ON A RELATION BETWEEN THE POSITIVE AND NEGATIVE SPECTRA OF SCHRÖDINGER OPERATORS

OLEG SAFRONOV

ABSTRACT. We study the properties of Schrödinger operators $-\Delta \pm V$. We prove that if their negative spectra are discrete, then their positive spectra do not have gaps.

1. INTRODUCTION AND MAIN RESULTS

Consider the Schrödinger operator

$$-\Delta + V(x)$$

acting in the space $L^2(\mathbb{R}^d)$. If $V = 0$, the operator has purely absolutely continuous spectrum covering the interval $[0, \infty)$.

![Fig. 1. The spectrum of $-\Delta$](image)

However, if $V \neq 0$, then the spectrum might be different. In particular, it might have negative eigenvalues. In any case, if V decays at infinity, then the spectrum of the Schrödinger operator typically looks like the set displayed on the picture below.

![Fig. 2. The spectrum of $-\Delta + V$](image)

It turns out, that there is a relation between the left and the right parts of this picture, i.e. a relation between the continuous spectra and the sets of negative eigenvalues of Schrödinger operators. However, in order to describe this relation, one has to consider two operators

$$H_{\pm} = -\Delta \pm V.$$

The following result is one of the theorems proven in [6].

© 2017 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
Theorem 1.1. [cf. [6]] Let V be a real-valued bounded function on \mathbb{R}^d. Suppose that the spectra of $H_+ = -\Delta + V$ and $H_- = -\Delta - V$ in $(-\infty, 0)$ consist of eigenvalues $\lambda_j(V)$ and $\lambda_j(-V)$, satisfying
\[
\sum_j |\lambda_j(V)|^{1/2} < \infty, \quad \sum_j |\lambda_j(-V)|^{1/2} < \infty.
\] (1.1)
Then the absolutely continuous spectrum of each operator H_+, H_- is essentially supported on the set $[0, \infty)$.

Remark. Although this theorem can be proven in any dimension d, the paper [6] proves it only for $d = 3$. The arguments in $d \neq 3$ require a small modification. The case $d = 1$ was considered by Damanik and Remling in [2]. For a similar result handling the case of finitely many negative eigenvalues see the articles [1] and [4].

It feels like the rate of accumulation of the eigenvalues $\lambda_j(\pm V)$ to zero determines the properties of the positive spectrum of each operator H_+, H_-. What happens in the case where $\lambda_j(\pm V) \to 0$ in an arbitrary way, when nothing is known about the rate of accumulation of the eigenvalues to 0?

The main result of the present paper is the following statement:

Theorem 1.2. Let V be a real-valued bounded function on \mathbb{R}^d. Suppose that the spectra of $H_+ = -\Delta + V$ and $H_- = -\Delta - V$ in $(-\infty, 0)$ are discrete. Then the spectrum of each operator H_+, H_- contains the interval $[0, \infty)$.

In the picture below, λ_j^\pm is just a different notation of $\lambda_j(\pm V)$.

Fig. 4. The left parts of the pictures imply the right parts

Theorem 1.2 was proven for $d = 1$ by Damanik and Remling [2] in 2007. We prove it in any dimension d. This theorem is especially interesting when $d \geq 3$, because its conditions do not imply that the difference of the resolvent operators
\[
(-\Delta - z)^{-1} - (H_\pm - z)^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R},
\]
is compact. So, without a modification, the method of the paper [2] relying on Weyl’s theorem does not work in this case.
2. THE MAIN TECHNICAL LEMMAS

By a Schrödinger operator on a domain $\Omega \subset \mathbb{R}^d$, we always mean an operator with the Dirichlet boundary conditions. We will sometimes denote such operators by the symbols $H_+|_{\Omega}$ or $H_-|_{\Omega}$. More often, we will use the symbols H_+ and H_-, but in this case, we will provide a verbal description mentioning the domain Ω.

Proposition 2.1. Let $V \in L^\infty(\mathbb{R}^d)$. Assume that the negative spectra of the operators H_+ and H_- are discrete. Then for any $\gamma > 0$, there exists an $R > 0$ such that the spectra of the operators H_+ and H_- on the domain $\{x \in \mathbb{R}^d : |x| > R\}$ are situated to the right of the point $-\frac{\gamma^2}{2}$.

This proposition follows from the two lemmas below.

The statement of the first lemma can be proven by integration by parts.

Lemma 2.2. Let $a > 0$. Let φ be a real-valued bounded function with bounded derivatives of first order. Suppose that ψ is a real-valued solution of

$$-\Delta \psi \pm V \psi = \lambda \psi$$

and the product $\varphi \psi$ vanishes on the boundary of the domain $\{a < |x| < b\}$. Then

$$\int_{a < |x| < b} \left(|\nabla (\varphi \psi)|^2 \pm V |\varphi \psi|^2 \right) dx = \int_{a < |x| < b} \left(|\nabla \varphi|^2 \psi^2 + \lambda |\varphi \psi|^2 \right) dx$$

Lemma 2.3. Let $a > 0$. Assume that the lowest eigenvalue $-\gamma^2$ of H_\pm on the domain $\{x \in \mathbb{R}^d : |x| > a\}$ is negative. Then there is a number $b \geq a$ such that the lowest eigenvalue of H_\pm on $\Omega = \{b < |x| < b + 6\gamma^{-1}\}$ is not bigger than $-\frac{\gamma^2}{2}$.

Proof. Let ψ be the eigenfunction corresponding to the eigenvalue $-\gamma^2$ for the problem on the domain $\{x \in \mathbb{R}^d : |x| > a\}$ with the Dirichlet boundary conditions. Put $L = \gamma^{-1}$ and find $c > 0$ that gives the maximum to the functional $\int_{c-L < |x| < c+L} |\psi|^2 dx$. The latter integral is a continuous positive function of c, tending to zero as $c \to \infty$, so it does have a maximum. Define

$$\varphi(x) = \begin{cases} 1, & \text{if } ||x| - c| < L, \\ 0, & \text{if } ||x| - c| \geq 3L, \\ 3/2 - ||x| - c|/(2L), & \text{otherwise.} \end{cases}$$

Now, the interesting fact is that

$$\int_{|x| > a} |\nabla \varphi|^2 \psi^2 dx \leq \frac{\gamma^2}{2} \int_{|x| > a} |\varphi \psi|^2 dx$$
Lemma 2.3, the operator spectra of the operators H exists a bounded positive function W.

Proposition 2.4.

Proof of Proposition 2.1. It is sufficient to prove this statement only for the operator H_\pm. Assume the opposite, that all operators H_\pm on the domains of the form $\{x \in \mathbb{R}^d : |x| > R\}$ have an eigenvalue below the level $-\gamma^2$. Then, according to Lemma 2.3, there are infinitely many disjoint domains $\Omega_n = \{b_n < |x| < b_n + 6\gamma^{-1}\}$ such that H_\pm on Ω_n has an eigenvalue smaller than $-\gamma^2/2$. The latter implies that the spectrum of H_\pm has a negative accumulation point, which contradicts the assumptions of the proposition.

Proof of Proposition 2.4. Assume that the spectra of the operators H_+ and H_- on the domain $\{x \in \mathbb{R}^d : |x| > R\}$ do not intersect the interval $(-\infty, -\gamma^2]$ with $\gamma > 0$. Then there exists a bounded positive function W supported in $\{x \in \mathbb{R}^d : |x| \leq R\}$ such that the spectra of the operators $H_\pm + W$ on \mathbb{R}^d are situated to the right of the point $-2\gamma^2$.

Proof. Again, it is sufficient to consider only the operator H_+. Let $W = t\chi$ where $t > 0$ is a sufficiently large number and χ is the characteristic function of the ball $\{x \in \mathbb{R}^d : |x| \leq R\}$. Assume the opposite, that the spectra of the operators $H_+ + t\chi$ intersect the interval $(-\infty, -2\gamma^2)$ for all values of t. We will use Lemma 2.3 which holds for $a = 0$ if one omits all inequalities of the form $|x| > 0$ in the domains description. Since H_+ on $\{x \in \mathbb{R}^d : |x| > R\}$ does not have any spectrum below $-\gamma^2$, according to Lemma 2.3, the operator $H_+ + t\chi$ on the domain $\Omega := \{x \in \mathbb{R}^d : |x| < R + 3\sqrt{2}\gamma^{-1}\}$ must have at least one eigenvalue to the left of this point. Let $\lambda(t) \leq -\gamma^2$ be lowest eigenvalue of $H_+ + t\chi$ on Ω. Note that $\lambda(t)$ is a monotonically increasing function of t. Hence, it has a limit at infinity

$$\lambda_0 = \lim_{t \to \infty} \lambda(t) \leq -\gamma^2.$$

Let ψ_0 be the corresponding normalized eigenfunction of the operator $H_+ + t\chi$ on Ω. Then

$$\int_{\Omega} (|\nabla \psi_0|^2 + (V + t\chi)|\psi_0|^2) dx = \lambda(t) < 0, \quad (2.1)$$
which implies that
\[\int_{\Omega} |\nabla \psi_t|^2 dx \leq ||V||_{L^\infty}. \]
Thus, the \(H^1 \)-norms of the functions \(\psi_t \) are bounded by \(\sqrt{1 + ||V||_{L^\infty}} \). Consequently, there are numbers \(t_n \) such that the sequence of functions \(\psi_{t_n} \) converges in \(H^1(\mathbb{R}^d) \) weakly to a function \(\psi \). In order to prove that \(\psi \neq 0 \), we simply observe that \(\psi_{t_n} \) converges to \(\psi \) in \(L^2(\Omega) \) by the Sobolev embedding theorem and that \(||\psi_{t_n}||_{L^2} = 1 \) for all \(n \). It also follows from the estimate (2.1) that
\[\int_{|x|<R} |x|<R |\nabla \psi_t|^2 dx \leq 1 \]
which tells us that \(\psi(x) = 0 \) for all \(x \in \{ |x| < R \} \).

In order to get a contradiction, it is sufficient to show that \(\psi \) satisfies the equation
\[-\Delta \psi + V \psi = \lambda_0 \psi \tag{2.2} \]
in the domain \(\{ x \in \mathbb{R}^d : R < |x| < R + 3\sqrt{2}\gamma^{-1} \} \). The latter relation follows from the equality
\[\int_{\Omega} (\nabla \psi_t \nabla \varphi + V \psi_t \varphi) dx = \lambda(t) \int_{\Omega} \psi_t \varphi dx, \tag{2.3} \]
which holds for all \(\varphi \in C_0^\infty \left(\{ x \in \mathbb{R}^d : R < |x| < R + 3\sqrt{2}\gamma^{-1} \} \right) \)
Setting \(t = t_n \) and passing to the limit as \(n \to \infty \) in (2.3), we obtain that
\[\int_{\Omega} (\nabla \psi \nabla \varphi + V \psi \varphi) dx = \lambda_0 \int_{\Omega} \psi \varphi dx, \]
which is equivalent to (2.2). Equation (2.2) contradicts the assumption that the spectrum of \(H_+ \) on \(\{|x| > R\} \) does not intersect the interval \((-\infty, -\gamma^2] \). \(\square \)

In the proposition below, \(S_{d-1} \) is the unit sphere and \(|S_{d-1}| \) is its surface area.

Proposition 2.5. Let \(W : \mathbb{R}^d \to \mathbb{R}_+ \) be a bounded positive function whose support is contained in the ball \(\{ x \in \mathbb{R}^d : |x| < R_0 \} \) of radius \(R_0 > 0 \). Suppose that the operators \(H_+ + W \) and \(H_- + W \) do not have spectra below \(-\delta^2 < 0 \). Then there is a sufficiently large positive \(R \geq 2\delta^{-1} + R_0 \) such that \(V \) is representable in the form
\[V(x) = \text{div} A(x) + |A(x)|^2 - \delta^2 \tag{2.4} \]
in the region \(|x| > R \). Moreover, the vector potential \(A : \mathbb{R}^d \to \mathbb{R}^d \) obeys the condition
\[\sup_{b>R^1} \left[\int_{b<|x|<b+2\delta^{-1}} \frac{|A|^2}{|x|^{d-1}} dx \right] < C \delta \tag{2.5} \]
with
\[C = 28 + \frac{(d-1)^2}{2} |S_{d-1}|. \]
Proof. By adding a negative compactly supported function to V, one can always shift the bottom of the spectrum of $H_+ + W$ to the point $-\delta^2$. In this case, $-\delta^2$ is an eigenvalue of $H_+ + W$. Let u be the corresponding eigenfunction. It is very well known that $u > 0$. Set $A = u^{-1}\nabla u$. Then
\[\text{div} A = u^{-1}\Delta u - |A|^2 = W + V + \delta^2 - |A|^2. \]
This proves (2.4).

In order to prove (2.5), one has to use the fact that $H_- + W \geq -\delta^2$. It means that for any $\psi \in H^1(\mathbb{R}^d)$,
\[\int_{\mathbb{R}^d} |A|^2|\psi|^2 \, dx \leq \int_{\mathbb{R}^d} |\nabla \psi|^2 \, dx - 2 \int_{\mathbb{R}^d} (\text{div} A)|\psi|^2 \, dx + \int_{\mathbb{R}^d} (W(x) + \delta^2)|\psi|^2 \, dx. \tag{2.6} \]
Integration by parts leads to the estimate of the second term in the right hand side:
\[\left| \int_{\mathbb{R}^d} (\text{div} A)|\psi|^2 \, dx \right| \leq \frac{1}{2} \int_{\mathbb{R}^d} |A|^2|\psi|^2 \, dx + 2 \int_{\mathbb{R}^d} |\nabla \psi|^2 \, dx. \]
Combining this inequality with the relation (2.6), we obtain that
\[\int_{\mathbb{R}^d} |A|^2|\psi|^2 \, dx \leq 6 \int_{\mathbb{R}^d} |\nabla \psi|^2 \, dx + 2 \int_{\mathbb{R}^d} (W(x) + \delta^2)|\psi|^2 \, dx. \tag{2.7} \]
Let ζ be the $H^1(\mathbb{R})$-function defined by
\[\zeta(t) = \begin{cases} 0, & \text{if } t < -2; \\ t + 2, & \text{if } -2 < t < -1; \\ 1, & \text{if } -1 < t < 1; \\ 2 - t, & \text{if } 1 < t < 2; \\ 0, & \text{if } t > 2. \end{cases} \]
Setting $\psi(x) = |x|^{-(d-1)/2}\zeta(\delta|x| - a)$ in (2.7), we get the bound
\[\int_{-\delta^{-1} < |x| - a < \delta^{-1}} \frac{|A|^2}{|x|^{d-1}} \, dx \leq 6 \left(4\delta + \frac{(d-1)^2}{2} \int_{|x| > a - \delta^{-1}} \frac{1}{|x|^{d+1}} \, dx \right) + 4\delta. \tag{2.8} \]
The estimate (2.5) follows from (2.8) once we assume that $a \geq 2\delta^{-1} + R_0$. \qed

Proposition 2.6. Let $u \in H^1(\mathbb{R}^d)$ be a spherically symmetric function and let $n > 1$. Then
\[\sup_{n < r < n+1} \left(|u(r)|^2 r^{d-1} \right) \leq C \int_{n < |x| < n+1} (|\nabla u|^2 + |u|^2) \, dx \tag{2.9} \]
with a constant C depending only on the dimension d.

Proof. Set $\varphi(r) = r^{(d-1)/2}u(r)$. According to the Sobolev embedding theorem,
\[\sup_{n < r < n+1} |\varphi(r)|^2 \leq C_1 \int_{n}^{n+1} (|\varphi'(r)|^2 + |\varphi(r)|^2) \, dr. \]
On the other hand, \(\varphi'(r) = \frac{(d-1)}{2r} r^{(d-1)/2} u(r) + r^{(d-1)/2} u'(r) \). Therefore,

\[
|\varphi'(r)|^2 \leq c_0 (|\varphi(r)|^2 + r^{d-1} |u'(r)|^2), \quad \text{for } r > 1.
\]

Consequently,

\[
\int_n^{n+1} (|\varphi'(r)|^2 + |\varphi(r)|^2) dr \leq C_2 \int_{n<|x|<n+1} (|\nabla u|^2 + |u|^2) dx,
\]

which implies (2.9). \(\square \)

Proposition 2.7. Let \(u \) be a spherically symmetric function of the class \(\mathcal{H}^2(\mathbb{R}^d) \) and let \(n > 1 \). Then

\[
\sup_{n < |x| < n+1} \left(|\nabla u|^2 |x|^{d-1} \right) \leq C \int_{n<|x|<n+1} (|\Delta u|^2 + |\nabla u|^2 + |u|^2) dx \tag{2.10}
\]

with a constant \(C \) depending only on the dimension \(d \).

Proof. Set again \(\varphi(r) = r^{(d-1)/2} u(r) \). Then

\[
r^{d-1} |\nabla u|^2 \leq c_0 \left[|\varphi'(r)|^2 + \frac{1}{r} |\varphi(r)|^2 \right] \leq c_0 \left[|\varphi'(r)|^2 + |\varphi(r)|^2 \right], \quad \text{for } r > 1. \tag{2.11}
\]

By the Sobolev embedding theorem,

\[
\sup_{n < |x| < n+1} \left(|\varphi'(r)|^2 + |\varphi(r)|^2 \right) \leq C_1 \int_n^{n+1} (|\varphi''(r)|^2 + |\varphi'(r)|^2 + |\varphi(r)|^2) dr. \tag{2.12}
\]

On the other hand, \(r^{(d-1)/2} \Delta u = \varphi'' - \frac{\kappa}{d} \varphi \), where \(4\kappa_d = (d-1)(d-3) \). Therefore,

\[
|\varphi''(r)|^2 \leq c_0 \left(r^{d-1} |\Delta u|^2 + |\varphi|^2 \right), \quad \text{for } r > 1. \tag{2.13}
\]

Moreover,

\[
|\varphi'(r)|^2 \leq c_0 \left(r^{d-1} |\nabla u|^2 + |\varphi|^2 \right), \quad \text{for } r > 1. \tag{2.14}
\]

Combining the inequalities (2.11)-(2.14), we obtain (2.10). \(\square \)

Corollary 2.8. Let \(\Omega_n = \{ x \in \mathbb{R}^d : n < |x| < n+1 \} \) where \(n > 1 \). Assume that \(W \geq 0 \) is a locally integrable function on \(\mathbb{R}^d \). Let also \(u \in \mathcal{H}^1(\mathbb{R}^d) \) and \(v \in \mathcal{H}^2(\mathbb{R}^d) \) be two spherically symmetric functions. Then

\[
\int_{|x| > 1} W |u|^2 dx \leq C_d \sup_{n > 1} \int_{\Omega_n} \frac{W}{|x|^{d-1}} dx \int_{\mathbb{R}^d} (|\nabla u|^2 + |u|^2) dx, \tag{2.15}
\]

\[
\int_{|x| > 1} W |\nabla v|^2 dx \leq \tilde{C}_d \sup_{n > 1} \int_{\Omega_n} \frac{W}{|x|^{d-1}} dx \int_{\mathbb{R}^d} (|\Delta v|^2 + |\nabla v|^2 + |v|^2) dx \tag{2.16}
\]

with constants \(C_d \) and \(\tilde{C}_d \) depending only on the dimension \(d \).
Proof. The first inequality follows from the estimate
\[
\int_{\Omega_n} W|u|^2 \, dx \leq C_d \int_{\Omega_n} \frac{W}{|x|^{d-1}} \, dx \int_{\Omega_n} \left(|\nabla u|^2 + |u|^2 \right) \, dx.
\]
The second inequality follows from the bound
\[
\int_{\Omega_n} W|\nabla u|^2 \, dx \leq \tilde{C}_d \int_{\Omega_n} \frac{W}{|x|^{d-1}} \, dx \int_{\Omega_n} \left(|\Delta u|^2 + |\nabla u|^2 + |u|^2 \right) \, dx. \quad \Box
\]

Proposition 2.9. Let \(W : \mathbb{R}^d \rightarrow \mathbb{R}_+ \) be a bounded positive function whose support is contained in the ball \(\{ x \in \mathbb{R}^d : |x| < R_0 \} \) of radius \(R_0 > 0 \). Suppose that the operators \(H_+ + W \) and \(H_- + W \) do not have spectra below \(-\delta^2 < 0 \), where \(\delta < 1 \). Let also \(R \) be the same as in Proposition 2.5. If a spherically symmetric function \(u \in H^2(\mathbb{R}^d) \) and \(v \in H^1(\mathbb{R}^d) \) both vanish in the ball \(\{|x| \leq R\} \), then
\[
\left| \int_{\mathbb{R}^d} V(x) \bar{u} \, v \, dx \right| \leq C\delta ||u||_{H^2} ||v||_{H^1} \quad (2.17)
\]
with a constant \(C \) depending only on the dimension \(d \).

Proof. We already know that \(V \) is representable in the form (2.4) with \(A \) obeying (2.5). Integrating by parts, we obtain
\[
\left| \int_{\mathbb{R}^d} \text{div} A u \bar{v} \, dx \right|^2 = \left| \int_{\mathbb{R}^d} A (\nabla u \bar{v} + u \nabla \bar{v}) \, dx \right|^2 \leq
\]
\[
2 \int_{\mathbb{R}^d} |A|^2 (|\nabla u|^2 + |u|^2) \, dx \cdot \int_{\mathbb{R}^d} (|\nabla v|^2 + |v|^2) \, dx \leq
\]
\[
C_d \delta \int_{\mathbb{R}^d} (|\Delta u|^2 + |\nabla u|^2 + |u|^2) \, dx \cdot \int_{\mathbb{R}^d} (|\nabla v|^2 + |v|^2) \, dx. \quad (2.18)
\]
Similarly,
\[
\left| \int_{\mathbb{R}^d} |A|^2 u \bar{v} \, dx \right|^2 = \left(\int_{\mathbb{R}^d} |A|^2 |u|^2 \, v \, dx \right) \left(\int_{\mathbb{R}^d} |A|^2 |\bar{v}|^2 \, dx \right) \leq
\]
\[
C_d \delta \int_{\mathbb{R}^d} (|\nabla u|^2 + |u|^2) \, dx \cdot \left(\int_{\mathbb{R}^d} |A|^2 |\bar{v}|^2 \, dx \right). \quad \text{Note that inequality (2.7) holds for } \psi = v \text{ as well. It implies the estimate}
\]
\[
\int_{\mathbb{R}^d} |A|^2 |v|^2 \, dx \leq 6 ||v||_{H^1} \quad \text{Consequently,}
\]
\[
\left| \int_{\mathbb{R}^d} |A|^2 u \bar{v} \, dx \right|^2 = \left(\int_{\mathbb{R}^d} |A|^2 |u|^2 \, v \, dx \right) \left(\int_{\mathbb{R}^d} |A|^2 |\bar{v}|^2 \, dx \right) \leq 6 C_d \delta ||u||_{H^1} ||v||_{H^1}. \quad (2.19)
\]
Combining (2.18) and (2.19) with (2.4) we obtain (2.20). \(\Box \)

The next result follows from Propositions 2.1, 2.4 and 2.9.
Theorem 2.10. Let $V \in L^\infty(\mathbb{R}^d)$. Assume that the negative spectra of H_+ and H_- are discrete. Then for any $\varepsilon > 0$ there exists an $R > 0$ such that if a spherically symmetric function $u \in \mathcal{H}^2(\mathbb{R}^d)$ and $v \in \mathcal{H}^1(\mathbb{R}^d)$ both vanish in the ball $\{|x| \leq R\}$, then
\[
\left| \int_{\mathbb{R}^d} V(x) u \bar{v} \, dx \right| \leq \varepsilon \|u\|_{\mathcal{H}^2} \|v\|_{\mathcal{H}^1}
\] (2.20)

In order to proceed further, we choose a function $\zeta \in C^\infty(\mathbb{R}^d)$ equal to 1 in the domain $\{x \in \mathbb{R}^d : |x| > 2\}$ and vanishing in the unit ball $\{x \in \mathbb{R}^d : |x| < 1\}$. Set $\zeta_R(x) = \zeta(x/R)$.

Corollary 2.11. Let the conditions of Theorem 1.2 be fulfilled. Let P be the orthogonal projection onto the subspace of spherically symmetric functions in $L^2(\mathbb{R}^d)$. Then the operator-norm
\[
\|(-\Delta + I)^{-1/2} \zeta_R V \zeta_R (-\Delta + I)^{-1} P \|
\]
tends to zero as $R \to \infty$.

Proof. Let us show that for any $\varepsilon > 0$ there exists an $R_0 > 0$ such that
\[
\left| \left((-\Delta + I)^{-1/2} \zeta_R V \zeta_R (-\Delta + I)^{-1} P, g \right) \right| \leq \varepsilon \|f\| \cdot \|g\|
\]
for all $f \in L^2(\mathbb{R}^d)$, $g \in L^2(\mathbb{R}^d)$ and $R > R_0$. The latter statement follows from Theorem 2.10 with $u = \zeta_R (-\Delta + I)^{-1} P f$ and $v = \zeta_R (-\Delta + I)^{-1/2} g$. Additionally, one needs to note that
\[
\|u\|_{\mathcal{H}^2} \leq C \|f\|, \quad \text{and} \quad \|v\|_{\mathcal{H}^1} \leq C \|g\|.
\]

Corollary 2.12. Let the conditions of Theorem 1.2 be fulfilled. Let P be the orthogonal projection onto the subspace of spherically symmetric functions in $L^2(\mathbb{R}^d)$. Then
\[
(-\Delta + I)^{-1/2} V (-\Delta + I)^{-1} P
\]
is a compact operator.

Proof. It is clear that
\[
(-\Delta + I)^{-1/2} V (-\Delta + I)^{-1} P = (-\Delta + I)^{-1/2} (1 - \zeta_R) V (-\Delta + I)^{-1} P +
\]
\[
(-\Delta + I)^{-1/2} \zeta_R V (1 - \zeta_R) (-\Delta + I)^{-1} P + (-\Delta + I)^{-1/2} \zeta_R V \zeta_R (-\Delta + I)^{-1} P.
\]
It remains to note that the last term in the right hand side is small when $R \to \infty$ and the other two terms are compact operators. □
3. The end of the proof of Theorem 1.2

Let P be the orthogonal projection onto the subspace of spherically symmetric functions in $L^2(\mathbb{R}^d)$. Let $P_1 = I - P$. Note that Corollary 2.12 implies that the operators

\[(-\Delta + I)^{-1}V(-\Delta + I)^{-1}P, \quad P(-\Delta + I)^{-1}V(-\Delta + I)^{-1} \tag{3.1} \]

are compact.

To prove Theorem 1.2, it is sufficient to show that the essential spectrum of H_+ contains the interval $[0, \infty)$. Set $\tilde{H} = -\Delta + P_1VP_1$. We will prove that the difference of the resolvent operators

\[(H_+ - z)^{-1} - (\tilde{H} - z)^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}, \tag{3.2} \]

is a compact. This would imply that the essential spectra of H_+ and \tilde{H} coincide. Note that

\[(H_+ - z)^{-1} - (\tilde{H} - z)^{-1} = \]

\[-(H_+ - z)^{-1}(P_1VP + PVP + PV_{P_1})(\tilde{H} - z)^{-1} = \]

\[T_1(-\Delta + I)^{-1}(P_1VP + PVP + PV_{P_1})(-\Delta + I)^{-1}T_2 \tag{3.3} \]

where $T_1 = -\left((-\Delta + I)(H_+ - z)^{-1}\right)^* \quad$ and $T_1 = (-\Delta + I)(\tilde{H} + -z)^{-1}$ are bounded operators. On the other hand, due to (3.1), the middle factor of the product in the right hand side of (3.3)

\[(-\Delta + I)^{-1}(P_1VP + PVP + PV_{P_1})(-\Delta + I)^{-1} P = -(\Delta + I)^{-1}V(-\Delta + I)^{-1}P \]

is a compact operator. Consequently, the operator (3.2) is compact as well.

By the Weyl theorem, H_+ and $\tilde{H} = -\Delta + P_1VP_1$ have the same essential spectrum. It enough to show now that the essential spectrum of \tilde{H} contains the interval $[0, \infty)$. The latter follows from the fact that the set of all spherically symmetric functions is an invariant subspace of the operator \tilde{H}. The part of \tilde{H} in this subspace is an operator that is unitary equivalent to the operator $Ay(r) = -y''(r) + \frac{n\pi}{r}y(r)$. It remains to note that $\sigma(A) = [0, \infty)$. □

References

Oleg Safronov, Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

E-mail address: osafreno@uncc.edu