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1. Introduction

The present article is devoted to the studies of the existehstationary solutions
of the following system of the integro-differential equats inR¢, d = 4,5

%—: = —Dn[(=A)™" + (=A) " Jum+
+ » Kop(® = y)gm(u(y, t))dy + fm(2), (1.1)

wherel < m < N, 0 < 814, < Som < 1 and§ _d < s9,m, < 1 appearing in the
cell population dynamics. The results of the work are oladim these particular
ranges of the values of the powers of the negative Laplacimsh is based on the
solvability of the linear Poisson type equations (1.13) #relapplicability of the
Sobolev inequality (1.7) for the fractional Laplace operailhe solvability of the
system analogous to (1.1) containing a single fractiongld@an in the diffusion



term of each equation was covered in [29]. Note that the spacablex in our
problem corresponds to the cell genotype, the functigp&e, t) describe the cell
density distributions for various groups of cells as fuoies of their genotype and
time,

u(z,t) = (uy(x,t), ug(z,t), ..., un(z,t))".

The right side of system (1.1) describes the evolution dfdshsities by virtue of
the cell proliferation, mutations and cell influx or effluxh& double scale anoma-
lous diffusion terms with positive coefficients,, correspond to the change of geno-
type due to small random mutations, and the integral préciudcerms describe
large mutations. Functiong,(u) stand for the rates of cell birth depending @n
(density dependent proliferation), and the kern€)s(x — y) express the propor-
tions of newly born cells changing their genotype frgrto =. Let us assume that
they depend on the distance between the genotypes. Théis£f, () designate
the influxes or effluxes of cells for different genotypes.

The fractional Laplace operator describes a particulae cdighe anomalous dif-
fusion actively studied in the context of the various apgimns in plasma physics
and turbulence [7], [24], surface diffusion [19], [22], Seonductors [23] and so
on. The anomalous diffusion can be understood as a randareggof the particle
motion characterized by the probability density distribniof the jump length. The
moments of this density distribution are finite in the cas¢hefnormal diffusion,
but this is not the case for the anomalous diffusion. The a$gtic behavior at
the infinity of the probability density function determinie value of the power of
the negative Laplacian (see [20]). Weak error for contirsutbme Markov chains
related to fractional in time P(I)DEs was estimated in [1lf.the present article

we discuss the case 0f< sy, < s2., < 1, 271 < Som <1, 1<m< N and

d = 4,5. The necessary conditions of the preservation of the nativély of the
solutions of a system of parabolic equations in the sitmatibthe double scale
anomalous diffusion were obtained in [13]. In the work [1% tauthors consider
the simultaneous inversion for the fractional exponenti@space-time fractional
diffusion equation.

We set here alD,, = 1 and demonstrate the existence of solutions of the system of
equations

—[(=A) "+ (A2 ug + | K7 — y)gm(u(y))dy + fm(z) =0, (1.2)

Rd

3 d
where0 < s1,, < S2, <1, = — = <82, <1, 1 <m < N andd = 4,5. Letus

treat the case when the linear parts of the operators inddliveur system fail
to satisfy the Fredholm property. Consequently, the cotmweal methods of the
nonlinear analysis may not be applicable. We use the sdityatonditions for the
non-Fredholm operators along with the method of contraati@ppings.



Consider the problem
—Au+V(x)u —au = f, (1.3)

whereu € £ = H*(RY) andf € F = L*(R%), d € N, a is a constant and the
scalar potential functiof () is either zero in the whole space or tend9 tat the
infinity. Such model equation is discussed here in orderlustiiate certain fea-
tures of the problems without the Fredholm property, thanegues used to solve
them and the preceding results. alf> 0, the essential spectrum of the operator
A E — F,which corresponds to the left side of equation (1.3) corstthie origin.
Consequently, such operator does not satisfy the Fredhmpepy. Its image is
not closed, fo > 1 the dimension of its kernel and the codimension of its image
are not finite. The present article deals with the studies@fertain properties of
the operators of this kind. The elliptic equations contagnhon-Fredholm oper-
ators were studied actively in recent years. Approacheseighted Sobolev and
Holder spaces were developed in [2], [3], [4], [5], [6]. TBehrodinger type
operators without Fredholm property were treated with tle¢hods of the spectral
and the scattering theory in [12], [25], [30], [33]. The nioelar non-Fredholm
elliptic equations were covered in [12], [13], [29], [31]3d], [34]. The signifi-
cant applications to the theory of reaction-diffusion tyggiations were developed
in [9], [10]. Fredholm structures, topological invariar@sd applications were
considered in [11]. The works [14] and [21] are importanttfoe understanding
of the Fredholm and properness properties of the quasilgilatic systems of the
second order and of the operators of this kind®dh The non-Fredholm operators
arise also when considering the wave systems with an infimiteber of localized
traveling waves (see [1]). In particular, when= 0 the operatotA is Fredholm
in some properly chosen weighted spaces (see [2], [3], }4][6]). However, the
case ofa # 0 is significantly different and the method developed in theseles
cannot be applied. The front propagation equations withatit@malous diffusion
were treated actively in recent years (see e.g. [26], [27]).

Let us setk,,(z) = &,, H,,(z), wheree,, > 0, so that

€ 1= MaX<m<NEm, S2 = MaAX<m<NS2m, (14)
3 d .
Where§ 1 < 83 < 1 and assume the following.

. 3 d
Assumption 1.1.Let1 <m < N, 0 < 51,4, < 52, < 1, 2 1 < 8, < 1, where

d = 4,5, the functionsf,, : R — R do not vanish identically for some, such
that \
fm € LYRY),  (=A)2752mf € L*(RY).

Let us also assume that,, : R¢ — R, so that

H,, € L\RY), (—A)z*2mH, € L2(RY).

3



Moreover,
N
= Z HHm”il(Rd) >0 (1.5)
m=1
and

N
=3 (=) Hy |2 0y > 0. (1.6)

m=1

We choose here the space dimensi@ns 4,5. This is related to the solvability
conditions for the linear Poisson type equation (4.1) dtatéemma 4.1 below. For
the practical applications, the space dimensions aremdeld tod = 4, 5, because

the space variable here corresponds to the cell genotypmbid the usual physical
space. Let us apply the Sobolev inequality for the fractioegative Laplacian (see
Lemma 2.2 of [16], also [18]), namely

(A

d 6+432 (Rd)

3,
S682,m,d||(_A)2 » fm||L2(Rd)7 (1.7)

.3 d . .
with — — 1 < Som <1, d=4,5andl < m < N. By virtue of the Assumption
1.1 above along with the standard interpolation argumeatatsive at

fm € L*(RY), d=4,5, 1<m<N. (1.8)
Let us use the Sobolev spaces for the technical purposeglynam
¥ (RY) = {¢ : R > R | ¢ € LR, (—A)*"¢ € ARY},  (L9)

whereé—g<527m< 1,1<m<N, d=4,5.
Each space (1.9) is equipped with the norm

111252 gty = 1 Z2 ey + 1(=2)" D Z2(pay. (1.10)

For a vector function

u(z) = (ui(x), ug(x), ..., un(x))7,

throughout the article we will use the norm

N
3
”u”?r{?’(Rd,RN) = HuH%Q(Rd,RN) + Z H(—A)2um|li2(Rd), (1.11)
m=1
with d = 4,5 and
N
el 2y = D a7z gay-
m=1
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We recall the Sobolev embeddingR{, d = 4,5, namely

Pl oo (ray < cel| @] 3 may, (1.12)

wherec, > 0 is the constant of the embedding. When all the nonnegatiranpa:
terse,, are trivial, we arrive at the linear Poisson type equations

[(=A)m + (=A)2 " fum(z) = fm(z), 1<m<N. (1.13)

By virtue of Lemma 4.1 below under the stated assumptionls peablem (1.13)
admits a unique solution

3 d
u07m€H252’m(Rd), §_Z<52’m<1’ 1<m<N,

and no orthogonality conditions for the right side of (1.283 required here. Obvi-
ously, forl <m < N,

3
2

[(—A)z7s2mFsim 4 (—A)2Jug,, = (—A)2 72 f,, € L*(RY) (1.14)

via Assumption 1.1. It can be easily derived from (1.14) gghre standard Fourier
transform (2.1) that

(=A)2ug,, € L2 (RY, 1 <m < N.

Hence, each linear equation (1.13) possesses a uniqussalyt, € H3(R?). By
means of the definition of the norm (1.11), we have

up() = (uo1 (), uga(x), ..., uo n ()" € H3(RL,RY).
Let us look for the resulting solution of the nonlinear systef equations (1.2) as
u(z) = uo(z) + up(x), (1.15)

where
up() = (up 1 (@), up (), .y up v (2)) T

Evidently, we easily obtain the perturbative system of ¢éiqua

[(=A)™m 4 (=A) 2> up m(2) = € /d Hyp( = y)gm(uo(y) + up(y))dy, (1.16)
R
3 d
where0 < sy, < Som <1, - — = <59, <1, 1 <m <N, d=4,5.
We introduce a closed ball in our Sobolev space

B, :={ue H*R"RY) | |Jul|gsery) < p}, 0<p< 1. (1.17)
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Let us seek the solution of problem (1.16) as the fixed poitih@fuxiliary nonlin-
ear system

[(=A)m 4+ (=A)2 ™ up(2) = em [ Hu(x —y)gm(uo(y) +v(y))dy, (1.18)

Rd

. 3 d
With 0 < $1.,, < S9. < 1, __Z<52’m<1’ 1<m<N,d=4,5

in ball (1.17). For a given vector functiar(y) this is a system of equations with
respect tou(x). The left side of thenth equation in (1.18) involves the operator
which fails to satisfy the Fredholm property

L o= (A 4 (A2 H22m(RY) — L2(RY), 1<m<N. (1.19)

We have (1.19) defined via the spectral calculus. It is thegselifferential opera-
tor with the symbolp|?t + |p|?2=, such that fol < m < N

1
(2m)’?

tnéla) = — [ (o )3 dp. o€ B (R,

with the standard Fourier transform defined in (2.1). Theseal spectrum of
(1.19) fills the nonnegative semi-axis +o0c). Thus, this operator does not have a
bounded inverse. The similar situation appeared in astidl&l] and [32] but as
distinct from the present case, the equations studied tagtered the orthogonality
relations. The fixed point technique was applied in [28] taleate the perturbation
to the standing solitary wave of the Nonlinear Schrodin®#rS) equation when
either the external potential or the nonlinear term in theSNiere perturbed but
the Schrodinger operator involved in the nonlinear probilkeere had the Fredholm
property (see Assumption 1 of [28], also [8]). Let us introduhe closed ball in
the space ofV dimensions as

I:={z e RV | |zlgv < celluollpameryy +cc}, d=4,5. (1.20)

Here and below.|z~ will denote the length of a vector iRY. The closed balD,,
in the space of?(I, RY) vector functions is given by

{9(2) = (91(2), 92(2), ..., gn (2)) € C*(L,RY) | llgllenrmmy < M}, (1.21)

whereM > 0. Here the norms

N
l9llczryy == Z | gm 2y, (1.22)
m=1
N N
O g
ez = llamllo + H n ’ , 1.23
gmllc2y = llgmllcm nz::l a:, e 7;1 9202 lew (1.23)



where| g, || o) = maxecr|gn(z)|. We make the following technical assumption
on the nonlinear part of the system of equations (1.2). Flaperspective of the
applications in biologyy,.(z) can be, for example the quadratic functions, which
describe the cell-cell interactions.

Assumption 1.2. Let1 < m < N. Suppose tha#,, : RN — R is such that
9m(0) = 0andVyg,,(0) = 0. We also assume thate D,, and it does not vanish
identically in the balll.

We use the technical Assumptions 1.1 and 1.2 above in thegpajoour main
theorems. It is not clear at the moment if there is a more efficivay to analyze
our system of equations which would enable us to weaken ttaesgitions.

Let us introduce the operatdi,, such that. = 7,v, whereu is a solution of the
system of equations (1.18). Our first main statement is &a/sl

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for every (0, 1] system
(1.18) defines the mafR, : B, — B,, which is a strict contraction for all

p
O0<e< X
M ([luo || rsme gy + 1)

45

8527 22
H2(|[uo| s ravy + 1) 2d<|5d|> : P

NI

1.24

(d — 482)(271’)452 455 ( )
The unique fixed point, of this mapZ, is the only solution of problem (1.16) in
B

P

Note thats, s, H, (Q andS, are defined in formulas (1.4), (1.5), (1.6) and (2.6).
Here and further dows? stands for the unit sphere in the space of 4, 5 dimen-
sions centered at the origin afnf'| denotes its Lebesgue measure.

Clearly, the resulting solution(x) of the system of equations (1.2) given by (1.15)
will not vanish identically because the influx/efflux terris(z) are nontrivial for
somel < m < N and allg,,(0) = 0 as we assume. Let us make use of the
following elementary lemma.

Lemmal.4.LetR € (0, +o00) andd = 4, 5. We consider the function

1 3 d
—=—<s<l1l, a>0.

L d—4s T -~
o(R) == aR"™ + R 31

o . 4
It attains its minimal value atR* := < i
0]

m) , Which is given by




Our second main proposition deals with the continuity of ibgulting solution of
the system of equations (1.2) given by formula (1.15) wigpest to the nonlinear
vector functiong. Let us use the following positive auxiliary expression

g = M(HUOHHS(Rd,RN) + 1)><

45

H2(Jugll ooz + D724 (157 © )\
X | + : 1.25
{ (d — 4sy)(2m) 4 5 0 (1.25)

Theorem 1.5.Let;j = 1, 2, the assumptions of Theorem 1.3 are valid, suchdhat

is the unique fixed point of the ma@p, : B, — B,, which is a strict contraction
for all the values ot satisfying (1.24) and the resulting solution of the systém o
equations (1.2) witly(z) = g;(z) is

uj(x) == up(x) + up (). (1.26)
Then for all the values af, which satisfy inequality (1.24), the bound

EOT
|ur — ua | s (ra mrvy < )(||Uo||H3(Rd,RN) + 1Dllgr — g2llc2rryy  (1.27)

M(1—c0)

holds.

Let us turn our attention to the proof of our first main result.
2. The existence of the perturbed solution

Proof of Theorem 1.3Ne choose arbitrarily a vector functienc B, and designate
the terms involved in the integral expressions in the rigtie of the system of
equations (1.18) as

G () = gm(up(z) +v(x)), 1<m<N.

Let us use the standard Fourier transform throughout tidegmamely

~ 1 )
o(p) == v (x)e”P*dx, d=4,5. (2.1)
(27)z Jrd
Obviously, the estimate from above
~ 1
|0l oo vy < ——7 1|9l L1 (Ra) (2.2)
(2m)2

is valid. We apply (2.1) to both sides of system (1.18) aniveuat

4 Hu(p)Gon(p)

@(p) = 6771(271—) ‘p|281’m + |p‘252,m’

8



3 d .
where0 < sy, < Som <1, = — 1 <sem <1, 1<m <N, d=4,5. We obtain

the expression for the norm given by

H. (012G (p)?
||Um||i2<Rd):(27r)dggn/ | (P)*| G (P)] 23

ra [[p[*$1m + [p[*s2m]?
As distinct from works [31] and [32] with the standard Lapé&acin the diffusion
term, here we do not try to control the norms

Hin(p)
[p[?srm o [p|?s2m

, 1<m<N.
Loo(R4)

Instead, we estimate the right side of (2.3) using the analdgpund (2.2) applied
to functionsH,,, andG,,, with R € (0, 400) as

ory's, [ ORGP,

™ Joa (pPPorm + [pPoam 2T =

Ho(p) 2| G (p) 2 Hon(p)?|G o (p) 2
conts] [ ENIGOR,, [ FolG0r,)
Ip|<R |p|*szm Ip|>R |p|#s2:m

1S9 Ri-4s2m |Gl R4)
< 5$n||Hm||%1(Rd){( )dHG ||L1 (R4) d 45, + R4szn(L ’

(2.4)

By means of norm definition (1.11) along with the triangleguality and using the
fact thatv € B,, we easily derive

[uo + vl 2gamry < [Juollms@erny +1,  d=4,5.
Sobolev embedding (1.12) yields
|U0 + U|RN S Ce(||uO||H3(Rd7RN) + 1)

Let the dot stand for the scalar product of two vectorRi Clearly,

Gm(z) = /01 Vgm(t(up(x) + v(x))).(up(z) + v(x))dt, 1 <m < N.
We use the ball introduced in (1.20). Hence,
|G (@)] < SURe [V gm(2)[rn|uo(z) + v(z) [y < Muo(z) + v(z)[ry,
so that
|Gl 2@ay < M|uo + v|| 2@ mvy < M(J|uol| g e ryy + 1).

9



Evidently, fort € [0,1] and1 < m,j < N, we can write

%00 i) + o) = [ VL sl + () anlo) + (o))

This implies that

v %9m

5o o o) + (@) <

%(t(uo(:c) + U(SU)))‘ < SUR¢;

< Z H 88,;%2 HC(I) uo(2) +v()|mw
Therefore,

g
(G (@) < Juo(w) + v() Z H&znﬁszC(I)wo’j(x)+vj(x)| =

TL]_

< Mlug(z) + v(x) g
Thus,

Gl o1y < Mluo + |72 gagry < M(J|uollms@agyy +1)°  (2.5)
This allows us to derive the upper bound for the right side2of) given by

Em M| Hunll 73 ety (10l 113 e vy + 1)*

‘Sd‘(HUOHHS(Rd’RN) —+ 1)2Rd*432,m 1
X n |
(27T)d(d - 482,m) R432,m

with R € (0, +00). Lemma 1.4 yields the minimal value of the expression above,
such that
||um||%2(Rd) < EszQHHMH%l(Rd)X

452,771
m (1S9 d
X 1 .
We define
ﬁ 452,m
1S4\ ¢ 1 ER . 1
= MaX <, _— e pa— 2.6
(452 (27152 MmN 4, (2m)d2m (2.6)
3 d .
where§ 1 < S5 < 1. Hence, we obtain
||u||%2(Rd,]RN) <

10



48,

so o d (1S9 71
< M H?(|Jug|| gra(ra vy + 1)*F 74 ( n) (2.7)

d— 452 452
By means of (1.18),

Njw

K—Aﬁswﬁﬂw+«—A>wm@>=aa—Aﬁ%aéfmAx—me@wy

. 3 d
With0 < s1,, < 82 <1, = — = <S2,, <1, 1 <m <N, d=4,5.

We use the standard Fourier transform (2.1), the analogpEnpound (2.2) applied
to functionG,,, along with (2.5) to derive

3 3 g0
(=) 2um[72gay < enll Gmll7r ey 1(=A) 22" Hyp || 72 ay <
3 s
< M (||uoll s @a gy + D (=A)2 72 Hyy || 72 ay-
Thus,
N
3
D (=) 27 ey < M3 (ol s e vy + 1)1 Q% (2.8)
m=1
Let us recall the definition of the norm (1.11). Bounds (217) &2.8) give us that

HUHH3(Rd,RN) < gM(”“OHHS(RdJ&N) + 1)2><

45

H2(|Juo| gsqagy + 1) & 2d (189 © Lo
(d — 4s9)(2m)452 45,

1
2

<p (2.9)

for all the values ot, which satisfy (1.24). Hence, € B, as well.

Suppose that for a certain € B, there exist two solutions; , € B, of system
(1.18). Clearly, their difference (z) := ui(z) — ux(z) € H?*(R?, RY) satisfies the
homogeneous system of equations

(=8 4+ (=A)*Jun (z) =0,

where0 < sy, < Som < 1, §—C—1l<sz,m< 1,1<m<N,d=4,5.

Each operatot,, : H*2m(R?) — L*(R?) introduced in (1.19) does not have any
nontrivial zero modes. Thus,(z) vanishes inR¢. Therefore, problem (1.18) de-
finesamad, : B, — B, for all ¢ satisfying bound (1.24).

Our goal is to show that this map is a strict contraction. Lethoose arbitrarily
v1,v2 € B,. By virtue of the argument above, » := Tyv,, € B, as well ife
satisfies (1.24). Obviously, by means of (1.18) we obtain ferm < N

[(=A) ™ + (=A)2 " Jug () = 6 | Hin(® —Y)gim(uo(y) +v1(y))dy, (2.10)

R4

11



[(=A)7rm 4+ (=A) 2 Jugm(2) = e | Hin(x = y)gm(uo(y) +v2(y))dy, (2.11)

R4
3

. d )
With 0 < 51,4, < 52, < 1, 371 < So.m < 1, d =4,5. We define

Grm(2) = gm(uo(z) +v1(7)),  Gam(¥) := gm(uo(z) +va(z)), 1<mMm <N

and apply the standard Fourier transform (2.1) to both sifieystems (2.10) and
(2.11). This gives us

_ « Ho(0)Ginlp) o Hu(p)Gom(p)
Upm(p) = Em(2m)2 ’ , Uam(p) = em(2m)2 : i
1 ( ) ( ) |p‘2817m i ‘p|252’m 2 ( ) ( ) ‘p|251’m T |p‘2327m

Evidently,

0 [ Hn(0)2|Grm(p) — Gom(p)]

2
dp.  (2.12)
Re [Ip[s1:m + [p|2s2.m]2

|w1m — UQ,MH%?(Rd) = 5;(277)

Clearly, the right side of (2.12) can be estimated from allmvemeans of inequality
(2.2) as

7 2 ~ _ ~ 2
8$n(271')d / |Hm(p)| |G17m(p) G27m(p)| dp+
Ip|<R

e

H,, (p) PG n(p) — G (p)?
+/| R| (p)| | 1, (p) 2, (p)| dp SeQHHmH%I(Rd)X
p|>

|p|ts2m

% ||G1,m - GQ,mH%l(Rd) ‘Sd‘Rd_4827m + ||G1,m - G27m||%2(Rd)
(2m) d— 455, Ris2m

with R € (0, +oc). Obviously, we can express for< m < N

1
Gim(z) — Gom(x) = / V gm(uo(z) + tvy(x) + (1 — t)va(x)).(vi(x) — va(x))dt.
0
Fort € [0, 1], we have
[va + t(v1 — v2) | m3@aryy < tl|or] s ra ray+

+(1 =)ozl s (ra vy < p.
Hencew, + t(v; — v2) € B,. We easily obtain the upper bound

|G 1 (%) =Gom ()] < SURE |V gm(2)|rn [v1(2) —v2(2)|[ry < Mvi(2)—v2(2)[pw,
so that

|G 1m — Gomllr2@ey < M|[vr — va| p2raryy < Moy — va| g3 (ra v

12



Let us write%]—m(uo(x) + tvy(z) + (1 — t)ve(x)) for1 <m,j < N as

/ VI (o) + ton(2) + (1 — D)en(a)).ftol) + t0n(2) + (1 — D)en(a)dr
Thus, fort € [0, 1]

%97?(”0@) oy () + (1= Ha(a))| <

(luo(@)[py + tlvr () [y + (1 = )]va(2)[rw),

2>

so that
G () =G (2)] < Ml ()=o) g o) s+ 01 ()5 o) ).

By virtue of the Schwarz inequality, we derive the estimavefabove for the norm
”Gl,m - G2,mHL1(Rd) as

1 1
MH'Ul — U2HL2(Rd7RN) (HUOHL2(Rd,RN) + éHvl”L2(Rd,RN) + §|’U2”L2(Rd,RN)> S

< Moy — va| s (ra vy ([t | s ra vy + 1) (2.13)

Therefore, the upper bound for the nofim, ,,, — u27m||iQ(Rd) is given by

(e + DS m 1y

EQHHmH%l(Rd)M2HU1_U2H?{S(Rd,RN){ (2m)4(d — 459.m) JrR452,m

Let us minimize the expression above overc (0, +oo) using Lemma 1.4, such
that
[w1,m — u2,m||iQ(Rd) < 52||Hm||il(Rd)M2||Ul - UQH?{?’(Rd,]RN)X

452,m

189\ ¢ d
489 m (2m)4s2m(d — 489,m)

X ({Juol| s ramry + 1)

Then
luy — wol|72ga gy < e2H?M?{[or — g s g vy X
45y
8s9 d |Sd| !
N _ 2.14
ulusoy + 0% v o (4&) &1

By means of (2.10) and (2.11) with< m < N, we have
[(—A)z 2o 4 (=) 3] (Ut (@) — uzn()) =

13



= en(=8) 5 [ Ho(e = 9)(Grnly) = Ganlu)ldy

Let us use the standard Fourier transform (2.1) along wiffeupounds (2.2) and
(2.13). Hence,

3
(=) (urm — tgm) || T2 ey <
E*s m
< €2HG1,m - G27m”%1(ﬂ%d)H<_A)2 > HmH%Q(Rd) <
§*3 m
< e M? vy — UZH%IS(HW,RN)(HUOHH?’(Rd,RN) +1)?[|(=A)z7= HmH%Q(Rd)'
Therefore,

N
3
D =AY (g — uam) 172y <
m=1

< 2M?|joy — U2||12'{3(]Rd,RN)(HUOHH?’(Rd,RN) +1)%Q% (2.15)

Inequalities (2.14) and (2.15) imply that the nofim, — us || ysre vy Can be esti-
mated from above by the expressioW (||uo || gs e,z + 1) X

45

1
d 2
> +Q2} H’Ul _U2HH3(Rd,RN)' (216)

} H2(|Juo]| s zazny + 1)°F 2d (159
(d — 4s5)(2m)* 48,

It can be trivially checked that for all the valuesa$atisfying (1.24) the constant
in the right side of (2.16) is less than one. Hence, the ap5, — B, defined by
the system of equations (1.18) is a strict contraction. higue fixed point., is the
only solution of system (1.16) in the ball,. The resulting: € H3(R?, RY) given
by (1.15) solves problem (1.2). Obviously, by virtue of (24, converges to zero
in the /3 (R?, RY) norm ass — 0. ]

Let us proceed to the proof of the second main propositioh@fork.
3. The continuity of the resulting solution
Proof of Theorem 1.XClearly, for all the values of satisfying (1.24)
Up1 = Ty up1, Upo = Tgupo,

such that
Up1 — Upo = Tgup1 — Ty upo+ Ty upo — Ty,upo.

Thus,
[tp1—tp 2| s we ey < [Ty upa—Tgupell ms@arny+ | Tg up2 =Ty, up el s re gy
Upper bound (2.16) gives us

| Ty up1 — Tyl“pQ”H?’(Rd,RN) <eollupy — up,2||H3(R2,RN)>

14



whereo is introduced in (1.25). We haver < 1 because our map,, : B, — B,
IS a strict contraction under the stated assumptions. Hence

(1 —eo)[lupr — upollms@eryy < | Tg tp2 — Tootip 2| s ma gy (3.1)

Evidently, for the fixed pointwe havg,u, » = u, 2. We denote)(z) := T}, u, »(x).
Forl <m < N, we obtain

(=) 4 (=A)=2" [ (2) = em /Rd Hyp (= y)g1m(uo(y) + up2(y))dy, (3.2)

[(=A)1m 4+ (=A)= " up o m(z) =

= [ Holo = g2 (uly) + upal))dy, 33)
R
. 3 d .
With 0 < 51,4, < 2., < 1, 371 < s9.m < 1, d =4,5. Letus designate

Gram(®) = gim(uo(z) + upa(2)),  Gaom() = gom(uo(x) + up2(7)).

We apply the standard Fourier transform (2.1) to both sidesystems (3.2) and
(3.3) and arrive at

o Ho(p)Gazm(p)

s Ho(p)Gromp)
= Upom(p) = em(2m)2 . po—
v [p|s1m + [p|s2m

M (P) = €m(27)2 o
[p[?sm + |p[#s2m

[[7m — up72,mH%2(Rd) =

T (N2 () — e ()]2
:ggn(%)d/ | Hr(p)] |§172,m(p) : G2,22,m(p)|
Rd [Ip[stm + [p[>s2:m]
Let us derive the upper bound on the right side of (3.4) vid)(@s

e2,(2m)? / [ Hn(p) 2|G12m(p) = G2, ()]
" lp|<R

e

dp. (3.4)

2
dp+

H,(p))?|Grom(p) — Goon ()
+/ R| (p)| | 1,2, (p) 2,2, (p)| dp < 52”HmH%1(Rd)X
p|>

e

157 [|G12,m — G2,2,m|’%1(Rd)Rd_452’m N 1G12m — GQ,Z,m”%Q(Rd)
(2m)d d—4s9.m RAs2m ’

whereR € (0, +o0). Obviously, we can write
1

Gram(r) = Gaam(r) = / V[g1.m = g2.m](t(uo(2) +up2(x)))-(uo(2) +up2())di.
0

15



Hence,
G1om(7) — Gaom(2)] < [|91m — G2.mllc2)[uo() + up2(2) [r
This yields
1G12m — Goomll 2wy < |91m — Gomlle2@ylluo + upallL2agyy <

< [lg1,m — gomllez2(r (luol| s e mvy + 1)
Let us use another representation formula with m, 5 < N andt € [0, 1], namely

0
a—(gl,m — go.m) (t(uo(®) + up2(v))) =
Zj
t 0
- / \% [g(gl,m - 92,m)} (T(uo(x) + upa(x)))-(uo(x) + upa(x))dr.
0 J
Thus, 5
(g1 = o) (o () + ()| <
82’]‘
N
62(91,771 - gQ,m)
<> = ona o) + tpa() .
n=1 )
Clearly,
1G1om () = Goom ()| < [|g1m — g2mllc2n|uo(x) + upo (@) i,
so that

1G12.m = Gaamllii ey < l91m = gamllez 1o + wp 2l 22 ga gy <

< Nlgrm — g2.mllc2 (|uoll s @agry + 1) (3.5)
This allows us to obtain the estimate from above for the nimm — unz,mH%Q(Rd)
8SE2|| Honl21 gy (1ol s vy + 1)

) ‘Sd‘Rd_4s2’m N 1
2 d d— 482 m R4827m
( b

x| g1m — 92,mH202(1) [(HUOHHS(Rd,RN) +1)

We minimize this expression ovét € (0, +oo) via Lemma 1.4 and arrive at the
inequality
1m — up727m||%2(Rd) <

432,m

852,m ( |59 )T dllgi,m — gz,m”Qc?(l)

< 2 Hm 2 1 24—
< Sl (ol oz U770 300 Gyt (d— dsg )
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so that
In — UpQH%?(Rd,RN) <

4S9

1)2+8%ng1 — gellcegm) (189
(d — 4s9)(2m)*52 \ 45, '

By virtue of formulas (3.2) and (3.3) with< m < N, we derive

S 82H2(HUOHH3(Rd,RN) +

Njw

[(—A)zmsnmtoim o (—A)2](2) = en(— D)2 / H(x = y)Gram(y)dy.

[(=A)2 2ot 4 (=AY Jup g m(1) = em(=A)2727 | Hu(2—y)Ga2m(y)dy,

R4

3 d
whered < s1,, < Som <1, = — — < 82, <1, d=4,5.

By means of the standard Fourier transform (2.1) along watg)(and (3.5), the
norm||(—A)2 (1, — Up,2,m)||72(za) CAN be bounded from above by

3_
E1Gram = Gozmll T eyl (=A)2 72" Hop |72 gy <

3y
< E|g1m — GomllE(r (ol s @apyy + 1) [ (=A) 272" Hyp |72 gy

Then
N
3
D> =22 (0 — tp2m) 72 ge) <
m=1
< e?llgr — 92||202(1,RN)(||U0||H3(Rd,RN) +1)'Q”
Therefore,

17 — up ol ms@emny < ellgr — gallcz(rmmy x
45

8s9 =2 %
Hz(HuoHHS(Rd’RN)Jrl)d2d<|5d|> | +Q2] .

2

X ([luoll e gy +1) (d — 4s;)(2m) "5 45,

By virtue of (3.1), the nornfju,,1 — ;2| y3®a rvy Can be estimated from above by

3

11— EO_(HUOHHS(]Rd,]RN) —+ 1)2X

852 ﬁ
X[H2<|yuoy\H3(Rd,RN)+1)d2d<|sd|> : P

1
2

(d — 4sy)(2m)452 45, l91 = g2llc2(r ).

Let us use formulas (1.25) and (1.26) to complete the proti®theorem. [ |

4. Auxiliary results

17



We establish the solvability conditions for the linear Rois type equation with a
square integrable right side in the situation of the doub#esanomalous diffusion

[(—A)" + (—=A)?)p(z) = f(z), w€RY d=45 0<s <sy<1. (41)

This auxiliary statement was proved in the previous work] [8Ing the standard
Fourier transform (2.1). Let us provide the argument belomtlie convenience of
the readers.

Lemma4.l.Let0 < sy < sy <1, f:R* R, d=4,5and f € L}(RY) N
L?(R%). Then equation (4.1) admits a unique solutipa H?2(R?).

Proof. It can be trivially checked that ib € L?(R¢) is a solution of problem (4.1)
with a square integrable right side, it will be containedif’(R¢) as well. Indeed,
if we apply the standard Fourier transform (2.1) to both siole(4.1), we obtain

-~

(Ip1** + pI*2)d(p) = f(p) € L*(RY).
Hence,

[+ PP o) < .

Clearly, the equality
-6 = [ Iol*160)Fdp < o0

holds, so that—A)*2¢ € L*(R?). Let us recall the definition of the norm (1.10).
Thus,¢ € H*2(R%) as well.

To establish the unigqueness of solutions for problem (4aE),suppose that our
equation has two solutions , € H*2(R?). Then their differencey := ¢, — ¢, €
H?32(R%) solves the homogeneous problem

(~A)" + (=4)w =0.

The operator
(—A)" + (=A)= : H*2(RY) — L*(RY)

does not have any nontrivial zero modes. Therefoie;) vanishes ifR.
Let us apply the standard Fourier transform (2.1) to botesiof equation (4.1).
This yields

- f() f(p)
_ + . 4.2

¢(p) o [ X<y F T s XUl (4.2)
In formula (4.2) and below 4 will denote the characteristic function of a sétC
R¢.

18



Evidently, the secondAterm in the right side of (4.2) can ltiereded from above in

the absolute value b&@ € L*(R%) due to the one of our assumptions.
The first term in the right side of (4.2) can be bounded fromvaho the absolute
value by virtue of (2.2) by

/12 ey

_ , 4.3

(2%)%\p|232 X{lp|<1} (4.3)
It can be easily verified that expression (4.3) with= 4,5 and0 < s, < 1is
contained inL.?(R%). m.

Note that in the auxiliary lemma above we establish the $olitsa of equation
(4.1) inH*2(R%), d = 4, 5 for all the values of the powers of the fractional Laplace
operators) < s; < so < 1, such that no orthogonality conditions are needed for
the right sidef(x). This is similar to the case when the Poisson type equation is
studied with a single fractional Laplacian in the spacefiefdame dimensions (see
Theorem 1.1 of [33], also [29]). The solvability of the prebi analogous to (4.1)
containing a scalar potential was considered in [12].
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