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MULTIPLICITY OF SOLUTIONS FOR NON-LOCAL ELLIPTIC
EQUATIONS DRIVEN BY FRACTIONAL LAPLACIAN
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A. We consider the semi-linear elliptic PDEs driven by the fractional
Laplacian: {


(−∆)su = f (x, u), in Ω,
u = 0, in Rn\Ω.


By the Mountain Pass Theorem and some other nonlinear analysis meth-
ods, the existence and multiplicity of non-trivial solutions for the above equation
are established. The validity of the Palais-Smale condition without Ambrosetti-
Rabinowitz condition for non-local elliptic equations is proved. Two non-trivial
solutions are given under some weak hypotheses. Non-local elliptic equations
with concave-convex nonlinearities are also studied, and existence of at least six
solutions are obtained.


Moreover, a global result of Ambrosetti-Brezis-Cerami type is given, which
shows that the effect of the parameter λ in the nonlinear term changes consider-
ably the nonexistence, existence and multiplicity of solutions.


Keywords: Non-local operator; variational method; fractional Laplacian; Nehari
manifold; multiplicity


1. I


The fractional Laplacian −(−∆)s is a classical linear integro-differential operator
of order 2s which gives the standard Laplacian when s = 1.


A range of powers of particular interest is s ∈ (0, 1) and we can write the opera-
tor (up to normalization factors) as


(1.1) −(−∆)su(x) =
1
2


∫


Rn


u(x + y) + u(x − y) − 2u(x)
|y|n+2s dy, x ∈ Rn, u ∈ S(Rn),


where S(Rn) is the Schwartz space of rapidly decaying C∞ functions in Rn.
The fractional Laplacian and non-local operators of elliptic type arises in both


pure mathematical research and concrete applications, such as the thin obstacle
problem [24, 8], minimal surfaces [6, 7], phase transitions [25], crystal dislocation
[13], Markov processes [15] and fractional quantum mechanics [17]. See [11]
and references therein for an elementary introduction to the literature. In [14],
it is pointed out that, being the generator of the symmetric α-stable (0 < α < 1)
processes (Lévy flights in some of the physical literature), fractional Laplacians are
widely used to model systems of stochastic dynamics with applications in operation
research, queuing theory, mathematical finance and risk estimation. In contrast
to the Brownian motion (α = 1), which can be taken as the limiting model of
the random walk in which the test particles are assumed to jump to one of the
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nearest neighbor sites, we can take the stable process as the limiting model of
such a random walk in which the test particles are assumed to jump to any other
sites with power law decay in probability (see also [30]). Elliptic equations with
fractional Laplacian also studied by many other authors, see [4, 5, 28, 29, 19, 12, 9]
and references therein.


The purpose of this paper is to study the superlinear elliptic boundary problems
driven by the non-local operator:


(P)
{ LKu + f (x, u) = 0, in Ω,


u = 0, in Rn\Ω,


where


LKu(x) =
1
2


∫


Rn


(
u(x + y) + u(x − y) − 2u(x)


)
K(y)dy, x ∈ Rn.


Note that if K(x) = |x|−(n+2s), LK is the fractional Laplacian −(−∆)s in (1.1).
In this paper, K : Rn \ {0} → (0,+∞) is a function satisfying the following


properties [23]:


• γ K ∈ L1(R) with γ(x) = min{|x|2, 1};
• there exists λ > 0 such that K(x) > λ|x|−(n+2s) for any x ∈ Rn \ {0};
• K(x) = K(−x) for any x ∈ Rn \ {0}.


It is quite standard to transform the problem to find the solutions of (P) into the
problem of finding the critical points of an associated energy functional on some
appropriate space (see Section 2). In [23], the authors establish the existence of
non-trivial solution for (P) by the Mountain Pass Theorem due to Ambrosetti and
Rabinowitz [3].


In this paper, we will improve some of the existence results for (P) and establish
some results about multiplicity of solutions. To be precise, we first derive the exis-
tence theorem for (P) without Ambrosetti-Rabinowitz condition of [23]. We obtain
the boundedness of Palais-Smale sequence under some weak assumptions, then the
existence of solution follows. We refer [16, 20, 18] for such generalizations in the
standard Laplacian case.


Following the ideas of [1] which deals with the standard Laplacian case, we
consider the fractional Laplacian concave-convex nonlinear problem


(P)λ


{ LKu + λh(x)|u|p−2u + g(x, u) = 0, in Ω,
u = 0, in Rn\Ω,


where 1 < p < 2, λ > 0 is a real parameter. For λ > 0 small enough, we obtain four
non-trivial solutions by Mountain Pass Theorem and Ekeland’s variational princi-
ple. Furthermore, the existence of multiple solutions (six solutions) is established
under some assumptions. Our methods to obtain the fifth solution follows the ideas
developed in [2] for Laplacian operator. In [2], assuming that g(x, u) = g(u) is of
class C1 and G(u) =


∫ u
0 g(s)ds has the following form


G(s) =
1
α
|s|α + o(|s|α), 2 < α < 2∗, at s = 0, s = ∞,







MULTIPLICITY OF SOLUTIONS FOR NON-LOCAL ELLIPTIC EQUATIONS 3


six solutions are obtained for elliptic equations with the Laplacian operator. We
prove a fractional Laplacian version under some weak assumptions, especially no
C1 constraint imposed on g. In this case, Nehari manifold is not a C1 manifold
anymore and the arguments for the existence of the sixth solution in [2] can not
be used to deal with this problem. To overcome this difficult, we introduce some
new method of Nehari manifold originally from [27]. Finally, a global results of
Ambrosetti-Brezis-Cerami type is also considered, which is motivated by [1] for
the elliptic problem with the standard Laplacian. Our result is concerned with the
existence, nonexistence and multiplicity of solutions depending on the parameter
λ. We show that the combined effects of a sublinear and a superlinear term change
considerably the structure of the solution set.


For completeness, we will also consider the particular case at the end of this
paper when the functional Fλ in (4.1) is even in u. Thus, we can make use of the
Lusternik-Schnirelman theory to find infinitely many pairs of critical points.


This paper is organized as follows. In Section 2, we introduce some preliminary
facts and assumptions. In Section 3, we give the proof of validity of the Palais-
Smale condition and the existence of nontrivial solutions for problem (P). Sections
4-6 are devoted to the multiplicity of solutions of problem (P)λ. Five solutions are
obtained in Section 4 under some weak hypotheses, and then, under some slightly
strong conditions, the existence of six solutions is established in Section 5, by
virtue of the methods of Nehari manifold. Finally, we also consider a result of
Ambrosetti-Brezis-Cerami type in the last section, in which we give a global result
about existence, nonexistence and multiplicity of solutions and more information
about the solutions depending on the parameter λ.


2. S  


Let Ω be an open set in Rn. The usual norm in Lp(Ω) will be denoted by | · |p.
For s ∈ (0, 1), we denote the classical factional Sobolev space


(2.1) Hs(Ω) ≡
u ∈ L2(Ω) :


|u(x) − u(y)|
|x − y| n+2s


2


∈ L2(Ω ×Ω)



with the Gagliardo norm


(2.2) ‖u‖Hs(Ω) = |u|2 +


(∫


Ω×Ω


|u(x) − u(y)|2
|x − y|n+2s dxdy


) 1
2


.


Due to non-localness of the fractional Laplacian, we will consider the space(
X0, ‖ · ‖X0


)
defined as follows, rather than the classical fractional Sobolev space.


Note that the norm ‖ · ‖X0 involves the interaction between Ω and Rn \ Ω which is
introduced in [23]. Denote


Q = R2n \ ((Rn \Ω) × (Rn \Ω)
)
.


Note that Q % Ω ×Ω. We define


X ≡
{
u : Rn → R is Lebesgue measurable : u|Ω ∈ L2(Ω);


(
u(x) − u(y)


) √
K(x − y) ∈ L2(Q)


}
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with the norm


(2.3) ‖u‖X = ‖u‖L2(Ω) +


(∫


Q
|u(x) − u(y)|2K(x − y)dxdy


) 1
2


.


We consider the space


X0 ≡ { u ∈ X : u = 0 a.e. in Rn \Ω}
with the norm


(2.4) ‖u‖X0 =


(∫


Q
|u(x) − u(y)|2K(x − y)dxdy


) 1
2


and therefore (X0, ‖ · ‖X0) is a Hilbert space. (See [23] for the proof.) We denote
〈, 〉X0 the inner product on X0 induced by the norm ‖ · ‖X0 .


We say that u ∈ X0 is a weak solution of problem (P), if u satisfies


(2.5)
∫


R2n


(
u(x) − u(y)


)(
φ(x) − φ(y)


)
K(x − y)dxdy =


∫


Ω


f (x, u(x))φ(x)dx,


for all φ ∈ X0.
The fact that u is a weak solution is equivalent to being a critical point of the


functional


(2.6) F (u) =
1
2


∫


Q
|u(x) − u(y)|2K(x − y)dxdy −


∫


Ω


F(x, u(x))dx,


where F(x, u) =
∫ u


0 f (x, s)ds.
By the property of F, it is easy to check that F ∈ C1(X0,R) and


〈F ′(u), φ〉 =


∫


R2n


(
u(x) − u(y)


)(
φ(x) − φ(y)


)
K(x − y)dxdy −


∫


Ω


f (x, u(x))φ(x)dx


for any φ ∈ X0. In this paper, we are interested in establishing the existence of the
non-trivial critical points of F .


In particular, when K(x) = |x|−(n+2s), LK is fractional Laplacian −(−∆)s, (2.5) is
the weak formulation (see [11] for more details) of fractional elliptic equation


(2.7)
{


(−∆)su = f (x, u), in Ω,
u = 0, in Rn\Ω


and the corresponding functional is given by


F (u) =
1
2


∫


Q


|u(x) − u(y)|2
|x − y|n+2s dxdy −


∫


Ω


F(x, u(x))dx, u ∈ X0.


In order to carry out the nonlinear analysis, we investigate some key facts of X0.
Note that C2


0(Ω) ⊆ X0, X ⊆ Hs(Ω) and X0 ⊆ Hs(Rn) (see [21]). In fact, we have
the following embedding theorem.


Lemma 2.1. The embedding X0 ↪→ L2∗(Ω) is continuous where 2∗ = 2n
n−2s .


To apply the Mountain Pass Theorem, we need to assume that the nonlinearity
f , a Carathéodory function, satisfies the following conditions:
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(H1) There exist a1, a2 > 0 and q ∈ (2, 2∗) such that


| f (x, t)| 6 a1 + a2|t|q−1 a.e. x ∈ Ω, t ∈ R;


(H2) lim
t→0


f (x, t)
t


= 0 uniformly for a.e. x ∈ Ω.


(H3) lim
|t|→∞


F(x, t)


t2 = +∞ uniformly for a.e. x ∈ Ω.


(H4) there exists T0 > 0 such that
f (x, t)
|t| is increasing in t when |t| > T0, for all


x ∈ Ω.


We point out that the condition (H4) can also be replaced by the following
weaker assumption


(H4)∗ Denote H(x, s) = s f (x, s) − 2F(x, s). There exists C∗ > 0 such that


H(x, t) 6 H(x, s) + C∗


for all 0 < t < s or s < t < 0, ∀x ∈ Ω.


Remark 2.2. Note that these conditions on f can be seen as a generalization of
the ones in [23]. For instance, if we take


F(x, t) = t2 log(1 + |t|),
it is easy to check that f satisfies our assumptions here but cannot be dealt with by
assumptions in [23].


Remark 2.3. It is not difficult to check that the condition (H4) is equivalent to the
following condition (see [18]):


(H4)∗ H(x, s) is increasing in s > s0 and decreasing in s 6 −s0 for all x ∈ Ω.


Hence, (H4) implies (H4)∗.


3. P-S     


Theorem 3.1. Assume that (H1)-(H4) hold. Then, problem (P) has at least one
non-trivial solution.


Theorem 3.2. Assume that (H1)-(H3), (H4)∗ hold. Then, problem (P) has at least
one non-trivial solution.


Now we prove that the functionals F has the mountain pass geometry.


Lemma 3.3. Under the assumption (H3), F are unbounded from below.


Proof. (H3) implies that, for all M > 0 there exists CM > 0 such that


(3.1) F(x, s) > Ms2 −CM, ∀x ∈ Ω,∀s > 0.


As in [23], we fix φ ∈ X0 with φ > 0 a.e. in Rn. This choice can be obtained
by taking the positive part of any φ ∈ X0, which belongs to X0, thanks to [21].
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From (3.1) we obtain


F (tφ) =
1
2


∫


Q
|tφ(x) − tφ(y)|2K(x − y)dxdy −


∫


Ω


F(x, tφ(x))dx


6
t2


2
‖φ‖2X0


−
∫


Ω


Mt2φ2dx +


∫


Ω


CMdx


= t2
(
1
2
‖φ‖2X0


− M
∫


Ω


φ2dx
)


+ CM |Ω|,


where |Ω| denotes the Lebesgue measure of Ω. Let M =
‖φ‖2X0


2
∫
Ω
φ2dx


+ 1. Then


(3.2) lim
t→+∞F (tφ) = −∞.


�


Lemma 3.4. Assume that (H1) and (H2) hold. Then there exist ρ,R > 0 such that
F (u) > R, if ‖u‖X0 = ρ.


Proof. (H1) and (H2) imply that for any given ε > 0, there exists cε > 0 such that


(3.3) F(x, s) 6 εs2 + cε sq, a.e. x ∈ Ω, ∀s > 0.


Combining (3.3) and Hölder inequality, we have


F (u) >
1
2
‖u‖2X0


− ε
∫


Ω


|u|2dx − cε


∫


Ω


|u|qdx


>
1
2
‖u‖2X0


− ε|u|22 − cε |u|qq


>
1
2
‖u‖2X0


− ε|Ω|(2∗−2)/2∗ |u|22∗ − cε |Ω|(2∗−q)/2∗ |u|q2∗


> (
1
2
− εc0|Ω|(2∗−2)/2∗)‖u‖2X0


− cq/2
0 cε |Ω|(2∗−q)/2∗‖u‖qX0


,


where c0 is a positive constant, thanks to the Lemma 2.1 and the fact that Ω is
bounded. Taking εc0|Ω|(2∗−2)/2∗ 6 1


4 and choosing ‖u‖X0 = ρ > 0 small enough, we
can find R > 0 such that F (u) > R when ‖u‖X0 = ρ. �


Now, we prove that every Palais-Smale sequence of F is relatively compact.
We recall that a sequence {u j} ⊂ X0 is said to be a Palais-Smale sequence of


functional F provided that F (u j) is bounded and F ′(u j)→ 0 in X∗0.


Lemma 3.5. Suppose that (H1), (H3) and (H4) hold. Then every Palais-Smale
sequence of F has a converge subsequence in X0.


Proof. We show that every Palais-Smale sequence of F is bounded in X0 and
Lemma 3.5 follows easily from a standard argument (for instance, Proposition 12
of [23]). Assume that {u j} ⊂ X0 is a Palais-Smale sequence of F , i.e.,


F (u j)→ c, 〈F ′(u j), ϕ〉 → 0, ∀ϕ ∈ X0.(3.4)


We suppose, by contradiction, that up to a subsequence, still denoted by u j,


‖u j‖X0 → +∞ as j→ +∞.
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Set ω j :=
u j


‖u j‖X0


. Then


(3.5) ‖ω j‖X0 = 1.


Passing to a subsequence, we may assume that there exists ω ∈ X0 such that


ω j ⇀ ω, weakly in X0, j→ +∞,
ω j → ω, strongly in L2(Ω), j→ +∞,


ω j(x) → ω(x), a.e. in Ω, j→ +∞.
We claim that ω(x) ≡ 0 a.e. in Rn. It suffices to show ω(x) ≡ 0 a.e. in Ω. In fact,
we denote Ω∗ := {x ∈ Ω, ω(x) , 0}. If Ω∗ , Ø, then for x ∈ Ω∗, |u j(x)| → +∞ as
j→ +∞. By (H3) we have


(3.6) lim
j→+∞


F
(
x, u j(x)


)
(
u j(x)


)2


(
ω j(x)


)2
= +∞.


The Fatou’s Lemma and (3.4) imply
∫


Ω


lim
j→+∞


F
(
x, u j(x)


)
(
u j(x)


)2


(
ω j(x)


)2dx =


∫


Ω


lim
j→+∞


F
(
x, u j(x)


)
(
u j(x)


)2


(
u j(x)


)2


‖u j‖2X0


dx


6 lim inf
j→+∞


1
‖u j‖2X0


∫


Ω


F(x, u j(x))dx


= lim
j→∞


1
‖u j‖2X0


(
1
2
‖u j‖2X0


−F (u j)
)


=
1
2
.


(3.7)


Hence Ω∗ has zero measure. Consequently, ω(x) ≡ 0 a.e. in Ω.
As in [16], we take t j ∈ [0, 1] such that


F (t ju j) = max
t∈[0,1]


F (tu j),


which implies that


(3.8)
d
dt


F (tu j)
∣∣∣∣
t=t j


= t j‖u j‖2X0
−


∫


Ω


f (x, t ju j) · u jdx = 0.


Since


〈F ′(t ju j), t ju j〉 = t2
j‖u j‖2X0


−
∫


Ω


f (x, t ju j) · t ju jdx,


together with (3.8), it follows that


〈F ′(t ju j), t ju j〉 = t j · d
dt


F (tu j)
∣∣∣∣
t=t j


= 0.
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Hence, by (H4)∗, we obtain
2F (tu j) 6 2F (t ju j) − 〈F ′(t ju j), t ju j〉


=


∫


Ω


(
t ju j · f (x, t ju j) − 2F(x, t ju j)


)
dx


6
∫


Ω


(
u j · f (x, u j) − 2F(x, u j) + C∗


)
dx


= 2F (u j) − 〈F ′(u j), u j〉 + C∗|Ω|
→ 2c + C∗|Ω|.


(3.9)


On the other hand, for all k > 0,


2F (kω j) = k2 − 2
∫


Ω


F(x, kω j)dx = k2 + o(1),


which contradicts (3.9) for k and j large enough. This completes the proof. �


Proof of Theorem 3.2. Since the functional F has the mountain pass geometry and
satisfies the Palais-Smale condition, the Mountain Pass Theorem (see [3]) gives
that there exists a critical point u ∈ X0. Moreover, F (u) > R > 0 = F (0), so u is a
non-trivial solution. �


Similar to [23], one can determine the sign of the Mountain Pass type solutions.
Indeed, we have the following corollary which is useful to construct the multiple
solutions of Problem (P) with the concave-convex nonlinearity.


Corollary 3.6. Let all the assumptions of Theorem 3.1 (Theorem 3.2) be satisfied.
Then, Problem (P) admits a non-negative solution u+ ∈ X0 and a non-positive
solution u− ∈ X0 that are of Mountain-Pass type and that are non-trivial.


Proof. Consider the following problem


(3.10)
{ LKu + f +(x, u) = 0, in Ω,


u = 0, in Rn\Ω,


where


f +(x, t) =


{
f (x, t), t > 0,
0, t < 0.


Define the corresponding functional F + : X0 → R as follow:


F +(u) =
1
2
‖u‖2X0


−
∫


Ω


F+(x, u)dx, u ∈ X0,


where F+(x, u) =
∫ u


0 f +(x, s)ds. Obviously, F + ∈ C1(X0,R) and f + satisfy all
the conditions of Theorem 3.1 (Theorem 3.2). Let u+ be a non-trivial critical point
of F +, which implies that u+ is a weak solution of (3.10). It is known by [23]
that u+ > 0 a.e. in Rn. Thus u+ is also a non-trivial solution of problem (P) and
F(u+) = F +(u+).


Similarly, we can define


f −(x, t) =


{
f (x, t), t 6 0,
0, t > 0(3.11)
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and


F−(u) =
1
2
‖u‖2X0


−
∫


Ω


F−(x, u)dx, u ∈ X0,


where F−(x, u) =
∫ u


0 f −(x, s)ds. We also get a non-trivial solution u− 6 0 in Rn


which is a critical point of F−, so it is a non-trivial solution of problem (P) with
F(u−) = F−(u−). �


Corollary 3.7. Let all the assumptions of Theorem 3.1 (Theorem 3.2) be satisfied.
Then, the fractional elliptic equation (2.7) admits a non-negative solution u+ ∈ X0
and a non-positive solution u− ∈ X0 that are of Mountain-Pass type and that are
non-trivial.


4. C- 


In this section, we discuss the multiplicity of solutions of the problem


(P)λ


{ LKu + λh(x)|u|p−2u + g(x, u) = 0, in Ω,
u = 0, in Rn\Ω,


where 1 < p < 2, λ > 0 is a parameter, h ∈ L∞(Ω), h(x) > 0, h(x) . 0, and g(x, s)
is a continuous function on Ω × R.


In this case, u being a weak solution of problem (P)λ is equivalent to u being a
critical point of the Euler-Lagrange functional


(4.1) Fλ(u) =
1
2
‖u‖2X0


− λ
p


∫


Ω


h(x)|u|pdx −
∫


Ω


G(x, u)dx,


where G(x, u) =
∫ u


0 g(x, s)ds.


Theorem 4.1. Assume g satisfies (H1)-(H4) (or (H1)-(H3), (H4)∗). Then there
exists λ∗ > 0 such that for λ ∈ (0, λ∗), problem (P)λ has at least four non-trivial
solutions: u+, u−, v+, and v−, satisfying u+ > 0, u− < 0, v+ > 0, v− < 0, and
Fλ(u±) > 0 > Fλ(v±).


Let u+ = max{u, 0}, u− = min{u, 0}. We now define functional F±
λ : X0 → R as


follows:


F±
λ (u) =


1
2


∫


Q
|u(x) − u(y)|2K(x − y)dxdy − λ


p


∫


Ω


h(x)|u±|pdx −
∫


Ω


G±(x, u)dx,


where G±(x, u) =
∫ u


0 g±(x, s)ds. We give the following lemmas which will be used
to prove Theorem 4.1.


Lemma 4.2. F +
λ and F−


λ are unbounded from below.


Proof. The proof is similar to the proof of Lemma 3.3. �


Lemma 4.3. For λ > 0 small enough, there exist ρ,R > 0 such that F±
λ (u) > R, if


‖u‖X0 = ρ.
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Proof. (H1), (H2) imply that for all given ε > 0, there exists cε > 0, such that (3.3)
holds. Combining (3.3), Hölder inequality and Lemma 2.1, we have


F±
λ (u) >


1
2
‖u‖2X0


− λ
p
|h|∞|u±|pp − ε|u±|22 − cε |u±|qq


>
1
2
‖u‖2X0


− λ
p
|Ω|(2∗−p)/2∗ |h|∞|u±|p2∗ − ε|Ω|(2


∗−2)/2∗ |u±|22∗ − cε |Ω|(2∗−q)/2∗ |u±|q2∗


> (
1
2
− εc0|Ω|(2∗−2)/2∗)‖u±‖2X0


− λK‖u±‖pX0
− cq‖u±‖qX0


= ‖u±‖2X0
(A − λK‖u±‖p−2


X0
− cq‖u±‖q−2


X0
),


where K, cq, c0 are positive constants and A = 1
2 − εc0|Ω|(2∗−2)/2∗ . Taking ε small


enough we get that the constant A > 0. Let


Q(t) = λKtp−2 + cqtq−2.


We claim that there exists t0 such that


Q(t0) < A.


Indeed,
Q
′
(t) = λK(p − 2)tp−3 + cq(q − 2)tq−3.


Setting
Q
′
(t) = 0


we know


t0 =
(λK(2 − p)


cq(q − 2)
) 1


q−p .


Obviously, Q(t) has a minimum at t = t0. Let


β =
K(2 − p)
cq(q − 2)


, p̄ =
p − 2
q − p


, q̄ =
q − 2
q − p


.


Substituting t0 in Q(t) we have


Q(t0) < A, 0 < λ < λ∗,


where λ∗ =
( A


Kβp̄ + cqβq̄
)1/q̄. Taking ρ = t0 we complete the proof. �


Lemma 4.4. Suppose that g satisfies (H1), (H3) and (H4). Then F±
λ satisfies the


Palais-Smale condition.


Proof. Since f (x, u) = λh(x)|u|p−2u + g(x, u), g satisfies (H1), (H3), we know f
satisfies (H1),(H3). Moreover, 1 < p < 2 and g satisfies (H4), which imply f
satisfies (H4) for large enough |u| by Lemma 3.5. we know that {un} is bounded in
X0. Then, a standard argument shows that {un} converges strongly and Fλ satisfies
the Palais-Smale condition. Verifying the Palais-Smale condition for F±


λ is similar
to the verification for Fλ. �
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Proof of Theorem 4.1. For F±
λ , we first show the existence of local minimum v±,


with F±
λ (v±) < 0. For ρ given in Lemma 4.3, we set


B(ρ) = {u ∈ X0, ‖u‖X0 6 ρ}, ∂B(ρ) = {u ∈ X0, ‖u‖X0 = ρ}.
Then B(ρ) is a complete metric space with the distance


dist(u, v) = ‖u − v‖X0 , ∀ u, v ∈ B(ρ).


By Lemma 4.3, we know for 0 < λ < λ∗,


F±
λ (u)|∂Bρ > R > 0.


Moreover, it is easy to see that F±
λ ∈ C1(B(ρ),R), hence F±


λ is lower semi-
continuous and bounded from below on B(ρ). Let


c±1 = inf{F±
λ (u), u ∈ B(ρ)}.


Taking v̄± ∈ C∞c (Ω), with v̄+ > 0 (v̄− < 0). From (H2) we know that for any ε > 0,
there exists T > 0 such that for 0 < t < T , |G±(x, tv̄±)| 6 εt2. Then,


F±
λ (tv̄±) =


t2


2
‖v̄±‖2X0


− λtp


p


∫


Ω


h(x)(v̄±)pdx −
∫


Ω


G±(x, tv̄±)dx


6
t2


2
‖v̄±‖2X0


− λtp


p


∫


Ω


h(x)v̄p
±dx + ε|Ω|t2


< 0,


(4.2)


for both t > 0, ε small enough, since 1 < p < 2. Hence, c±1 < 0.
By Ekeland’s variational principle [31], for any k > 1, there exists uk such that


(4.3) c±1 6 F±
λ (uk) 6 c±1 +


1
k
,


(4.4) F±
λ (w) > F±


λ (uk) − 1
k
‖uk − w‖X0 , ∀ w ∈ B(ρ).


Then ‖uk‖X0 < ρ for k large enough. Otherwise, if ‖uk‖X0 = ρ for infinitely many
k, without loss of generality, we may assume that for all k > 1, ‖uk‖X0 = ρ. Then


from Lemma 4.3 it follows 0 < R 6 F±
λ (uk) 6 c±1 +


1
k
< 0, for k large enough,


which is a contradiction.
Now we prove that ∇F±


λ (uk)→ 0 in X∗0. In fact, for any u ∈ X0 with ‖u‖X0 = 1,
let wk = uk + tu. Then for a fixed k > 1, we know ‖wk‖X0 6 ‖uk‖X0 + t < ρ, for t > 0
small enough. So, (4.4) implies


F±
λ (uk + tu) > F±


λ (uk) − t
k
‖u‖X0 = F±


λ (uk) − t
k
.


Thus,
F±
λ (uk + tu) −F±


λ (uk)
t


> −1
k
.


Setting t → 0+, we derive that
∣∣∣〈∇F±


λ (uk), u〉
∣∣∣ 6 1


k
,







12 X. SU AND Y. WEI


for any u ∈ X0, with ‖u‖X0 = 1. So, ∇F±
λ (uk) → 0 and (4.3) gives F±


λ (uk) → c±1 .
Hence, it follows from Lemma 4.4 that there exists v± ∈ X0 such that∇F±


λ (v±) = 0.
v± is a weak solution of problem (P)λ and Fλ(v±) < 0. A standard argument
shows v+ > 0 and v− 6 0 a.e. in Rn (see the proof of Corollary 3.6). Using a
similar argument to the proof of Theorem 3.2, we know there exist two non-trivial
solutions u+ > 0 and u− 6 0 of Mountain Pass type, satisfying F±


λ (u±) > R >
0. �


Now we give more information about the multiplicity of the solutions of problem
(P)λ. More precisely, we give the following multiplicity result about five solutions,
which improves Theorem 4.1.


Theorem 4.5. Assume g satisfies (H1)-(H4) (or (H1)-(H3), (H4)∗). h ∈ L∞(Ω)
with h > h0, where h0 is a positive constant. Then there exists λ∗ > 0 such that
for λ ∈ (0, λ∗), problem (P)λ has at least five nontrivial solutions: u+, u−, v+, v−,
and v3, satisfying u+ > 0, u− < 0, v+ > 0, v− < 0, Fλ(u±) > 0 > Fλ(v±) and
Fλ(v3) < 0.


Remark 4.6. In [2], the existence of a critical point with negative energy is given,
which is different from v+, v−. The nonlinearity g in [2] is assumed to be convex
and


G(s) =
1
α
|s|α + o(|s|α), at s = 0, s = ∞.


Following the idea of [2], we here give a similar version of the results of [2] with
the fractional Laplacian, under some weak assumptions.


Proof. First of all, by an analogous argument as in the proof of Theorem 4.1, the
existence of u+, u−, v+ and v− follows. We need only to show the existence of v3
with Fλ(v3) < 0. We assume that there exists no solution such that Fλ(v3) < 0
except v±. Note that, according to the proof of Theorem 4.1, v+ and v− are local
minima of Fλ. We can assume that v+ and v− are isolated local minima. Let us
denote by bλ the Mountain Pass critical level of Fλ with base points v+, v−:


bλ = inf
ψ∈Ψ


max
t∈[0,1]


Fλ(ψ(t)),


where
Ψ = {ψ ∈ C([0, 1], X0) : ψ(0) = v+, ψ(1) = v−}.


We will prove that bλ < 0 if λ is small enough. To this end, we consider


Fλ(tv±) =
t2


2
‖v±‖2X0


− λtp


p


∫


Ω


h(x)|v±|pdx −
∫


Ω


G±(x, tv±)dx.


We claim that there exists δ > 0 such that


(4.5) Fλ(tv±) < 0,∀t ∈ (0, 1),∀0 < λ < δ.


If not, we have t0 ∈ (0, 1), such that Fλ(t0v±) > 0 for λ small enough. Since (H1)
holds, by a similar way as (4.2) we know Fλ(tv±) < 0 for t > 0 small enough.
Let ρ0 = t0||v±||X0 and c±∗ = inf{F±


λ (u), u ∈ B(ρ0)}. Using a standard argument
as in the proof of Theorem 4.1, we obtain a solution v∗± such that Fλ(v∗±) < 0, a
contradiction. Hence, (4.5) holds.
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Now let us consider the 2-dimensional plane Π2 containing the straight lines tv−
and tv+ (if v− and v+ are proportional, take any 2-dimensional plane containing
them), and take v ∈ Π2 with ‖v‖X0 = ε. Note that for such v one has |v|p = cpε, and
|v|2∗ = c∗ε for some constants cp, c∗ > 0. Then we get


Fλ(v) 6
ε2


2
− λ


p
cp


ph0ε
p − c2∗


∗ ε
2∗ ,


where c0 is a constant. For small ε,


(4.6) Fλ(v) < 0.


Consider the path γ̄ obtained gluing together the segments {tv− : ε‖v−‖−1
X0
6 t 6 1},


{tv+ : ε‖v+‖−1
X0
6 t 6 1} and the arc {v ∈ Π2 : ‖v‖X0 = ε}. From (4.5) and (4.6) it


follows that
bλ 6 max


v∈γ̄ Fλ(v) < 0,


which verifies the claim. Since the Palais-Smale condition holds because of Lemma
4.4, the level {Fλ(v) = bλ} carries a critical point v3 of Fλ, and v3 is different from
v±. �


5. T     N 


In this section, to use the Nehari manifold, we replace the assumption (H4) by a
slightly strong condition:
(H4)∗∗ f (x,t)


|t| is strictly increasing in t on (−∞, 0) and (0,+∞).
The main result about multiplicity of solutions reads as follows.


Theorem 5.1. Assume g satisfies (H1)-(H3), (H4)∗∗, and all the other assumptions
of Theorem 4.5 hold. Then, for λ > 0 small enough, there exists a solution u3,
which is different from the above five solutions given in Theorem 4.5. Moreover, we
have Fλ(u3) > 0.


Remark 5.2. In [2], the authors consider g ∈ C1(R,R) with the following assump-
tions:


(G1) g(s)s > αG(s) > 0, ∀s ∈ R, with 2 < α < 2∗;
(G2) g′(s)s2 > αg(s)s, ∀s ∈ R;
(G3) g′(s)s2 6 c1|s|α, ∀s ∈ R (c1 > 0).


By using the methods of Nehari manifold, the sixth solution is obtained. It is known
that under above condition g ∈ C1(R,R), Nehari manifold is a C1-submanifold of
X0. However, under (H4)∗∗, the Nehari manifold is not a C1-submanifold. More-
over, note that (H4)∗∗ does not need the differentiability of g(x, u) with respect to u.
That is, f (x, u) may be not a C1 function with respect to u. The methods in [2] can
not be applied to deal with this problem. To overcome this difficulty, we use some
recent arguments developed by Szulkin and Weth [27, 26].


Let S := S 1(0) = {u ∈ X0, ||u||X0 = 1}. Since X0 is a Hilbert space, S is a C1


submanifold of X0 and the tangent space of S at w is


TwS = {z ∈ X0 : 〈w, z〉X0 = 0}.
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For u ∈ S , we set


Γ±λ (u) := 〈∇F±
λ (u), u〉 = ‖u‖2X0


− λ
∫


Ω


h(x)|u±|pdx −
∫


Ω


g(x, u±)u±dx.


Let u > 0, t > 0. We consider the equation


Γ+
λ (tu) = 0.


Thus,


(5.1) t2 − λtp
∫


Ω


h(x)|u|pdx −
∫


Ω


g(x, tu)tudx = 0.


Since for any ε > 0, there exists cε > 0 such that


g(x, tu)tu 6 εt2u2 + cε tquq,


we get


t2 − λtp
∫


Ω


h(x)|u|pdx −
∫


Ω


g(x, tu)tudx


>t2 − εt2|u|22 − cε tq|u|qq − λtp|h|∞|u|pp
>


1
2


t2 − cqtq − λcptp


=t2(1
2
− cqtq−2 − λcptp−2),


(5.2)


for ε small enough and both cq, cp are constants. Set γ(t) :=
1
2
− cqtq−2 − λcptp−2.


Let γ′(t) = 0 we obtain t1 =
(λcp(2−p)


(q−2)cq


)1/(q−p). One can verify that γ(t1) > 0 for
λ small enough. Then, there exists λ0 > 0 such that the equation γ(t) = 0 has
precisely two solutions σλ, τλ, such that 0 < σλ < t1 < τλ, for all λ ∈ (0, λ0).
Hence, a comparison argument shows that (5.1) has two solutions, t∗λ, tλ∗ , such that
0 < tλ∗ 6 σλ < t1 < τλ 6 t∗λ, for all λ ∈ (0, λ0) and u ∈ S , u > 0. A similar
argument can be carried out for Γ−λ .


For λ ∈ (0, λ0), we define the Nehari manifold


(5.3) N ±
λ :=


{
u ∈ X0 : Γ±λ (u) = 0, ‖u‖X0 > t1


}
.


Lemma 5.3. For each u ∈ S , denote α±u (s) := F±
λ (su). Then under assumptions


of Theorem 5.1 and λ small enough, there exists s±u such that (α±u )′(s) > 0 for
t1 < s < s±u and (α±u )′(s) < 0 for s > s±u .


Proof. From the above, we know that for all λ ∈ (0, λ0), (5.1) has two solutions,
t∗λ, tλ∗ , such that tλ∗ < t1 < t∗λ. Then α±u (s) is increasing in (tλ∗ , t∗λ), and decreasing
in (0, tλ∗) ∪ (t∗λ,+∞). (H3) implies that α±u (s) → −∞, as s → +∞. Hence, the
conclusion follows by the definition of N ±


λ . �


Remark 5.4. Note that (α±u )′(s±u ) = (F±
λ )′(s±u u)u = 0. Hence on the ray s 7→ su,


s > 0, s±u u is the unique point which intersects N ±
λ .


Lemma 5.5. Under assumptions of Theorem 5.1, for each compact subset W ⊂ S
there exists a constant CW such that s±u 6 CW for all u± ∈ W .
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Proof. From the definition of Nehari manifold we know s±u > t1 for all u ∈ S , λ
small enough. Let W ⊂ S be a compact set and sequence {un} ⊂ W . We know
passing to a subsequence, un → u0 , 0. Let


I±λ (u) =
λ


p


∫


Ω


h(x)|u±|pdx +


∫


Ω


G±(x, u)dx.


Then we have F±
λ (u) = 1


2 ||u||2X0
− I±λ (u). We claim that if s±n → +∞ as n → +∞,


then I±λ (s±n un)/(s±n )2 → +∞. Since |s±n un(x)| → +∞ if u(x) , 0, Fatou’s lemma
yields


I±λ (s±n un)


(s±n )2 >
∫


Ω


G±(x, s±n un)
(s±n un)2 u2


n → +∞, n→ +∞.
If passing to a subsequence, s±un


→ +∞, we know


F±
λ (s±un


un) =
1
2


(s±un
)2 − I±λ (s±un


un) = (s±un
)2
(1
2
− I±λ (s±un


un)


(s±un)2


)
= −∞,


a contradiction. Hence, there exists a constant CW such that s±un
6 CW . �


Define the mapping m̂±λ : X0 \ {0} → N ±
λ and m±λ : S → N ±


λ by


(5.4) m̂±λ (w) := s±ww and m±λ := m̂|S .
Lemma 5.6. The mapping m̂±λ is continuous, the mapping m±λ is a homeomorphism
between S and N ±


λ , and the inverse of m±λ is given by (m±λ )−1(u) = u/||u||X0 .


Proof. Suppose wn → w , 0. Since m̂±λ (tw) = m̂±λ (w) for each t > 0, we may
assume wn ∈ S . m̂±λ (wn) = s±n wn. From Lemma 5.5 and the definition of Nehari
manifold we know {s±n } is bounded and bounded away from 0, so s±n → s̄± > 0.
Since N ±


λ is closed and m̂±λ (wn)→ s̄±w, s̄±w ∈ N ±
λ . Hence s̄±w = s±ww = m̂±λ (w).


So m̂±λ is continuous. Then, it follows m±λ is a homeomorphism between S and
N ±
λ . �


We consider the functionals Ψ̂±λ : X0 \ {0} → R and Ψ±λ : S → R defined by


Ψ̂±λ (w) := F±
λ (m̂±λ (w)) and Ψ±λ := Ψ̂±λ |S .


Although we do not claim that N ±
λ is a C1 manifold, we shall show that Ψ̂±λ is of


class C1 and there is a one-to-one correspondence between critical points of Ψ±λ
and non-trivial critical points of F±


λ with ‖u‖X0 > t1, for λ small enough.


Lemma 5.7. Ψ̂±λ ∈ C1(X0 \ {0},R) and


(Ψ̂±λ )′(w)z =
||m̂±λ (w)||X0


||w||X0


(F±
λ )′(m̂±λ (w))z for all w, z ∈ X0,w , 0.


Proof. Let w ∈ X0 \ {0}, z ∈ X0. By the mean value theorem, we obtain


Ψ̂±λ (w + tz) − Ψ̂±λ (w) = F±
λ (s±w+tz(w + tz)) −F±


λ (s±ww)
6 F±


λ (s±w+tz(w + tz)) −F±
λ (s±w+tzw)


= (F±
λ )′(s±w+tz(w + τttz))s±w+tztz,
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where |t| is small enough and τt ∈ (0, 1). Similarly,


Ψ̂±λ (w + tz) − Ψ̂±λ (w) > F±
λ (s±w(w + tz)) −F±


λ (s±ww)
= (F±


λ )′(s±w(w + ηttz))s±wtz, for ηt ∈ (0, 1).


Since the mapping w 7→ s±w is continuous according to Lemma 5.6, we know


lim
t→0


Ψ̂±λ (w + tz) − Ψ̂±λ (w)
t


= s±w(F±
λ )′(s±ww)z =


||m̂±λ (w)||X0


||w||X0


(F±
λ )′(m̂±λ (w))z.


Hence, the Gâteaux derivative of Ψ̂±λ is bounded linear in z and continuous in w.
Therefore, Ψ̂±λ is of class C1. �


Lemma 5.8. The following holds:
(a). Ψ±λ ∈ C1(S ,R) and


(Ψ±λ )′(w)z = ||m±λ (w)||X0(F±
λ )′(m±λ (w))z, for all z ∈ TwS .


(b). If {wn} is a Palais-Smale sequence for Ψ±λ , then {m±λ (wn)} is a Palais-Smale
sequence for F±


λ . If {un} ⊂ N ±
λ is a bounded Palais-Smale sequence for


Ψ±λ , then {m±λ (un)} is a bounded Palais-Smale sequence for F±
λ .


(c). If w is a critical point of Ψ±λ , then m±λ (w) is a non-trivial critical point of
F±
λ . If m±λ (w) is a critical point of F±


λ with ‖m±λ (w)‖X0 > t1, then w is a
non-trivial critical point of Ψ±λ . Moreover, the corresponding values of Ψ±λ
and F±


λ coincide and inf
S


Ψ±λ = inf
N ±
λ


F±
λ .


(d). If F±
λ is even, then so is Ψ±λ .


Proof. (a) follows from Lemma 5.7.
(b). We note that X0 = TwS ⊕Rw for every w ∈ S , and the projection X0 → TwS ,


z + tw 7→ z has uniformly bounded norm with respect to w ∈ S . Denote J(w)z =


〈w, z〉X0 . J is bounded on bounded sets and J(w)(z+tw) = t. Then, |t| 6 C||z+tw||X0 .
Therefore, ||z||X0 6 |t| + ||z + tw||X0 6 (C + 1)||z + tw||X0 , for all w ∈ S , z ∈ TwS and
t ∈ R. Moreover, by (a) we have


(5.5) ||(Ψ±λ )′(w)||X0 = sup
z∈TwS ,||z||X0 =1


(Ψ±λ )′(w)z = ||u±||X0 sup
z∈TwS ,||z||X0 =1


(F±
λ )′(u±)z,


with u± = m±λ (w). Since (F±
λ )′(u±)w = (F±


λ )′(u±)u±/||u±||X0 = 0, we conclude
using (a) again that


||(Ψ±λ )′(w)||X0 6 ||u±||X0 ||(F±
λ )′(u±)||X0


= ||u±||X0 sup
z∈Tw(S ),z+tw,0


(F±
λ )′(u±)(z + tw)
||z + tw||X0


6 (C + 1)||u±||X0 sup
z∈Tw(S )\{0}


(F±
λ )′(u±)(z)
||z||X0


= (C + 1)||(Ψ±λ )′(w)||X0 .


Since u± ∈ N ±
λ is bounded away from 0, together with the fact that F±


λ (u±) =


Ψ±λ (w), we obtain (b).
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(c). From (5.5), (Ψ±λ )′(w) = 0 if and only if (F±
λ )′(m±λ (w)) = 0, the conclusion


(c) follows.
(d). If F±


λ is even, then s±w = s±−w. Hence m̂±λ (−w) = −m̂±λ (w) and the conclusion
follows from the definition of Ψ±λ . �


Remark 5.9. We note that the following minimax characterization holds:


c±λ = inf
u∈N ±


λ


F±
λ (u) = inf


w∈X0\{0}
max
s>0


F±
λ (sw) = inf


w∈S
max
s>0


F±
λ (sw).


Lemma 5.10. The following holds:
(a). If {un} ⊂ N ±


λ is a sequence such that sup
n∈N


F±
λ (un) < +∞, then passing to


a subsequence, we have un ⇀ u , 0 as n → +∞, and there is s±u > 0 such
that s±u u ∈ N ±


λ and F±
λ (s±u un) 6 lim inf


n→+∞ F±
λ (un).


(b). F±
λ |N ±


λ
is coercive, i.e., F±


λ (un)→ +∞ as un ∈ N ±
λ , ||un||X0 → +∞.


(c). F±
λ satisfies the Palais-Smale condition on N ±


λ .


Proof. Let {un} ⊂ N ±
λ be a sequence such that F±


λ (un) 6 d < ∞ for all n. We first
claim that {un} is bounded. Otherwise ||un||X0 → +∞ and vn := un/||un||X0 ⇀ v in
X0. We know v , 0. Then from (H3) we get


0 6
F±
λ (un)


||un||2X0


6
1
2
−


∫


Ω


G(x, un)
u2


n


u2
n


||un||2X0


→ −∞,


as n→ +∞, a contradiction. Hence, {un} is bounded and un ⇀ u. The definition of
Nehari manifold shows that u , 0. Then,


F±
λ (s±u u) 6 lim inf


n→+∞ F±
λ (s±u un) 6 lim inf


n→+∞ F±
λ (un),


since un ∈ N ±
λ . Hence (a) is proved and (b) follows. Let {un} ⊂ N ±


λ be a Palais-
Smale sequence. By (a), {un} is bounded and un ⇀ u. Then a standard argument
shows that F±


λ satisfies the Palais-Smale condition. �


Remark 5.11. We can also set


Γλ(u) := 〈∇Fλ(u), u〉 = ‖u‖2X0
− λ


∫


Ω


h(x)|u|pdx −
∫


Ω


g(x, u)udx.


Then, for λ ∈ (0, λ0), we can also define the Nehari manifold


(5.6) Nλ :=
{
u ∈ X0 : Γλ(u) = 0, ‖u‖X0 > t1


}
.


By a similar argument as above, we could establish the corresponding results for
Nλ. We point out that Lemma 5.3, Lemma 5.5–5.8, and Lemma 5.10 also hold for
N ±
λ replaced by Nλ and F±


λ replaced by Fλ.


Proof of Theorem 5.1. Let {w±n } be a minimizing sequence of Ψ±λ . By Ekeland’s
variational principle we may assume (Ψ±λ )′(w±n ) → 0. By Lemma 5.6, we know
u±n := m±λ (w±n ) ∈ N ±


λ , and {u±n } is a Palais-Smale sequence for F±
λ according to


Lemma 5.8. Then, Lemma 5.10 implies, passing to a subsequence, u±n → u± and
w±n → (m±λ )−1(u) = w±. Hence, w± is a minimizer for Ψ±λ and u± is a critical point
of F±


λ since Lemma 5.8 holds. Moreover, from Lemma 4.3 and the definition
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of Nehari manifold, we know that for λ small enough, F±
λ (u±) > R > 0, which


implies that u± is non-trivial. From above we assume that u+, u− such that


F +
λ (u+) = inf


u∈N +
λ


F +
λ (u), F−


λ (u−) = inf
u∈N −


λ


F +
λ (u).


Obviously, ||u+ − u−||X0 > 0, so they are different. We assume, without loss of
generality,


Fλ(u+) > Fλ(u−).


We claim that u+ and u− are local minima of Fλ on Nλ. Otherwise, we take


Fλ(u0) = inf
u∈Nλ


Fλ(u).


Then
Fλ(u0) 6 Fλ(u−) 6 Fλ(u+).


If u0 , u+, u−, we know that u0 is a solution, which finishes the proof of the
theorem. If u0 = u+, by Fλ(u0) = Fλ(u−) = Fλ(u+) we prove the claim. If
u0 = u−,


Fλ(u+) > Fλ(u−),


by taking Bεn := Bεn(u−) = {u ∈ X0, ||u − u−||X0 < εn}, we know that for every
u∗ ∈ Nλ ∩ Bεn \ {u−}, εn small enough,


Fλ(u−) < Fλ(u∗) < Fλ(u+).


If u+ and u− are not proportional, let Π(u+, u−) be the 2-dimensional plane con-
taining the straight lines tu+ and tu−. Take φn ∈ Π(u+, u−) ∩ Nλ ∩ Bεn \ {u−},
φn = φ+


n + φ−n = δnu+ + (1 − δ∗n)u−, where δ, δ∗n small enough are related to εn. We
know that


Fλ(u−) < Fλ(φn) < Fλ(u+).


From (4.2), we know that for δn small enough, Fλ(δnu+) < 0. Note that Fλ(φn) =


Fλ(φ+
n ) + Fλ(φ−n ), and from the definition of Nehari manifold, u± is the unique


point in the ray u± 7→ tu±, t > 0. Hence,


Fλ(φn) = Fλ(δnu+) + Fλ((1 − δ∗n)u−)
< Fλ((1 − δ∗n)u−)
< Fλ(u−)
< Fλ(φn),


a contradiction. If u+ and u− are proportional, the definition of Nehari manifold
implies that u+ = −su−, s > 0. From (4.2), we know that for δn small enough,


Fλ(u−) = Fλ(δnu+) + Fλ((1 + sδn)u−)
< Fλ((1 + sδn)u−)
< Fλ(u−),


also a contradiction, which implies the claim. Define


Υ = {γ ∈ C([0, 1],Nλ) : γ(0) = u+, γ(1) = u−},
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and
c∗λ = inf


γ∈Υ
max
t∈[0,1]


Fλ(γ(t)).


The definition of Nλ, together with Lemma 4.3, shows that c∗λ > 0. Since u+


and u− are local minima of Fλ on Nλ, Fλ satisfies the Mountain Pass geometry.
Then Lemma 5.10 implies c∗λ is a critical value for Fλ on Nλ and there is a critical
point v3 on Nλ, which is different from u+, u−. By Lemma 5.8, we know that v3 is
actually a solution of (P)λ with Fλ(v3) > 0. �


6. G   A-B-C 


Theorem 4.1 and Theorem 4.5 are all local, since λ has to be small enough.
A global result of Ambrosetti-Brezis-Cerami type is also given in the following
theorem, in which we show that the combined effects of sublinear and superlinear
terms change considerably the structure of the solution set.


For convenience we only consider positive solutions.


Theorem 6.1. Assume g satisfies (H1)-(H4) (or (H1)-(H3), (H4)∗). h ∈ L∞(Ω)
with h > h0, where h0 is a positive constant. Then there exists Λ > 0 such that


1. for λ ∈ (0,Λ), problem (P)λ has at least two positive solutions: uλ and
vλ, uλ . vλ satisfying vλ 6 uλ, Fλ(vλ) < 0 < Fλ(uλ). Moreover, vλ is a
minimal solution and is non-decreasing with respect to λ;


2. for λ = Λ problem (P)λ has at least one positive solution;
3. for all λ > Λ problem (P)λ has no positive solution.


Let us define Λ = sup{λ > 0 : (P)λ has a solution}.
Lemma 6.2. 0 < Λ < ∞.
Proof. From Theorem 4.1 it follows that (P)λ has at least two positive solutions
whenever λ ∈ (0, λ∗) and thus Λ > λ∗ > 0. We first consider the non-local operator
eigenvalue problem


(6.1)
{ −LKu = λu, in Ω,


u = 0, in Rn\Ω.


The first eigenvalue of problem (6.1) is defined by


λ1 := inf
u∈X0\{0}


∫
R2n(u(x) − u(y))2K(x − y)dxdy∫


Ω
u2dx


and the corresponding eigenfunctions of the eigenvalue λ1 is denoted by ϕ1 (see
[22]). It is known that λ1 > 0 is simple and ϕ1 is non-negative.


Let λ be such that


λh(x)tp−1 + g(x, t) > λ1t, ∀ t > 0.


If λ is such that (P)λ has a non-negative solution u, multiplying (P)λ by ϕ1 and
integrating over Rn we find


λ1


∫


Ω


uϕ1dx = λ


∫


Ω


h(x)up−1ϕ1dx +


∫


Ω


g(x, u)ϕ1dx.
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This implies λ 6 λ. �


Denote f (x, t) = λh(x)|u|p−2u + g(x, u). Now, we give the definition of the
super(sub)-solutions which we will use to prove Theorem 6.4. Let f (x, s) be a
Carathéodory function on Ω × R with the property that for any s0 > 0, there exists
a constant A such that | f (x, s)| 6 A for a.e. x ∈ Ω and all s ∈ [−s0, s0]. A function
u ∈ X0


⋂
L∞(Ω) is called a (weak) sub-solution of the problem (P)λ if


(6.2)
∫


R2n
(u(x) − u(y))(φ(x) − φ(y))K(x − y)dxdy 6


∫


Ω


f (x, u(x))φ(x)dx,


for all φ ∈ C∞0 (Ω), φ > 0. A super-solution is defined by reversing the inequality
sign.


Lemma 6.3. Assume that u and u are respectively sub-solutions and super-solutions
for (P)λ. Consider the associated functional


F (u) :=
1
2
‖u‖2X0


−
∫


Ω


F(x, u)dx.


Let M := {u ∈ X0 : u 6 u 6 u a.e. in Rn}. Then the infimum of F on M is achieved
at some u and u is a solution of (P)λ.


Proof. The proof is adapted from [10] which deals with the p-Laplacian elliptic
equation. By coercivity and weak lower semicontinuity, the infimum of F on M
is achieved at some u. Let ϕ ∈ C∞0 (Ω), ε > 0, and define


vε := min
{
u,max{u, u + εϕ}


}
= u + εϕ − ϕε + ϕε,


where ϕε := max{0, u + εϕ − u} and ϕε := −min{0, u + εϕ − u}. Since u minimizes
F on M, it follows 〈∇Φ(u), vε − u〉 > 0, which gives


(6.3) 〈∇F (u), ϕ〉 > (〈∇F (u), ϕε〉 − 〈∇F (u), ϕε〉)/ε.
Since u is a super-solution, one also has


〈∇F (u), ϕε〉 > 〈∇F (u) − ∇F (u), ϕε〉
=


∫


R2n


(
(u(x) − u(x)) − (u(y) − u(y))


)(
ϕε(x) − ϕε(y)


)
K(x − y)dxdy


−
∫


Ω


(
f (x, u) − f (x, u)


)
ϕεdx


> ε


∫


Ωε


(
(u − u)(x) − (u − u)(y)


)(
ϕ(x) − ϕ(y)


)
dx


− ε


∫


Ωε


| f (x, u) − f (x, u)||ϕ|dx,


where Ωε := {x ∈ Ω : u(x) + εϕ(x) > u(x) > u(x)}. Since |Ωε| → 0 as ε → 0, it
implies 〈∇Φ(u), ϕε〉 > o(ε) as ε → 0. Similarly 〈∇Φ(u), ϕε〉 6 o(ε), and by (6.3),
〈∇Φ(u), ϕ〉 > 0. Replacing ϕ by −ϕ, we conclude that u solves (P)λ. �
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Proof of Theorem 6.4. 1. We first show that for all λ ∈ (0,Λ), (P)λ has a positive
solution vλ with Iλ(vλ) < 0. Let 0 < λ < Λ and take λ̃ with λ < λ̃ < Λ such that
(P)λ̃ has a positive solution ṽ. Then,∫


R2n


(
ṽ(x) − ṽ(y)


)(
ϕ(x) − ϕ(y)


)
K(x − y)dxdy


= λ̃


∫


Ω


h(x)|ṽ|p−2ṽϕdx +


∫


Ω


g(x, ṽ)ϕdx


> λ


∫


Ω


h(x)|ṽ|p−2ṽϕdx +


∫


Ω


g(x, ṽ)ϕdx


for all ϕ ∈ C∞0 (Ω), ϕ > 0. This implies that ṽ is a super solution for (P)λ. Let
vε = εϕ∗, ε > 0, where ϕ∗ is choosing by the following way: If ṽ > 0 a.e. in Ω, take
ϕ∗ = ϕ1(Ω) > 0 is the first eigenvalue function of the operator −LK in domain Ω


as in (6.1), otherwise, assume Ω0 := {x ∈ Ω, v(x) = 0}, we set ϕ∗ = ϕ1(Ω \Ω0) > 0
which is the first eigenvalue function of the operator −LK in domain Ω \Ω0. From
(H2), there exists ε small enough such that


λ1εϕ∗ 6 λh(x)εp−1ϕ
p−1
∗ + g(x, εϕ∗).


Taking ϕ ∈ C∞0 (Ω), ϕ > 0, we can easily obtain
∫


R2n


(
vε(x) − vε(y)


)(
ϕ(x) − ϕ(y)


)
K(x − y)dxdy


6
∫


Ω


λ1vεϕdx


6 λ


∫


Ω


h(x)|vε|p−2vεϕdx +


∫


Ω


g(x, vε)ϕdx,


which shows that vε is a sub-solution of (P)λ. Taking ε small enough such that
εϕ∗ 6 ṽ. From Lemma 6.3 we know (P)λ has a non-negative solution vλ. Moreover
the minimization property provided by Lemma 6.3 leads to Fλ(vλ) 6 Fλ(εϕ∗).
By (H2), Fλ(εϕ∗) < 0 for ε small enough. Assume that vλ is an isolated local
minimum. From Lemma 4.4 we can get another solution uλ by the Mountain Pass
Theorem. It remains to prove that vλ 6 vλ∗ whenever λ < λ∗. Indeed, if λ < λ∗ then
vλ∗ is a super-solution of (P)λ. For ε > 0 small, εϕ∗ is a sub-solution of (P)λ and
εϕ∗ < vλ∗ , then (P)λ has a positive solution v with v 6 vλ∗ . As vλ is the minimal
solution of (P)λ, we have vλ 6 v 6 vλ∗ .


2. Let {µn} be an increasing sequence such that µn → Λ. and vn be a positive
solution of (P)µn with Fµn(vn) < 0. Then, for any φ ∈ X0,∫


R2n


(
vn(x) − vn(y)


)(
φ(x) − φ(y)


)
K(x − y)dxdy


=µn


∫


Ω


h(x)|vn(x)|p−2vn(x)φ(x)dx +


∫


Ω


g(x, vn(x))φ(x)dx.
(6.4)


We first show that sequence {vn} is bounded in X0. We suppose, by contradiction,
that up to a subsequence, still denoted by vn,


‖vn‖X0 → +∞ as n→ +∞.
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Set ωn := vn/‖vn‖X0 . Then ‖ωn‖X0 = 1. Passing to a subsequence, we may assume
that there exists ω ∈ X0 such that


ωn ⇀ ω, weakly in X0, n→ +∞,
ωn → ω, strongly in L2(Ω), n→ +∞,


ωn(x) → ω(x), a.e. in Ω, n→ +∞.
We claim that ω(x) ≡ 0 a.e. in Rn. It suffices to show ω(x) ≡ 0 a.e. in Ω. (6.4)
implies


∫


R2n


(
ωn(x) − ωn(y)


)(
φ(x) − φ(y)


)
K(x − y)dxdy


=
µn


||vn||2−p
X0


∫


Ω


h(x)|ωn(x)|p−2ωn(x)φ(x)dx +


∫


Ω


g(x, vn(x))
vn(x)


ωn(x)φ(x)dx.


Hence, ∫


Ω


g(x, vn(x))
vn(x)


ω2
n(x)dx = 1 + o(1).


We denote Ω∗ := {x ∈ Ω, ω(x) , 0}. Then for x ∈ Ω∗, |un(x)| → +∞ as n → +∞.
By (H3) we have


lim
n→+∞


g
(
x, vn(x)


)
vn(x)


ωn(x)2 = +∞.
The Fatou’s Lemma implies


∫


Ω∗
lim


n→+∞
g
(
x, vn(x)


)
vn(x)


ωn(x)2 6 lim
n→+∞


∫


Ω∗


g(x, vn(x))
vn(x)


ω2
n(x)dx 6 1 + o(1).


Hence Ω∗ has zero measure. Consequently, ω(x) ≡ 0 a.e. in Ω. On the one hand,
since ‖vn‖X0 → +∞, for some k > 0, by a standard argument similar to (4.2) we
know


(6.5) Fµn(k
vn


||vn||X0


) 6 Fµn(0) 6 0,


as n→ +∞. On the other hand, for all k > 0,


2Fµn(kωn) = k2 − 2µn


p
kp


∫


Ω


h(x)|ωn|pdx − 2
∫


Ω


G(x, kωn)dx = k2 + o(1),


which contradicts (6.5) for k and n large enough. Therefore, {vn} is bounded in
X0. Up to a subsequence, we get vn ⇀ v∗. v∗ is a solution of (P)Λ and FΛ(v∗) 6
0. Since {vn} is a non-negative sequence, and non-decreasing, v∗ is a non-trivial
solution.


3. This follows from the definition of Λ. �


Before finishing this section, we will prove the strongest result for the case in
which there are symmetrical conditions imposed on the nonlinearity. I.e. if we
assume that g(x, u) = g(x,−u), using the Lusternik-Schnirelman theory one can
also obtain the existence of infinitely many pairs of solutions.
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Theorem 6.4. Assume g satisfies (H1)-(H4) (or (H1)-(H3), (H4)∗). h ∈ L∞(Ω)
with h > h0, where h0 is a positive constant. Then there exists λ∗ > 0 such that for
all λ ∈ (0, λ∗) problem (P)λ has infinitely many pairs of solutions {un}, {vn} such
that Fλ(un) < 0 < Fλ(vn).


Proof. We give a brief sketch here because the arguments are similar to those of
[1]. Set


Σ := {A ∈ X0, 0 < A, if u ∈ A then − u ∈ A}.
For A ∈ Σ the genus γ(A) is defined as the least integer n for which there exists
φ ∈ C(X0,R


n) such that φ is odd and φ(x) , 0 for all x ∈ A. We define γ(A) = +∞
if there are no integers with the above property and γ(∅) = 0.


From Lemma 4.3 we know that for λ > 0 small enough, there exist ρ,R > 0
such that F±


λ (u) > R, if ‖u‖X0 = ρ.
We set also


An,ρ := {A ∈ Σ : A compact, A ⊂ B(ρ), γ(A) > n}.
Obviously, An,ρ , ∅ for all n = 1, 2, · · · , since


S n,ρ := ∂(Xn ∩ B(ρ)) ∈ An,ρ,


where Xn denotes an n−dimensional subspace of X0.
Let


cn,ρ = inf
A∈An,ρ


max
u∈A


Fλ(u).


Each cn,ρ is finite since the functional is bounded on B(ρ). We claim


cn,ρ < 0, n ∈ N.
Indeed, let w ∈ Xn be such that ‖w‖X0 = ρ. From (4.2), we know for ρ > 0 small
enough, Fλ(w) < 0. We note that for all u ∈ B(ρ) ∩ {Fλ 6 0} the steepest descent
flow ηt is well-defined for t ∈ [0,∞) and


ηt(u) ∈ B(ρ) ∩ {Fλ 6 0}, for any t > 0,


since F±
λ (u) > 0, if ‖u‖X0 = ρ. Moreover, we know cn,ρ < 0 from above and Palais-


Smale condition holds from Lemma 4.4. Then, we can make use of Lusternik-
Schnirelman theory to find infinitely many critical points of Fλ in B(ρ), denotes by
{un}, such that Fλ(un) < 0. Since Palais-Smale condition is satisfied, and Lemma
5.8 holds, from [27] we also obtain infinitely many critical points {vn}, satisfying
Fλ(vn) > 0. �
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diffusion fractionnaire. C. R. Math. Acad. Sci. Paris, 347(23-24):1361–1366, 2009.
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