39 pages, 3 figures



Memory loss, dispersing billiards, time-dependent dynamical systems, non-stationary compositions, coupling.





DISPERSING BILLIARDS WITH MOVING SCATTERERS


MIKKO STENLUND, LAI-SANG YOUNG, AND HONGKUN ZHANG


Abstract. We propose a model of Sinai billiards with moving scatterers, in which the locations
and shapes of the scatterers may change by small amounts between collisions. Our main result
is the exponential loss of memory of initial data at uniform rates, and our proof consists
of a coupling argument for non-stationary compositions of maps similar to classical billiard
maps. This can be seen as a prototypical result on the statistical properties of time-dependent
dynamical systems.
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1. Introduction


1.1. Motivation. The physical motivation for our paper is a setting in which a finite number
of larger and heavier particles move about slowly as they are bombarded by a large number of
lightweight (gas) particles. Following the language of billiards, we refer to the heavy particles as
scatterers. In classical billiards theory, scatterers are assumed to be stationary, an assumption
justified by first letting the ratios of masses of heavy-to-light particles tend to infinity. We do
not fix the scatterers here. Indeed the system may be open — gas particles can be injected
or ejected, heated up or cooled down. We consider a window of observation [0, T ], T ≤ ∞,
and assume that during this time interval the total energy stays uniformly below a constant
valueE > 0. This places an upper bound proportional to


√
E on the translational and rotational


speeds of the scatterers. The constant of proportionality depends inversely on the masses and
moments of inertia of the scatterers. Suppose the scatterers are also pairwise repelling due to
an interaction with a short but positive effective range, such as a weak Coulomb force, whose
strength tends to infinity with the inverse of the distance. The distance between any pair of
scatterers has then a lower bound, which in the Coulomb case is proportional to 1/E. In brief,
fixing a maximum value for the total energy E, the scatterers are guaranteed to be uniformly
bounded away from each other; and assuming that the ratios of masses are sufficiently large,
the scatterers will move arbitrarily slowly. Our goal is to study the dynamics of a tagged gas
particle in such a system on the time interval [0, T ]. As a simplification we assume our tagged
particle is passive: it is massless, does not interact with the other light particles, and does not
interfere with the motion of the scatterers. It experiences an elastic collision each time it meets
a scatterer, and moves on with its own energy unchanged.1 This model was proposed in the
paper [16].


The setting above is an example of a time-dependent dynamical system. Much of dynamical
systems theory as it exists today is concerned with autonomous systems, i.e., systems for which
the rules of the dynamics remain constant through time. Non-autonomous systems studied
include those driven by a time-periodic or random forcing (as described by SDEs), or more
generally, systems driven by another autonomous dynamical system (as in a skew-product
setup). For time-varying systems without any assumption of periodicity or stationarity, even
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1The model here should not be confused with [9], which describes the motion of a heavy particle bombarded


by a fast-moving light particle reflected off the walls of a bounded domain.
1
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the formulation of results poses obvious mathematical challenges, yet many real-world systems
are of this type. Thus while the moving scatterers model above is of independent interest, we
had another motive for undertaking the present project: we wanted to use this prototypical
example to catch a glimpse of the challenges ahead, and at the same time to identify techniques
of stationary theory that carry over to time-dependent systems.


1.2. Main results and issues. We focus in this paper on the evolution of densities. Let
ρ0 be an initial distribution, and ρt its time evolution. In the case of an autonomous system
with good statistical properties, one would expect ρt to tend to the system’s natural invariant
distribution (e.g. SRB measure) as t → ∞. The question is: How quickly is ρ0 “forgotten”?
Since “forgetting” the features of an initial distribution is generally associated with mixing of
the dynamical system, one may pose the question as follows: Given two initial distributions
ρ0 and ρ′0, how quickly does |ρt − ρ′t| tend to zero (in some measure of distance)? In the
time-dependent case, ρt and ρ′t may never settle down, as the rules of the dynamics may be
changing perpetually. Nevertheless the question continues to makes sense. We say a system
has exponential memory loss if |ρt − ρ′t| decreases exponentially with time.


Since memory loss is equivalent to mixing for a fixed map, a natural setting with exponential
memory loss for time-dependent sequences is when the maps to be composed have, individually,
strong mixing properties, and the rules of the dynamics, or the maps to be composed, vary
slowly. (In the case of continuous time, this is equivalent to the vector field changing very
slowly.) In such a setting, we may think of ρt above as slowly varying as well. Furthermore,
in the case of exponential loss of memory, we may view these probability distributions as
representing, after an initial transient, quasi-stationary states.


Our main result in this paper is the exponential memory loss of initial data for the collision
maps of the model described in Section 1.1, where the scatterers are assumed to be moving
very slowly. Precise results are formulated in Section 2. Billiard maps with fixed, convex
scatterers are known to have exponential correlation decay; thus the setting in Section 1.1 is
a natural illustration of the scenario in the last paragraph. (Incidentally, when the source and
target configurations differ, the collision map does not necessarily preserve the usual invariant
measure).


If we were to iterate a single map long enough for exponential mixing to set in, then change
the map ever so slightly so as not to disturb the convergence in |ρt − ρ′t| already achieved, and
iterate the second map for as long as needed before making an even smaller change, and so
on, then exponential loss of memory for the sequence is immediate for as long as all the maps
involved are individually exponentially mixing. This is not the type of result we are after. A
more meaningful result — and this is what we will prove — is one in which one identifies a
space of dynamical systems and an upper bound in the speed with which the sequence is allowed
to vary, and prove exponential memory loss for any sequence in this space that varies slowly
enough. This involves more than the exponential mixing property of individual maps; the class
of maps in question has to satisfy a uniform mixing condition for slowly-varying compositions.
This in some sense is the crux of the matter.


A technical but fundamental issue has to do with stable and unstable directions, the staples of
hyperbolic dynamics. In time-dependent systems with slowly-varying parameters, approximate
stable and unstable directions can be defined, but they depend on the time interval of interest,
e.g., which direction is contracting depends on how long one chooses to look. Standard dy-
namical tools have to be adapted to the new setting of non-stationary sequences; consequently
technical estimates of single billiard maps have to be re-examined as well.


1.3. Relevant works. Our work lies at the confluence of the following two sets of results:
The study of statistical properties of billiard maps in the case of fixed convex scatterers was


pioneered by Sinai et al [17, 3, 4]. The result for exponential correlation decay was first proved
in [20]. A different proof, using a coupling argument, is given in [7] and explained in greater
detail in the reference text [10]. Our proof follows a similar coupling argument.
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The paper [16] proved exponential loss of memory for expanding maps and for one-dimensional
piecewise expanding maps with slowly varying parameters. An earlier study in the same spirit
is [13]. A similar result was obtained for topologically transitive Anosov diffeomorphisms in two
dimensions in [18] and for piecewise expanding maps in higher dimensions in [12]. We mention
also [2], where exponential memory loss was established for arbitrary sequences of finitely many
toral automorphisms satisfying a common-cone condition. Recent central-limit-type results in
the time-dependent setting can be found in [11,15,19].


1.4. About the exposition. One of the goals of this paper is to stress the (strong) similarities
between stationary dynamics and their time-dependent counterparts, and to highlight at the
same time the new issues that need to be addressed. For this reason, and also to keep the length
of the manuscript reasonable, we have elected to omit the proofs of some technical preliminaries
for which no substantial modifications are needed from the fixed-scatterers case, referring the
reader instead to [10]. We do not know to what degree we have succeeded, but we have tried
very hard to make transparent the logic of the argument, in the hope that it will be accessible
to a wider audience. The main ideas are contained in Section 5.


The paper is organized as follows. In Section 2 we describe the model in detail, after which we
immediately state our main results in a form as accessible as possible, leaving generalizations
for later. Theorems 1–3 of Section 2 are the main results of this paper, and Theorem 4 is
a more technical formulation which easily implies the other two. Sections 3 and 4 contain a
collection of facts about dispersing billiard maps that are easily adapted to the time-dependent
case. Section 5 gives a nearly complete outline of the proof of Theorem 4. In Section 6 we
continue with technical preliminaries necessary for a rigorous proof of that theorem. Unlike
Sections 3 and 4, more stringent conditions on the speeds at which the scatterers are allowed
to move are needed for the results in Section 6. In Section 7 we prove Theorem 4 in the special
case of initial distributions supported on countably many curves, and in Section 8 we prove
the extension of Theorem 4 to more general settings. Finally, we collect in the Appendix some
proofs which are deferred to the end in order not to disrupt the flow of the presentation in the
body of the text.


2. Precise statement of main results


2.1. Setup. We fix here a space of scatterer configurations, and make precise the definition of
billiard maps with possibly different source and target configurations.


Throughout this paper, the physical space of our system is the 2-torus T2. We assume, to
begin with (this condition will be relaxed later on), that the number of scatterers as well as their
sizes and shapes are fixed, though rigid rotations and translations are permitted. Formally, let
B1, . . . , Bs be pairwise disjoint closed convex domains in R2 with C3 boundaries of strictly
positive curvature. In the interior of each Bi we fix a reference point ci and a unit vector
ui at ci. A configuration K of {B1, . . . , Bs} in T2 is an embedding of ∪s


i=1Bi into T2, one
that maps each Bi isometrically onto a set we call Bi. Thus K can be identified with a point
(ci,ui)


s
i=1 ∈ (T2 × S1)


s
, ci and ui being images of ci and ui. The space of configurations K0 is


the subset of (T2 × S1)
s


for which the Bi are pairwise disjoint and every half-line in T2 meets a
scatterer non-tangentially. More conditions will be imposed on K later on. The set K0 inherits
the Euclidean metric from (T2 × S1)


s
, and the ε-neighborhood of K is denoted by Nε(K).


Given a configuration K ∈ K0, let τmin
K be the shortest length of a line segment in T2 \∪s


i=1Bi


which originates and terminates (possibly tangentially) in the set ∪s
i=1∂Bi,


2 and let τmax
K be


the supremum of the lengths of all line segments in the closure of T2 \ ∪s
i=1Bi which originate


and terminate non-tangentially in the set ∪s
i=1∂Bi (this segment may meet the scatterers tan-


gentially between its endpoints). As a function of K, τmin
K is continuous, but τmax


K in general is
only upper semi-continuous. Notice that 0 < τmin


K < τmax
K ≤ ∞.


2In general, τmin
K 6= min1≤i<j≤s dist(Bi,Bj), as the shortest path could be from a scatterer back to itself. If


one lifts the Bi to R2, then τmin
K is the shortest distance between distinct images of lifted scatterers.
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Figure 1. Rules of the dynamics. Scatterers in source configuration K and
target configuration K′ are drawn in dashed and solid line, respectively. A particle
shoots off the boundary of a scatterer Bi at the point q with unit velocity v and
exits the gray buffer zone Bi,β \ Bi. Before it re-enters the buffer zone of any
scatterer Bj, the configuration is switched instantaneously from K to K′ at some
time τ ? during mid-flight. The particle then hits the boundary of a scatterer B′i′
elastically at the point q′, resulting in post-collision velocity v′.


A basic question is: Given K,K′ ∈ K0, is there always a well-defined billiard map (analogous
to classical billiard maps) with source configuration K and target configuration K′? That is to
say, if B1, . . . ,Bs are the scatterers in configuration K, and B′1, . . . ,B


′
s are the corresponding


scatterers in K′, is there a well defined mapping


FK′,K : T+
1 (∪s


i=1∂Bi)→ T+
1 (∪s


i=1∂B′i)


where T+
1 (∪s


i=1∂Bi) is the set of (q, v) such that q ∈ ∪s
i=1∂Bi and v is a unit vector at q pointing


into the region T2 \∪s
i=1Bi, and similarly for T+


1 (∪s
i=1∂B′i)? Is the map FK′,K uniquely defined,


or does it depend on when the changeover from K to K′ occurs? The answer can be very
general, but let us confine ourselves to the special case where K′ is very close to K and the
changeover occurs when the particle is in “mid-flight” (to avoid having scatterers land on top
of the particle, or meet it at the exact moment of the changeover).


To do this systematically, we introduce the idea of a buffer zone. For β > 0, we let Bi,β ⊂ T2


denote the β-neighborhood of Bi, and define τ esc
β , the escape time from the β-neighborhood of


∪iBi, to be the maximum length of a line in ∪s
i=1(Bi,β \Bi) connecting ∪s


i=1∂Bi to ∪s
i=1∂(Bi,β).


We then fix a value of β > 0 small enough that τ esc
β < τmin


K − β, and require that B′i ⊂ Bi,β


for each i = 1, . . . , s. Notice that β < τ esc
β , so that β < τmin


K /2, implying in particular that the
neighborhoods Bi,β are pairwise disjoint. For a particle starting from ∪s


i=1∂Bi, its trajectory is
guaranteed to be outside of ∪s


i=1Bi,β during the time interval (τ esc
β , τmin


K −β): reaching ∪s
i=1Bi,β


before time τmin
K −β would contradict the definition of τmin


K . We permit the configuration change
to take place at any time τ ? ∈ (τ esc


β , τmin
K − β). Notice that τ esc


β depends only on the shapes
of the scatterers, not their configuration, and that the billiard trajectory starting from ∪i∂Bi


and ending in ∪i∂B′i does not depend on the precise moment τ ? at which the configuration
is updated. For the billiard map FK′,K to be defined, every particle trajectory starting from
∪s
i=1∂Bi must meet a scatterer in K′. This is guaranteed by K′ ∈ K0, due to the requirement


that any half-line intersects a scatterer boundary.
To summarize, we have argued that given K,K′ ∈ K0, there is a canonical way to define


FK′,K if B′i ⊂ Bi,β for all i where β = β(τmin
K ) > 0 depends only on τmin


K (and the curvatures of
the Bi), and the flight time τK′,K satisfies τK′,K ≥ τmin


K − β ≥ τmin
K /2.


Now we would like to have all the FK′,K operate on a single phase space M, so that our
time-dependent billiard system defined by compositions of these maps can be studied in a
way analogous to iterated classical billiard maps. As usual, we let Γi be a fixed clockwise
parametrization by arclength of ∂Bi, and let


M = ∪iMi with Mi = Γi × [−π/2, π/2].
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(q�, v�)
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Figure 2. Action of the map FK′,K. With the same conventions as in Figure 1,
the point in M corresponding to the plane vector (q′, v′) has more than one
preimage, whereas the point corresponding to (q′′, v′′) has no preimage at all.


Recall that each K ∈ K is defined by an isometric embedding of ∪s
i=1Bi into T2. This embedding


extends to a neighborhood of ∪s
i=1Bi ⊂ R2, inducing a diffeomorphism ΦK :M→ T+


1 (∪s
i=1∂Bi).


For K,K′ for which FK′,K is defined then, we have


FK′,K := Φ−1
K′ ◦ FK′,K ◦ ΦK :M→M .


Furthermore, given a sequence (Kn)Nn=0 of configurations, we let Fn = FKn,Kn−1 assuming this
mapping is well defined, and write


Fn+m,n = Fn+m ◦ · · · ◦ Fn and Fn = Fn ◦ · · · ◦ F1


for all n,m with 1 ≤ n ≤ n+m ≤ N .
It is easy to believe — and we will confirm mathematically — that FK′,K has many of the


properties of the section map of the 2D periodic Lorentz gas. The following differences, however,
are of note: unlike classical billiard maps, FK′,K is in general neither one-to-one nor onto, and
as a result of that it also does not preserve the usual measure on M. This is illustrated in
Figure 2.


2.2. Main results. First we introduce the following uniform finite-horizon condition: For
t, ϕ > 0, ϕ small, we say K ∈ K0 has (t, ϕ)-horizon if every directed open line segment in T2 of
length t meets a scatterer Bi of K at an angle > ϕ (measured from its tangent line), with the
segment approaching this point of contact from T2 \Bi. Other intersection points between our
line segment and ∪j∂Bj are permitted and no requirements are placed on the angles at which
they meet; we require only that there be at least one intersection point meeting the condition
above. Notice that this condition is not affected by the sudden appearance or disappearance
of nearly tangential collisions of billiard trajectories with scatterers as the positions of the
scatterers are shifted.


The space in which we will permit our time-dependent configurations to wander is defined
as follows: We fix 0 < τ̄min < t <∞ and ϕ > 0, chosen so that the set


K = K(τ̄min, (t, ϕ)) = {K ∈ K0 : τ̄min < τmin
K and K has (t, ϕ)−horizon}


is nonempty. Clearly, K is an open set, and its closure K̄ as a subset of (T2 × S1)
s


consists of
those configurations whose τmin will be ≥ τ̄min, and line segments of length t with their end
points added will meet scatterers with angles ≥ ϕ. From Section 2.1, we know that there exists
β̄ = β(τ̄min) > 0 such that FK′,K is defined for all K,K′ ∈ K with B′i ⊂ Bi,β̄ for all i where
{Bi} and {B′i} are the scatterers in K and K′ respectively. For simplicity, we will call the pair
(K,K′) admissible (with respect to K) if they satisfy the condition above. Clearly, if K,K′ ∈ K
are such that d(K,K′) < ε for small enough ε, then the pair is admissible. We also noted in
Section 2.1 that for all admissible pairs,


τ̄min/2 ≤ τK′,K ≤ t . (1)
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We will denote by |f |γ the Hölder constant of a γ-Hölder continuous f :M→ R.
Our main result is


Theorem 1. Given K = K(τ̄min, (t, ϕ)), there exists ε > 0 such that the following holds. Let µ1


and µ2 be probability measures on M, with strictly positive, 1
6
-Hölder continuous densities ρ1


and ρ2 with respect to the measure cosϕ dr dϕ. Given γ > 0, there exist 0 < θγ < 1 and Cγ > 0
such that ∣∣∣∣∫


M
f ◦ Fn dµ1 −


∫
M
f ◦ Fn dµ2


∣∣∣∣ ≤ Cγ(‖f‖∞ + |f |γ)θ
n
γ , n ≤ N,


for all sequences (Kn)Nn=0 ⊂ K (N ∈ N ∪ {∞}) satisfying d(Kn−1,Kn) < ε for 1 ≤ n ≤ N , and
all γ-Hölder continuous f : M → R. The constant Cγ = Cγ(ρ


1, ρ2) depends on the densities
ρi through the Hölder constants of log ρi, while θγ does not depend on the µi. Both constants
depend on K and ε.


To stress that our results hold for finite as well as infinite times, we have written “(Kn)Nn=0, N ∈
N ∪ {∞}”. This is intended as shorthand for K1, . . . ,KN for N <∞, and K1,K2, . . . (infinite
sequence) for N =∞. Notice in particular that none of the constants depend on N .


Our next result is an extension of Theorem 1 to a situation where the geometries of the
scatterers are also allowed to vary with time. We use κ to denote the curvature of the scatterers,
and use the convention that κ > 0 corresponds to strictly convex scatterers. For 0 < κ̄min <
κ̄max <∞, 0 < τ̄min < t <∞, ϕ > 0 and 0 < ∆ <∞, we let


K̃ = K̃(κ̄min, κ̄max; τ̄min, (t, ϕ); ∆)


denote the set of configurations K =
(
(B1, o1), . . . , (Bs, os)


)
where (B1, . . . ,Bs) is an ordered


set of disjoint scatterers on T2, oi ∈ ∂Bi is a marked point for each i, s ∈ N is arbitrary, and
the following conditions are satisfied:


(i) the scatterer boundaries ∂Bi are C3+Lip with ‖D(∂Bi)‖C2 < ∆ and Lip(D3(∂Bi)) < ∆,
(ii) the curvatures of ∂Bi lie between κ̄min and κ̄max, and
(iii) τmin


K > τ̄min, and K has (t, ϕ)-horizon.


In (i), ‖D(∂Bi)‖C2 and Lip(D3(∂Bi)) are defined to be max1≤k≤3 ‖Dkγi‖∞ and Lip(D3γi),
respectively, where γi is the unit speed clockwise parametrization of Bi. For two configu-
rations K = ((B1, o1), . . . , (Bs, os)) and K′ = ((B′1, o


′
1), . . . , (B′s, o


′
s)) with the same number


of scatterers, we define d3(K,K′) to be the maximum of maxi≤s supx∈M dM(γ̂i(x), γ̂′i(x)) and
maxi≤s max1≤k≤3 ‖Dkγ̂i − Dkγ̂′i‖∞ where γ̂i : S1 → T2 denotes the constant speed clockwise
parametrization of ∂Bi with γ̂i(0) = oi, γ̂


′
i is the corresponding parametrization of ∂B′i with


γ̂′i(0) = o′i, and dM is the natural distance on M. The definition of admissibility for K and K′
is as above, and the billiard map FK′,K is defined as before for admissible pairs. Configura-
tions K,K′ with different numbers of scatterers are not admissible, and the distance between
them is set arbitrarily to be d3(K,K′) = 1.


Theorem 2. The statement of Theorem 1 holds verbatim with (K, d) replaced by (K̃, d3).3


Theorems 1’ and 2’: The regularity assumption on the measures µi in Theorems 1–2 above
can be much relaxed. It suffices to assume that the µi have regular conditional measures on
unstable curves; they can be singular in the transverse direction and can, e.g., be supported
on a single unstable curve. Convex combinations of such measures are also admissible. Precise
conditions are given in Section 4, after we have introduced the relevant technical definitions.
Theorems 1’–2’, which are the extensions of Theorems 1–2 respectively to the case where these
relaxed conditions on µi are permitted, are stated in Section 4.4.


3The differentiability assumption on the scatterer boundaries can be relaxed, but the pursuit of minimal
technical conditions is not the goal of our paper.
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Theorems 2 and 2’ obviously apply as a special case to classical billiards, giving uniform


bounds of the kind above for all FK,K, K ∈ K̃. It is also a standard fact that correlation decay
results can be deduced from the type of convergence in Theorems 1–2. To our knowledge, the
following result on correlation decay for classical billiards is new. The proof can be found in
Section 8.2.


Theorem 3. Let µ denote the measure obtained by normalizing cosϕ dr dϕ to a probability


measure. Let K̃ be fixed, and let γ > 0 be arbitrary. Then for any γ-Hölder continuous f and
any 1


6
-Hölder continuous g, there exists a constant C ′γ such that∣∣∣∣∫ f ◦ F n · g dµ−


∫
f dµ


∫
g dµ


∣∣∣∣ ≤ C ′γ θ
n
γ


hold for all n ≥ 0 and for all F = FK,K with K ∈ K̃. Here θγ is as in the theorems above. The
constant C ′γ depends on ‖f‖∞, |f |γ, ‖g‖∞ and |g| 1


6
.


We remark that Theorem 3 can also be formulated for sequences of maps. In that case the
quantity bounded is


∫
f ◦Fn ·g dµ−


∫
f ◦Fn dµ


∫
g dµ and µ is an arbitrary measure satisfying


the conditions in Theorems 1’ and 2’. The proof is unchanged.
In addition to the broader class of measures, Theorem 2 could be extended to less regular


observables f , which would allow for a corresponding generalization of Theorem 3. In particular,
the observables could be allowed to have discontinuities at the singularities of the map F ; see,
e.g., [10]. In order to keep the focus on what is new, we do not pursue that here.


We state one further extension of the above theorems, to include the situation where the test


particle is also under the influence of an external field. Given an admissible pair (K,K′) in K̃
and a vector field E = E(q,v), we define first a continuous time system in which the trajectory
of the test particle between collisions is determined by the equations


q̇ = v and v̇ = E,


where q is the position and v the velocity of the particle, together with the initial condition.
For the sake of simplicity, let us assume that the field is isokinetic — that is, v · E = 0 —
which allows to normalize |v| = 1. This class of forced billiards includes “electric fields with
Gaussian thermostats” studied in [14, 5] and many other papers. (Instead of the speed, more
general integrals of the motion could be considered, allowing for other types of fields, such as
gradients of weak potentials; see [6, 8].) Assuming that the field E is smooth and small, the
trajectories are almost linear, and a billiard map FE


K′,K : M → M can be defined exactly as


before. (See Section 8.3 for more details.) Note that F 0
K′,K = FK′,K.


The setup for our time-dependent systems result is as follows: We consider the space K̃× E
where K̃ is as above and E = E(εE) for some εE > 0 is the set of fields E ∈ C2 with ‖E‖C2 =
max0≤k≤2 ‖DkE‖∞ < εE. In the theorem below, it is to be understood that Fn = FEn


Kn,Kn−1
and


Fn = Fn ◦ · · · ◦ F1.


Theorem E. Given K̃, there exist ε > 0 and εE > 0 such that the statement of Theorem 2


holds for all sequences ((Kn,En))n≤N in K̃× E(εE) satisfying d3(K,K′) < ε for all n ≤ N .


Like the zero-field case, Theorem E also admits a generalization of measures (and observables)
and also implies an exponential correlation bound.


2.3. Main technical result. To prove Theorem 1, we will, in fact, prove the following tech-


nical result. All configurations below are in K. Let (K̃q)Qq=1 (Q ∈ Z+ arbitrary) be a sequence


of configurations, (ε̃q)
Q
q=1 a sequence of positive numbers, and (Ñq)


Q
q=1 a sequence of positive


integers. We say the configuration sequence (Kn)Nn=0 (arbitrary N) is adapted to (K̃q, ε̃q, Ñq)
Q
q=1


if there exist numbers 0 = n0 < n1 < · · · < nQ = N such that for 1 ≤ q ≤ Q, we have


nq−nq−1 ≥ Ñq and Kn ∈ Nε̃q(K̃q) for nq−1 ≤ n ≤ nq. That is to say, we think of the (K̃q)Qq=1 as
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reference configurations, and view the sequence of interest, (Kn)Nn=0, as going from one reference


configuration to the next, spending a long time (≥ Ñq) near (within ε̃q of) each K̃q.


Theorem 4. For any K ∈ K, there exist Ñ(K) ≥ 1 and ε̃(K) > 0 such that the following


holds for every sequence of reference configurations (K̃q)Qq=1 (Q < ∞) with K̃q+1 ∈ Nε̃( eKq)(K̃q)
for 1 ≤ q < Q and every sequence (Kn)Nn=0 adapted to (K̃q, ε̃(K̃q), Ñ(K̃q))Qq=1, all configurations


to be taken in K: Let µ1 and µ2 be probability measures on M, with strictly positive, 1
6
-Hölder


continuous densities ρ1 and ρ2 with respect to the measure cosϕ dr dϕ. Given any γ > 0, there
exist 0 < θγ < 1 and Cγ > 0 such that∣∣∣∣∫


M
f ◦ Fn dµ1 −


∫
M
f ◦ Fn dµ2


∣∣∣∣ ≤ Cγ(‖f‖∞ + |f |γ)θ
n
γ , n ≤ N, (2)


for all γ-Hölder continuous f : M → R. The constants Cγ and θγ depend on the collection


{K̃q, 1 ≤ q ≤ Q} (see Remark 5 below); additionally Cγ = Cγ(ρ
1, ρ2) depends on the densities


ρi through the Hölder constants of log ρi, while θγ does not depend on the µi.


Remark 5. We clarify that the constants Cγ and θγ depend on the collection of distinct con-


figurations that appear in the sequence (K̃q)Qq=1, not on the order in which these configurations


are listed; in particular, each K̃q may appear multiple times. This observation is essential for
the proofs of Theorems 1–3.


Proof of Theorem 1 assuming Theorem 4. Given K, consider a slightly larger K′ ⊃ K̄, obtained


by decreasing τ̄min and ϕ and increasing t. We apply Theorem 4 to K′, obtaining ε̃(K) and Ñ(K)


for K ∈ K′. Since K̄ is compact, there exists a finite collection of configurations (K̃q)q∈Q ⊂ K̄
such that the sets Ñq = N 1


2
ε̃( eKq)(K̃q)∩K, q ∈ Q, form a cover of K. Let ε? = minq∈Q ε̃(K̃q) and


N? = maxq∈Q Ñ(K̃q). We claim that Theorem 1 holds with ε = ε?/(2N?). Let (Kn)Nn=0 ⊂ K
with d(Kn,Kn+1) < ε be given. Suppose K0 ∈ Ñq. Then Ki is guaranteed to be in Nε̃( eKq)(K̃q)
for all i < N?. Before the sequence leaves Nε̃( eKq)(K̃q), we select another Ñq′ and repeat the


process. Thus, the assumptions of Theorem 4 are satisfied (add more copies of KN at the
end if necessary). Taking note of Remark 5, this yields a uniform rate of memory loss for all
sequences. Of course the constants thus obtained for K in Theorem 1 are the constants above
obtained for the larger K′ in Theorem 4. �


Standing Hypothesis for Sections 3–8.1: We assume K as defined by τ̄min, t and ϕ is
fixed throughout. For definiteness we fix also β̄, and declare once and for all that all pairs
(K,K′) for which we consider the billiard map FK′,K are assumed to be admissible, as are
(Kn,Kn+1) in all the sequences (Kn) studied. These are the only billiard maps we will consider.


3. Preliminaries I: Geometry of billiard maps


In this section, we record some basic facts about time-dependent billiard maps related to
their hyperbolicity, discontinuities, etc. The results here are entirely analogous to the fixed
scatterers case. They depend on certain geometric facts that are uniform for all the billiard
maps considered; indeed one does not know from step to step in the proofs whether or not
the source and target configurations are different. Thus we will state the facts but not give
the proofs, referring the reader instead to sources where proofs are easily modified to give the
results here.


An important point is that the estimates of this section are uniform, i.e., the constants in
the statements of the lemmas depend only on K.


Notation: Throughout the paper, the length of a smooth curve W ⊂M is denoted by |W | and
the Riemannian measure induced on W is denoted by mW . Thus, mW (W ) = |W |. We denote
by Uε(E) the open ε-neighborhood of a set E in the phase space M. For x = (r, ϕ) ∈ M, we







DISPERSING BILLIARDS WITH MOVING SCATTERERS 9


denote by TxM the tangent space of M and by DxF the derivative of a map F at x. Where
no ambiguity exists, we sometimes write F instead of FK′,K.


3.1. Hyperbolicity. Given (K,K′) and a point x = (r, ϕ) ∈M, we let x′ = (r′, ϕ′) = Fx and
compute DxF as follows: Let κ(x) denote the curvature of ∪i∂Bi at the point corresponding
to x, and define κ(x′) analogously. The flight time between x and x′ is denoted by τ(x) =
τK′,K(x). Then DxF is given by


− 1


cosϕ′


(
τ(x)κ(x) + cosϕ τ(x)


τ(x)κ(x)κ(x′) + κ(x) cosϕ′ + κ(x′) cosϕ τ(x)κ(x′) + cosϕ′


)
provided x /∈ F−1∂M, the discontinuity set of F . This computation is identical to the case
with fixed scatterers. As in the fixed scatterers case, notice that as x approaches F−1∂M,
cosϕ′ → 0 and the derivative of the map F blows up. Notice also that


detDxF = cosϕ/ cosϕ′, (3)


so that F is locally invertible.
The next result asserts the uniform hyperbolicity of F for orbits that do not meet F−1∂M.


Let κmin and κmax denote the minimum and maximum curvature of the boundaries of the
scatterers Bi.


Lemma 6 (Invariant cones). The unstable cones


Cux = {(dr, dϕ) ∈ TxM : κmin ≤ dϕ/dr ≤ κmax + 2/τ̄min}, x ∈M,


are DxF -invariant for all pairs (K,K′), i.e., DxF (Cux) ⊂ CuFx for all x /∈ F−1∂M, and there
exist uniform constants ĉ > 0 and Λ > 1 such that for every (Kn)Nn=0,


‖DxFnv‖ ≥ ĉΛn‖v‖ (4)


for all n ∈ {1, . . . , N}, v ∈ Cux , and x /∈ ∪Nm=1(Fm)−1∂M.
Similarly, the stable cones


Csx = {(dr, dϕ) ∈ TxM : −κmax − 2/τ̄min ≤ dϕ/dr ≤ −κmin}


are (DxF )−1-invariant for all (K,K′), i.e., (DxF )−1CsFx ⊂ Csx for all x /∈ ∂M∪ F−1∂M, and
for every (Kn)Nn=0,


‖(DxFn)−1v‖ ≥ ĉΛn‖v‖
for all n ∈ {1, . . . , N}, v ∈ CsFnx, and x /∈ ∂M∪∪Nm=1(Fm)−1∂M.


Notice that the cones here can be chosen independently of x and of the scatterer configura-
tions involved. The proof follows verbatim that of the fixed scatterers case; see [10].


Following convention, we introduce for purposes of controlling distortion (see Lemma 9) the
homogeneity strips


Hk = {(r, ϕ) ∈M : π/2− k−2 < ϕ ≤ π/2− (k + 1)−2}
H−k = {(r, ϕ) ∈M : −π/2 + (k + 1)−2 ≤ ϕ < −π/2 + k−2}


for all integers k ≥ k0, where k0 is a sufficiently large uniform constant. It follows, for example,
that for each k, DxF is uniformly bounded for x ∈ F−1(H−k ∪Hk), as


C−1
cosk


−2 ≤ cosϕ′ ≤ Ccosk
−2 (5)


for a constant Ccos > 0. We will also use the notation


H0 = {(r, ϕ) ∈M : −π/2 + k2
0 ≤ ϕ ≤ π/2− k−2


0 } .
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3.2. Discontinuity sets and homogeneous components. For each (K,K′), the singularity
set (FK′,K)−1∂M has similar geometry as in the case K′ = K. In particular, it is the union
of finitely many C2-smooth curves which are negatively sloped, and there are uniform bounds
depending only on K for the number of smooth segments (as follows from (1)) and their deriva-
tives. One of the geometric facts, true for fixed scatterers as for the time-dependent case, that
will be useful later is the following: Through every point in F−1∂M, there is a continuous path
in F−1∂M that goes monotonically in ϕ from one component of ∂M to the other.


In our proofs it will be necessary to know that the structure of the singularity set varies in
a controlled way with changing configurations. Let us denote


SK′,K = ∂M∪ (FK′,K)−1∂M.


If K and K′ are small perturbations of K̃, then SK′,K is contained in a small neighborhood of
SeK,eK (albeit the topology of SK′,K may be slightly different from that of SeK,eK). A proof of the
following result, which suffices for our purposes, is given in the Appendix.


Lemma 7. Given a configuration K̃ ∈ K and a compact subset E ⊂ M \ SeK,eK, there exists


δ > 0 such that the map (x,K,K′) 7→ FK′,K(x) is uniformly continuous on E×Nδ(K̃)×Nδ(K̃).


While F−1∂M is the genuine discontinuity set for F , for purposes of distortion control one
often treats the preimages of homogeneity lines as though they were discontinuity curves also.
We introduce the following language: A set E ⊂M is said to be homogeneous if it is completely
contained in a connected component of one of the Hk, |k| ≥ k0 or k = 0. Let E ⊂ M be a
homogeneous set. Then F (E) may have more than one connected component. We further
subdivide each connected component into maximal homogeneous subsets and call these the
homogeneous components of F (E). For n ≥ 2, the homogeneous components of Fn(E) are
defined inductively: Suppose En−1,i, i ∈ In−1, are the homogeneous components of Fn−1(E),
for some index set In−1 which is at most countable. For each i ∈ In−1, the set En−1,i is a
homogeneous set, and we can thus define the homogeneous components of the single-step image
Fn(En−1,i) as above. The subsets so obtained, for all i ∈ In−1, are the homogeneous components
of Fn(E). Let E−n,i = E ∩ F−1


n (En,i). We call {E−n,i}i the canonical n-step subdivision of E,
leaving the dependence on the sequence implicit when there is no ambiguity.


For x, y ∈ M, we define the separation time s(x, y) to be the smallest n ≥ 0 for which Fnx
and Fny belong in different strips Hk or in different connected components ofM. Observe that
this definition is (Kn)-dependent.


3.3. Unstable curves. A connected C2-smooth curve W ⊂ M is called an unstable curve if
TxW ⊂ Cux for every x ∈ W . It follows from the invariant cones condition that the image of an
unstable curve under Fn is a union of unstable curves. Our unstable curves will be parametrized
by r: for a curve W , we write ϕ = ϕW (r).


For an unstable curve W , define κ̂W = supW |d2ϕW/dr
2|.


Lemma 8. There exist uniform constants Cc > 0 and ϑc ∈ (0, 1) such that the following holds.
Let W and FnW be unstable curves. Then


κ̂FnW ≤
Cc


2
(1 + ϑnc κ̂W ).


We call an unstable curve W regular if it is homogeneous and satisfies the curvature bound
κ̂W ≤ Cc. Thus for any unstable curve W , all homogeneous components of Fn(W ) are regular
for large enough n.


Given a smooth curve W ⊂M, define


JWFn(x) = ‖DxFnv‖/‖v‖


for any nonzero vector v ∈ TxW . In other words, JWFn is the Jacobian of the restriction Fn|W .
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Lemma 9 (Distortion bound). There exist uniform constants C ′d > 0 and Cd > 0 such that
the following holds. Given (Kn)Nn=0, if FnW is a homogeneous unstable curve for 0 ≤ n ≤ N ,
then


C−1
d ≤ e−C


′
d|FnW |


1/3 ≤ JWFn(x)


JWFn(y)
≤ eC


′
d|FnW |


1/3 ≤ Cd (6)


for every pair x, y ∈ W and 0 ≤ n ≤ N .


Finally, we state a result which asserts that very short homogeneous curves cannot acquire
lengths of order one arbitrarily fast, in spite of the fact that the local expansion factor is
unbounded.


Lemma 10. There exists a uniform constant Ce ≥ 1 such that


|FnW | ≤ Ce|W |1/2
n


,


if W is an unstable curve and FmW is homogeneous for 0 ≤ m < n.


The proofs of these results also follow closely those for the fixed scatterers case. For Lemma 8,
see [9]. For Lemmas 9 and 10, see [10]. (Lemma 10 follows readily by iterating the corresponding
one-step bound.)


3.4. Local stable manifolds. Given (Kn)n≥0, a connected smooth curve W is called a ho-
mogeneous local stable manifold, or simply local stable manifold, if the following hold for every
n ≥ 0:


(i) FnW is connected and homogeneous, and
(ii) Tx(FnW ) ⊂ Csx for every x ∈ FnW .


It follows from Lemma 6 that local stable manifolds are exponentially contracted under Fn.
We stress that unlike unstable curves, the definition of local stable manifolds depends strongly
on the infinite sequence of billiard maps defined by (Kn)n≥0.


For x ∈M, let W s(x) denote the maximal local stable manifold through x if one exists. An
important result is the absolute continuity of local stable manifolds. Let two unstable curves
W 1 and W 2 be given. Denote W i


? = {x ∈ W i : W s(x) ∩W 3−i 6= 0} for i = 1, 2. The map
h : W 1


? → W 2
? such that {h(x)} = W s(x) ∩ W 2 for every x ∈ W 1


? is called the holonomy
map. The Jacobian Jh of the holonomy is the Radon–Nikodym derivative of the pullback
h−1(mW 2 |W 2


∗ ) with respect to mW 1 . The following result gives a uniform bound on the Jacobian
almost everywhere on W 1


? .


Lemma 11. Let W 1 and W 2 be regular unstable curves. Suppose h : W 1
? → W 2


? is defined on
a positive mW 1-measure set W 1


? ⊂ W 1. Then for mW 1-almost every point x ∈ W 1
? ,


Jh(x) = lim
n→∞


JW 1Fn(x)


JW 2Fn(h(x))
, (7)


where the limit exists and is positive with uniform bounds. In fact, there exist uniform constants
Ah > 0 and Ch > 0 such that the following holds: If α(x) denotes the difference between the
slope of the tangent vector of W 1 at x and that of W 2 at h(x), and if δ(x) is the distance
between x and h(x), then


A−α−δ
1/3


h ≤ Jh ≤ Aα+δ1/3


h (8)


almost everywhere on W 1
? . Moreover, with θ = Λ−1/6 ∈ (0, 1),


|Jh(x)− Jh(y)| ≤ Chθ
s(x,y) (9)


holds for all pairs (x, y) in W 1
? , where s(x, y) is the separation time defined in Section 3.2.


The proof of Lemma 11 follows closely its counterpart for fixed configurations. The identity
in (7) is standard for uniformly hyperbolic systems (see [1, 17]), as is (9), except for the use of
separation time as a measure of distance in discontinuous systems; see [20,10].
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4. Preliminaries II: Evolution of measured unstable curves


4.1. Growth of unstable curves. Given a sequence (Km), an unstable curve W , a point
x ∈ W , and an integer n ≥ 0, we denote by rW,n(x) the distance between Fnx and the
boundary of the homogeneous component of FnW containing Fnx.


The following result, known as the Growth lemma, is key in the analysis of billiard dy-
namics. It expresses the fact that the expansion of unstable curves dominates the cutting by
∂M∪ ∪|k|≥k0∂Hk, in a uniform fashion for all sequences. The reason behind this fact is that
unstable curves expand at a uniform exponential rate, whereas the cuts accumulate at tan-
gential collisions. A short unstable curve can meet no more than t/τ̄min tangencies in a single
time step (see (1)), so the number of encountered tangencies grows polynomially with time
until a characteristic length has been reached. The proof follows verbatim that in the fixed
configuration case; see [10].


Lemma 12 (Growth lemma). There exist uniform constants Cgr > 0 and ϑ ∈ (0, 1) such that,
for all (finite or infinite) sequences (Kn)Nn=0, unstable curves W and 0 ≤ n ≤ N :


mW{rW,n < ε} ≤ Cgr(ϑ
n + |W |)ε .


This lemma has the following interpretation: It gives no information for small n when |W | is
small. For n large enough, such as n ≥ | log |W ||/| log ϑ|, one has mW{rW,n < ε} ≤ 2Cgrε|W |.
In other words, after a sufficiently long time n (depending on the initial curve W ), the majority
of points in W have their images in homogeneous components of FnW that are longer than
1/(2Cgr), and the family of points belonging to shorter ones has a linearly decreasing tail.


4.2. Measured unstable curves. A measured unstable curve is a pair (W, ν) where W is an
unstable curve and ν is a finite Borel measure supported on it. Given a sequence (Kn)∞n=0 and
a measured unstable curve (W, ν) with density ρ = dν/dmW , we are interested in the following
dynamical Hölder condition of log ρ: For n ≥ 1, let {W−


n,i}i be the canonical n-step subdivision
of W as defined in Section 3.2.


Lemma 13. There exists a constant C ′r > 0 for which the following holds: Suppose ρ is a
density on an unstable curve W satisfying | log ρ(x) − log ρ(y)| ≤ Cθs(x,y) for all x, y ∈ W .
Then, for any homogeneous component Wn,i, the density ρn,i of the push-forward of ν|Wn,i


by
the (invertible) map Fn|W−n,i satisfies


| log ρn,i(x)− log ρn,i(y)| ≤
(
C ′r
2


+
(
C − C ′r


2


)
θn
)
θs(x,y) (10)


for all x, y ∈ Wn,i.


Here θ is as in Lemma 11. We fix Cr ≥ max{C ′r, Ch, 2}, where Ch is also introduced in
Lemma 11, and say a measure ν supported on an unstable curve W is regular if it is absolutely
continuous with respect to mW and its density ρ satisfies


| log ρ(x)− log ρ(y)| ≤ Crθ
s(x,y) (11)


for all x, y ∈ W . As with s(·, ·), the regularity of ν is (Kn)-dependent. Notice that under this
definition, if a measure on W is regular, then so are its forward images. More precisely, in the
notation of Lemma 13, if ρ is regular, then so is each ρn,i. We also say the pair (W, ν) is regular
if both the unstable curve W and the measure ν are regular.


Remark 14. The separation time s(x, y) is connected to the Euclidean distance dM(x, y) in
the following way. If x and y are connected by an unstable curve W , then |FnW | ≥ ĉΛn|W | ≥
ĉΛndM(x, y) for 0 ≤ n < s(x, y). Since Fs(x,y)−1W is a homogeneous unstable curve, its length
is uniformly bounded above. Thus,


dM(x, y) ≤ CsΛ
−s(x,y) = Csθ


6s(x,y) (12)
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for a uniform constant Cs > 0. In particular, if ρ is a nonnegative density on an unstable


curve W such that log ρ is Hölder continuous with exponent 1/6 and constant CrC
−1/6
s , then ρ


is regular with respect to any configuration sequence.


Proof of Lemma 13. Consider n = 1 and take two points x, y on one of the homogeneous
components W1,i. Let the corresponding preimages be x−1, y−1. Since s(x−1, y−1) = s(x, y) + 1,
the bound (6) yields


| log ρ1,i(x)− log ρ1,i(y)| ≤
∣∣∣∣log


ρ(x−1)


JWF1(x−1)
− log


ρ(y−1)


JWF1(y−1)


∣∣∣∣
≤ | log ρ(x−1)− log ρ(y−1)|+ | logJWF1(x−1)− logJWF1(y−1)|
≤ Cθs(x,y)+1 + C ′d|W1,i(x, y)|1/3,


where |W1,i(x, y)| is the length of the segment of the unstable curve W1,i connecting x and y.
Because of the unstable cones, the latter is uniformly proportional to the distance dM(x, y)
of x and y. Recalling (12), we thus get C ′d|W1,i(x, y)|1/3 ≤ C ′′dθ


2s(x,y) ≤ C ′′dθ
s(x,y) for another


uniform constant C ′′d > 0. Let us now pick any Cr such that Cr ≥ 2C ′′d/(1 − θ). For then
Crθ + C ′′d ≤ 1+θ


2
Cr, and we have | log ρ1,i(x)− log ρ1,i(y)| ≤ C ′θs(x,y) with


C ′ ≤ Cθ + C ′′d = (C − Cr)θ + (Crθ + C ′′d) ≤ (C − Cr)θ +
1 + θ


2
Cr = Cθ +


1− θ
2


Cr. (13)


We may iterate (13) inductively, observing that at each step the constant C obtained at the
previous step is contracted by a factor of θ towards 1−θ


2
Cr. It is now a simple task to obtain (10).


The constant Cr was chosen so that the image of a regular density is regular and the image of
a non-regular density will become regular in finitely many steps. �


The following extension property of (11) will be necessary. We give a proof in the Appendix.


Lemma 15. Suppose W? is a closed subset of an unstable curve W , and that W? includes the
endpoints of W . Assume that the function ρ is defined on W? and that there exists a constant
C > 0 such that | log ρ(x) − log ρ(y)| ≤ Cθs(x,y) for every pair (x, y) in W?. Then, ρ can be
extended to all of W in such a way that the inequality involving log ρ above holds on W , the
extension is piecewise constant, minW ρ = minW? ρ, and maxW ρ = maxW? ρ.


4.3. Families of measured unstable curves. Here we extend the idea of measured unstable
curves to measured families of unstable stacks. We begin with the following definitions:


(i) We call ∪α∈EWα ⊂ M a stack of unstable curves, or simply an unstable stack, if E ⊂ R is
an open interval, each Wα is an unstable curve, and there is a map ψ : [0, 1]× E →M which
is a homeomorphism onto its image so that, for each α ∈ E, ψ


(
[0, 1]× {α}


)
= Wα.


(ii) The unstable stack ∪α∈EWα is said to be regular if each Wα is regular as an unstable curve.


(iii) We call (∪α∈EWα, µ) a measured unstable stack if U = ∪α∈EWα is an unstable stack and
µ is a finite Borel measure on U .


(iv) we say (∪α∈EWα, µ) is regular if (a) as a stack ∪α∈EWα is regular and (b) the conditional
probability measures µα of µ on Wα are regular. More precisely, {Wα, α ∈ E} is a measurable
partition of ∪α∈EWα, and {µα} is a version of the disintegration of µ with respect to this
partition, that is to say, for any Borel set B ⊂M, we have


µ(B) =


∫
E


µα(Wα ∩B) dP (α)


where P is a finite Borel measure on I. The conditional measures {µα} are unique up to a
set of P -measure 0, and (b) requires that (Wα, µα) be regular in the sense of Section 4.2 for
P -a.e. α.


Consider next a sequence (Kn)∞n=0 and a fixed n ≥ 1. Denote by Dn,i, i ≥ 1, the countably
many connected components of the setM\∪1≤m≤n(Fm)−1(∂M∪∪|k|≥k0∂Hk). In analogy with
unstable curves, we define the canonical n-step subdivision of a regular unstable stack ∪αWα:
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Let (n, i) be such that ∪αWα ∩ Dn,i 6= ∅, and let En,i = {α ∈ E : Wα ∩ Dn,i 6= ∅}. Pick one of
the (finitely our countably many) components En,i,j of En,i.


We claim ∪α∈En,i,j(Wα ∩ Dn,i) is an unstable stack, and define


ψn,i,j : [0, 1]× En,i,j → ∪α∈En,i,jWα ∩ Dn,i
as follows: for α ∈ En,i, ψn,i|[0,1]×{α} is equal to ψ|[0,1]×{α} followed by a linear contraction


from Wα to Wα ∩ Dn,i. For this construction to work, it is imperative that Wα ∩ Dn,i be
connected, and that is true, for by definition, Wα ∩ Dn,i is an element of the canonical n-step
subdivision of Wα. It is also clear that ∪α∈En,i,jFn(Wα ∩ Dn,i) is an unstable stack, with the
defining homeomorphism given by Fn ◦ ψn,i,j.


What we have argued in the last paragraph is that the Fn-image of an unstable stack ∪αWα


is the union of at most countably many unstable stacks. Similarly, the Fn-image of a measured
unstable stack is the union of measured unstable stacks, and by Lemmas 8 and 13, regular
measured unstable stacks are mapped to unions of regular measured unstable stacks.


ψ
E


(0, 1)


Figure 3. A schematic illustration of an unstable stack and its dynamics. The
regular unstable curves on the right are the images of the horizontal lines under
the homeomorphism ψ. The curves with negative slopes represent the countably
many branches of the n-step singularity set ∪1≤m≤n(Fm)−1(∂M∪ ∪|k|≥k0∂Hk).
The canonical n-step subdivision of the unstable curves yields countably many
unstable stacks.


The discussion above motivates the definition of measured unstable families, defined to be
convex combinations of measured unstable stacks. That is to say, we have a countable collection


of unstable stacks ∪α∈EjW
(j)
α parametrized by j, and a measure µ =


∑
j a


(j)µ(j) with the


property that for each j, (∪αW (j)
α , µ(j)) is a measured unstable stack and


∑
j a


(j) = 1. We


permit the stacks to overlap, i.e., for j 6= j′, we permit ∪αW (j)
α and ∪αW (j′)


α to meet. This is
natural because in the case of moving scatterers, the maps Fn are not one-to-one; even if two
stacks have disjoint supports, this property is not retained by the forward images. Regularity
for measured unstable families is defined similarly. The idea of canonical n-step subdivision
passes easily to measured unstable families, and we can sum up the discussion by saying that
given (Kn), push-forwards of measured unstable families are again measured unstable families,
and regularity is preserved.


So far, we have not discussed the lengths of the unstable curves in an unstable stack or


family. Following [10], we introduce, for a measured unstable family defined by (∪αW (j)
α , µ(j))


and µ =
∑


j a
(j)µ(j), the quantity


Z =
∑
j


a(j)


∫
R


1


|W (j)
α |


dP (j)(α). (14)


Informally, the smaller the value of Z/µ(M) the smaller the fraction of µ supported on short
unstable curves.
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For µ as above, letZn denote the quantity corresponding toZ for the push-forward
∑


k an,k µn,k
of the canonical n-step subdivision of µ discussed earlier. We have the following control on Zn:


Lemma 16. There exist uniform constants Cp > 1 and ϑp ∈ (0, 1) such that


Zn
µ(M)


≤ Cp


2


(
1 + ϑnp


Z
µ(M)


)
(15)


holds true for any regular measured unstable family.


This result can be interpreted as saying that given an initial measure µ which has a high
fraction of its mass supported on short unstable curves — yielding a large value of Z/µ(M) —
the mass gets quickly redistributed by the dynamics to the longer homogeneous components
of the image measures, so that Zn/µ(M) decreases exponentially, until a level safely below Cp


is reached. As regular densities remain regular (Lemma 13), and as the supremum and the
infimum of a regular density are uniformly proportional, Lemma 16 is a direct consequence of
the Growth lemma; see above. See [10] for the fixed configuration case; the time-dependent
case is analogous.


Definition 17. A regular measured unstable family is called proper if Z < Cpµ(M).


Notice that Z < Cpµ(M) implies, by Markov’s inequality and
∑


j a
(j)P (j)(R) = µ(M), that∑


j


a(j)P (j)
{
α ∈ R : |W (j)


α | ≥ (2Cp)−1
}
≥ 1


2
µ(M). (16)


In other words, if µ is proper, then at least half of it is supported on unstable curves of
length ≥ (2Cp)−1. Notice also that for any measured unstable family with Z <∞, Lemma 16
shows that the push-forward of such a family will eventually become proper. Starting from
a proper family, it is possible that Zn ≥ Cpµ(M) for a finite number of steps; however, (15)
implies that there exists a uniform constant np such that Zn < Cpµ(M) for all n ≥ np.


Remark 18. The results of Sections 4.1–4.3 can be summarized as follows:
(i) The Fn-image of an unstable stack is the union of at most countably many such stacks.
(ii) Regular measured unstable stacks are mapped to unions of the same, and
(iii) the Fn-image of a proper measured unstable family is proper for n ≥ np.


4.4. Statements of Theorems 1’–2’ and 4’. We are finally ready to give a precise statement
of Theorem 1’, which permits more general initial distributions than Theorem 1 as stated in
Section 2.2.


Theorem 1’. There exists ε > 0 such that the following holds. Let (∪αW i
α, µ


i), i = 1, 2, be
measured unstable stacks. Assume Z i <∞ and that the conditional densities satisfy | log ρiα(x)−
log ρiα(y)| ≤ Ciθs(x,y) for all x, y ∈ W i


α. Given γ > 0, there exist 0 < θγ < 1 and Cγ > 0 such
that ∣∣∣∣∫


M
f ◦ Fn dµ1 −


∫
M
f ◦ Fn dµ2


∣∣∣∣ ≤ Cγ(‖f‖∞ + |f |γ)θ
n
γ , n ≤ N,


for all sequences (Kn)Nn=0 ⊂ K (N ∈ N ∪ {∞}) satisfying d(Kn−1,Kn) < ε for 1 ≤ n ≤ N ,
and all γ-Hölder continuous f : M → R. The constant Cγ depends on max(C1, C2) and
max(Z1,Z2), while θγ does not.


Let us say a finite Borel measure µ is regular on unstable curves if it admits a representation
as the measure in a regular measured unstable family with Z < ∞, proper if additionally it
admits a representation that is proper. It follows from Lemmas 13 and 16 that in Theorem 1’,
after a finite number of steps depending on Ci and Z i, the pushforward of µi will become
regular on unstable curves and proper.


For completeness, we provide a proof of the following in the Appendix.







16 MIKKO STENLUND, LAI-SANG YOUNG, AND HONGKUN ZHANG


Lemma 19. Theorem 1’ generalizes Theorem 1.


Theorem 2’. This is obtained from Theorems 2 in exactly the same way as Theorem 1’ is
obtained from Theorem 1, namely by relaxing the condition on µi as stated.


As a matter of fact, instead of just Theorem 4, the following generalization is proved in
Section 8.1.


Theorem 4’. This is a similar extension of Theorem 4, i.e., of the local result, to initial
measures as stated in Theorem 1’.


We finish by remarking on our use of measured unstable stacks and families: The primary
reason for considering these objects is that in the proof we really work with measured unstable
curves and their images under Fn. “Thin enough” stacks of unstable curves behave in a way
very similar to unstable curves, and are treated similarly. Other generalizations are made so
we can include a larger class of initial distributions; moreover, to the extent that is possible, it
is always convenient to work with a class of objects closed under the operations of interest. See
Remark 18. We note also that our formulation here has deviated from [10] because of (fixable)
measurability issues with their formulation.


In view of the fact that our proof really focuses on curves, we will, for pedagogical reasons
consider separately the following two cases:


(1) The countable case, in which we assume that each initial distribution µi is supported
on a countable family of unstable curves, i.e., the stacks above consist of single curves.


(2) The continuous case, where we allow the µi to be as in Theorem 1’.


For clarity of exposition, we first focus on the countable case, presenting a synopsis of the proof
followed by a complete proof; this is carried out in Sections 5–7. Extensions to the continuous
case is discussed in Section 8.


5. Theorem 4: synopsis of proof


This important section contains a sketch of the proof, from beginning to end, of the “count-
able case” of Theorem 4; it will serve as a guide to the supporting technical estimates in the
sections to follow. We have divided the discussion into four parts: Paragraph A contains an
overview of the coupling argument on which the proof is based. The coupling procedure itself
follows closely [10]; it is reviewed in Paragraphs B and C. Having an outline of the proof in hand
permits us to isolate the issues directly related to the time-dependent setting; this is discussed
in Paragraph D. As mentioned in the Introduction, one of the goals of this paper is to stress
the (strong) similarities between stationary dynamics and their time-dependent counterparts,
and to highlight at the same time the new issues that need to be addressed.


For simplicity of notation, we will limit the discussion here to the “countable case” of The-
orem 4. That is to say, we assume throughout that the initial distributions µi, i = 1, 2, are
proper measures supported on a countable number of unstable curves; see Section 4.3.


A. Overview of coupling argument


The following scheme is used to produce the exponential bound in Theorem 4. Let (Kn), n ≤
N ≤ ∞ be an admissible (finite or infinite) sequence of configurations with associated composed
maps Fn = Fn◦· · ·◦F1. Given initial probability distributions µ1 and µ2 onM, we will produce
two sequences of nonnegative measures µ̄in, n ≤ N , with properties (i)–(iii) below:


(i) for i = 1, 2, µi =
∑


j≤n µ̄
i
j + µin with µ̄1


n(M) = µ̄2
n(M) for each n;


(ii) µ1
n(M) = µ2


n(M) ≤ Ce−an;


(iii) |
∫
f ◦ Fn+m dµ̄1


n −
∫
f ◦ Fn+m dµ̄2


n| ≤ Cfe
−amµ̄in(M), for any test function f .







DISPERSING BILLIARDS WITH MOVING SCATTERERS 17


Here µ̄in, i = 1, 2, are the components of µi coupled at time n; their relationship from time n
on is given by (iii). By (ii), the yet-to-be-coupled part decays exponentially. In practice, a
coupling occurs at a sequence of times 0 < t1 < t2 < · · · < tK < N . In particular, µ̄ij = 0, when


j 6= tk for all 1 ≤ k ≤ K, which means that µin remains unchanged between successive coupling
times.


It follows from (i)–(iii) above that∣∣∣∣∫ f ◦ Fn dµ1 −
∫
f ◦ Fn dµ2


∣∣∣∣ ≤ 2‖f‖∞ · µin/2(M) +
∑
j≤n/2


Cfe
−a(n−j)µ̄ij(M)


≤ 2‖f‖∞Ce−an/2 + Cfe
−an/2.


(17)


We indicate briefly below how, at time n where n = tk is a coupling time, we extract µ̄in
from µin−1 and couple µ̄1


n to µ̄2
n. Recall that in the hypotheses of Theorem 4, (Km)Nm=0 is adapted


to (K̃q, ε̃(K̃q), Ñ(K̃q))Qq=1. We assume Kn ∈ Nε̃( eKq)(K̃q) for some q. In fact, coupling times are


chosen so that Km is in the same neighborhood for a large number of m ≤ n leading up to n.


For simplicity, we write K̃ = K̃q, and F̃ = FeK,eK.
For the coupling at time n, we construct a coupling set Sn ⊂M analogous to the “magnets”


in [10] — except that it is a time-dependent object. Specifically,


Sn = ∪x∈fWn
W s
n(x)


where W̃ is a piece of unstable manifold of F̃ (here we mean unstable manifold of a fixed map


in the usual sense and not just an “unstable curve” as defined in Section 3.3), W̃n ⊂ W̃ is a


Cantor subset with mfW (W̃n)/|W̃ | ≥ 99
100


, and W s
n(x) is the stable manifold of length ≈ |W̃ |


centered at x for the sequence Fn+1, Fn+2, . . . (if N <∞, let Km = KN for all m > N).
It will be shown that at time n, the Fn-image of each of the measures µin−1, i = 1, 2, is again


the union of countably many regular measures supported on unstable curves. Temporarily let
us denote by ν̃in the part of (Fn)∗µ


i
n−1 that is supported on unstable curves each one of which


crosses Sn in a suitable fashion, meeting every W s
n(x) in particular. We then show that there


is a lower bound (independent of n) on the fraction of (Fn)∗µ
i
n−1 that ν̃in comprises, and couple


a fraction of ν̃1
n to ν̃2


n by matching points that lie on the same local stable manifold.


We comment on our construction of Sn: Given that Fm is close to F̃ for many m before


n, Fn-images of unstable curves will be roughly aligned with unstable manifolds of F̃ , hence


our choice of W̃ . In order to achieve the type of relation in (iii) above, we need to have
|Fn+m(x)−Fn+m(y)| → 0 exponentially in m for two points x and y “matched” in our coupling
at time n, hence our choice of W s


n. Observe that in our setting, the “magnets” Sn are necessarily
time-dependent.


To further pinpoint what needs to be done, it is necessary to better acquaint ourselves with
the coupling procedure. For simplicity, we assume in Paragraphs B and C below that all the


configurations in question lie in a small neighborhood Nε̃(K̃) of a single reference configura-


tion K̃. As noted earlier, details of this procedure follow [10]. We review it to set the stage
both for the discussion in Paragraph D and for the technical estimates in the sections to follow.


B. Building block of procedure: coupling of two measured unstable curves


We assume in this paragraph that µi, i = 1, 2, is supported on a homogeneous unstable
curveW i, and that the following hold at some time n ≥ 0: (a) the image FmW i is a homogeneous
unstable curve for 1 ≤ m ≤ n; (b) the push-forward measure (Fn)∗µ


i = νin has a regular density
ρin on FnW i = W i


n; and (c) W i
n crosses the magnet Sn “properly”, which means roughly that


(i) it meets each stable manifold W s
n(x), x ∈ W̃n, (ii) the excess pieces sticking “outside” of


the magnet Sn are sufficiently long, and (iii) part of W i
n is very close to and nearly perfectly


aligned with W̃ (for a precise definition of a proper crossing, see Definition 22).
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Due to their regularity, the probability densities ρin are strictly positive. Moreover, the
holonomy map h1,2


n : W 1
n ∩ Sn → W 2


n ∩ Sn has bounds on its Jacobian (Section 3.4). Thus,
we may extract a fraction ν̄in from each measure νin|(W i


n∩Sn) with (h1,2
n )∗ν̄


1
n = ν̄2


n and ν̄1
n(M) =


ν̄2
n(M) = ζ for some ζ > 0. Because each x ∈ W 1


n ∩ Sn lies on the same stable manifold as
h1,2
n (x) ∈ W 2


n ∩Sn,∣∣∣∣∫ f ◦ Fn+m,n+1 dν̄1
n −


∫
f ◦ Fn+m,n+1 dν̄2


n


∣∣∣∣
=


∣∣∣∣∫ f ◦ Fn+m,n+1 dν̄1
n −


∫
f ◦ Fn+m,n+1 ◦ h1,2


n dν̄1
n


∣∣∣∣ ≤ |f |γ(ĉ−1Λ−m)γζ


(18)


by (4), for all γ-Hölder functions f and m ≥ 0. (We have assumed that the local stable
manifolds associated with the holonomy map have lengths ≤ 1.) The splitting in Paragraph A
is given by µi = µin + µ̄in, where (Fn)∗µ̄


i
n = ν̄in corresponds to the part coupled at time n and


(Fn)∗µ
i
n = νin − ν̄in to the part that remains uncoupled. For 0 ≤ m < n, we set µ̄im = 0 and


µim = µi.
In more detail, it is in fact convenient to couple each measure to a reference measure m̃n


supported on W̃ : Once two measures are coupled to the same reference measure, they are also
coupled to each other. Define the uniform probability measure


m̃n( · ) = mfW ( · ∩Sn)/mfW (W̃ ∩Sn) (19)


on W̃ ∩ Sn and write hin for the holonomy map W̃ ∩ Sn → W i
n ∩ Sn. Then (hin)∗m̃n is a


probability measure on W i
n ∩Sn. We assume that h = hin satisfies


|(Jh ◦ h−1)−1 − 1| ≤ 1
10
. (20)


By the regularity of the probability densities ρin, there exists a number ζ > 0 such that


νin(W i
n ∩Sn) ≥ 2ζeCr (i = 1, 2). (21)


Setting ν̄in = ζ(hin)∗m̃n, we have ν̄1
n(M) = ν̄2


n(M) = ζ. Let ρ̄in be the density of ν̄in (so that it is
supported on W i


n ∩Sn). By (20) and (21), one checks that sup ρ̄in ≤ 5
8
· infW i


n
ρin, so that what


we couple is strictly a fraction of νin.
In preparation for future couplings, we look at νin − ν̄in, the images of the uncoupled parts


of the measures. First, W i
n can be expressed as the union of W i


n ∩ Sn and W i
n \ Sn, the


latter consisting of countably many gaps “inside” the magnet Sn and two excess pieces sticking
“outside” of it. Moreover, there is a one-to-one correspondence between the gaps V i ⊂ W i


n \Sn


and the gaps Ṽ ⊂ W̃ \ W̃n. Notice that νin − ν̄in has a positive density bounded away from
zero on the curve W i


n, but that density is not regular as ν̄in is only supported on the Cantor
set W i


n ∩ Sn. We decompose νin − ν̄in as follows: First we separate the part that lies on the
excess pieces of W i


n “outside” the magnet. Let (W i
n)′ denote the curve that remains. Viewed


as a density on W i
n ∩Sn, ρ̄in is regular, since Ch ≤ Cr. It can be continued to a regular density


on all of (W i
n)′ without affecting its bounds (Lemma 15). Letting ρ̌in denote this extension, we


have
(ρin − ρ̄in)|(W i


n)′ = (ρin − ρ̌in)|(W i
n)′ +


∑
V i⊂(W i


n)′\Sn


1V i ρ̌
i
n ,


where the sum runs over the gaps V i in (W i
n)′. Notice that each of the densities ρ̌in|V i on the


gaps is regular. While (ρin− ρ̄in)|(W i
n)′ is in general not regular, it is not far from regular because


both ρin and ρ̌in are regular and (ρin − ρ̌in) > 3
8
ρin.


C. The general procedure


Still assuming that all Kn lie in a small neighborhood Nε̃(K̃) of a single reference config-


uration K̃, we now consider a proper initial probability measure µ =
∑


α∈A να, consisting of
countably many regular measures να, each supported on a regular unstable curve Wα. As
explained in Paragraph B, the problem is reduced to coupling a single initial distribution to
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reference measures on W̃ . Leaving the determination of suitable coupling times t1 < t2 < · · ·
for later, we first discuss what happens at the first coupling:


The first coupling at time n = t1. Denote by Wα,n,i the components of FnWα resulting from its
canonical subdivision, where i runs over an at-most-countable index set. Similarly, the push-
forward measure is (Fn)∗να =


∑
i να,n,i, where each να,n,i is supported on Wα,n,i. As before,


each να,n,i has a regular density ρα,n,i on Wα,n,i.
For each α ∈ A, let Iα,n be the set of indices i for which Wα,n,i crosses Sn properly, as


discussed earlier. This set is finite, as |FnWα| < ∞ and |Wα,n,i| is uniformly bounded from
below (by the width of the magnet) for i ∈ Iα,n.


Let ζ1 ∈ (0, 1) be such that∑
α∈A


∑
i∈Iα,n


να,n,i(Wα,n,i ∩Sn) ≥ 2ζ1e
Cr . (22)


As in (19), let m̃n denote the uniform probability measure on W̃ ∩Sn and write hα,n,i for the


holonomy map W̃ ∩ Sn → Wα,n,i ∩ Sn, for each i ∈ Iα,n. Then (hα,n,i)∗m̃n is a probability
measure on Wα,n,i ∩Sn which is regular and nearly uniform. We set


ν̄α,n,i = λα,n,i (hα,n,i)∗m̃n, (23)


for each i ∈ Iα,n, where


λα,n,i = ζ1 ·
να,n,i(Wα,n,i ∩Sn)∑


β∈A
∑


j∈Iβ,n νβ,n,j(Wβ,n,j ∩Sn)
.


Then ∑
α∈A


∑
i∈Iα,n


ν̄α,n,i(M) =
∑
α∈A


∑
i∈Iα,n


λα,n,i = ζ1 .


Moreover, the density ρ̄α,n,i of ν̄α,n,i on Wα,n,i ∩Sn is regular (and in fact nearly constant). As
in Paragraph B, the density can be extended in a regularity preserving way (Lemma 15) to
the curve (Wα,n,i)


′ obtained from Wα,n,i by cropping the excess pieces outside the magnet. We
denote the extension by ρ̌α,n,i. As before, (ρα,n,i − ρ̌α,n,i)|(Wα,n,i)′ is generally not regular, and
to control it, we record the following bounds:


Lemma 20. For each α ∈ A and i ∈ Iα,n,
4
5
ζ1e
−Cr · sup


Wα,n,i


ρα,n,i ≤ inf
(Wα,n,i)′


ρ̌α,n,i ≤ sup
(Wα,n,i)′


ρ̌α,n,i ≤ 5
8
· inf
Wα,n,i


ρα,n,i . (24)


Proof. We begin by observing that the density of (hα,n,i)∗m̃n on Wα,n,i ∩Sn has the expression


(mfW (W̃ ∩ Sn)Jhα,n,i ◦ (hα,n,i)
−1)−1 and that the supremum of a regular density is bounded


by eCr times its infimum. By (20) and (22), the third inequality in (24) follows easily. Coming
to the first inequality in (24), it is certainly the case that∑


β∈A


∑
j∈Iβ,n


νβ,n,j(Wβ,n,j ∩Sn) ≤ µ(M) ≤ 1.


As the density ρα,n,i is regular,


λα,n,i ≥ ζ · να,n,i(Wα,n,i ∩Sn) ≥ ζe−Cr · sup
Wα,n,i


ρα,n,i ·mWα,n,i
(Wα,n,i ∩Sn).


Again by (20),


inf
(Wα,n,i)′


ρ̌α,n,i = λα,n,i · inf
Wα,n,i∩Sn


(mfW (W̃ ∩Sn)Jhα,n,i ◦ (hα,n,i)
−1)−1 ≥ 9


10


λα,n,i


mfW (W̃ ∩Sn)


≥ 9
10
ζe−Cr ·


mWα,n,i
(Wα,n,i ∩Sn)


mfW (W̃ ∩Sn)
· sup
Wα,n,i


ρα,n,i ≥
(


9
10


)2
ζe−Cr · sup


Wα,n,i


ρα,n,i .


This finishes the proof. �
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To recapitulate, in the language of Paragraph A, we have split µ into µ̄n + µn with


(Fn)∗µ̄n =
∑
α∈A


∑
i∈Iα,n


ν̄α,n,i . (25)


The measures (Fn)∗µ̄n and ζ1 m̃n are coupled.


Going forward. To proceed inductively, we need to discuss the uncoupled part µn (for n = t1),
which has the form


(Fn)∗µn =
∑
α∈A


∑
i/∈Iα,n


να,n,i +
∑
α∈A


∑
i∈Iα,n


(να,n,i − ν̄α,n,i).


The measures να,n,i in the first term above are regular, so we leave them alone. The measures
να,n,i − ν̄α,n,i in the second term are further subdivided as in Paragraph B, into the regular
densities on the excess pieces, ρ̌α,n,i1V on the gaps V ⊂ (Wα,n,i)


′ \Sn of the Cantor sets Sn ∩
Wα,n,i, and (ρα,n,i − ρ̌α,n,i)|(Wα,n,i)′ , which are in general not quite regular. Because of the
arbitrarily small gaps in (Wα,n,i)


′ \Sn, the resulting family is not proper.
We allow for a recovery period of r1 > 0 time steps during which canonical subdivisions


continue but no coupling takes place. The purpose of this period is to allow the regularity of
densities of the type (ρα,n,i − ρ̌α,n,i)|(Wα,n,i)′ to be restored, and short curves to become longer
on average (as a result of the hyperbolicity). Because of the arbitrarily short gaps, a fraction of
the measure will not recover sufficiently to become proper no matter how long we wait, but this
fraction decreases exponentially with time. Specifically, for all sufficiently large m, the m-step
push-forward (Ft1+m)∗µt1 of the uncoupled measure (Ft1)∗µt1 can be split into the sum of two
measures µP


t1,m
and µG


t1,m
, both consisting of countably many regular measured unstable curves,


such that µP
t1,m


is a proper measure and µG
t1,m


(M) = C1λ
m
1 for some C1 ≥ 1 and λ1 ∈ (0, 1).


Choosing r1 large enough, µG
t1,r1


(M) is thus as small as we wish.


At time t1 + r1 we are left with a proper measure µP
t1,r1


having total mass 1− ζ1−C1λ
r1
1 , and


another measure µG
t1,r1


supported on a countable union of short curves. We consider µP
t1,r1


, and
assume that after s1 > 0 steps a sufficiently large fraction of the push-forward of this measure
crosses the magnet “properly”. At time t2 = t1 + r1 + s1, we perform another coupling in the
same fashion as the one performed at time t1, this time coupling a ζ2-fraction of (Ft2,t1)∗µ


P
t1,r1


to the measure ζ2(1− ζ1 − C1λ
r1
1 ) m̃t2 .


The cycle is repeated: Following a recovery period of length r2, i.e., at time t2 + r2, the
measure of mass (1−ζ2)(1−ζ1−C1λ


r1
1 ) left from the second coupling can be split into a proper


part µP
t2,r2


and a non-proper part µG
t2,r2


, the latter having mass C2λ
r2
2 (1−ζ1−C1λ


r1
1 ). At the same


time, most of µG
t1,r1


has now become proper: the fraction of µG
t1,r1


that still has not recovered


at time t2 + r2 has mass C1λ
r2+(t2−t1)
1 . We wait another s2 steps, until time t3 = t2 + r2 + s2,


for a sufficiently large fraction of the push-forward measure to cross the magnet properly. At
time t3, we couple a ζ3-fraction of (Ft3,t2)∗µ


P
t2,r2


plus the Ft3,t1-image of the part of µG
t1,r1


that


has recovered, to a measure on W̃ , and so on.


Our main challenge is to prove that the estimates above are uniform, i.e., there exist C ≥ 1,


ζ, λ ∈ (0, 1) and r, s ∈ Z+, independently of the sequence (Kn) provided each Kn ∈ Nε̃(K̃), so
that the scheme above can be carried out with Ci = C, ζi = ζ, ri = r, λi = λ and si = s for all i.


Assuming these uniform estimates, the situation for Kn ∈ Nε̃(K̃), all n, can be summarized as
follows:


Summary. We push forward the initial distribution, performing couplings with the aid of a
time-dependent “magnet” at times t1 < t2 < . . . , and performing canonical subdivisions (for
connectedness and distortion control) in between. The tk’s are r + s steps apart, with t1
depending additionally on the initial distribution µ. At each coupling time tk, a ζ-fraction of
the uncoupled measure that is proper is coupled. At the same time, a small fraction of the still
uncoupled measure becomes non-proper due to the small gaps in the magnet. This non-proper
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part regains “properness” thereby returning to circulation exponentially fast, the exceptional
set constituting a fraction Cλm after m steps. Simple arithmetic shows that by such a scheme,
the yet-to-be coupled part of µ has exponentially small mass. This implies exponential memory
loss.


D. What makes the proof work in the time-dependent case


We now return to the full setting of Theorem 4, where we are handed a sequence (Kn)Nn=0


adapted to (K̃q, ε̃(K̃q), Ñ(K̃q))Qq=1. Exponential memory loss of this sequence must necessarily


come from the corresponding property for F̃q = FeKq ,eKq . The question is: how does the expo-


nential mixing property of a system pass to compositions of nearby systems? Such a result
cannot be taken for granted, for in general mixing involves sets of all sizes, and smaller sets
naturally take longer to mix, while two systems that are a positive distance apart will have
trajectories that follow each other up to finite precision for finite times. That is to say, once the
neighborhood is fixed, perturbative arguments are not effective for treating arbitrarily small
scales. These comments apply to iterations of fixed maps as well as time-dependent sequences.


What is special about our situation is that there is a characteristic length ` to which images
of all unstable curves tend to grow exponentially fast under F n, for all F = FK,K,K ∈ K, before
they get cut — with the exception of exponentially small sets (see Lemma 12). The presence
of such a characteristic length suggests that to prove exponential mixing, it may suffice to
consider rectangles aligned with stable and unstable directions that are ≥ ` in size, and to treat
separately growth properties starting from arbitrarily small length scales. These ideas have
been used successfully to prove exponential correlation decay for classical billiards, and will be
used here as well.4


To carry out the program outlined in Paragraphs A–C, we need to prove that for each K̃q,
the following holds, with uniform bounds, for all (Kn) in a sufficiently small neighborhood of


K̃q:
(1) Uniform mixing on finite scales. We will show that there is a uniform lower bound on the
speeds of mixing for rectangles of sides ≥ ` for the time-dependent maps defined by (Kn). For


F̃q = FeKq ,eKq , this is proved in [3,4], and what we prove here is effectively a perturbative version


for time-dependent sequences in a small enough neighborhood of F̃q. Such a result is feasible
because it involves only finite-size objects for finite times. Caution must be exercised still, as


the maps involved are discontinuous. This result gives the s = s(K̃q) asserted in Paragraph C.


(2) Uniform structure of magnets. To ensure that a definite fraction of measure is coupled
when a measured unstable curve crosses the magnet, a uniform lower bound on the density


of local stable manifolds in Sn is essential: we require mfW (W̃n)/|W̃ | ≥ 99
100


; see Paragraph A.
In fact, we need more than just a minimum fraction: uniformity in the distribution of small
gaps in Sn is also needed. Following a coupling, they determine how far from being proper the
uncoupled part of the measure is; see Paragraph C. As Sn, the magnet used for coupling at
time n, is constructed using the local stable manifolds of Fn, Fn+1, . . . , the results above must
hold uniformly for all relevant sequences.


(3) Uniform growth of unstable curves. This very important fact, which takes into consideration
both the expansion due to hyperbolicity of the map and the cutting by discontinuities and
homogeneity lines, is used in more ways than one: It is used to ensure that regularity of
densities is restored and most of the uncoupled measure becomes proper at the end of the
“recovery periods”. The uniform r and λ asserted in Paragraph C are obtained largely from
the uniform structure of magnets, i.e., item (2) above, together with the growth results in


4The ideas alluded to here are applicable to large classes of dynamical systems with some hyperbolic properties
including but not limited to billiards; they were enunciated in some generality in [20], which also proved
exponential correlation decay for the periodic Lorentz gas.
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Section 4 (as well as inductive control from previous steps). Growth results are also used
to produce a large enough fraction of sufficiently long unstable curves at times tk + r. That
together with the uniform mixing in item (1) permits us to guarantee the coupling of a fixed
fraction ζ at time tk+1.


Item (1) above is purely perturbative as we have discussed; item (2) is partially perturbative:


proximity to K̃q is used to ensure that Sn has some of the desired properties. Item (3) is
strictly nonperturbative: we do not derive the properties in question from the proximity of the


composed sequence Fn ◦ · · · ◦ F2 ◦ F1 to F̃ n
q . Instead, we show that these properties hold true,


with uniform bounds, for all sequences (Kn) with Kn ∈ K. In the case of genuinely moving


scatterers, the constants r, C and ζ all depend on the relevant reference configuration K̃q,
through the curve W̃ in whose neighborhood the couplings occur. A priori, the same is true of


λ, although, as we will show, λ is in fact independent of K̃q.


6. Main ingredients in the proof of Theorem 4


We continue to develop the main ideas needed in the proof of Theorem 4, focusing first on the
countable case and addressing issues that have been raised in the synopsis in the last section.
As in Sections 3 and 4, all configuration pairs whose billiard maps are discussed are assumed
to be admissible and in K. Further conditions on (Kn), such as close proximity to a reference
configuration, will be stated explicitly. Many of the results below are parallel to known results
for classical billiards; see e.g. [10].


6.1. Local stable manifolds. Given (Kn)∞n=0, we let W s(x) denote the maximal (possibly
empty, homogeneous) local stable manifold passing through the point x ∈M for the sequence
of maps (Fn)n≥1. Recall that W s(x) has positive length if and only if the trajectory Fnx does
not approach the “bad set” ∂M∪ ∪|k|≥k0∂Hk too fast as a function of n. Based on this fact,
the size of local stable manifolds may be quantified as follows: Let rs(x) denote the distance
of x from the nearest endpoint of W s(x) as measured along W s(x). A standard computation,
which we omit, shows that for an arbitrary unstable curve W through x,


rs ≥ C̃−1 inf
n≥0


Λn rW,n ≡ usW , (26)


where C̃ > 0 is a uniform constant and rW,n was introduced in the beginning of Section 4.1.
In Paragraph D, item (2), of the Synopsis, we identified the need for certain uniform properties


of local stable manifolds, such as the density of stable manifolds of uniform length on unstable
curves. The next lemma provides a basic result in this direction.


Lemma 21. Given a > 0 and A > 0, there exist s′ ∈ Z+ and L > 0 such that for any (Kn)∞n=0,


every unstable curve W̃ has the property


mfW{usW ≥ A
∣∣W̃ ∣∣} ≥ (1− a)|W̃ | (27)


provided (i) W̃ is located in the middle third of a homogeneous unstable curve W for which


Fs′W has a single homogeneous component, and (ii) |W̃ | ≤ L|W |/3.


Proof. Since Fs′W consists of a single homogeneous component, we have


rW,n(x) ≥ ĉΛnrW,0(x) ∀x ∈ W, 0 ≤ n ≤ s′,


rW,n(x) ≥ rfW,n(x) ∀x ∈ W̃ , 0 ≤ n ≤ s′,


rW,0(x) ≥ |W |/3 + rfW,0(x) ∀x ∈ W̃ .
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Using these facts and the Growth Lemma, we can estimate that


mfW{usW < A|W̃ |} ≤
∑
n≥0


mfW{rW,n < C̃A|W̃ |Λ−n}


≤
∑
n≤s′


mfW{rW,0 < ĉ−1C̃A|W̃ |Λ−2n}+
∑
n>s′


mfW{rfW,n < C̃A|W̃ |Λ−n}


≤
∑
n≤s′


mfW{rfW,0 < ĉ−1C̃A|W̃ |Λ−2n − |W |/3}+
∑
n>s′


Cgr(ϑ
n + |W̃ |)C̃A|W̃ |Λ−n .


In the last line, the first sum vanishes if we take L ≤ ĉC̃−1A−1 and the Growth Lemma


yields the bound on the second sum. The second sum is then < a|W̃ | if s′ is so large that
Cgr(1+LL0/3) eCA


(Λ−1)Λs′
≤ a, where L0 here is the maximum length of a homogeneous unstable curve. �


6.2. Magnets. We now define more precisely the objects Sn in Paragraph A of the Synopsis.
Recall that Sn is constructed using stable manifolds W s


n(x) with respect to the sequence of
maps Fn, Fn+1, Fn+2, . . . . When what happens before time n is irrelevant to the topic under
discussion, it is simpler notationally to set n = 0 (by shifting and renaming indices in the
original sequence). That is what we will do here as well as in the next few subsections.


We fix a reference configuration K̃ ∈ K, and denote F̃ = FeK,eK. Let s′ and L be given by


Lemma 21 with A = 1
2


and a = 0.01. We pick a piece of unstable manifold W̃ u
+ of F̃ (more


than just an unstable curve) with the property that W̃ u
+ is homogeneous and F̃ s′W̃ u


+ has a


single homogeneous component. Let W̃ u ⊂ W̃ u
+ be the subsegment of W̃ u


+ half as long and


located at the center. Then there exists ε′ > 0 such that Fs′W̃ u has a single homogeneous


component for any Kn ∈ Nε′(K̃), 1 ≤ n ≤ s′. Let W̃ ⊂ W̃ u be located at the center of W̃ u


with |W̃ | = L|W̃ u|/3. Lemma 21 then tells us that for (Kn) as above and W̃0 := {x ∈ W̃ :


usfWu
(x) ≥ |W̃ |/2}, we are guaranteed that mfW (W̃0)/|W̃ | ≥ 99


100
. The set S0 = ∪x∈fW0


W s(x) is


the magnet defined by W̃ and the sequence (Kn).


Additional upper bounds will be imposed on |W̃ | to obtain the magnet used in the proof of


Theorem 4. The size of the neighborhood Nε′(K̃) will also be shrunk a finite number of times
as we go along.


Now let W be any unstable curve that crosses S0 completely, in the sense that it meets


W s(x) for each x ∈ W̃0 with excess pieces on both sides, and let h denote the holonomy map


from W̃ ∩S0 → W ∩S0.


Definition 22. We say the crossing is proper if for a uniform constant ℵ > 0 to be determined,


the following hold: (i) W is regular, (ii) the distance between any x ∈ W̃0 and h(x) as measured


along W s(x) is less than ℵ|W̃ |, and (iii) each of the two excess pieces “outside” the magnet is


more than |W̃ | units long.


We need ℵ to be small enough that (20), i.e., |(Jh◦h−1)−1−1| ≤ 1
10


, is guaranteed in proper
crossings. To guarantee (20), we need, by (8), both (i) the distance between x and h(x) and


(ii) the difference between the slopes of W̃0 and W̃ at x and h(x) respectively, to be small. (i)


is bounded by ℵ|W̃ |. Observe that (ii) is also (indirectly) controlled by ℵ: since both W and


W̃ are regular curves (real unstable manifolds of F̃ are automatically regular), there is a fixed
upper bound on their curvatures. Thus the shorter the curves, the closer they are to straight


lines. Now since W meets the stable manifolds at the two ends of W̃ at distances < ℵ|W̃ | from


W̃ , taking ℵ small forces the slopes of W and W̃ to be close. Further upper bounds on ℵ may
be imposed later.


Note on terminology. In the discussion to follow, the setting above is assumed, and a number
of constants referred to as “uniform constants” will be introduced. This refers to constants
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that are independent of K̃ for as long as K̃ ∈ K, and they are independent of (Kn), W̃ u, W̃ or


W̃0 provided these objects are chosen according to the recipe above.


6.3. Gap control. We discuss here the distribution of gap sizes of the magnet, issues about
which were raised in the Synopsis. The setting, including S0, is as in Section 6.2.


Recall that a point x ∈ W̃ belongs to the Cantor set W̃0 if and only if rfWu,k(x) ≥ C̃Λ−k|W̃ |/2
for every k ≥ 0. We define the rank of a gap Ṽ in W̃ \ W̃0 to be the smallest R such that


rfWu,R(x) < C̃Λ−R|W̃ |/2 holds for some x ∈ Ṽ . Observe that R so defined is also the smallest


number for which FRṼ meets the “bad set” ∂M∪ ∪|k|≥k0∂Hk: Clearly, FkṼ could not have


met the bad set for k < R. On the other hand, FRṼ must meet the bad set, or the minimum


of rfWu,R on Ṽ would occur on one of its end points, which cannot happen for a gap (excess


pieces are not gaps). Notice that this implies that FR−1Ṽ must cross (transversally) F−1
R ∂Hk


for some k, and if it crosses F−1
R ∂M , then it automatically crosses F−1


R ∂Hk for infinitely many
k.


Consider next an unstable curve W that crosses S0 properly, and let W0 = W ∩S0. Each


gap V ⊂ W \W0 corresponds canonically to a unique gap Ṽ ⊂ W̃ \ W̃0, as their corresponding
end points are connected by local stable manifolds γs1 and γs2 in S0. We define the rank of V


to be that of Ṽ , and claim that the rank of V is also the first time FRV meets the bad set. To


see this, consider the Fn-images of the region bounded by V, Ṽ , γs1 and γs2. Since Fn(γsi ) avoid
the bad set (which consists of horizontal lines), it follows that for each n, Fn(V ) crosses the


bad set if and only if Fn(Ṽ ) does.
Let W be as above. For b > 0, we consider the dynamically defined Cantor set


W b
0 = {x ∈ W ′ : rW,k ≥ bΛ−k|W̃ | ∀ k ≥ 0}. (28)


For W = W̃ u and b = 1
2
C̃, W b


0 = W̃0. We observe that, for b ≤ ĉ, with ĉ as in (4), the definition


of the set W b
0 does not depend on the part W \W ′ “outside” the magnet. This is because of


the length of each of the two components of W \W ′ and the expansion in (4). Like W̃0, W b
0 is


a Cantor set, and the ranks of the gaps of W \W b
0 have the same characterizations as the gaps


of W̃ u \ W̃0.
The proofs below are a little sketchy, as there are no new issues in the time-dependent case.


Lemma 23. There exists a uniform constant b̄ ≤ ĉ such that the following hold for ℵ small
enough: Let W be an arbitrary unstable curve crossing S0 properly, and let W0 = W ∩ S0.
Then


(i) W0 ⊂ W b̄
0 , and


(ii) through every point of W b̄
0 there is a local stable manifold which meets W̃ .


Proof. (i) Let x̃ ∈ W̃0, and denote by x ∈ W0 the intersection of W s(x̃) and W . The assertion
follows since for some a ∈ (0, 1) depending only on the cones, dM(Fnx̃, ∂M∪ ∪|k|≥k0∂Hk) ≥
aC̃Λ−n|W̃ |/2 for all n ≥ 0, while dM(Fnx,Fnx̃) ≤ ĉ−1Λ−nℵ|W̃ | for all n ≥ 0. In particular,


b̄ = min(ĉ, aC̃/4) suffices. (ii) At each point x ∈ W b̄
0 the local stable manifold W s(x) extends


at least b̄C̃−1|W̃ | units on both sides of W , proving (ii) for ℵ sufficiently small. �


We record next a tail bound for gaps of dynamically defined Cantor sets.


Lemma 24. There exists a uniform constant C ′g > 0 such that if W crosses S0 properly, then


for any b > 0 and R ≥ 1, we have 5


mW


{
x ∈ W ′ : inf


{
k ∈ N : rW,k(x) < bΛ−k|W̃ |


}
∈ [R,∞)


}
≤ bC ′gΛ−R|W̃ | . (29)


5We use the convention that the infimum equals ∞ if it does not exist in N.
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Proof. The Growth Lemma yields the following upper bound on the left side of (29):∑
k≥R


mW{rW,k < bΛ−k|W̃ |} ≤ bCgr|W̃ |
∑
k≥R


(ϑk + |W |)Λ−k ≤ bCgrC̃|W̃ |
(1 + L0)


1− Λ−1
Λ−R,


where L0 is the maximum length of a (connected) unstable curve. �


The following is the result we need.


Lemma 25. There exist uniform constants Cg > 0 and cg > 0 for which the following hold:
Let S0 be as above, and let W be an arbitrary unstable curve which crosses S0 properly. Then


(a) for every R ≥ 0,


mW{x ∈ W : x is in a gap of rank ≥ R} ≤ CgΛ−R|W | ; (30)


(b) for any gap V ⊂ W \W0 of any rank R ≥ 0, FR−1V is a homogeneous unstable curve and


|FRV | ≥ cgΛ−R|W̃ |. (31)


Proof of Lemma 25. (a) For W = W̃ , the result follows immediately from Lemma 24. For
general W , a separate argument is needed as W ∩ S0 is not exactly of the form in (28). Let


b̄ be such that W0 ⊂ W b̄
0 (Lemma 23(i)), and let V be a gap of W \ W0 of rank R. Then


V is the union V ∩ W b̄
0 and a collection of gaps of W \ W b̄


0 . We observe that these gaps
have ranks ≥ R, because of the characterization of rank (for both kinds of gaps) as the first


time their images meet the bad set. As for the measure of V ∩ W b̄
0 , by Lemma 23(ii) and


the properties of the Jacobian of the holonomy map h : W̃ ∩ (∪x∈W b̄
0
W s(x)) → W , we have


mW (V ∩W b̄
0 ) ≤ 11


10
mfW (h−1(V ∩W b̄


0 )) ≤ 11
10


mfW (Ṽ ).


Summing over gaps V of rank ≥ R in W \W0 and applying Lemma 24 to the gaps of W b̄
0


and W̃0 (recalling |W̃ | < |W |), we obtain


mW


(
union of all gaps V ⊂ W \W0 of rank ≥ R


)
≤ (b̄+ 11


10
)C ′gΛ−R|W |


and (a) is proved by choosing Cg large enough.


To prove (b), first make the argument for gaps Ṽ of W̃0 (which is straightfoward), and


then leverage the connection between V and Ṽ via the stable manifolds connecting their end
points. �


6.4. Recovery of densities. As explained in the Synopsis, the uncoupled part of the measure
has to ‘recover’ and become proper again before it is eligible for the next coupling. Postponing
the full picture to later, we focus here on the situation of the last two subsections, i.e., a


reference configuration K̃, a sequence (Kn) with Kn ∈ Nε(K̃) for 0 ≤ n ≤ s′, and a magnet S0.
We assume that a coupling takes place at time 0, and consider the recovery process thereafter.


6.4.1. Single measured unstable curve. We treat first the case of a single measured unstable
curve (W, ν) making a proper crossing of the magnet, as described in Paragraph B of the
Synopsis with n = 0. We denote by ρ and ρ̄ the densities of ν and of the coupled part of
ν respectively. We also let W ′ be the shortest subsegment of W containing W ∩ S0, so that
W \W ′ consists of the two excess pieces. As in Paragraph B, we extend ρ̄ to a regular density
called ρ̌ on W ′, and decompose the uncoupled part of ρ into densities of the following types:


(a) ρ|W\W ′ ;
(b) (ρ− ρ̌)|W ′ (this will be referred to as the “top density”), and
(c) ρ̌|V as V ranges over all the gaps of W .


We consider separately each of these densities (counting ρ̌|V for different V as different mea-
sures), and discuss their recovery times, meaning the time it takes for such a measure to become
proper (see Definition 17).
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(a) Since these are regular to begin with, the only reason why they may not be proper is that


the excess pieces may be too short. Thus their recovery times may depend on |W̃ | (each excess


curve has length ≥ |W̃ |), but are otherwise uniformly bounded and independent of (Kn).


(c) As discussed in the Synopsis, the density ρ̌|V for each V is regular to begin with. Thus
recovery time has only to do with length. For a gap of rank R, recall that the image FR−1V
is a regular homogeneous unstable curve. Denoting Z = ν̌(V )/|V | where ν̌ is the measure


on V with density ρ̌, we have ZR−1/ν̌(V ) = 1/|FR−1V | ≤ C2
e /|FRV |2 ≤ C2


e c
−2
g |W̃ |−2Λ2R by


Lemma 10 and (31). In the next step, the curve VR = FR−1V will get cut, but we may proceed
with the aid of Lemma 16 and obtain Zn/ν(V ) ≤ Cp for n ≥ R− 1 + (2R log Λ + | logC2


e c
−2
g |+


2| log |W̃ ||)/| log ϑp|. In other words, we have proved


Lemma 26. There exists a uniform constant cp > 0 such that the following holds. In the


setting of Lemma 25, after cp(R + | log |W̃ ||) steps, each one of the measures on the gaps of
rank R will have become a proper measure.


(b) We begin by stating a general result. See the Appendix for a proof.


Lemma 27. There exists a uniform constant Ctop > 0 such that the following holds. Given a
sequence (Kn)n≥0, suppose that two regular densities ϕ, ϕ̌ on the same unstable curve W satisfy
b ≤ ϕ/ϕ̌ ≤ B for some B > b > 1 everywhere on W , and let ψ = ϕ− ϕ̌. Then


| logψ(x)− logψ(y)| ≤ Ctop
B + 1


b− 1
θs(x,y) (32)


for all x, y ∈ W .


By Lemma 20, these assumptions are satisfied for ϕ = ρ and ϕ̌ = ρ̌ with b = 8
5


and


B = 5
4
ζ−1eCr where ζ is the fraction of the measure coupled (see Section 5). Even after the


densities become regular, it may take additional time for the measure to become proper. The
next lemma, proved in the Appendix, is suited for such situations.


Lemma 28. There exists a uniform constant C̄p > 0 such that the following holds. Given
an admissible sequence (Kn)n≥0, suppose ν is a measure on a regular unstable curve W whose
density ψ satisfies | logψ(x) − logψ(y)| ≤ Cθs(x,y) for some C > Cr. Then the push-forward
(Fn)∗ν will be a proper measure, if n ≥ C̄p(| log |W ||+ C).


From these lemmas, we conclude that


Lemma 29. The maximum time it takes for each of the “top” measures to become a proper


measure is c̄p + C̄p(| log |W̃ ||+ | log ζ|), where c̄p > 0 is another uniform constant.


6.4.2. More general initial measures. Let the initial measure µ =
∑


α να be a proper probability
measure consisting of countably many regular measured unstable curves, and assume that a
fraction of µ crosses the magnet S0 at time 0 with (22) holding for some ζ. As explained
in Section 5, precisely ζ units of its mass will be coupled to the reference measure m̃0. The
remaining measure, which we denote by µ0, has mass 1 − ζ and consists of the three kinds of
measures described earlier. The next result summarizes some of the results above and is very
convenient for bookkeeping.


Lemma 30. There exist constants C ≥ 1, λ ∈ (0, 1), and r > 0 such that, for any m ≥ r,
(Fm)∗µ0 can be split into the sum of two nonnegative measures µP


m and µG
m, both consisting of


countably many regular measured unstable curves, with the properties that µP
m is proper, and


µG
m(M) = Cλm.


The constants C and r in the lemma depend on the reference configuration used in the


construction of the magnet (through |W̃ |) and r also depends on ζ, but neither of them depend
on the initial measure µ or the sequence of configurations. The constant λ is uniform.


We will use the notation in Section 5 in the proof – except for omitting the subscript n.
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Proof of Lemma 30. By Lemma 29, we can choose r large enough that them-step push-forwards
of the densities on the excess pieces and the “top” densities yield proper measures for all m ≥ r.
From that point on the question is about the gaps. Here we turn to Lemmas 25 and 26.
By regularity of the measures να, (30) implies να{x ∈ Wα : x is in a gap of rank ≥ R} ≤
C ′′g Λ−Rνα(Wα) for another uniform constant C ′′g > 0. Summing over α yields the estimate


µ0{gaps of rank ≥ R} ≤ C ′′g Λ−R. With the aid of Lemma 26, we see that the quantity
µ0{gaps needing ≥ m steps to yield a proper measure} is bounded above by the expression


C ′′g Λ−(m/cp−| log |fW ||)+1 ≤ C ′′g Λ1+| log |fW ||λm ≤ Cλm with C = max(1, C ′′g Λ1+| log |fW ||) and λ =


Λ−1/cp ∈ (0, 1). Taking r large, we may assume Cλr < 1 − ζ = µ0(M). We first collect all
the gap measures from (Fr)∗µ0 into µG


r ; they have total mass ≤ Cλr. Next, we take a suitable
constant multiple of the remaining, proper, measure from (Fr)∗µ0 and include it into µG


r so that
finally µG


r (M) = Cλr holds exactly. (This is mostly for purposes of keeping the statements
clean.) Note that µP


r = (Fr)∗µ0 − µG
r is proper. By our earlier results, the push-forwards of µP


r


remain proper; these will always be included in the measures µP
m for m > r. The real gap


measures included in µG
r , on the one hand, continue to recover into being proper measures at


least at the rate λ. On the other hand, the proper measures included in µP
r will continue to be


proper under push-forwards. Hence, for m > r, we return to µP
m a suitable constant multiple


of the proper part of (Fm,r+1)∗µ
G
r , as necessary, so that the statements of the lemma continue


to hold. �


6.5. Uniform mixing. We discuss here the primary reason behind the asserted exponential
memory loss for the sequence (Km). Since events that occur prior to couplings are involved, we
cannot assume that the coupling of interest occurs at n = 0, as was done in Sections 6.2–6.4.
Our goal is to address item (1) in Paragraph D of the Synopsis.


Recall from Section 6.2 that given a configuration K̃ ∈ K, there exist unstable manifolds W̃ ⊂
W̃ u of F̃ = FeK,eK, s′ ∈ Z+ and ε′ > 0 such that for any sequence (Km)m≥0 with Kn, . . . ,Kn+s′ ∈
Nε′(K̃), a magnet Sn with desirable properties (see Sections 6.2 and 6.3) can be constructed


out of W̃ and stable manifolds for (Fn+m)m≥1. We assume for each K̃ that s′, ε′ and W̃ ⊂ W̃ u


are fixed.


Proposition 31. Given K̃ ∈ K, there exist ζ > 0, ε ∈ (0, ε′) and s ∈ Z+ such that the following


holds for every (Km)m≥0 with K0, . . . ,Ks+s′ ∈ Nε(K̃): Let Ss be the magnet defined by W̃ and
(Fs+m)m≥1. Then every regular measured unstable curve (W, ν) with |W | ≥ (2Cp)−1 has the
property that if Ws,i = Fs(W−


s,i) are the homogeneous components of Fs(W ) which cross Ss


properly, then ∑
i


(Fs)∗(ν|W−s,i)(Ws,i ∩Ss) ≥ 4ζeCr ν(W ). (33)


This proposition asserts that starting from an arbitrary regular measured unstable curve
(W, ν) with |W | ≥ (2Cp)−1, at least a uniform fraction of its Fs-image has sufficiently many
(homogeneous) components crossing the magnet Ss properly provided Km remains in a suf-


ficiently small neighborhood Nε(K̃) of the reference configuration K̃ for time ≤ s + s′. The
last s′ steps is used to make sure that the magnet has a high density of sufficiently long local
stable manifolds (see Sections 6.1 and 6.2), whereas the first s is directly related to the mixing


property of F̃ .


Note the uniformity in Proposition 31: the constants depend on K̃, with s, ζ and ε depending


also on the choice of W̃ ; but (Km)m≥0 is arbitrary as long as it satisfies the conditions above.


Proof of Proposition 31. We begin by recalling the following known result on the mixing prop-


erty of F̃ n (see e.g. [10]): Let S̃ be the magnet defined by W̃ and powers of F̃ , and let σ > 0
be given. Then there exist s > 0 (large) and ζ ′ > 0 (small) such that for any regular measured
unstable curve (W, ν) with |W | ≥ (2Cp)−1 and any n ≥ s,
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(i) finitely many components of F̃ nW cross S̃ super -properly and
(ii) denoting these components W super


n,i ,∑
i


(F̃ n)∗ν (W super
n,i ∩S


eK) ≥ ζ ′ν(W ) . (34)


Here super-proper crossing means that the crossing is proper with room to spare. Specifically,


the excess pieces are twice as long (i.e., at least 2|W̃ | units), and |ϕW super
n,i
−ϕfW | < σ, where W̃


extended by 1
10
|W̃ | along W̃ u on each side is the graph of ϕfW as a function of r, and W super


n,i


suitably restricted is the graph of ϕW super
n,i


defined on the same r-interval.


Let σ be such that for any unstable curve U , |ϕU−ϕfW | < 2σ implies that condition (ii) in the
definition of proper crossing (Definition 22) is satisfied by U independently of the maps used
to define the stable manifolds in the magnet (provided all configurations are in K). We have
used here the fact that there are uniform stable and unstable cones and that they are bounded


away from each other. Let s be given by the above result for F̃ . Our next step is to view Fs as


a perturbation of F̃ s, and to argue that the following holds for ε sufficiently small: Let (W, ν)


be as in the proposition, and suppose W super
s,i ⊂ F̃ sW crosses S̃ super-properly. Then for every


(Km) with Km ∈ Nε(K̃) for m ≤ s+ s′, there exists a subcurve V ⊂ Ṽ = F̃−sW super
s,i ⊂ W such


that FsV crosses Ss properly.


First observe the following facts about F̃m(Ṽ ): (a) There exists k̄ ∈ N independent of W


such that F̃mṼ ⊂ ∪|k|≤k̄Hk \SeK,eK for 0 ≤ m < s. This is because for each m, F̃mṼ is contained
in a homogeneity strip Hk, and would be arbitrarily short if k was arbitrarily large, and that is


not possible by Lemma 10 since |F̃ s(Ṽ )| & 5|W̃ |. (b) Let V ⊂ Ṽ be the subsegment with the


property that F̃ s(V ) crosses S̃ and the excess pieces have length 5
3
|W̃ |. By uniform distortion


bounds (Lemma 9) and (a) above, there exists δ > 0 independent of W or Ṽ such that for


1 ≤ m < s, F̃m(V ) has distance > δ from ∪|k|≤k̄∂Hk ∪ SeK,eK.


We wish to choose ε small enough that (i) for each m = 1, . . . , s, Fm(V ) and F̃m(V ) differ in


Hausdorff distance by < 1
2
δ, and (ii) each of the excess pieces of Fs(V ) are > 4


3
|W̃ | in length,


and |ϕFs(V ) − ϕfW | < 2σ. The purpose of (i) is to ensure that Fs(V ) is a single homogeneous
component, and (ii) is intended to ensure proper crossing, the 4


3
providing some room to ac-


commodate the slight difference between Ss and S̃ (the “end points” of Ss ∩ W̃ and S̃ ∩ W̃
may differ by 99


100
|W̃ |). It is straightforward to check that (i) and (ii) are assured if each of the


constituent maps Fm is sufficiently close to F̃ in C0-distance and F̃ has a uniformly bounded
derivative on the relevant domain (which is bounded away from the bad set). These properties
can be guaranteed by taking ε small.


To finish the proof, it suffices to show that there exists a constant c > 0 (not depending on


(Km) or on W ) such that if W super
s,i and V ⊂ F̃−sW super


s,i are as above, then


(Fs|V )∗ν (FsV ∩Ss) ≥ c · (F̃ s)∗ν (F̃ sV ∩ S̃) .


By Lemma 9,
(Fs|V )∗ν (FsV ∩Ss) ≥ ν(V )e−CrmFsV (Ss)/|FsV |


and
(F̃ s)∗ν (F̃ sV ∩ S̃) ≤ ν(V )eCrm eF sV (S̃)/|F̃ sV |.


Since |F̃ sV | ≥ m eF sV (S̃) and |FsV | is uniformly bounded from above, it remains to show that
mFsV (Ss) is uniformly bounded from below, and that is true by the absolute continuity of


stable manifolds in Ss (Lemma 11) and the fact that mfW (Ss ∩ W̃ ) ≥ 99
100
|W̃ |. �


We remark that s and ε in Proposition 31 depend strongly on K̃ but are independent of (Km)
or W . The argument is a perturbative one, and it is feasible only because it does not involve
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more than a finite, namely s, number of iterates. We remark also that stronger estimates on ζ


than the one above can probably be obtained by leveraging the C1 proximity of Fm to F̃ ,
The next result extends Proposition 31 to more general initial measures and coupling times.


See Sections 4.3 and 4.4 for definitions.


Corollary 32. Let K̃ be fixed, and let s, s′, ε and ζ be as in Proposition 31. Then the following


holds for every n ∈ Z+ with n ≥ s + np and every sequence (Km) satisfying Km ∈ Nε(K̃) for
n − s ≤ m ≤ n + s′: Let µ be an initial probability measure that is regular on unstable curves
and proper (i.e., Z < Cp). Then (22) holds for (Fn)∗µ with ζ1 = ζ.


Proof. The discussion immediately following Definition 17 is relevant here. Since n − s ≥ np,
the measure (Fn−s)∗µ is again proper; thus at least half of (Fn−s)∗µ can be disintegrated into
measures supported on regular unstable curves of length ≥ (2Cp)


−1. Then Proposition 31 can
be applied, giving (33) with a factor of 1


2
on the right side. �


7. Proof of Theorem 4: the countable case


The purpose of this section is to go through the proof of the countable case of Theorem 4
from beginning to end, connecting the individual ingredients discussed in the last section. For
initial distributions, we start from the most general kind permitted in this paper, namely those
introduced in Section 4.4 under Theorem 1’. It was observed in Section 4 that by delaying the
first coupling, each initial distribution can be assumed to be regular on unstable curves and
proper. For simplicity, we will start from that. Also, as noted before, it suffices to consider a
single initial distribution, for the two measures will be coupled to reference measures and hence
to each other.


7.1. Coupling times. To each K̃ ∈ K, we first assign values to the constants ε̃(K̃) and Ñ(K̃)


appearing in the formulation of the theorem. Namely, we set ε̃(K̃) = ε, s(K̃) = s and s′(K̃) = s′


where ε, s and s′ are as in Proposition 31, and let r = r(K̃) be the maximum of the similarly


named constant in Lemma 30 and of s′(K̃). We then set Ñ(K̃) = s(K̃) + r(K̃). For future use,


let ζ = ζ(K̃) be as in Proposition 31, and C = C(K̃) and λ as in Lemma 30.


Next, we fix reference configurations (K̃q)Qq=1 with K̃q+1 ∈ Nε̃( eKq)(K̃q) for 1 ≤ q < Q and


a sequence (Kn)Nn=0 adapted to (K̃q, ε̃(K̃q), Ñ(K̃q))Qq=1. Such a sequence is admissible. If the
sequence is finite (N < ∞), augment it to an infinite one by setting Kn = KN for all n > N
(so stable manifolds are well defined).


The following are considerations in our choice of coupling times.


(a) Suppose the kth coupling occurs at time tk and nq−1 ≤ tk ≤ nq. We require that for


m ∈ [tk − s(K̃q), tk + r(K̃q)] , Km ∈ Nε̃( eKq)(K̃q).
(b) There exists ∆ = ∆((K̃q)Qq=1) such that tk+1 − tk ≤ ∆.


(c) There exists ∆0 = ∆0((K̃q)Qq=1) > 0 such that tk+1 − tk ≥ ∆0.


The reasons for (a) are explained in Sections 6.2–6.5. The purpose of (b) is to ensure the expo-
nential estimate in the theorem: at most a fraction ζ of the still uncoupled measure is matched
per coupling. The reason for (c) is a little more subtle: it is not necessarily advantageous to
couple as often as one can, because each coupling matches a ζ-fraction of the measure that
is available for coupling, but renders at the same time a fraction Cλm of it improper, hence
unavailable for coupling in the near future. Intuitively at least, it may be meaningful, especially
if C and λ are large, to wait till a sufficiently large part of the uncoupled measure has recovered,
i.e., has rejoined µP


m, before performing the next coupling. This is discussed in more detail in
Section 7.3.


There are many ways to choose tk. Postponing the choice of ∆0 to Section 7.3 (and assuming
for now it is a preassigned number), an algorithm may go as follows: Start by fitting into each


time interval (nq−1, nq), q = 1, . . . , Q, as many disjoint subintervals of length s(K̃q) + r(K̃q)
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as one can; by definition, at least one such interval can be fitted into each (nq−1, nq). Label


these intervals as Ji = [t′i − s(K̃q), t′i + r(K̃q)] with t′1 < t′2 < · · · . This is not quite our desired
sequence of coupling times yet, as it need not respect (c) above. To fix that, we let t1 = t′1,
and let t2 = t′i where i > 1 is the smallest integer such that t2 − t1 ≥ ∆0. Continuing, we let
t3 = t′i where i is the smallest number such that t′i > t2 and t3 − t2 ≥ ∆0, and so on. Then (a)
is satisfied by definition, and we check that (b) is satisfied with


∆ = 2 max
1≤q≤Q


s(K̃q) + 2 max
1≤q≤Q


r(K̃q) + ∆0 .


7.2. The coupling procedure and recovery of densities. We review the procedure briefly,
setting some notation at the same time. Once the coupling times tk have been fixed, we


construct, for each k, a magnet Stk using the reference configuration K̃q if nq−1 < tk < nq. Let


rk = r(K̃q), sk = s(K̃q), ζk = ζ(K̃q), and Ck = C(K̃q).
Suppose at time n = tk − sk we have at our disposal a proper measure µ̃k with total mass


Pk = µ̃k(M), ready to be used in the kth coupling. In particular, µ̃1 = µ and P1 = 1, since
the initial probability measure µ is assumed to be proper. By Corollary 32, a ζk-fraction of
(Ftk,tk−sk+1)∗µ̃k is coupled to the reference measure m̃tk on Stk . In the language of Section 5,
Paragraph A, µ̄tk is the part of µ such that (Ftk)∗µ̄tk is equal to the part of (Ftk,tk−sk+1)∗µ̃k
coupled at time tk; in particular,


µ̄tk(M) = ζkPk. (35)


The uncoupled part of (Ftk,tk−sk+1)∗µ̃k consist of a countable family of measured unstable
curves, including arbitrarily short gaps among others, as discussed several times earlier, and
has total mass (1− ζk)Pk. With the aid of Lemma 30 (with µ̃k/Pk in the role of µ), we identify
out of its push-forward under Ftk+m,tk+1 a proper part, and call the rest the “non-proper” part,
with the latter rejoining the first at a certain rate. Deviating from the notation of the lemma in
order not to overburden the notation, we denote these parts µ̃P


k,m and µ̃G
k,m, respectively (“P”


for proper, “G” for gap). It can be arranged so that


µ̃P
k,m(M) = (1− ζk − Ckλm)Pk and µ̃G


k,m(M) = Ckλ
mPk (m ≥ rk). (36)


7.3. Bookkeeping and exponential bounds. Letting uk = (tk+1−sk+1)− tk ≥ rk, the total
mass Pk+1 of the proper measure available for coupling at time tk+1 satisfies


Pk+1 = µ̃P
k,uk


(M) +
k−1∑
j=1


(
µ̃G
j,tk−1+uk−1−tj(M)− µ̃G


j,tk+uk−tj(M)
)
.


The first term comes directly from the kth coupling, as explained above. In the second term
we take into account the fact that at the jth coupling, 1 ≤ j < k, some measure was deposited
into the “non-proper” part, and what remains of that part at a later time n is the measure
µ̃G
j,n−tj . Thus this sum represents the total mass that was not available for the kth coupling


but has become available for the (k + 1)st. Plugging in the numbers from (36), we obtain


Pk+1 = (1− ζk − Ckλuk)Pk +
k−1∑
j=1


Cjλ
tk−1−tj+uk−1(1− λuk+sk)Pj. (37)


We also have the following expression for the total mass that remains uncoupled immediately
after the kth coupling, i.e., µtk(M) in the language of Section 5, Paragraph A:


µtk(M) = (1− ζk)Pk +
k−1∑
j=1


Cjλ
tk−1−tj+uk−1Pj. (38)


Here the first term is the measure that was “eligible” for coupling at time tk but was not
coupled, and the second sum consists of terms coming from earlier couplings that at time
tk−1 + uk−1 = tk − sk were still not ready to be coupled.
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Notice that (37) is a recursion relation for the sequence (Pk) with the initial condition P1 = 1.
We need to show that Pk tends to zero exponentially with k.


Lemma 33. Let ζ̃ = min1≤q≤Q ζ(K̃q). Suppose


∆0 =


⌈
log
(


1
2
ζ̃(1− ζ̃)


/
max


1≤q≤Q
C(K̃q)


)
/ log λ


⌉
+ max


1≤q≤Q
s(K̃q) + np.


Then a coupling strategy satisfying (a) and (c) in Section 7.1 will produce a sequence of Pk with


Pk ≤ (1− 1
2
ζ̃)k ∀ k ≥ 1 . (39)


We have included np in the definition of ∆0 to allow for the transient loss of properness when
a proper measure is pushed forward (Section 4.3); it plays no role in the proof below.


Proof of Lemma 33. We form a majorizing sequence (Qk) with Q1 = 1 = P1 and


Qk+1 = (1− ζ̃)Qk +
k−1∑
j=1


Cjλ
tk−1−tj+uk−1Qj. (40)


Clearly Pk ≤ Qk by comparing (37) and (40). We want to show that Qk tends to zero expo-


nentially with k, with Qk+1 ≤ (1− 1
2
ζ̃)Qk. The bound is certainly implied if


k−1∑
j=1


Cjλ
tk−1−tj+uk−1Qj ≤ 1


2
ζ̃Qk, k ≥ 2 ,


and this is what we will prove.
Observe from tk+1 − tk ≥ ∆0 and the choice of ∆0 above that


max
1≤q≤Q


C(K̃q) · λtk+1−tk−max1≤q≤Q s( eKq) ≤ 1
2
ζ̃(1− ζ̃). (41)


Together with Ck−1 ≥ 1, this gives


k−1∑
j=1


Cjλ
tk−1+uk−1−tjQj = Ck−1λ


uk−1


(
Qk−1 +


λsk−1


Ck−1


k−2∑
j=1


Cjλ
tk−2+uk−2−tjQj


)


≤ Ck−1λ
uk−1


(
Qk−1 +


k−2∑
j=1


Cjλ
tk−2+uk−2−tjQj


)


≤ 1
2
ζ̃(1− ζ̃)


(
Qk−1 +


k−2∑
j=1


Cjλ
tk−2+uk−2−tjQj


)
≤ 1


2
ζ̃Qk.


The second to last inequality uses (41), and the last inequality is from (40). Hence, Pk ≤ Qk ≤
(1 − 1


2
ζ̃)k−2Q2 for k ≥ 2. Finally, Q2 = (1 − ζ̃) and P1 = 1, yield Pk ≤ (1 − 1


2
ζ̃)k−1 for all


k ≥ 1. �


Corollary 34. For any n ≥ 0,


µ̄n(M) ≤ ζ̃(1− 1
2
ζ̃)n/∆ and µn(M) ≤ (1− 1


2
ζ̃)n/∆−1.


Proof. By (41) and Ck−1 ≥ 1 (Lemma 30), we have Cjλ
tk−tj ≤


(
1
2
ζ̃(1− ζ̃)


)k−j
in (38). Insert-


ing also the exponential bound on Pk in (39) and computing the resulting sum yields easily


µtk(M) ≤ (1 − 1
2
ζ̃)k+1. Recalling (35), also µ̄tk(M) ≤ ζ̃(1 − 1


2
ζ̃)k. Observe that tk ≤ k∆ by


tj+1 − tj ≤ ∆ and t1 ≤ ∆. Thus, µtk(M) ≤ (1 − 1
2
ζ̃)tk/∆+1 and µ̄tk(M) ≤ ζ̃(1 − 1


2
ζ̃)tk/∆.


By definition, µn = µtk and µ̄n = 0 for tk < n < tk+1; see Section 5. We therefore obtain


µ̄n(M) ≤ ζ̃(1 − 1
2
ζ̃)n/∆ for all n ≥ 0 and µn(M) ≤ (1 − 1


2
ζ̃)tk/∆+1 for tk ≤ n < tk+1 (k ≥ 1).


Using tj+1 − tj ≤ ∆ once more, we see in the latter case that tk ≥ n − ∆. In other words,


µn(M) ≤ (1 − 1
2
ζ̃)n/∆ for all n ≥ t1, or µn(M) ≤ (1 − 1


2
ζ̃)n/∆−1 for all n ≥ 0 (as again


t1 ≤ ∆). �
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7.4. Memory-loss estimate. Finally, we prove the estimate in (2), along the lines of (17).
Consider two measures µi, i = 1, 2. Recalling that µi = µin/2+


∑
j≤n/2 µ̄


i
j and using Lemma 34,


we see that∣∣∣∣∫ f ◦ Fn dµ1 −
∫
f ◦ Fn dµ2


∣∣∣∣ ≤ (1− 1
2
ζ̃)n/2∆−1‖f‖∞ +


∑
j≤n/2


∣∣∣∣∫ f ◦ Fn dµ̄1
j −


∫
f ◦ Fn dµ̄2


j


∣∣∣∣ .
Here µ̄1


j = µ̄2
j = 0 unless j = tk for some k = 1, 2, . . . . At times j = tk a coupling occurs:


Recall from Paragraph C of Section 5 that (for each i = 1, 2) (Fj)∗µ̄ij is coupled to the reference


measure ajm̃j( · ∩ Sj), where aj = µ̄ij(M) = ((Fj)∗µ̄ij)(Sj) and m̃j(Sj) = 1. Moreover, ac-


cording to (25) and (23), the measure (Fj)∗µ̄ij is a sum of countably many components, namely∑
α∈Ai


∑
m∈Iiα,j


λiα,j,m (hiα,j,m)∗m̃j, where hiα,j,m is a holonomy map associated to the stable man-


ifolds of the magnet Sj and
∑


α∈Ai
∑


m∈Iiα,j
λiα,j,m = µ̄ij(M). If f is γ-Hölder continuous with


some exponent γ > 0, we can estimate, similarly to (18), that∣∣∣∣∫ f ◦ Fn dµ̄1
j −


∫
f ◦ Fn dµ̄2


j


∣∣∣∣ =


∣∣∣∣∫ f ◦ Fn,j+1 d((Fj)∗µ̄1
j)−


∫
f ◦ Fn,j+1 d((Fj)∗µ̄2


j)


∣∣∣∣
≤
∑
i=1,2


∑
α∈Ai


∑
m∈Iiα,j


λiα,j,m


∣∣∣∣∣
∫


Sj


f ◦ Fn,j+1 d((hiα,j,m)∗m̃j)−
∫


Sj


f ◦ Fn,j+1 dm̃j


∣∣∣∣∣
≤
∑
i=1,2


∑
α∈Ai


∑
m∈Iiα,j


λiα,j,m |f |γ(ĉ−1Λ−(n−j))γ =
∑
i=1,2


µ̄ij(M)|f |γ(ĉ−1Λ−(n−j))γ.


Since
∑


j µ̄
i
j(M) = 1,∑


j≤n/2


∣∣∣∣∫ f ◦ Fn dµ̄1
j −


∫
f ◦ Fn dµ̄2


j


∣∣∣∣ ≤ 2|f |γ(ĉ−1Λ−n/2)γ.


Combining the above estimates yields the bound in (2) with Cγ = 2 max((1− 1
2
ζ̃)−1, ĉ−γ) and


θγ = max((1− 1
2
ζ̃)1/2∆,Λ−γ/2).


Notice that the constants ∆ and ζ̃ are determined by the set of reference configurations


{K̃q}Qq=1; their order and number of appearances are irrelevant. This completes the proof of the
countable case of Theorem 4. �


8. Completing the proofs


In this section we complete the proofs of Theorems 1’–2’ and 4’, restricted versions of which
are stated in Sections 2.2 and 2.3, and the full versions in Section 4.4. To do that, we must
first treat the “continuous case” of Theorem 4, which is used to give the full versions of all the
other results.


8.1. Proof of Theorem 4: continuous case. In Section 4.3, we introduced the idea of
measured unstable families, defined to be convex combinations of measured unstable stacks.
The “continuous case” of Theorem 4 refers to the version of Theorem 4 for which initial measures
are of this form. The proof proceeds almost exactly as in the countable case, so we focus here
only on the differences.


Three types of processes are involved in the proof of Theorem 4: (i) canonical subdivisions,
(ii) coupling to reference measures, and (iii) recovery of densities following the couplings. The
process of pushing forward measured unstable families and canonical subdivisions was discussed
in Section 4.3. We noted that this process produces objects of the same kind, i.e., canonical
subdivisions of measured unstable families are measured unstable families. Regularity and
properness, including their recovery properties, were also discussed: there is no substantive
difference between the countable and continuous cases since these are essentially properties
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on individual unstable curves; in the continuous case, one simply replaces summations in the
countable case by integrals.


We provide below more detail on (ii):


The coupling procedure: continuous case. Consider the situation in Section 7.2, where at time
n = tk − sk we have a proper measure µ̃k of continuous type ready to be used in the kth
coupling. We sketch below a few issues that require additional care:


In the countable case, we observed in Corollary 32 that at least half of µ̃k is supported on
unstable curves of length ≥ (2Cp)−1; the same is true here, as it is a general fact. But then in
the countable case, we applied Proposition 31 to one unstable curve at a time, comparing the


action of Fs to that of F̃ s on each curve to obtain the asserted bound on the fraction that can
be coupled. Here it is not legitimate to argue one curve at a time, so we proceed as follows:
Noting that µ̃k is supported on a countable number of unstable stacks, we plan to subdivide
these stacks in such a way that there is a a collection of countably many “thin enough” stacks
with the following properties: (i) their union carries at least half of µ̃k, and (ii) on each thin
stack all the curves have length at least (2Cp)−1 (or thereabouts). We then treat these thin
stacks with long curves one at a time. The conditions for “thin enough” are basically that the
stack should behave as though it was a single curve in the next sk steps.


More precisely, pick one of the measured unstable stacks (∪α∈EWα, µ) associated to µ̃k, and
consider its canonical sk-step subdivision (associated to the sequence Ftk−sk+1, . . . , Ftk) into
stacks of the form ∪α∈Esk,i,j(Wα ∩ Dsk,i) as discussed in Section 4.3. We first specify what we


mean by a “thin enough” substack of ∪α∈EWα. Let α̂ ∈ E be such that |Wα̂| ≥ (2Cp)−1,
and assume the images of this unstable curve in the next sk steps do not pass through branch
points of the discontinuity set. Then there is a small neighborhood Eα̂ of α̂ in E such that
the following holds for all β ∈ Eα̂: For each i such that Ftk,tk−sk+1(Wα̂ ∩ Dsk,i) crosses Stk


properly, the same holds for Ftk,tk−sk+1(Wβ ∩Dsk,i) with a slightly relaxed definition of “proper
crossing” that is good enough for our purposes. Moreover, if α̂ ∈ Esk,i,j, then Eα̂ ⊂ Esk,i,j. We
are guaranteed that Eα̂ exists because there are only finitely many such proper crossings for
each Wα̂. The stack ∪α∈Eα̂Wα is “thin enough”.


Assuming that the transverse measure P on E has no atoms (the argument is easily modified
if it does), there is a finite number of disjoint intervals of the form Eα̂l where |Wα̂l | ≥ (2Cp)−1


and ∪α∈∪lEα̂lWα carries more than 99% of the part of µ supported on Wα-curves of length


≥ (2Cp)−1. The procedure is to first subdivide E into {Eα̂l} and the connected components of
E \ ∪lEα̂l . This corresponds to subdividing the original stack (∪α∈EWα, µ) before proceeding
with the canonical subdivision. At time tk, we consider one l at a time: For each i such that
Ftk,tk−sk+1(Wα̂l ∩Dsk,i) crosses Stk properly, the Ftk,tk−sk+1-image of ∪α∈Esk,i∩Eα̂l (Wα∩Dsk,i) is
a single unstable stack every curve in which crosses Stk properly. A fraction of the conditional
probability measures on each unstable curve is coupled to m̃tk as before. These are the only
stacks on which couplings will be performed at time tk.


To obtain the desired lower bound on the fraction of (Ftk,tk−sk+1)∗µ̃k coupled, we prove a slight
generalization of Proposition 31 in which the measured stack (∪α∈Eα̂lWα, µ|∪α∈Eα̂lWα) takes


the place of (W, ν). The argument is virtually identical (and omitted); since the conditional
measures have the same uniform bounds.


After a coupling, we must also show that the uncoupled part of (Ftk,tk−sk+1)∗µ̃k is again
supported on at most a countable number of measured unstable stacks. Treating first the curves
(without the measures), we observe that for each i and l in the next to last paragraph, after
the coupling there are two stacks corresponding to the excess pieces of Ftk,tk−sk+1(Wα̂l ∩Dsk,i),
a third stack which is Ftk,tk−sk+1(∪α∈Esk,i∩Eα̂l (Wα∩Dsk,i)) minus the first two, plus a countable
number of stacks one for each gap. We also need to decompose the uncoupled part of the
measure in the same way as was done in Section 6.4. In particular, a slight generalization of
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the extension lemma (Lemma 15) leading to the “top conditional densities” in the third stack
is needed. We leave this technical but straightforward exercise to the reader.


Finally, we observe that the subdivision of a stack into thinner stacks (without cutting any
of the unstable curves in the stack) does not increase the Z-value of a family.


The rest of the proof is unchanged from the countable case.


This concludes the proof of Theorem 4’, that is, the extension of Theorem 4 to the larger
class of initial measures permitted in Theorem 1’. Theorem 1’ then follows, in the same way
as Theorem 1 was deduced from Theorem 4; see Section 2.


8.2. Scatterers with variable geometries. To understand what additional arguments are
needed as we go from scatterers with fixed geometries to scatterers with variable geometries,
recall that the proof of Theorem 1’ has two distinct parts: one is local, and the other global.
The local result is contained in Theorem 4, which treats essentially time-dependent sequences


(Kn) near a fixed reference configuration K̃. It also shows how the scheme can be continued
as the time-dependent sequence moves from the sphere of influence of one reference configu-
ration to that of another. The rate of memory loss, however, depends on the set of reference
configurations visited. The global part of the proof seeks to identify a suitable space, as large
as possible, for which one can have a uniform convergence rate for the measures involved. For
scatterers with fixed geometries, this is done by showing that the entire configuration space


of interest can be “covered” by a finite number of reference configurations {K̃1, . . . , K̃Q}, i.e.,
no matter how long the time-dependent sequence, it is, at any one moment in time, always


“within radar range” of one of the K̃q, 1 ≤ q ≤ Q. The argument is thus reduced to the local
one. Details are given at the end of Section 2.


Proof of Theorem 2’. We discuss separately the local and global parts of the argument.


Local part: We claim that the local part of the proof, i.e., Theorem 4’, extends verbatim to the
setting of variable scatterer geometry, and leave the step-by-step verification to the reader. For
example, the arguments in Sections 3 and 4 are entirely oblivious to the fact that the shapes
of the scatterers change with time, in the same way that they are oblivious to their changing
locations, for as long as their curvatures and flight times lie within specified ranges. The more


sensitive parts of the proof involve (Km) ⊂ Nε(K̃), where Nε(·) is now defined using the d3-


metric introduced in Section 2.2. Notice that as before, (i) for K,K′ ∈ Nε(K̃), the singularity


set for F = FK′,K lies in a small neighborhood of the singularity set for F̃ = FeK,eK, and (ii) a


fixed distance away from these singularity sets, F and F̃ can be made arbitrary close in C0 as
ε→ 0. These properties are sufficient for the arguments needed, including the uniform mixing
argument in Section 6.2.


Global part: The argument is along the lines of the one at the end of Section 2, but involves
different spaces and different norms. In order to reduce to the local argument, we need to
establish some compactness. Decreasing κ̄min and τ̄min, increasing κ̄max and τ̄max, as well as


increasing ∆ to some ∆′ ≥ ∆ (to be fixed below), we let K̃′ denote the configuration space


defined analogously to K̃ but using these relaxed bounds on curvature and flight times. We


denote the closure of K̃ with respect to the metric d3 by c`(K̃). We will show that c`(K̃) is a


compact subset of K̃′.
First, a constant ∆̂ can be fixed so that for all K ∈ K̃, if γ̂i : S1 → T2 is the constant speed


parametrization of ∂Bi in Section 2.2, then ‖Dkγ̂i‖∞ ≤ ∆̂ for 1 ≤ k ≤ 3 and Lip(D3γ̂i) ≤ ∆̂.


This is true because of property (i) in the definition of K̃ and the fact that derivatives of γ̂i
and γi (unit speed parametrization of the same scatterer) differ only by a factor equal to the
length of ∂Bi, which is uniformly bounded above and below due to κ̄min < κ < κ̄max. Next we


argue that if the number of scatterers s were fixed, it would follow that c`(K̃) is a compact set:
Given s sequences (γ̂i,n)n≥1 of parametrizations as above, we first note that they are uniformly







DISPERSING BILLIARDS WITH MOVING SCATTERERS 35


bounded. The same is true of the sequences (Dkγ̂i,n)n≥1, 1 ≤ k ≤ 3, as noted above. Each of
these is also equicontinuous because it is uniformly Lipschitz. Hence, the Arzelà–Ascoli theorem


yields the existence of uniform limits γ̂i ≡ limj→∞ γ̂i,nj and γ̂
(k)
i ≡ limj→∞D


kγ̂i,nj , 1 ≤ k ≤ 3,
1 ≤ i ≤ s, along a subsequence (nj)j≥1. Since Lipschitz constants are preserved in uniform


limits, it is easy to check that γ̂
(k)
i = Dkγ̂i, max1≤k≤3 ‖Dkγ̂i‖∞ ≤ ∆̂ and Lip(D3γ̂i) ≤ ∆̂.


We now replace the limit parametrizations γ̂i, 1 ≤ i ≤ s, by the corresponding constant speed


parametrizations γi. Owing to the above bounds, they specify a configuration in K̃′, if we choose


∆′ large enough. While K̃′ permits in principle an arbitrarily large number of scatterers, there
is, in fact, a finite upper bound on s imposed by τ̄min, which is less than or equal to the minimum


distance between any pair of scatterers. We have thus proved that c`(K̃) is compact.


We apply the result from the local part to K̃′, obtaining ε̃(K) and Ñ(K) for each K ∈ K̃′.
The collection {N 1


2
ε̃(K)(K) : K ∈ c`(K̃)} is an open cover of c`(K̃), open as subsets of K̃′. Let{


Ñq = N 1
2
ε̃( eKq)(K̃q), q ∈ Q} be a finite subcover. The rest of the proof is as in Section 2: we


apply the local result to the given sequence (Kn) ⊂ K̃, noting that any (Kn) with d3(Kn,Kn+1)


sufficiently small is adapted to a sequence of reference configurations chosen from {Ñq, q ∈
Q}. �


Proof of Theorem 3. Without loss of generality, we assume that
∫
g dµ = 0. Let a = 1− inf g.


Then dµ′ = a−1(g + a) dµ is a probability measure. Moreover, the density ρ′ = a−1(g + a)
satisfies the assumptions of Theorem 2. Indeed,


(1 + ‖g‖∞)−1 ≤ ρ′ ≤ 1 + ‖g‖∞,


and, like g, ρ′ is 1
6
-Hölder with its logarithm satisfying the estimate


|log ρ′(x)− log ρ′(y)| ≤ (1 + ‖g‖∞) |g(x)− g(y)| ≤ (1 + ‖g‖∞)|g| 1
6
dM(x, y)


1
6 .


We thus have∣∣∣∣∫ f ◦ F n · g dµ


∣∣∣∣ = a


∣∣∣∣∫ f ◦ F n dµ′ −
∫
f ◦ F n dµ


∣∣∣∣ ≤ (1 + ‖g‖∞)Cγ(‖f‖∞ + |f |γ)θ
n
γ ,


after an application of Theorem 2 with µ1 = µ′ and µ2 = µ. Here Cγ depends on the bound
(1 + ‖g‖∞)|g| 1


6
on the Hölder constant of log ρ′ obtained above. �


8.3. Small external fields. In this section we discuss modifications of earlier proofs needed
to yield Theorem E.


First we claim that for each K̃ ∈ K̃, there exist δ̂0(K̃) and E0(K̃) > 0 such that for all


K,K′ ∈ Nδ̂0(K̃) and E ∈ C2 with ‖E‖∞ ≤ E0(K̃), FE
K′,K is defined, and 9


10
τ̄min < τE


K′,K <
11
10


t.


Here τE
K′,K is the flight time between source and target scatterers following trajectories defined


by E. To prove the asserted upper bound for τE
K′,K, notice that (i) the set of straight line


segments of length t is compact, and (ii) for a C0-small E, particle trajectories deviate only
slightly from straight lines. Thus the (t, ϕ)-horizon property of the E = 0 case guarantees
that any flow-trajectory of length 11


10
t will also meet a scatterer at an angle not much below ϕ


(measured from the tangent).


Next we claim that there exist δ̂1(K̃) ≤ δ̂0(K̃) and E1(K̃) ≤ E0(K̃) such that the basic
properties in Sections 3 and 4 hold (with relaxed constants) for all sequences (Kn,En) with the


property that for each n, there is K̃ such that Kn,Kn+1 ∈ Nδ̂1(K̃) and ‖En‖C2 ≤ E1(K̃). More


precisely, we claim that the maps Fn = FEn
Kn+1,Kn have the same properties as their analogs


with E = 0, including the geometry of the singularity sets, stable and unstable cones, uniform
expansion and contraction rates, distortion and curvature bounds for unstable curves, absolute
continuity and bounds on the Jacobians, the Growth Lemma holds, etc. For fixed scatterers,
the main technical references for fields E with small enough C2-norms are [6, 8]. The results
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above are obtained following the proofs in these references, except for Lemma 7 the proof of
which is also straightforward and left as an exercise.


Next we proceed to the analog of Theorem 4’ for small external fields, for sequences of the form
(Kn,En)Nn=0 adapted, in a sense to be defined, to a finite sequence of reference configurations


(K̃q)q≤Q: For each q, there exist ε̃(K̃q), ε̃field(K̃q) > 0 and Ñ(K̃q) ∈ Z+ such that (Kn)Nn=0


is adapted to
(
K̃q, ε̃(K̃q), Ñ(K̃q)


)Q
q=1


in the sense of Section 2.3 and, additionally, ‖En‖C2 ≤
ε̃field(K̃q) for the relevant q. The argument proceeds as in Sections 6 and 7. There are exactly
two places where the argument is perturbative, and “perturbative” here means perturbing from


systems with fixed scatterer configurations K̃ and zero external field. One is the construction
of the magnet in Section 6.2, and the other is the uniform mixing argument (Proposition 31)


in Section 6.5. For each K̃ ∈ K̃, these two arguments impose bounds ε̃(K̃) and ε̃field(K̃) > 0


on d3(Kn, K̃) and ‖En‖C2 respectively. (We may assume ε̃(K̃) ≤ δ̂1(K̃) and ε̃field(K̃) ≤ E1(K̃).)
Such bounds exist because in Section 6.2 we require only that the action of Fn+s′,n on a specific
piece of unstable curve follows that of (FeK,eK)s


′
closely in the sense of C0 for a fixed number


of iterates, namely s′, during which this curve stays a positive distance from any discontinuity
curve or homogeneity lines. The argument in Section 6.5 requires a little more, but that too
involves only curves that stay away from discontinuity and homogeneity lines and also for only a


fixed number of iterates. For appropriate choices of ε̃(K̃) and ε̃field(K̃), the latter made possible
by our extended version of Lemma 7, these two proofs as well as others needed go through
without change, yielding an analog of Theorem 4’ as formulated above.


Finally it remains to go from our “local” result, i.e., the analog of Theorem 4’, to the “global”


one, namely Theorem E. We cover the closure of K̃ with balls centered at each K̃ having d3-


radius ε̃(K̃) in a slightly enlarged space K̃′ and choose as before a finite subcover, consisting of


balls centered at {K̃j}. The uniform bounds εE and ε appearing in the statement of Theorem E


are given by εE = minj ε̃
field(K̃j) and ε = minj ε̃(K̃j).


Appendix. Proofs


Proof of Lemma 7. We first prove continuity of the map (x,K,K′) 7→ FK′,K(x). Consider an
initial configuration K0 and a target configuration K′0 and some initial condition x0 ∈M which
corresponds to a non-tangential collision. Obviously, there exists an open neighborhood U
of the triplet (x0,K0,K′0) in which there are no tangential collisions: each (x,K,K′) ∈ U
corresponds to a head-on collision from a scatterer B in configuration K to a scatterer B′ in
configuration K′. We can view the scatterers B and B′ as subsets of the plane and represent
them by two vectors, (c,u) and (c′,u′) in R2 × S1, which depend continuously on K and K′
(as long as (x,K,K′) ∈ U). The c and u components specify the location and orientation of
the scatterer, as was explained in Section 2. Let (c̄, ū) be the relative polar coordinates of
B with respect to the frame attached to B′ whose origin is specified by (c′,u′). Then (c̄, ū)
depends continuously on the pair (K,K′). We write (c̄, ū) = G(K,K′) and point out that
idM × G : (x,K,K′) 7→ (x,G(K,K′)) is continuous on U . Recall that x ∈ M represents the
initial condition in the intrinsic (phase space) coordinates of B. Let (q̄, v̄) be its projection to
the plane, expressed relative to the frame attached to B′. The map π̄ : (x, c̄, ū) 7→ (q̄, v̄) is
clearly continuous. Given any plane vector (q̄, v̄) expressed relative to the frame attached to B′,
pointing towards B′, let x′ = F ′(q̄, v̄) ∈M denote the post-collision vector as expressed in the
intrinsic (phase space) coordinates of B′. Then F ′ is continuous (except at tangential collisions,
which we have ruled out). We have FK′,K(x) = x′ = F ′ ◦ π̄ ◦ (idM × G)(x,K,K′), where the
composition comprises continuous functions. The uniform continuity statement follows from a
standard compactness argument. �


Proof of Lemma 15. Because W? is closed in W , the set W \W? is a countable union of disjoint,
open (i.e., endpoints not included), connected, curves V ⊂ W , which we call gaps. Consider
a gap V . Notice that its endpoints x and y belong to W? whence it follows that ρ satisfies
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| log ρ(x) − log ρ(y)| ≤ Cθs(x,y) for the fixed pair (x, y). Let r > 0 be the first time such that
FrV intersects the set ∂M∪∪|k|≥k0∂Hk, in other words r = s(x, y), and pick an arbitrary point
z ∈ V whose image Fr(z) is in the intersection. On the curve V , placing a discontinuity at z
as needed, assign ρ the constant value ρ(x) between the points x and z and similarly the value
ρ(y) between z and y. With the exception of the above bound being satisfied on all of W , the
claims of the lemma are clearly true.


To check the bound, let (x′, y′) be an arbitrary pair of points in W . If x′ ∈ W?, set x = x′.
Otherwise x′ belongs to a gap V with an endpoint x ∈ W? satisfying ρ(x) = ρ(x′). Similarly we
define a point y in terms of y′. For x = y we simply have ρ(x′)−ρ(y′) = 0, so let us assume from
now on that x 6= y. Since | log ρ(x′) − log ρ(y′)| = | log ρ(x) − log ρ(y)| ≤ Cθs(x,y), it remains
to check that s(x, y) ≥ s(x′, y′) in order to prove | log ρ(x′) − log ρ(y′)| ≤ Cθs(x


′,y′). Indeed,
given two points a, b on W , let W (a, b) denote the open subcurve of W between the two points.
If W (x, y) ⊂ W (x′, y′), then the bound s(x, y) ≥ s(x′, y′) is obvious. On the other hand, if


W (x, y) ⊃ W (x′, y′), then there exist gaps W (x, x̄) and W (ȳ, y) on W such that x′ ∈ W̃ u(x, x̄)


and y′ ∈ W̃ u(ȳ, y), where x̄ and y′ are on the same side of x on W , and ȳ and x′ are on the same
side of y. By construction, s(x, x′) ≥ s(x′, x̄) and s(y′, y) ≥ s(ȳ, y′). These inequalities imply
immediately s(x, y) = s(x′, y′). Showing that s(x, y) ≥ s(x′, y′) also when neither W (x, y) nor
W (x′, y′) is completely contained in the other set can be done by combining ideas from the
previous cases and is left to the reader. �


Proof of Lemma 19. Assume that µ has a strictly positive, 1
6
-Hölder continuous density χ with


respect to the measure dµ0 = N−1ρ0 dr dϕ, where ρ0 = cosϕ and N is the normalizing factor;
we then have dµ = N−1ρ dr dϕ with ρ = χρ0. Such a measure can be represented as a
measured unstable family in a canonical way: Let Sj, 1 ≤ j ≤ ∞, be an enumeration of all the
sets Hk ∩Mi. For each j, partition Sj into straight lines Wα, α ∈ E(j), of slope κmin and of
maximal length so that ∪α∈E(j)Wα is a regular unstable stack. We assume here that the sets
E(j) are disjoint subsets of R in order to avoid having to introduce additional superscripts (j)
for the line segments. Disintegrating µ0 and µ using these stacks, we denote the conditional
densities on Wα by ρ0


α and ρα respectively. Because of the simple geometry of the partition, ρ0
α


and ρα, are obtained as the normalized restrictions of ρ0 and ρ on Wα. In particular, we have
the identity


ρα = χρ0
α. (42)


The conditional densities ρ0
α have uniformly 1


3
-Hölder continuous logarithms. In other words,


there exists a constant C0 > 0, independent of α, such that | log ρ0
α(x)−log ρ0


α(y)| ≤ C0dM(x, y)1/3


for all x, y ∈ Wα, for all α ∈ A. Indeed, denoting by Wα(x, y) ⊂ Hk the segment of Wα con-
necting the points x, y ∈ Wα, we have |Wα(x, y)| ≤ CHk


−3 for a constant CH > 0 which is
uniform for all k ≥ k0. Writing x = (rx, ϕx) and y = (ry, ϕy), the bound (5) then yields


| log ρ0
α(x)− log ρ0


α(y)| = | log cosϕy − log cosϕx| ≤
1


min(cosϕy, cosϕx)
| cosϕy − cosϕx|


≤ Ccosk
2|ϕy − ϕx| ≤ Ccos(CH|Wα(x, y)|−1)2/3|Wα(x, y)| ≤ CcosC


2/3
H dM(x, y)1/3


as claimed. The extension to k = 0 is immediate, observing that cosϕ ≥ cos(π/2−k−2
0 ) on H0.


The logarithm of χ is also 1
6
-Hölder continuous on M; let us denote the constant | logχ|1/6.


In particular, | log ρα(x) − log ρα(y)| ≤ | logχ|1/6dM(x, y)1/6 + C0dM(x, y)1/3 ≤ (| logχ|1/6 +


C0L
1/6
0 )dM(x, y)1/6 for all x, y ∈ Wα, for all α. (Here L0 is an upper bound on the length of a


homogeneous unstable curve.) Following Remark 14,


| log ρα(x)− log ρα(y)| ≤ (| logχ|1/6 + C0L
1/6
0 )C1/6


s θs(x,y)


for any configuration sequence. Furthermore, denoting by Z and Z0 the quantity appearing
in (14) for µ and µ0, respectively, the identity in (42) yields


Z ≤ supχ · Z0.
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Here Z0 <∞ by direct inspection and supχ ≤ ea·| logχ|1/6 for a uniform constant a > 0. Thus,
the initial measures of Theorem 1 also satisfy the assumptions of Theorem 1’, and | logχ|1/6
controls the constant Cγ as claimed. �


Proof of Lemma 27. Observe that


ψ(x)


ψ(y)
= 1 +


[(
ρ(x)


ρ(y)
− 1


)
ρ(y)


ρ̌(y)
+


(
1− ρ̌(x)


ρ̌(y)


)](
ρ(y)


ρ̌(y)
− 1


)−1


≤ 1 + A(exp(Crθ
s(x,y))− 1),


where A = (B + 1)(b− 1)−1. Using the estimate log(1 + t) ≤ t (t ≥ 0), we obtain∣∣∣∣log
ψ(x)


ψ(y)


∣∣∣∣ ≤ A(exp(Crθ
s(x,y))− 1),


the absolute value on the left side being justified because the preceding bound continues to
hold for x and y interchanged and because s(x, y) = s(y, x). Next, fix a constant S > 0 so large
that exp(Crθ


S) − 1 ≤ 2Crθ
S. Then, if s(x, y) ≥ S, we see that (32) holds if Ctop ≥ 2Cr. To


deal with the case s(x, y) < S, we use the crude bound | logψ(x) − logψ(y)| ≤ (eCr − 1)
obtained from above. Putting things together, (32) is true for any x and y, at least for
Ctop = max((eCr − 1)θ−S, 2Cr). �


Proof of Lemma 28. Write Wn,i for the homogeneous components of FnW and νn,i for the
push-forward of ν(W−


n,i ∩ · ) under Fn. Here W−
n,i denotes the element of the canonical n-


step subdivision of W which maps bijectively onto Wn,i under Fn. It is a regular curve. Set
Zn =


∑
i νn,i(Wn,i)/|Wn,i|. Our task is to show that Zn ≤ Cpν(W ) eventually. The small


nuisance is that we cannot apply Lemma 16 directly, as ν is not necessarily regular. Our trick
is to compare the evolutions of ν and the uniform measure mW . Since the latter is obviously
regular, Lemma 16 does apply: Writing ZmW


n =
∑


i(mW )n,i(Wn,i)/|Wn,i|, we have


ZmW
n


|W |
≤ Cp


2


(
1 + ϑnp


1


|W |


)
,


as ZmW
0 = 1. Next, fix n and the component index i. We write x−n = (Fn|W−n,i)


−1(x) ∈ W−
n,i


for the preimage of any x ∈ Wn,i. Denoting by `n,i the density of the push-forward (mW )n,i,
we have νn,i(Wn,i) =


∫
Wn,i


ρ(x−n)`n,i(x) dmWn,i
(x) ≤ supW−n,i ρ · (mW )n,i(Wn,i). From here, using


the bound on ρ,


Zn ≤ sup
W


ρ · ZmW
n ≤ eC inf


W
ρ · ZmW


n ≤ eC
ZmW
n


|W |
ν(W ).


If n ≥ n′ = max
(
log(Cr


2
/(C − Cr


2
))/ log θ, log |W |/ log ϑp


)
, Lemma 13 guarantees that the


measures νn,i are all regular, and the bounds above yield


Zn
ν(W )


≤ eCCp.


We can therefore apply Lemma 16, which results in


Zn
ν(W )


≤ Cp


2


(
1 + ϑn−n


′


p eCCp


)
.


The measure (Fn)∗ν is therefore proper, provided that n ≥ n′+ (C + logCp)/| log ϑp|. Because
we are assuming C > Cr > 2, there exist a uniform constant Ap > 0 such that the preceding is
implied by n ≥ Ap


(
max


(
logC, | log |W ||


)
+ C


)
. The condition in the lemma follows. �
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Available from: http://dx.doi.org/10.1007/PL00001034, doi:10.1007/PL00001034.


[7] Nikolai Chernov. Advanced statistical properties of dispersing billiards. J. Stat. Phys., 122(6):1061–
1094, 2006. Available from: http://dx.doi.org/10.1007/s10955-006-9036-8, doi:10.1007/
s10955-006-9036-8.


[8] Nikolai Chernov. Sinai billiards under small external forces. II. Ann. Henri Poincaré, 9(1):91–107, 2008.
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