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Abstract


In a previous study [5] we investigate the bound states of the Hamiltonian de-
scribing a quantum particle living on three dimensional straight strip of width d.
We impose the Neumann boundary condition on a disc window of radius a and
Dirichlet boundary conditions on the remained part of the boundary of the strip.
We proved that such system exhibits discrete eigenvalues below the essential spec-
trum for any a > 0. In the present work we study the effect of a magnetic filed of
Aharonov-Bohm type when the magnetic field is turned on this system. Precisely
we prove that in the presence of such magnetic filed there is some critical values of


a0 > 0, for which we have absence of the discrete spectrum for 0 <
a


d
< a0. We


give a sufficient condition for the existence of discrete eigenvalues.
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1 Itroduction


The task of finding eigenenergies En and corresponding eigenfunctions fn(r), n = 1, 2, ...


of the Laplacian in the two- (2D) and three-dimensional (3D) domain Ω with mixed


Dirichlet


fn(r)|∂ΩD
= 0 (1.1)


and Neumann


n∇fn(r)|∂ΩN
= 0, (1.2)
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boundary conditions on its confining surface (for 3D) or line (for 2D) ∂Ω = ∂ΩD ∪ ∂ΩN


(n is a unit normal vector to ∂Ω) [9, 23, 35, 40, 47, 53] is commonly referred to as


Zaremba problem [58], it is a known mathematical problem science. Apart from the purely


mathematical interest, an analysis of such solutions is of a large practical significance


as they describe miscellaneous physical systems. For example, the temperature T of


the solid ball floating in the icewater obeys the Neumann condition on the part of the


boundary which is in the air while the underwater section of the body imposes on T


the Dirichlet demand [23]. Mixed boundary conditions were applied for the study of the


spectral properties of the quantized barrier billiards and of the ray splitting in a variety


of physical situations. The problem of the Neumann disc in the Dirichlet plane emerges


naturally in electrostatics [34]. In the limit of the vanishing Dirichlet part of the border


the reciprocal of the first eigenvalue describes the mean first passage time of Brownian


motion to ∂ΩD. In cellular biology, the study of the diffusive motion of ions or molecules


in neurobiological microstructures essentially employs the combination of these two types


of the boundary coniditons on the different parts of the confinement [33].


One class of Zaremba geometries that recently received a lot of attention from


mathematicians and physicists are 2D and 3D straight and bent quantum wave guides


[5, 14, 16, 19, 21, 29, 39, 43, 47]. In particular, the conditions for the existence of the


bound states and resonances in such classically unbound system were considered for the


miscellaneous permutations of the Dirichlet and Neumann domains [21, 29, 44]. Bound


states lying below the essential spectrum of the corresponding straight part were pre-


dicted to exist for the curved 2D channel if its inner and outer interfaces support the


Dirichlet and Neumann requirements, respectively, and not for the opposite configuration


[22, 39, 43]. This was an extension of the previous theoretical studies of the existence of


the bound states for the pure Dirichlet bent wave guide [27] that were confirmed experi-


mentally. Also, for the 2D straight Dirichlet wave guide the existence of the bound state


below the essential spectrum was predicted when the Neumann window is placed on its


confining surface [16, 29]. From practical point of view, such configuration can be realized


in the form of the two window-coupled semiconductor channels of equal widths [29, 30]


whose experimental creation and study has been made possible due to the advances of


the modern growth nanotechnologies. The number of the bound states increases with


the window length a and their energies are monotonically decreasing functions of a [14].


In particular, for small values of a the eigenvalue emerges from the continuous spectrum
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proportionally to a4. The asymptotical estimate for small a were established in [31]. The


asymptotics expansion of the emerging eigenvalue for small a was constructed formally in


[50], while the rigorous results were obtained in [32]. Recently, this result was extended


to the case of the 3D spatial Dirichlet duct with circular Neumann disc [5] for which a


proof of the bound state existence was confirmed, the number of discrete eigenvalues as a


function of the disc radius a was evaluated and their asymptotics for the large a was given.


As mentioned above, such Zaremba configuration is indispensable for the investigation of


the electrostatic phenomena [34]. Similar to the 2D case, it can be also considered as the


equal widths limit of the two 3D coupled Dirichlet ducts of, in general, different widths


with the window in their common boundary [7, 30]. Another motivation stems from the


phenomenological Ginzburg-Landau theory of superconductivity [20] which states that


the boundary condition for the order parameter Ψ(r) of the superconducting electrons


reads.


The study of quantum waves on quantum waveguide has gained much interest and has


been intensively studied during the last years for their important physical consequences.


The main reason is that they represent an interesting physical effect with important


applications in nanophysical devices, but also in flat electromagnetic waveguide.


Exner et al. have done seminal works in this field. They obtained results in different


contexts, we quote [24, 27, 29, 31]. Also in [37, 38, 45] research has been conducted in


this area; the first is about the discrete case and the two others for deals with the random


quantum waveguide.


It should be noticed that the spectral properties essentially depends on the geometry


of the waveguide, in particular, the existence of a bound states induced by curvature


[16, 21, 24, 27] or by coupling of straight waveguides through windows [27] were shown.


On the other hand, the results on the discrete spectrum of a magnetic Schrödinger


operator in waveguide-type domains are scarce. A planar quantum waveguide with con-


stant magnetic field and a potential well is studied in [25], where it was proved that if the


potential well is purely attractive, then at least one bound state will appear for any value


of the magnetic field. Stability of the bottom of the spectrum of a magnetic Schrödinger


operator was also studied in [57]. Magnetic field influence on the Dirichlet-Neumann


structures was analyzed in [12, 44], the first dealing with a smooth compactly supported


field as well as with the Aharonov-Bohm field in a two dimensional strip and second with
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perpendicular homogeneous magnetic field in the quasi dimensional.


Despite numerous investigations of quantum waveguides during last few years, many


questions remain to be answered, this concerns, in particulier, effects of external fields.


most attention has been paid to magnitec fields, either perpendicular to the waveguides


plane or threaded through the tube, while the influence of the an Aharonov-Bohm mag-


netic field alone remained mostly untreated.


In their celebrated 1959 paper [4] Aharonov and Bohm pointed out that while the


fundamental equations of motion in classical mechanics can always be expressed in terms


of field alone, in quantum mechanics the canonical formalism is necessary, and as a result,


the potentials cannot be eliminated from the basic equations. They proposed several


experiments and showed that an electron can be influenced by the potentials even if no


fields acts upon it. More precisely, in a field-free multiply-connected region of space,


the physical properties of a system depend on the potentials through the gauge-invariant


quantity
∮


Adl, where A represents the vector potential. Moreover, the Aharonov-Bohm


effect only exists in the multiply-connected region of space. The Aharonov-Bohm


experiment allows in principle to measure the decomposition into homotopy classes of the


quantum mechanical propagator.


A possible next generalization are waveguides with combined Dirichlet and Neumann


boundary conditions on different parts of the boundary with a Aharonov-Bohm magnetic


field with the flux 2πα. The presence of different boundary conditions and Aharonov-


Bohm magnetic field also gives rise to nontrivial properties like the existence of bound


states this question is the main objet of the paper. The rest of the paper is organized as


follows, in Section 2, we define the model and recall some known results. In section 3,


we present the main result of this note followed by a discussion. Section 4 is devoted for


numerical computations.


2 The model


The system we are going to study is given in Fig 1. We consider a Schrödinger particle


whose motion is confined to a pair of parallel plans of width d. For simplicity, we assume


that they are placed at z = 0 and z = d. We shall denote this configuration space by Ω


Ω0 = R2 × [0, d].


4







Let γ(a) be a disc of radius a, without loss of generality we assume that the center of


γ(a) is the point (0, 0, 0);


γ(a) = {(x, y, 0) ∈ R3; x2 + y2 ≤ a2}. (2.3)


We set Γ = ∂Ω0�γ(a). We consider Dirichlet boundary condition on Γ and Neumann


boundary condition in γ(a).


Figure 1: The waveguide with a disc window and two different boundaries conditions
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2.1 The Hamiltonian


Let be the multiply-connected region Ω = {(x, y, z) ∈ Ω0; x2 + y2 > 0}. Let us define,


now the self-adjoint operator on L2(Ω) corresponding to the particle Hamiltonian H. This


is will be done by the mean of Friedrichs extension theorem. Precisely, let HAB be The


Aharonov-Bohm Schrödinger operator in L2(Ω), defined initially on the domain C∞0 (Ω),


and given by the expression


HAB = (i∇+ A)2, (2.4)


where A is a magnetic vector potential for the Aharonov-Bohm magnetic field B, and


given by


A(x, y, z) = (A1, A2, A3) = α


(
y


x2 + y2
,
−x


x2 + y2
, 0


)
, α ∈ R \ Z. (2.5)


The magnetic field B : R3 → R3 given by


B(x, y, z) = curlA = 0


outside the z-axis and ∫
γ


A = 2πα, (2.6)


where γ is a properly oriented closed curve which encloses the z-axis. It can be shown that


HAB has a four-parameter family of self-adjoint extensions which is constructed by means


of von Neumanns extension theory [15]. Here we are only interested in the Friedrichs


extension of HAB on L2(Ω) which we now construct by means of quadratic forms.


For A = (A1, A2, 0) in (2.5), we observe that A1, A2 ∈ L∞loc(Ω). Let


Ωn = B(0, n)× [0, d] \ (B(0, 1/n)× [0, d]) , n ≥ 2,


where B(0, r) denotes the disk with centre 0 and radius r. We define on L2(Ωn) (for each


n ≥ 2) the quadratic form


qn[u, v] =


∫
Ωn


(
i
∂u


∂x
+ A1u


)(
i
∂v


∂x
+ A1v


)
+


∫
Ωn


(
i
∂u


∂y
+ A2u


)(
i
∂v


∂y
+ A2v


)
+


∫
Ωn


(
i
∂u


∂z
+ A3u


)(
i
∂v


∂z
+ A3v


)
,


on the domain


Q(qn) = {u ∈ H1(Ωn); udΓn = 0},
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where H1(Ωn) = {u ∈ L2(Ωn)|∇u ∈ L2(Ωn)} is the standard Sobolev space, Γn = ∂Ωn \
γ(a) and we denote by udΓn, the trace of the function u on Γn. The form qn is closed,


since A1, A2 ∈ L∞(Ωn).


Let the quadratic form q


q[u, v] = qn[u, v] if u, v ∈ Q(qn),


Q(q) = ∪nQ(qn).


Lemma 2.1 The form q is closable.


Proof.The form q is closable if and only if any sequence, un ∈ Q(q), such that


lim
n→∞


‖ un ‖= 0 and lim
m,n→∞


q[un − um] = 0, (2.7)


satisfies limn→∞ q[un] = 0.


Observe that (2.7) implies


C := sup
n
q[un]1/2 <∞. (2.8)


Let ba a sequence, (un)n ∈ Q(q), such that (2.7) satisfies, then we take ε > 0 and choose


n0 such that


q[un − um] ≤ ε for n,m ≥ n0, (2.9)


and


‖ un ‖≤ ε for n ≥ n0. (2.10)


Set, moreover, K = Ωn0 ⊂ Ω such that the support of un0 included in K. In view of (2.7)


it follows that∫
K


| (i∇+ A)(un − um) |2≤ q[un − um] −→ 0 as n,m→∞, (2.11)


∫
K


| un |2−→ 0 as n→∞. (2.12)


A is bounded on K as


‖ A ‖≤| K | n0, (2.13)


we obtain that ∫
K


| Aun |2−→ 0 as n→∞. (2.14)


Since the norm in L2 is 1-Lipschitz, then
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∣∣∣∣(∫
K


| A(un − um) |2 dx
)1/2


−
(∫


K


| ∇(un − um) |2 dx
)1/2∣∣∣∣


≤
(∫


K


| (i∇+ A)(un − um) |2 dx
)1/2


.


According to (2.12), the first term on the left side of the latter tends to zero as n,m→∞
and, due to (2.9), the same holds for the right side. Thus,∫


K


| un − um |2 + | ∇(un − um) |2 −→ 0 as n,m→∞. (2.15)


Since the form of the classical Dirichlet-Neumann Laplacian in Q(qn0) is closable it follows


from (2.15), in conjunction with (2.11) that∫
K


| ∇un |2→ 0,


∫
K


| un |2→ 0, as n→∞. (2.16)


Let’s consider the following quadratic form


q[un] = q[un, un − un0 ] + q[un, un0 ] ≤ q[un]1/2q[un − un0 ]
1/2+ | q[un − un0 ] | . (2.17)


It follows from (2.8) and (2.9) that


q[un]1/2q[un − un0 ]
1/2 ≤ Cε1/2 when n ≥ n0. (2.18)


Since A is bounded on K we infer from (2.14) and (2.16) that


q[un, un0 ] =


∫
K


(i∇+ A)un(i∇+ A)un0 → 0 as n→∞. (2.19)


Using (2.18)-(2.19) in (2.17) shows that limn→∞ q[un] = 0, this ends the proof of the


lemma 2.1. �


We denote the closure of q by q and the associated semi-bounded self-adjoint operator


is the Friedrichs extension of HAB is denoted by H and its domain by D(Ω). It is the


hamiltonian describing our system. We conclude that the domain D(Ω) of H is


D(Ω) = {u ∈ H1(Ω); (i∇+ A)2u ∈ L2(Ω), udΓ = 0, ν.(i∇+ A)udγ(a) = 0},


where ν the normal vector and


Hu = (i∇+ A)2u, ∀u ∈ D(Ω). (2.20)
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2.2 Some known facts


Let’s start this subsection by recalling that in the particular case when a = 0, we get


H0, the magnetic Dirichlet Laplacian, and when a = +∞ we get H∞, the magnetic


Dirichlet-Neumann Laplacian.


Proposition 2.2 The spectrum of H0 is [(π
d
)2,+∞[, and the spectrum of H∞ coincides


with [( π
2d


)2,+∞[.


Proof. Since


H = (i∇+ Ã)2 ⊗ I ⊕ I ⊗ (−∆[0,d]), on L2(R2 \ {0})⊗ L2([0, d]).


where Ã := α
(


y
x2+y2


, −x
x2+y2


)
. Consider the quadratic form


q̃[u] =


∫
R2


| (i∇+ Ã)u |2 dxdy


=


∫
R2


∣∣∣∣(i∂x + α
y


x2 + y2


)
u


∣∣∣∣2 dxdy +


∫
R2


∣∣∣∣(i∂y − α x


x2 + y2


)
u


∣∣∣∣2 dxdy. (2.21)


By introducing polar coordinates we get


r =
√
x2 + y2;


x


r
= cos θ,


y


r
= sin θ,


and
∂θ


∂x
=
−y
r2
,


∂θ


∂y
=


x


r2
, ∂x = cos θ


∂


∂r
− y


r2


∂


∂θ
, ∂y = sin θ


∂


∂r
+
x


r2


∂


∂θ
.


Hence (2.21) becomes


q̃[u] =


∫ ∣∣∣∣(i cos θ
∂


∂r
− i y


r2


∂


∂θ
+ α


sin θ


r


)
u


∣∣∣∣2 rdrdθ
+


∫ ∣∣∣∣(i sin θ
∂


∂r
+ i


x


r2


∂


∂θ
− αcos θ


r


)
u


∣∣∣∣2 rdrdθ
=


∫ (
cos2 θ | ∂ru |2 +


sin2 θ


r2
| (i∂θu− αu) |2


)
rdrdθ


+


∫ (
sin2 θ | ∂ru |2 +


cos2 θ


r2
| (i∂θu− αu) |2


)
rdrdθ


=


∫ (
| ∂ru |2 +


1


r2
| (i∂θu− αu) |2


)
rdrdθ. (2.22)


Expanding u into Fourier series with respect to θ


u(r, θ) =
∞∑


k=−∞


uk(r)
eikθ√


2π
.
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enables us to rewrite (2.22) as∫ (
| ∂ru |2 +


1


r2
| (i∂θu− αu) |2


)
rdrdθ


≥
∫


1


r2


∣∣∣∣∣∑
k


−(k + α)uk(r)
eikθ√


2π


∣∣∣∣∣
2


rdrdθ


≥
∫


1


r2


∑
k


| k + α |2| uk(r) |2 rdr


≥ min
k
| k + α |2


∫
1


r2


∑
k


| uk(r) |2 rdr


≥ min
k
| k + α |2


∫
1


r2


∣∣∣∣∣∑
k


uk(r)
eikθ√


2π


∣∣∣∣∣
2


rdrdθ


= min
k
| k + α |2


∫
1


r2
| u(r, θ) |2 rdrdθ


= min
k
| k + α |2


∫
1


x2 + y2
| u(x, y) |2 dxdy.


Hence ∫
R2


| (i∇+ Ã)u |2 dxdy ≥ min
k
| k + α |2


∫
1


x2 + y2
| u(x, y) |2 dxdy. (2.23)


Here the form in the right hand side is considered on the function class H1(R2),


obtained by the completion of the class C∞0 (R2\{0}). Inequality (2.23) is the Hardy


inequality in two dimensions with Aharonov-Bohm vector potential [3]. This yields that


σ
(


(i∇+ Ã)2
)
⊂ [0,+∞[


Since σ(−∆) = σess(−∆) = [0,+∞[, then there exists a Weyl sequences {hn}∞n=1 for


the operator −∆ in L2(R2) at λ ≥ 0. Construct the functions


ϕn(x, y) =


{
hn if x > n and y > n,
0 if not.


‖
(


(i∇+ Ã)2 − λ
)
ϕn ‖ ≤ ‖ (∆− λ)ϕn ‖ + ‖ Ã2ϕn ‖ + ‖ Ã∇ϕn ‖


≤ ‖ (∆− λ)ϕn ‖ +
c


n
.


Where c is positive real.


Therefore, the functions ψn =
ϕn
‖ ϕn ‖


is Weyl sequence for (i∇ + Ã)2 at λ ≥ 0, thus
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[0,+∞[⊂ σess


(
(i∇+ Ã)2


)
⊂ σ


(
(i∇+ Ã)2


)
.


Then we get that the spectrum of (i∇ + Ã)2 is [0,+∞[, we know that the spectrum


of −∆0
[0,d] and −∆∞[0,d] is {(jπ


d
)2, j ∈ N?} and {((2j + 1)π


2d
)2, j ∈ N} respectively.


Therefore we have the spectrum of H0 is [(
π


d
)2,+∞[. And the spectrum of H∞ coincides


with [(
π


2d
)2,+∞[. �


Consequently, we have [
(
π


d
)2,+∞


[
⊂ σ(H) ⊂


[
(
π


2d
)2,+∞


[
.


Using the property that the essential spectra is preserved under compact perturbation,


we deduce that the essential spectrum of H is


σess(H) =
[
(
π


d
)2,+∞


[
.


2.3 Preliminary: Cylindrical coordinates


Let’s notice that the system has a cylindrical symmetry, therefore, it is natural to consider


the cylindrical coordinates system (r, θ, z). Indeed, we have that


L2(Ω, dxdydz) = L2(]0,+∞[×[0, 2π[×[0, d], rdrdθdz).


Consequently, a corresponding orthonormal basis in R3 is given by the three vectors


er =


 cos θ
sin θ


0


 , eθ =


 − sin θ
cos θ


0


 , ez =


 0
0
1


 .


We note by Aθ, the Aharonov-Bohm magnetic potential vector (2.5) in cylindrical coor-


dinates given by


Aθ(r, θ, z) =
α


r
(− sin θ, cos θ, 0) =


α


r
eθ.


We denote the gradient in cylindrical coordinates by ∇r,θ,z. While the operator i∇ + A


in cylindrical coordinates is given by


i∇r,θ,z + Aθ = i
∂


∂r
er +


1


r


(
i
∂


∂θ
+ α


)
eθ + i


∂


∂z
ez.


thus the Aharonov-Bohm Laplacian operator in cylindrical coordinates is given by


Hr,θ,z := (i∇r,θ,z + Aθ)
2


= −1


r


∂


∂r
(r
∂


∂r
) +


1


r2
(i
∂


∂θ
+ α)2 − ∂2


∂2z
.


11







3 The result


The main result of this paper is the following:


Theorem 3.1 Let H be the operator defined on (2.20). There exist a0 > 0 such that for


any 0 <
a


d
< a0, we have


σd(H) = ∅.


There exist a1 > 0, such that
a


d
> a1, we have


σd(H) 6= ∅.


Remark 3.1 The presence of magnetic field in three dimensional straight strip of width


d with the Neumann boundary condition on a disc window of radius 0 <
a


d
< a0 and


Dirichlet boundary conditions on the remained part of the boundary, destroys the creation


of discrete eigenvalues below the essential spectrum. if
a


d
> a1, the effect of the magnetic


field is reduced.


Proof. As in [5], let’s split L2(Ω, rdrdθdz) as follows, L2(Ω, rdrdθdz) =


L2(Ω−a , rdrdθdz)⊕ L2(Ω+
a , rdrdθdz), with


Ω−a = {(r, θ, z) ∈ [0, a]× [0, 2π[×[0, d]},


Ω+
a = Ω \ Ω−a .


Therefore


H−,Na ⊕H+,N
a ≤ H ≤ H−,Da ⊕H+,D


a .


Here we index by D and N depending on the boundary conditions considered on the


surface r = a. The min-max principle leads to


σess(H) = σess(H
+,N
a ) = σess(H


+,D
a ) = [(


π


d
)2,+∞[. (3.24)


Let us denote by λk(H
−,N
a ), λk(H


−,D
a ) and λk(H), the k-th eigenvalue of H−,Na , H−,Da and


H respectively then, the minimax principle yields the following


λk(H
−,N
a ) ≤ λk(H) ≤ λk(H


−,D
a ) (3.25)


and for k ≥ 2


λk−1(H−,Na ) ≤ λk(H) ≤ λk(H
−,N
a ); (3.26)
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λk−1(H−,Da ) ≤ λk(H) ≤ λk(H
−,D
a ). (3.27)


Thus, if H−,Na does not have a discrete spectrum below (π
d
)2, then H do not has as well.


We mention that its a sufficient condition.


The eigenvalue equation is given by


H−,Na f(r, θ, z) = Ef(r, θ, z). (3.28)


This equation is solved by separating variables and considering f(r, θ, z) = R(r)P (θ)Z(z).


Plugging the last expression in equation (3.28) and first separate Z by putting all the z


dependence in one term so that
Z ′′


Z
can only be constant. The constant is taken as


−k2
z = −(


(2j + 1)π


2d
)2 for convenience. Second, we separate the term


1


P
(i
∂


∂θ
+ α)2P


which has all the θ dependance. Using the fact that the problem has an axial symmetry


and the solution has to be 2π periodic and single value in θ, we obtain
1


P
(i
∂


∂θ
+ α)2P


should be a constant −(m−α)2 = −ν2 for m ∈ Z. Finally, we get the following equation


for R


R′′(r) +
1


r
R′(r) + [E − k2


z −
ν2


r2
]R(r) = 0. (3.29)


We notice that the equation (3.29), is the Bessel equation and its solutions could be ex-


pressed in terms of Bessel functions. More explicit solutions could be given by considering


boundary conditions. The solution of the equation (3.29) is given by R(r) = cJν(βr), with


c ∈ R, β2 = E − k2
z and Jν is the Bessel function of first kind of order ν. We assume


that R′(a) = 0. So we get the condition aβ = x′ν,n, with x′ν,n are the positive zeros of the


Bessel function J ′n. Thus H−,Na has a sequence of eigenvalues given by


λj,ν,n =
x′2ν,n
a2


+ k2
z


=
x′2ν,n
a2


+


(
(2j + 1)π


2d


)2


.


As we are interested for discrete eigenvalues which belongs to [
( π


2d


)2


,
(π
d


)2


) only λ0,ν,n


intervenes.


If (π
d


)2


≤ λ0,ν,n, (3.30)


then there H does not have a discrete spectrum. We recall that ν2 = (m− α)2 and it is


related to magnetic flux, also recall that x′ν,n are the positive zeros of the Bessel function
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J ′n and ∀ν > 0, ∀n ∈ N?; 0 < x′ν,n < x′ν,n+1 ( see [54]). So, for any eigenvalue of H−,Na ,


x′2ν,1
a2


+
( π


2d


)2


<
x′2ν,n
a2


+
( π


2d


)2


= λ0,ν,n.


An immediate consequence of the last inequality is that to satisfy (3.30) it is sufficient to


have


3
( π


2d


)2


<
x′2ν,1
a2


,


therefore √
3π


2d
<
x′ν,1
a
,


then
a


d
<


2x′ν,1√
3π
.


Or ( see [17, 41, 49, 54]), we have


ν + αnν
1/3 < x′ν,n,


where αn = 2−1/3βn and βn is the n-th positive root of the equation


J 2
3


(
2


3
x3/2


)
− J−2


3


(
2


3
x3/2


)
= 0.


For n = 1, we have


c0 := 0.6538 + α < 0.6538 + ν < x′ν,1. (3.31)


Then we get that for d and a positives such that
a


d
< a0 :=


2c0√
3π


,


σd(H) = ∅.


This ends the proof of the first result of the theorem 3.1.


By the min-max principle and (3.27), we know that if H−,Da exhibits a discrete spec-


trum below (π
d
)2, then H do as well.


H−,Da has a sequence of eigenvalues [5, 56], given by


λj,ν,n =
(xν,n
a


)2


+


(
(2j + 1)π


2d


)2


.


Where xν,n is is the n−th positive zero of Bessel function of order ν ( see [5]). As we are


interested for discrete eigenvalues which belongs to [(
π


2d
)2, (


π


d
)2) only for λ0,ν,n.


If we is satisfied the condition


λ0,ν,n <
(π
d


)2


, (3.32)
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then H have a discrete spectrum.


We recall that 0 < xν,n < xν,n+1 for any ν > 0 and any n ∈ N? ( see [54]). So, for any


eigenvalue of H−,Da ,
x2
ν,1


a2
+
( π


2d


)2


<
x2
ν,n


a2
+
( π


2d


)2


= λ0,ν,n.


An immediate consequence of the last inequality is that to satisfy (3.32) it is sufficient to


set then
2xν,1√


3π
<
a


d


Or ( see [17, 54]), we have √(
n− 1


4


)2


π2 + ν2 < xν,n,


For n = 1, we have


c1 :=


√(
3π


4


)2


+ α2 <


√(
3π


4


)2


+ ν2 < xν,1. (3.33)


Then we get that for d and a positives such that
a


d
> a1 :=


2c1√
3π


,


σd(H) 6= ∅.


�


4 Numerical computations


This section is devoted to some numerical computations. We represent the radius values


a0 : α 7→ 2x′α,1√
3π


and a1 : α 7→ 2xα,1√
3π


, where x′α,1 and xα,1 is the first positive zero of Bessel


function J ′α and Jα respectively, a function of the flux magnetic α, which makes it possible


to exist or not discrete eigenvalues of H.
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Figure 2: We represent a0 : α 7→ 2x′α,1√
3π


where x′α,1 and a1 : α 7→ 2xα,1√
3π
.


In the neighborhood to zeros, we do to zoom the figure 2, when d → 0, we observe


that the discrete eigenvalues of H exists, contrary when a→ 0.
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Figure 3: Zoom of figure 2 in the neighborhood to zeros.


We analyse a dependence of the first eigenfunction on the flux magnetic α in the whole


range of their variation. We chose a more natural method: the finite element method.


Consider a triangulation τh of Ω. We will construct the matrices of mass M and of


assemblage A associated to the mesh and to the operator. We consider two elements


u, V of D(Ω). Note U , V vector whose i-th coordinate gives the value of u, v at i-


th point of the mesh. Denote by φi the basis functions for the finite element element


Pk considered, the matrices M and A are given by their coefficients Mi,j and Ai,j are


numerical approximations of integrals:


Mi,j ≈
∫


Ω


φiφj.


Ai,j ≈
∫


Ω


(i∇+ A)φi(i∇+ A)φj.
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Matrices M and A satisfied then: ∫
Ω


uv ≈ tVMU,


a(u, v) ≈ tV AU.


From calculation of the two matrices M and A, we wish to determine the eigenvector of


the operator H. We can draw a parallel between the initial theoretical problem and the


numerical problem that we solve:


• find u ∈ D(Ω), µ ∈ R such that ∀v ∈ D(Ω), a(u, v) = µ < u, v >.


• find U ∈ Pk, µ ∈ R such that ∀V ∈ Pk, tV AU = µtVMA.


The approximate problem is to determine the eigenvectors of the matrix A for the matrix


M , that is to say, to find U ∈ Pk, such as: AU = λMU .


We represent the first eigenfunction of H for the Neumann radius a=3, d = π and


α = 0.5.


Figure 4: the first eigenfunction of H for the Neumann radius a=3, d = π and α = 0.5.
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We represent the first eigenfunction of H for the Neumann radius a=3, d = π and


α = 1.


Figure 5: the first eigenfunction of H for d = π and α = 0.75.
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[18] L. Dabrowski and P. Št’ov̌iček: Aharonov - Bohm Effect with δ- Type Interaction. J.


Math. Phys. 39 no. 1, 47-62(1998).


[19] E. B. Davies and L. Parnovski: Trapped modes in acoustic waveguides. Quart. J.


Mech. Appl. Math. 51, 477-492(1998).


[20] P. G. de Gennes: Superconductivity of metals and alloys. (1966 New York: Benjamin).
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