_z|) \eeqa since $(\ref{term1})\le \const\, (1+|\tau\hatv_z|)^{-2} \le h_1(|\tau\hatv_z|)$, $(\ref{term2})\le h_2(|\tau\hatv_z|)$ for $v\ge 8\eta/|\hatv_z|$ because of Lemma \ref{la2} and $(\ref{term3}) \le \|V^s(\r)F(|z|\ge|\tau\hatv_z|/2)\| \le h_3(|\tau\hatv_z|)$ because $V^s$ is of short range. (\ref{insg}) follows with $h=h_1+h_2+h_3$. \qed The following Lemma expresses the translation in position and momentum space. \begin{la}\label{transl} For all measurable bounded or polynomial functions $f$ on suitable domains and all $s\in\RR$ we have \beqa \label{translpos} e^{i(\p-\A)\hatv s}f(\r)\,e^{-i(\p-\A)\hatv s} & = & f(\r+s\hatv)\quad \mbox{and} \\ \label{translmom} e^{i(\p-\A)\hatv s}f(\p)\,e^{-i(\p-\A)\hatv s} & = & f(\p+s(\B\times\hatv)/2)). \eeqa \end{la} \bew The translation in position space (\ref{translpos}) can be obtained from \beqa & & e^{i(\p-\A)\hatv s}\r\,e^{-i(\p-\A)\hatv s} \nn\\ & = & \label{commAp}e^{i\p\hatv s}e^{-i\A\hatv s}\r\,e^{-i\A\hatv s} e^{-i\p\hatv s} \\ & = & e^{i\p\hatv s}\r\,e^{-i\p\hatv s} \nn\\ & = & \r+s\hatv, \nn \eeqa where in (\ref{commAp}) $i[\p\hatv,\A\hatv]=(b/2)\hatv_x\hatv_y+(-b/2)\hatv_y \hatv_x=0$ is used.\\ The translation in momentum space (\ref{translmom}) can be obtained from \beqa \label{lhs}e^{i(\p-\A)\hatv s}\p\,e^{-i(\p-\A)\hatv s} & = & e^{-i\A\hatv s}\p\,e^{i\A\hatv s} \\ & = & \label{rhs}\p+s(\B\times\hatv)/2. \eeqa The last equality can be proven by showing that the derivatives in $s$ of (\ref{lhs}) and (\ref{rhs}) are equal. To show this we use $i[\p,\A\hatv]=(b\hatv_y/2,-b\hatv_x/2,0)=(\B\times\hatv)/2$. \qed To prove the next Proposition, where we compute the high velocity limit of the wave operators, we need the following Lemma: \begin{la}\label{limvdiff} Assume that $V^s\in{\cal{V}}_{SR}$. Then for fixed $\tau\in\RR$ \beq\label{gwvdiff} \mathop{\mbox{\rm s-lim}}_{v\to\infty} e^{i (H/v+(\p-\A)\hatv)\tau} = e^{i(\p-\A)\hatv\tau} = \mathop{\mbox{\rm s-lim}}_{v\to\infty} e^{i (H_A/v+(\p-\A)\hatv)\tau}. \end{equation} \end{la} \bew We show the first equality for $H$ which implies the second with $V^s=0$ and compute the difference \beqa & & e^{i (H/v+(\p-\A)\hatv)\tau}-e^{i(\p-\A)\hatv\tau} \nn\\ & = & \left\{e^{i (H/v+(\p-\A)\hatv)\tau}\,e^{-i(\p-\A)\hatv\tau}-\E\right\} e^{-i(\p-\A)\hatv\tau} \nn\\ & = & \int_0^1 ds\, e^{i (H/v+(\p-\A)\hatv)\tau\,(1-s)}(-i H/v) e^{i(\p-\A)\hatv\tau\,s}. \nn \eeqa Then we obtain \beqa & & \left\|\left\{e^{i (H/v+(\p-\A)\hatv)\tau}-e^{i(\p-\A)\hatv\tau} \right\}\Psi_0\right\| \nn\\ & \le &\label{diffstau} v^{-1} \int_0^1 ds\, \left\|H\, e^{i(\p-\A)\hatv\tau\,s}\Psi_0\right\| \eeqa and if we can show that the integrand in (\ref{diffstau}) is bounded by a constant, we finished the proof. Because of Lemma \ref{transl} the integrand in (\ref{diffstau}) is bounded by \beqa & & \left\|\left\{[\p+\tau\,s\,(\B\times\hatv)/2-\A(\r+\tau\,s\,\hatv)]^2/(2m) +V^s(\r+\tau\,s\,\hatv)\right\}\Psi_0\right\| \nn\\ & = & \|\{[\p-\A(\r)]^2/(2m) +V^s(\r+\tau\,s\,\hatv)\}\Psi_0\|, \nn \eeqa where both sides are equal because of the transversal gauge. The second term is bounded by a constant because our dense set of states $\Psi_0$ are localized in position and momentum space. \qed \begin{prop}\label{diffom} Assume that $V^s\in{\cal{V}}_{SR}$. Then for all $\Psi_\v$ as in Eq. (\ref{phiv}) \beqa & & \label{diffomv}\|(\Omega_+ - \Omega_-)\Psi_\v\|={\cal{O}}(v^{-1}) \,\,\mbox{ and}\\ & & \label{diffomgw}\lim_{v\to\infty}e^{im\v\r}v(\Omega_+ - \Omega_-) \Psi_\v =\int_{-\infty}^\infty d\tau\,iV^s(\r+\tau\hatv)\Psi_0. \eeqa \end{prop} \bew Similarly to the proof of Proposition \ref{omme} we compute the difference \beqa & & (\Omega_+ - \Omega_-)\Psi_\v \nn\\ & = & \label{int2}v^{-1}\int_{-\infty}^\infty d\tau\,e^{iH\tau/v}iV^s(\r) \,e^{-iH_A\tau/v}\Psi_\v \eeqa and use that the norm of the integrand in (\ref{int2}) is bounded by an integrable function $h\in L^1((-\infty,\infty),d\tau)$, see (\ref{int1})\,--\,(\ref{insg}). Hence (\ref{diffomv}) is proven.\\ Now we calculate the high velocity limit (\ref{diffomgw}). In the following we will use \beqa \label{trp}e^{-im\v\r}f(\p)\,e^{im\v\r} & = & f(\p+m\v) \eeqa for measurable and bounded functions $f$ and Lemma \ref{transl}. Because of the dominated convergence theorem we can interchange the limit and the integral: \beqa & & \lim_{v\to\infty}e^{im\v\r}v(\Omega_+ - \Omega_-)\Psi_\v \nn\\ & = & \lim_{v\to\infty}\int_{-\infty}^\infty d\tau\, e^{i(H+(\p-\A)\v)\tau/v} iV^s(\r) \,e^{-i(H_A+(\p-\A)\v)\tau/v}\Psi_0 \nn\\ & = & \label{gwHAH} \int_{-\infty}^\infty d\tau\,e^{i(\p-\A)\hatv\tau} iV^s(\r)\,e^{-i(\p-\A)\hatv\tau}\Psi_0 \\ & = & \label{gwv}\int_{-\infty}^\infty d\tau\,iV^s(\r+\tau\hatv)\Psi_0, \eeqa where we used Lemma \ref{limvdiff} in (\ref{gwHAH}). \qed With the help of Propositions \ref{omme} and \ref{diffom} we calculate the following limit: \beqa & & \lim_{v\to\infty}iv((S-\E)\Phi_\v,\Psi_\v) \nn\\ & = & \lim_{v\to\infty}iv((\Omega_--\E)\Phi_\v, (\Omega_+-\Omega_-)\Psi_\v) +iv(\Phi_\v, (\Omega_+-\Omega_-)\Psi_\v) \nn\\ & = & \int_{-\infty}^\infty d\tau\,(V^s(\r+\tau\hatv)\Phi_0,\Psi_0),\nn \eeqa which is the desired reconstruction formula in Theorem \ref{th2}. %The error term $|R(\v)|$ can be calculated from (\ref{error}) and is %therefore of order ${\cal{O}}(v^{-1})$.\par We remark that we proved the reconstruction formula for all $\hatv\in S^2$ with $\hatv_z\ne 0$, i.e. for almost all $\hatv\in S^2$, which is enough for the reconstruction of the scalar potential.\par The injectivity of the scattering map results from the fact that the reconstruction of the potential $V^s$ can be reduced to the inversion of the Radon transform of a bounded, continuous, square integrable function on $\RR^2$ (see \cite[Proof of Theorem 1.1]{EW 95}) which uniquely determines the function (see \cite[Chapter I, Theorem 2.17]{SH 84}).\\ Hence Theorem \ref{th2} is proved. \qed \section{Proof in the Long--Range Case $V=V^s+V^l$} \label{sec:lrone} \setcounter{equation}{0} Similarly to (\ref{error}) we obtain \beqa & & v((S^D-\E)\Phi_\v,\Psi_\v) \nn\\ & = & \label{errorD}\underbrace{v((\Omega^D_--\E)\Phi_\v, (\Omega^D_+-\Omega^D_-)\Psi_\v)}_{=:\,R^D(\v)} +\underbrace{v(\Phi_\v, (\Omega^D_+-\Omega^D_-)\Psi_\v)}_{=:\,l^D(\v)}. \eeqa In the following we will show that $R^D(\v)={\cal{O}}(v^{-1})$ and that the high velocity limit $\lim_{v\to\infty}l^D(\v)$ exists. For that purpose we need the following Lemma which is a propagation property for the Dollard correction $\tilde{U}(t)$ with \beq \tilde{U}(t)=\exp[-i\int_0^{t} V^l(\hat{\rhovec}_\v(s),s\p_z/m)\,ds] \end{equation} and $\hat{\rhovec}_\v(s)$ given in (\ref{defxhat})\,--\,(\ref{defrhohat}). \begin{la}\label{tildeU} For any $f\in C_0^\infty(\RR^1)$ with $\supp f\subset B_{m\eta}(0)$ and $\v_z\in\RR^1$ with $|\v_z|\ge 2\eta$ the following estimates are true: \beqa & & \left\|z\,\tilde{U}(t)f(\p_z-m\v_z)(1+|z|^2)^{-1/2}\right\|\nn\\ & \le & C\,(1+|\v_z|^{-2}|\v_z t|^{2-\gamma}) \le C \,(1+|\v_z t|)^{2-\gamma}, \\ & & \nn\\ & & \left\|F(|z|\ge|\v_z t|/4)\,\tilde{U}(t)f(\p_z-m\v_z) (1+|z|^2)^{-2}\right\| \nn\\ & \le & C \,(1+|\v_z t|)^{-(2+\varepsilon)} \eeqa for some $\varepsilon>0$. \end{la} \bew The estimates can be proven in the same way as the estimates for $\hat{\rhovec}_\v=0$ in \cite[Proposition 3.1]{EW 95} because $\hat{\rhovec}_\v$ commutes with $\p_z$. \qed To show the boundedness of the norm of $\{\rhovec-\hat{\rhovec}_\v(t)\} e^{-iH_{xy}t}\Phi_\v$ we need an explicit expression of $e^{-iH_{xy}t}\rhovec\, e^{-iH_{xy}t}$: \begin{prop}\label{explHxy} With $\rhovec^\bot:=(y,-x)$ and $\pivec^\bot:=(\p_y,-\p_x)$ and $\omega=b/m$ the following equality holds \beqa \!\!\!\!\!\!\!\!\!\!\!\!\!e^{-iH_{xy}t}\rhovec\, e^{-iH_{xy}t} & = & \rhovec\,\{1+\cos(\omega\,t)\}/2+\rhovec^\bot\sin(\omega\,t)/2 \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!& & \label{e} \mbox{}+\pivec\,\omega^{-1}\sin(\omega\,t) +\pivec^\bot\omega^{-1}\{1-\cos(\omega\,t)\} \eeqa on the domain $(\rhovec^2+\pivec^2)^{-1/2}\,{\cal H}$. \end{prop} \bew Let us denote the left hand side of the equation (\ref{e}) with $f(t)$ and the left hand side with $g(t)$. We calculate derivatives in $t$ of $f(t)$ by computing a series of commutators $i[H_{xy},\rhovec]$ and of $g(t)$ and observe that $f'''=-\omega^2\,f',\,g'''=-\omega^2\,g'$ and $f'(0)=g'(0),\,f''(0)=g''(0)$, which implies $f'=g'$. In addition we know that $f(0)=g(0)$, which implies $f=g$. \qed \begin{cor}\label{xybeschr} For $\Phi_\v$ as in Eq. (\ref{phiv}) and $\hat{\rhovec}_\v(t)$ given in (\ref{defxhat})\,--\,(\ref{defrhohat}) the following expression is uniformly bounded in time $t$ and velocity $\v$: \beq \left\|\left\{\rhovec-\hat{\rhovec}_\v(t)\right\} e^{-iH_{xy}t}\Phi_\v\right\| \le \const. \end{equation} \end{cor} \bew Using Proposition \ref{explHxy} and the localization in position and momentum space we obtain the boundedness uniformly in time and velocity. \qed \begin{prop}\label{ommeD} Assume that $V^s\in{\cal{V}}_{SR}$ and $V^l\in{\cal{V}}_{LR}$. Then for all $\Phi_\v$ as in Eq. (\ref{phiv}) \beq \|(\Omega^D_\pm -\E)\Phi_\v\|={\cal{O}}(v^{-1}). \end{equation} \end{prop} \bew We compute the difference \beqa \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!(\Omega^D_\pm -\E)\Phi_\v \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& = & \!\!\int_0^{\pm\infty}dt\,\frac{d}{dt} \left(e^{iHt}U^D(t)\right)\Phi_\v \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& = & \!\!\int_0^{\pm\infty}dt\,e^{iHt} i(H-H_A-V^l(\hat{\rhovec}_\v(t),t\p_z/m) U^D(t)\Phi_\v \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& = & \!\! v^{-1} \int_0^{\pm\infty}d\tau\, e^{iH\tau/v} i\{V^s(\r)+V^l(\r) -V^l(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\}\nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& &\label{int1D} \quad\quad\quad\quad\quad\times U^D(\tau/v)\Phi_\v. \eeqa If we can show that the norm of the integrand in (\ref{int1D}) is bounded by an integrable function $h\in L^1((\pm\infty,0],d\tau)$, we finished the proof.\\ Since $i[\p_z,(\p-\A)^2]=0$, the components in $U^D$ commute and $U^D(t)=\exp[-iH_A t]\,\tilde{U}(t)$. Let $\bar{f}\in C_0^\infty(\RR)$ with $\bar{f}\equiv 1$ on the support of $f$. We use that the particle moves in the direction parallel to the magnetic field with velocity $|\v_z|=v\,|\hatv_z|>0$. We show the integrability for the term with $V^s$ and then for the term with $V^l$: \beqa \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\label{intVsD}\left\|V^s(\r) e^{-iH_A \tau/v}\tilde{U}(\tau/v)\Phi_\v\right\| \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& = & \!\!\left\|V^s(\r) e^{-i\frac{1}{2m}\p_z^2 \tau/v}e^{-iH_{xy}\tau/v} \tilde{U}(\tau/v)\Phi_\v\right\| \nn \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& \le & \!\!\label{term1D}\const\left\{ \left\|F(|z|>|\tau\hatv_z|/4) \,\tilde{U}(\tau/v)f(\p_z-m\v_z)(1+|z|^2)^{-2}\right\|\right. \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\!\!\label{term2D} \mbox{}+\left\|F(|z-\tau\hatv_z|\ge|\tau\hatv_z|/2)\,e^{-i\frac{1}{2m}\p_ z^2 \tau/v} \bar{f}(\p_z-m\v_z) F(|z|\le|\tau\hatv_z|/4)\right\| \\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!\!\! \label{term3D}\left.\mbox{}+\left\|V^s(\r)F(|z-\tau\hatv_z|<|\tau\hatv_z|/2) \right\| \right\}. \eeqa $(\ref{term1D})\le h(|\tau\hatv_z|)$ with Lemma \ref{tildeU} for $v\ge 2\eta/|\hatv_z|$, (\ref{term2D}) and (\ref{term3D}) are the same terms as (\ref{term2}) and (\ref{term3}) respectively. Thus (\ref{intVsD}) is bounded by an integrable function.\par To show integrability for the term with the difference of $V^l$, we introduce a cut--off function $\chi\in C^\infty(\RR)$ with $0\le\chi\le 1,\,\chi(\lambda)=1$ for $\lambda\ge 1/2$, and $\chi(\lambda)=0$ for $\lambda\le 1/4$; and define $V^l_{\tau}(\rhovec,z):=V^l(\rhovec,z)\,\chi(|z|/|\tau\hatv_z|)$. Then it follows from (\ref{laplaceVl}) that \beqa \!\!\!\!\!\!\!\!\!\!\!\!\label{gradtau} \|\nabla V^l_\tau\| & = & \sup|\nabla V^l_\tau(\r)| \le \const\,|\tau\hatv_z|^{-\gamma},\quad\gamma>3/2, \\ \!\!\!\!\!\!\!\!\!\!\!\!\label{laplacetau} \|D^{(0,0,2)} V^l_\tau\| & \le & \const\,|\tau\hatv_z|^{-(2+\delta)},\quad\delta>0. \eeqa We remark that $V^l(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m)) =V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))$ on the support of $f(\p_z-m\v_z)$. Then \beqa \!\!\!\!\!\!\!\!\!\!& & \label{intVlD}\left\|\{V^l(\r) -V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\} e^{-iH_A\tau/v}\tilde{U}(\tau/v) \Phi_\v\right\| \\ \!\!\!\!\!\!\!\!\!\!& = & \left\|\{V^l(\r) -V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\}\, e^{-i\frac{1}{2m}\p_z^2\tau/v}e^{-iH_{xy}\tau/v} \tilde{U}(\tau/v)\Phi_\v\right\| \nn \\ \!\!\!\!\!\!\!\!\!\!& \le & \label{term1Dl}\const\left\{\left\|F(|z|>|\tau\hatv_z|/4) \,\tilde{U}(\tau/v)f(\p_z-m\v_z)(1+|z|^2)^{-2}\right\| \right.\\ \!\!\!\!\!\!\!\!\!\!& & \mbox{}+\left\|\{V^l(\r)- V^l_\tau(\r)\}e^{-iH_{xy}\tau/v} e^{-i\frac{1}{2m}\p_z^2 \tau/v} \bar{f}(\p_z-m\v_z) F(|z|\le|\tau\hatv_z|/4)\right\| \nn\\ \!\!\!\!\!\!\!\!\!\!& & \left.\mbox{}+ \left\|\{V^l_\tau(\r) -V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\} e^{-i\frac{1}{2m}\p_z^2 \tau/v}e^{-iH_{xy}\tau/v}\tilde{U}(\tau/v)\, \Phi_\v\right\| \right\} \nn\\ \!\!\!\!\!\!\!\!\!\!& \le & h_1(|\tau\hatv_z|) \nn\\ \!\!\!\!\!\!\!\!\!\!& & \mbox{}+\const\left\{ \left\|F(|z-\tau\hatv_z|\ge|\tau\hatv_z|/2)\,e^{-i\frac{1}{2m}\p_z^2 \tau/v} \bar{f}(\p_z-m\v_z)\right.\right.\nn\\ \!\!\!\!\!\!\!\!\!\!& & \label{term2Dl} \left. \mbox{}\quad \quad\quad\quad\quad\quad\times F(|z|\le|\tau\hatv_z|/4)\right\| \\ \!\!\!\!\!\!\!\!\!\!& & \left. \mbox{}\quad\quad\quad+ \left\|\{V^l_\tau(\rhovec,z+\tau\p_z/(v\,m))- V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\} \right.\right.\nn\\ \!\!\!\!\!\!\!\!\!\!& & \label{term3Dl}\left.\left. \mbox{}\quad\quad\quad\quad\quad\quad\times e^{-iH_{xy}\tau/v} \tilde{U}(\tau/v)\Phi_\v\right\| \right\}, \eeqa where $(\ref{term1Dl})\le h_1(|\tau\hatv_z|)$ with Lemma \ref{tildeU} for $v\ge 2\eta/|\hatv_z|$ and $(\ref{term2Dl})\le h_2(|\tau\hatv_z|)$ with Lemma \ref{la2} for $v\ge 8\eta/|\hatv_z|$. We used $\exp[i\p_z^2 t/(2m)]f(\rhovec,z)\exp[-i\p_z^2 t/(2m)] =f(\rhovec,z+t\p_z/m)$ to obtain (\ref{term3Dl}). Finally (\ref{term3Dl}) can be calculated using the Baker--Campbell--Hausdorff formula \beqa \!\!\!\!\!\!& & \!\!\exp[-i\q(\rhovec,z+t\p_z/m)] \exp[i\q(s\rhovec+(1-s)\hat{\rhovec}_\v(t),sz+t\p_z/m)] \nn\\ \!\!\!\!\!\! & = &\!\!\exp[-i\q(\rhovec-\hat{\rhovec}_\v(t),z)(1-s)] \exp[it\q_z^2 (1-s)/(2m)] \nn \eeqa for all $\q\in\RR^3$. Then for the difference of $V^l_\tau$ in (\ref{term3Dl}) we obtain \beqa \!\!\!\!& & V^l_\tau(\rhovec,z+\tau\p_z/(v\,m)) -V^l_\tau(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m)) \nn\\ \!\!\!\!& = & \int_0^1 ds \left\{-(\nabla V^l_\tau)(s\rhovec+(1-s)\hat{\rhovec}_\v(\tau/v),sz+\tau\p_z/(v\,m)) \{\r -(\hat{\rhovec}_\v(\tau/v),z)\} \right.\nn\\ \!\!\!\!& & \left.\mbox{}+\frac{i}{2m}(D^{(0,0,2)} V^l_\tau)(s\rhovec+(1-s)\hat{\rhovec}_\v(\tau/v),sz+\tau\p_z/(v\,m))\tau/v \right\}. \nn \eeqa With (\ref{gradtau}), (\ref{laplacetau}), Corollary \ref{xybeschr} and Lemma \ref{tildeU} integrability of (\ref{term3Dl}) is proven. \qed \begin{la} For $\hat{\rhovec}_\v(t)$ given in (\ref{defxhat})\,--\,(\ref{defrhohat}) and all fixed $\tau\in\RR$ the following high velocity limit holds: \beq\label{gwvVl} \mathop{\mbox{\rm s-lim}}_{v\to\infty} V^l\left(\hat{\rhovec}_\v(\tau/v), \tau(\p_z+m\v_z)/(m\,v)\right)=V^l(\tau\hatv). \end{equation} \end{la} \bew We compute the difference \beqa \!\!\!\!& & V^l\left(\hat{\rhovec}_\v(\tau/v), \tau(\p_z+m\v_z)/(m\,v)\right)-V^l(\tau\hatv) \nn\\ \!\!\!\!& = & \int_0^1 ds\, (-\nabla V^l) \left(\hat{x}_\v(\tau/v)+s\tau\hatv_x,\hat{y}_\v(\tau/v)+s\tau\hatv_y, s\tau(\p_z+m\v_z)/(m\,v)\right) \nn\\ \!\!\!\!& & \quad\quad\quad\times\left(\hat{x}_\v(\tau/v)-\tau\hatv_x, \hat{y}_\v(\tau/v)-\tau\hatv_y,\p_z\tau/(m\,v)\right). \eeqa As $\nabla V^l$ is bounded, $\lim_{v\to\infty}\hat{x}_\v(\tau/v)-\tau\hatv_x=0$, $\lim_{v\to\infty}\hat{y}_\v(\tau/v)-\tau\hatv_y=0$ and $\lim_{v\to\infty}\p_z\tau/(m\,v)=0$ for fixed $\tau$ we obtain (\ref{gwvVl}). \qed \begin{prop}\label{diffomD} Assume that $V^s\in{\cal{V}}_{SR}$ and $V^l\in{\cal{V}}_{LR}$. Then for all $\Psi_\v$ as in Eq. (\ref{phiv}) \beqa \!\!\!\!\!\!& & \label{diffomvD}\|(\Omega^D_+ - \Omega^D_-)\Psi_\v\|= {\cal{O}}(v^{-1}) \,\,\mbox{ and}\\ \!\!\!\!\!\!& & \lim_{v\to\infty}e^{im\v\r}v(\Omega^D_+ - \Omega^D_-) \Psi_\v = \int_{-\infty}^\infty d\tau\,i\{V^s(\r+\tau\hatv) \nn\\ \!\!\!\!\!\!& & \label{diffomgwD} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \mbox{}+V^l(\r+\tau\hatv)- V^l(\tau\hatv)\}\Psi_0. \eeqa \end{prop} \bew Similarly to the proof of Proposition \ref{ommeD} we compute the difference \beqa \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& & \!\!(\Omega^D_+ - \Omega^D_-) \Psi_\v \nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& = & \!\! v^{-1}\int_{-\infty}^\infty d\tau\,e^{iH\tau/v} i\{V^s(\r)+V^l(\r) -V^l(\hat{\rhovec}_\v(\tau/v),\tau\p_z/(v\,m))\}\nn\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!& &\label{int2D} \quad\quad\quad\quad\quad\times U^D(\tau/v)\Psi_\v \eeqa and can show that the norm of the integrand in (\ref{int2D}) is bounded by an integrable function $h\in L^1((-\infty,\infty),d\tau)$. %, see (\ref{intVsD}). Hence (\ref{diffomvD}) is proven.\\ Now we calculate the high velocity limit (\ref{diffomgwD}). Because of the dominated convergence theorem we can interchange the limit and the integral and obtain similarly to (\ref{gwv}): \beqa \!\!\!\!\!\!& & \lim_{v\to\infty}e^{im\v\r}v(\Omega^D_+ - \Omega^D_-)\Psi_\v \nn\\ \!\!\!\!\!\!& = & \lim_{v\to\infty}\int_{-\infty}^\infty d\tau\, e^{i(H+(\p-\A)\v)\tau/v} i\{V^s(\r)+V^l(\r) \nn\\ \!\!\!\!\!\!& & \quad\quad\quad\quad\mbox{}- V^l(\hat{\rhovec}_\v(\tau/v),\tau(\p_z+m\v_z)/(v\,m))\}\nn\\ \!\!\!\!\!\!& & \mbox{} \quad\quad\quad\quad\times e^{-i(H_A+(\p-\A)\v)\tau/v-i \int_0^{\tau/v}V^l(\hat{\rhovec}_\v(s),s(\p_z+m\v_z)/m)\,ds}\Psi_0 \nn\\ \!\!\!\!\!\!& = & \label{gwHAHD} \int_{-\infty}^\infty d\tau\, e^{i(\p-\A)\hatv\tau} i\{V^s(\r)+V^l(\r)-V^l(\tau\hatv)\} \,e^{-i(\p-\A)\hatv\tau}\Psi_0 \\ \!\!\!\!\!\!& = & \int_{-\infty}^\infty d\tau\,i\{V^s(\r+\tau\hatv)+ V^l(\r+\tau\hatv)- V^l(\tau\hatv)\}\Psi_0, \nn \eeqa where in (\ref{gwHAHD}) $\mathop{\mbox{\rm s-lim}}_{v\to\infty} \exp[i (H/v+(\p-\A)\hatv)\tau]=\exp[i(\p-\A)\hatv\tau] = \mathop{\mbox{\rm s-lim}}_{v\to\infty} \exp[i (H_A/v+(\p-\A)\hatv)\tau+ i\int_0^{\tau/v}V^l(\hat{\rhovec}_\v(s),s(\p_z+m\v_z)/m)\,ds]$ for fixed $\tau$ is used. This can similarly be shown as the equality in the short--range case in Lemma \ref{limvdiff}. \qed With the help of Propositions \ref{ommeD} and \ref{diffomD} we calculate the following limit: \beqa & & \lim_{v\to\infty}iv((S^D-\E)\Phi_\v,\Psi_\v) \nn\\ & = & \lim_{v\to\infty}iv((\Omega^D_--\E)\Phi_\v, (\Omega^D_+-\Omega^D_-) \Psi_\v) +iv(\Phi_\v, (\Omega^D_+-\Omega^D_-)\Psi_\v) \nn\\ & = & \int_{-\infty}^\infty d\tau\,(V^s(\r+\tau\hatv)\Phi_0,\Psi_0) \nn\\ & & \label{exactformulaD}\mbox{}+\int_{-\infty}^\infty d\tau\, (\{V^l(\r+\tau\hatv)-V^l(\tau\hatv)\}\Phi_0,\Psi_0) \eeqa which is the reconstruction formula (\ref{ffVsD}) in Theorem \ref{th4}. The injectivity already has been shown in the short--range case above.\\ A short computation for the commutator of $S^D$ with the third component of the momentum $\p_z$ gives (\ref{ffV}). Then the total potential $V$ can be computed from (\ref{ffV}) (see \cite[Proof of Theorem 1.2]{EW 95}).\\ Hence Theorem \ref{th4} is proved. \qed \section{Error Bounds} \setcounter{equation}{0} All formulae hold in the high velocity limit. For large, but fixed, $v$ we obtain an error term of order ${\cal{O}}(|\v_z|^{-1})$ if the scalar $L^1$ and compactly supported: In this case we only have to know the Radon transform for infinitely many directions $\hatv$, but not for all, to uniquely determine the potential from its X--ray transform (see \cite[Theorem 5.2]{K}). Then the error terms $|R(\v)|$ and $|R^D(\v)|$ can be calculated from (\ref{error}) and (\ref{errorD}) respectively and are of order ${\cal{O}}(|\v_z|^{-1})$. \section{The Two--Body Case}\label{tbc} \setcounter{equation}{0} Now we study a system of two interacting quantum particles with opposite charges in a homogeneous magnetic field. As the most important example of such a system we note the hydrogen atom (see \cite{L95} and references there). Let $H_0:=\sum_{i=1,2}\frac{1}{2m_i}\p_i^2$ be the free Hamiltonian. By \beq H_A:=\sum_{i=1,2}\frac{1}{2m_i}(\p_i-e_i\A(\r_i))^2 \end{equation} we denote the Hamiltonian with the magnetic field alone and by $H=H_A+V$ the interacting Hamiltonian with mass $m_i$, momentum $\p_i=-i\nabla_{\r_i}$, electric charge $e_i$ and position $\r_i$ of the i--th particle, where we will assume that $e_1=-e_2=1$. As in the one--body case it is useful to introduce the following representation (see \cite{L95} for the notation): \beqa H_A & = & H_0+\sum_{i=1,2}\frac{1}{2m_i} \left\{\frac{b^2}{4}\left(\frac{\B}{|\B|}\times \r_i \right)^2-e_i \B\L_i\right\} \\ & = & H_0+\sum_{i=1,2}\frac{1}{2m_i} \left\{\frac{b^2}{4}(x_i^2+y_i^2)-e_i b\,\L_{z,i} \right\}\\ & = & \sum_{i=1,2}\left\{\frac{1}{2m_i}\p_{z,i}^2+H_{osc,i}- \frac{1}{2m_i}e_i b\,\L_{z,i} \right\} \eeqa with the $z$--component of the angular momentum $\L_{z,i}=x_i \p_{y,i}-y_i \p_{x,i}$ of the i--th particle and \beq H_{osc,i}=\frac{1}{2m_i}\left\{(\p_{x,i}^2+\p_{y,i}^2)+ \frac{b^2}{4}(x_i^2+y_i^2)\right\}. \end{equation} As $H_{osc,i}$ and $\L_{z,i}$ do not act on the $z$--variable, we can separate the center of mass motion in the $z$--direction as usual. For that purpose we consider $H$ acting on ${\cal{H}}=L^2(X)$ with \[X=\{(\r_1,\r_2)\subset \RR^6\,|\, m_1 z_1+m_2 z_2=0\}\] instead of $L^2(\RR^6)$, and write $z=z_1-z_2$. The momentum space is \[\hat{X}=\{(\u_1,\u_2)\subset \RR^6\,|\, \u_{z,1}+\u_{z,2}=0\}.\] It is known (see \cite{AHS} for details) that $H_{osc,i}- \frac{1}{2m_i}e_i b\,\L_{z,i}$, acting on the Hilbert space $L^2(\RR^2)$, has a complete set of eigenfunctions $\{\Theta_{ln}(x_i,y_i)\}_{l=0,\pm 1,\dots;\,n=0,1, \dots}$ with corresponding eigenvalues \beq E_{ln,i}=(2m_i)^{-1}b\,(2n+|l|-e_i l+1), \end{equation} where $E_{ln,i}$ and $\Theta_{ln}$ are often referred to as Landau energy levels and Landau orbits. Therefore the spectrum of $H_{xy}=\sum_{i=1,2}H_{osc,i}-\frac{1}{2m_i}e_i b\,\L_{z,i}$ acting on $L^2(\RR^4)$ consists of infinitely degenerated eigenvalues $\{E_\beta\}_{\beta=(l,n,l',n')}$, $l,l'=0,\pm 1,\dots;\,n,n'=0,1,\dots$ with \beq E_\beta= \frac{b}{2m_1}(2n+|l|-l+1)+\frac{b}{2m_2}(2n'+|l'|-l'+1) \end{equation} and corresponding eigenfunctions $\theta_\beta((x_1,y_1),(x_2,y_2))= \theta_{ln}(x_1,y_1)\times\linebreak \theta_{l'n'}(x_2,y_2)$. %The trajectories $\exp[-iH_A t]\Phi$ are %superpositions of %bound states in the $((x_1,y_1),(x_2,y_2))$--plane and free motion in the %$z$--direction. \par We will use some notation similar to that commonly used in many--body scattering theory: \beq \label{defnew}\r:=\r_1-\r_2, \quad\quad \p:=(\p_1/m_1-\p_2/m_2)m \end{equation} with reduced mass $m=m_1 m_2/(m_1+m_2)$, where $\r$ denotes the relative coordinate of $\r_1$ and $\r_2$ and $\p$ its conjugate momentum. As again $H_{xy}$ does not act on the $z$--variable, we have $\exp[-iH_A t]=\exp[-iH_{xy}t]\exp[-i\p_z^2/(2m)]$.\par Then the Theorems for the two--body case of Theorems \ref{th2} and \ref{th4} can be proven in the same way as in the one--body case where we use that the propagation properties of Lemma \ref{la2} and \ref{tildeU} are also true in the two--body case and that all other statements can be proven as before now using the new relative coordinates $\r$ and $\p$, see (\ref{defnew}). Finally we obtain the following Theorems for the two--body case: \begin{theorem}[two--body case]\label{th2mp} Suppose that $V^s\in{\cal{V}}_{SR}$ and $V^l=0$. Then the following reconstruction formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa \lim_{v\to\infty}iv((S-\E)\Phi_\v,\Psi_\v) & = & \label{ffVsm} \int_{-\infty}^\infty (V^s(\r+\tau\hatv)\Phi_0,\Psi_0)\, d\tau. \eeqa In particular, the scattering map \[ S(\A;\cdot):{\cal{V}}_{SR}\rightarrow L({\cal{H}}) \] is injective. \end{theorem} \begin{theorem}[two--body case]\label{th4mp} Suppose that $V^s\in{\cal{V}}_{SR}$ and $V^l\in{\cal{V}}_{LR}$. Then the following reconstruction formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa \!\!\!\!\!\!\!\!\!\!&& \lim_{v\to\infty}iv((S^D-\E)\Phi_\v,\Psi_\v) -(\{V^l(\r+\tau\hatv)-V^l(\tau\hatv)\}\,\Phi_0,\Psi_0)\nn\\ \!\!\!\!\!\!\!\!\!\!& = & \label{ffVsDm} \int_{-\infty}^\infty (V^s(\r+\tau\hatv)\Phi_0,\Psi_0)\, d\tau. \eeqa In particular, for a given long--range potential $V^l$ the scattering map \[ S^D(\A,V^l;\cdot):{\cal{V}}_{SR}\rightarrow L({\cal{H}}) \] is injective.\\ Moreover, the following formula holds for all $\Phi_\v,\,\Psi_\v$ as in Eq. (\ref{phiv}): \beqa && \lim_{v\to\infty}iv([S^D,\p_z]\Phi_\v,\Psi_\v)\nn\\ & = & \int_{-\infty}^\infty \{(V^s(\r+\tau\hatv)\p_z\Phi_0,\Psi_0) -(V^s(\r+\tau\hatv)\Phi_0,\p_z\Psi_0) \nn\\ & & \label{ffVm} \mbox{}+i((\partial_z V^l)(\r+\tau\hatv)\Phi_0,\Psi_0)\}\, d\tau. \eeqa In particular, any of the scattering operators $S^D$ uniquely determines the total potential $V$. \end{theorem} \section{Generalization}\label{genun} \setcounter{equation}{0} It is possible to generalize the results such that unbounded short--range $ V^s$ (i.e., $V^s$ is only Kato--small and unbounded in the direction parallel to the field) are included. The decay assumption (\ref{defsr}) can be weakened such that \beq \|V^s(\r)\,(\p_z^2+\E_z)^{-1}F(|z|\ge R)\| \in L^1([0,\infty),dR) \end{equation} is sufficient for the reconstruction of $V^s$ in Theorem \ref{th2} and of $V=V^s+V^l$ in Theorem \ref{th4} because $V^s$ can be regularized with $f(\p_z-m\v_z)$ which commutes with $e^{-iH_A t}$ and $U^D(t)$. \section*{Acknowledgement} I thank Professor V. Enss and Professor R. Weder for their encouragement and helpful conversations and Deutsche Forschungsgemeinschaft and the Graduiertenkolleg of the RWTH Aachen for their financial support. As this paper has been written during my visit of the Institute of Advanced Study in Princeton I like to thank the Institute for their hospitality. {\small \begin{thebibliography}{AAA 99a} \bibitem[A 96a]{AP1}S. Arians, {\it Geometric Approach to Inverse Scattering for the Schr\"odinger Equation with Magnetic and Electric Potentials,} to appear in J. Math. Phys. (1997), available by anonymous ftp from work1.iram.rwth-aachen.de (134.130.161.65) in the directory /pub/papers/arians as a LaTeX 2.09 tex, dvi or ps file ar-96-1.*. \vspace{-8pt} \bibitem[A 96b]{AP2}S. Arians, {\it Suitable Gauges for the Geometric Approach to Inverse Scattering for the Schr\"odinger Equation with Magnetic and Electric Potentials,} in preparation. %available by anonymous ftp from work1.iram.rwth-aachen.de %(134.130.161.65) in the directory /pub/papers/arians %as a LaTeX 2.09 tex, dvi or ps file ar-96-2.*. \vspace{-8pt} \bibitem[AHS 78a]{AHS}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. I. General Interactions,} Duke Math. J. {\bf 45}, 847-883 (1978). \vspace{-8pt} \bibitem[AHS 78b]{AHSII}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. II. Separation of the Center of Mass in Homogeneous Magnetic Fields,} Ann. Phys. {\bf 114}, 431-451 (1978). \vspace{-8pt} \bibitem[AHS 81]{AHSIII}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. III. Atoms in Homogeneous Magnetic Field,} Commun. Math. Phys. {\bf 79}, 529-572 (1981). \vspace{-8pt} \bibitem[E 83]{E 83}V. Enss, {\it Propagation Properties of Quantum Scattering States,} J. Func. Anal. {\bf 52}, 219-251 (1983). \vspace{-8pt} \bibitem[EW 95]{EW 95}V. Enss, R. Weder, {\it The Geometrical Approach to Multidimensional Inverse Scattering,} J. Math. Phys. {\bf 36}, 3902-3921 (1995). \vspace{-8pt} \bibitem[ER 95]{ER} G. Eskin, J. Ralston, {\it Inverse Scattering Problems for the Schroedinger Equation with Magnetic Potential at a Fixed Energy,} Commun. Math. Phys. {\bf 173}, 199-224 (1995). \vspace{-8pt} \bibitem[He 84]{SH 84}S. Helgason, {\it Groups and Geometric Analysis,} Academic Press, Orlando 1984.\vspace{-8pt} \bibitem[H\"o 76]{H} L. H\"ormander, {\it The Existence of Wave Operators in %available by anonymous ftp from work1.iram.rwth-aachen.de %(134.130.161.65) in the directory /pub/papers/arians %as a LaTeX 2.09 tex, dvi or ps file ar-96-2.*. \vspace{-8pt} \bibitem[AHS 78a]{AHS}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. I. General Interactions,} Duke Math. J. {\bf 45}, 847-883 (1978). \vspace{-8pt} \bibitem[AHS 78b]{AHSII}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. II. Separation of the Center of Mass in Homogeneous Magnetic Fields,} Ann. Phys. {\bf 114}, 431-451 (1978). \vspace{-8pt} \bibitem[AHS 81]{AHSIII}J. Avron, I. Herbst, B. Simon, {\it Schr\"odinger Operators with Magnetic Fields. III. Atoms in Homogeneous Magnetic Field,} Commun. Math. Phys. {\bf 79}, 529-572 (1981). \vspace{-8pt} \bibitem[E 83]{E 83}V. Enss, {\it Propagation Properties of Quantum Scattering States,} J. Func. Anal. {\bf 52}, 219-251 (1983). \vspace{-8pt} \bibitem[EW 95]{EW 95}V. Enss, R. Weder, {\it The Geometrical Approach to Multidimensional Inverse Scattering,} J. Math. Phys. {\bf 36}, 3902-3921 (1995). \vspace{-8pt} \bibitem[ER 95]{ER} G. Eskin, J. Ralston, {\it Inverse Scattering Problems for the Schroedinger Equation with Magnetic Potential at a Fixed Energy,} Commun. Math. Phys. {\bf 173}, 199-224 (1995). \vspace{-8pt} \bibitem[He 84]{SH 84}S. Helgason, {\it Groups and Geometric Analysis,} Academic Press, Orlando 1984.\vspace{-8pt} \bibitem[H\"o 76]{H} L. H\"ormander, {\it The Existence of Wave Operators in Scattering Theory,} Math. Z. {\bf 146}, 69-91 (1976). \vspace{-8pt} \bibitem[K 89]{K}F. Kleinert, {\it Inversion of k-plane Transforms and Applications in Computer Tomography,} SIAM Rev. {\bf 31}, No. 2, 273-298 (1989). \vspace{-8pt} \bibitem[L 95]{L95} I. Laba, {\it Scattering for Hydrogen--like Systems in a Constant Magnetic Field,} Comm. Partial Differential Equations {\bf 20}, 741-762 (1995). \vspace{-8pt} \bibitem[N 96]{N 96}F. Nicoleau, {\it A Stationary Approach to Inverse Scattering for Schr\"odinger Operators with First Order Perturbations}, to appear in Comm. Partial Differential Equations (1997). \vspace{-8pt} \bibitem[NK 87]{NK}R. G. Novikov, G. M. Khenkin, {\it The $\bar{\delta}$--Equation in the Multidimensional Inverse Scattering Problem}, Uspekhi Mat. Nauk {\bf 42}(3), 93-152 (1987), translation in Russ. Math. Surv. {\bf 42}(3), 109-180 (1987). \end{thebibliography}} \end{document}