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Abstract


All the segments (or their continuations) of a billiard trajectory inside an ellipsoid of Rn are
tangent to n − 1 quadrics of the pencil of confocal quadrics determined by the ellipsoid. The
quadrics associated to periodic billiard trajectories verify certain algebraic conditions. Cayley
found them in the planar case. Dragović and Radnović generalized them to any dimension.
We rewrite the original matrix formulation of these generalized Cayley conditions as a simpler
polynomial one. We find several remarkable algebraic relations between caustic parameters and
ellipsoidal parameters that give rise to nonsingular periodic trajectories.
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1. Introduction


One of the best known discrete integrable system is the billiard inside ellipsoids. All the
segments (or their continuations) of a billiard trajectory inside an ellipsoid of Rn are tangent
to n − 1 quadrics of the pencil of confocal quadrics determined by the ellipsoid [1–3]. This
situation is fairly exceptional. Quadrics are the only smooth hypersurfaces of Rn, n ≥ 3, that have
caustics [4, 5]. A caustic is a smooth hypersurface with the property that a billiard trajectory,
once tangent to it, stays tangent after every reflection. Caustics are a geometric manifestation of
the integrability of billiards inside ellipsoids.


Periodic trajectories are the most distinctive trajectories, so their study is the first task. There
exist two remarkable results about periodic billiard trajectories inside ellipsoids: the generalized
Poncelet theorem and the generalized Cayley conditions.


A classical geometric theorem of Poncelet [6, 7] implies that if a billiard trajectory inside an
ellipse is periodic, then all the trajectories sharing its caustic are also periodic. Its generalization
to the spatial case was proved by Darboux [8]. The extension of this result to arbitrary dimensions
can be found in [9–12]. The generalized Poncelet theorem can be stated as follows. If a billiard
trajectory inside an ellipsoid is closed after m0 bounces and has length L0, then all trajectories
sharing the same caustics are also closed after m0 bounces and have length L0. Thus, a natural
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question arises. What caustics do give rise to periodic trajectories? The planar case was solved
by Cayley [13, 14] in the XIX century. Dragović and Radnović [15, 16] found some generalized
Cayley conditions for billiards inside ellipsoids fifteen years ago. They have also stated similar
conditions in other billiard frameworks; see [17–21].


For simplicity, let us focus on the spatial case. Let Q : x2/a + y2/b + z2/c = 1 be the triaxial
ellipsoid with ellipsoidal parameters 0 < c < b < a. Any billiard trajectory inside Q has as
caustics two elements of the family of confocal quadrics


Qλ =
{


(x, y, z) ∈ R3 :
x2


a − λ +
y2


b − λ +
z2


c − λ = 1
}
.


We restrict our attention to nonsingular trajectories. That is, trajectories with two different caus-
tics which are ellipsoids: 0 < λ < c, hyperboloids of one sheet: c < λ < b, or hyperboloids
of two sheets: b < λ < a. The singular values λ ∈ {a, b, c} are discarded. There exist some
restrictions on the caustics Qλ1 and Qλ2 . It is known that EH1, H1H1, EH2, and H1H2 are the
only feasible caustic types; see [22, 23]. The meaning of these notations is evident.


The generalized Cayley condition in this context can be expressed as follows. The billiard
trajectories inside the triaxial ellipsoid Q sharing the caustics Qλ1 and Qλ2 are periodic with
elliptic period m ≥ 3 if and only if


rank



fm+1 · · · f4
...


...
f2m−1 · · · fm+2


 < m − 2,


where f (t) =
∑


l≥0 fltl :=
√


(1 − t/a)(1 − t/b)(1 − t/c)(1 − t/λ1)(1 − t/λ2). We claim that most
results related to generalized Cayley conditions become simpler when expressed in terms of the
inverse quantities 1/a, 1/b, 1/c, 1/λ1, and 1/λ2. Proposition 12 is a paradigmatic example.


The elliptic period is defined in Section 2. Roughly speaking, the difference between the
period m0 and the elliptic period m of the periodic billiard trajectories sharing two given caustics
is that all those trajectories close in Cartesian (respectively, elliptic) coordinates after exactly m0
(respectively, m) bounces. We will see that either m = m0/2 or m = m0.


The previous matrix formulation is very nice from a theoretical point of view, but it has strong
limitations from a computational point of view. We will see in Section 3 that it can be written
as a system of two homogeneous symmetric polynomial equations with rational coefficients of
degrees m2 − 2 and m2 − 1 in the variables 1/a, 1/b, 1/c, 1/λ1, and 1/λ2. Thus, both degrees
grow quadratically with the elliptic period m, which turns this approach into a tough challenge.
In particular, to our knowledge, the caustic parameters λ1 and λ2 have never been explicitly
expressed in terms of the ellipsoidal parameters a, b, and c for any m ≥ 3.


We will rewrite this matrix formulation as a computationally more appealing one which gives
rise to (non-symmetric) homogeneous polynomial equations whose degrees are smaller than the
elliptic period m. We will find the following remarkable algebraic relations between caustic and
ellipsoidal parameters using the new formulation. The billiard trajectories inside the ellipsoid Q
sharing the caustics Qλ1 and Qλ2 are periodic with:


• Elliptic period m = 3 if the roots of t3 − (t − c)(t − b)(t − a) are the caustic parameters;


• Elliptic period m = 4 if there exists d ∈ R such that the roots of t4 − (t − d)2(t − λ1)(t − λ2)
are the ellipsoidal parameters; and
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• Elliptic period m = 5 if the roots of t5 − (t − c)(t − b)(t − a)(t − λ1)(t − λ2) are double ones.


Let us compare both formulations in the third case. On the one hand, the two homogeneous
symmetric polynomial equations obtained from the matrix formulation have degrees 23 and 24 in
the variables 1/a, 1/b, 1/c, 1/λ1, and 1/λ2. On the other hand, t5−(t−c)(t−b)(t−a)(t−λ1)(t−λ2)
is a polynomial of degree four in a single variable. Clearly, the polynomial formulation leads to a
much simpler problem. Nevertheless, it should be stressed that the matrix formulation determines
all periodic billiard trajectories with elliptic period m = 5. On the contrary, we find just a subset
of such trajectories using the polynomial t5 − (t − c)(t − b)(t − a)(t − λ1)(t − λ2).


Another natural question about periodic billiard trajectories is the following one. Which are
the triaxial ellipsoids of R3 that display periodic billiard trajectories with a fixed caustic type and
a fixed (elliptic) period? A numerical approach to that question was considered in [24], where
the authors computed several bifurcations in the space of ellipsoidal parameters. We will find the
algebraic relations that define the bifurcations associated to small elliptic periods. For instance,
we will see that there exist periodic billiard trajectories with elliptic period m = 3 and caustic
type EH1 if and only if c < ab/(a + b +


√
ab).


For brevity, we will not depict billiard trajectories inside triaxial ellipsoids of R3. The reader
interested in 3D graphical visualizations is referred to [25], where several periodic billiard tra-
jectories with small periods are displayed from different perspectives.


We complete this introduction with a note on the organization of the article. In Section 2
we review briefly some well-known results about billiards inside ellipsoids, recalling the matrix
formulation of the generalized Cayley conditions obtained by Dragović and Radnović. We also
introduce the concept of elliptic period. The practical limitations of the matrix formulation are
exposed in Section 3. Next, we present the polynomial formulation in Section 4. In Section 5
we carry out a detailed analysis for minimal elliptic periods, whereas the study of more general
elliptic periods is postponed to Section 6. The previous results are adapted to billiards inside
ellipses of R2 and inside triaxial ellipsoids of R3 in sections 7 and 8, respectively.


2. Preliminaries


In this section we recall several classical results and their modern generalizations about bil-
liards inside ellipsoids that go back to Jacobi, Chasles, Poncelet, Darboux, and Cayley.


We consider the billiard dynamics inside the ellipsoid


Q =


x = (x1, . . . , xn) ∈ Rn :
n∑


i=1


x2
i


ai
= 1


 , 0 < a1 < · · · < an. (1)


The degenerate cases in which the ellipsoid has some symmetry of revolution are not considered
here. This ellipsoid is an element of the family of confocal quadrics


Qλ =


x = (x1, . . . , xn) ∈ Rn :
n∑


i=1


x2
i


ai − λ
= 1


 , λ ∈ R.


We note that Qλ = ∅ for λ > an. Thus, there are exactly n different geometric types of nonsingular
quadrics in this family, which correspond to the cases


λ ∈ (−∞, a1), λ ∈ (a1, a2), . . . , λ ∈ (an−1, an).
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For instance, the confocal quadric Qλ is an ellipsoid if and only if λ ∈ (−∞, a1). On the other
hand, the meaning of Qλ in the singular cases λ ∈ {a1, . . . , an} is


Qa j = H j =
{
x = (x1, . . . , xn) ∈ Rn : x j = 0


}
.


The following theorems of Jacobi and Chasles can be found in [1–3].


Theorem 1 (Jacobi). Any generic point x ∈ Rn belongs to exactly n distinct nonsingular quadrics
Qµ0 , . . . ,Qµn−1 such that µ0 < a1 < µ1 < a2 < · · · < an−1 < µn−1 < an.


We denote by µ = (µ0, . . . , µn−1) ∈ Rn the Jacobi elliptic coordinates of the point x =
(x1, . . . , xn). Cartesian and elliptic coordinates are linked by relations


x2
j =


∏n−1
i=0 (a j − µi)∏
i, j(a j − ai)


, j = 1, . . . , n.


Hence, a point has the same elliptic coordinates that its orthogonal reflections with respect to the
coordinate subspaces of Rn. A point is generic, in the sense of Theorem 1, if and only if it is
outside all coordinate hyperplanes. When a point tends to the coordinate hyperplane H j, some
of its elliptic coordinates tends to a j.


Theorem 2 (Chasles). Any line in Rn is tangent to exactly n−1 confocal quadrics Qλ1 , . . . ,Qλn−1 .


It is known that if two lines obey the reflection law at a point x ∈ Q, then both lines are
tangent to the same confocal quadrics. Thus, all lines of a billiard trajectory inside the ellipsoid
Q are tangent to exactly n − 1 confocal quadrics Qλ1 , . . . ,Qλn−1 , which are called caustics of the
trajectory, whereas λ1, . . . , λn−1 are the caustic parameters of the trajectory. We will say that a
billiard trajectory inside Q is nonsingular when it has n − 1 distinct nonsingular caustics. We
mostly deal with nonsingular billiard trajectories in this paper.


The caustic parameters cannot take arbitrary values. For instance, a line cannot be tangent
to two different confocal ellipsoids, and all caustics parameters must be positive. The following
complete characterization was given in [22, 23].


Proposition 3. Let λ1 < · · · < λn−1 be some real numbers such that


{a1, . . . , an} ∩ {λ1, . . . , λn−1} = ∅.


Set a0 = 0. Then there exist nonsingular billiard trajectories inside the ellipsoid Q sharing the
caustics Qλ1 , . . . ,Qλn−1 if and only if


λk ∈ (ak−1, ak) ∪ (ak, ak+1), k = 1, . . . , n − 1. (2)


Definition 1. The caustic type of a nonsingular trajectory is the vector ς = (ς1, . . . , ςn−1) ∈ Zn−1


such that
λk ∈ (aςk , aςk+1), k = 1, . . . , n − 1.


We know from Proposition 3 that ςk ∈ {k− 1, k} for k = 1, . . . , n− 1. Hence, there are exactly
2n−1 different caustic types. The two caustic types in the planar case correspond to ellipses:
ς1 = 0, and hyperbolas: ς1 = 1. The four caustic types in the spatial case correspond to EH1:
ς = (0, 1), H1H1: ς = (1, 1), EH2: ς = (0, 2), and H1H2: ς = (1, 2). The notations EH1, H1H1,
EH2, and H1H2 were described in the introduction.


Next, we recall a result about periodic billiard trajectories inside ellipsoids.
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Theorem 4 (Generalized Poncelet theorem). If a nonsingular billiard trajectory is closed after
m0 bounces and has length L0, then all trajectories sharing the same caustics are also closed
after m0 bounces and have length L0.


Poncelet proved this theorem for conics [6]. Darboux generalized it to triaxial ellipsoids of
R3; see [8]. Later on, this result was generalized to any dimension in [9–12].


The periodic billiard trajectories sharing the same caustics also have the same winding num-
bers. In order to introduce these numbers, we set


{c1, . . . , c2n−1} = {a1, . . . , an} ∪ {λ1, . . . , λn−1} , (3)


and f (t) =
√∏2n−1


i=1 (1 − t/ci). We deal with nonsingular billiard trajectories inside ellipsoids
without symmetries of revolution, so the parameters c1, . . . , c2n−1 are pairwise distinct, and we
can assume that c0 := 0 < c1 < · · · < c2n−1.


Theorem 5 (Winding numbers). The nonsingular billiard trajectories inside the ellipsoid Q
sharing the caustics Qλ1 , . . . ,Qλn−1 are periodic with period m0 if and only if there exist some
positive integer numbers m1, . . . ,mn−1 such that


n−1∑
j=0


(−1) jm j


∫ c2 j+1


c2 j


ti


f (t)
dt = 0, ∀i = 0, . . . , n − 2. (4)


Each of these periodic billiard trajectories has m j points at Qc2 j and m j points at Qc2 j+1 . Besides,
{c2 j, c2 j+1} ∩ {a1, . . . , an} , ∅ ⇒ m j even. Finally, gcd(m0, . . . ,mn−1) ∈ {1, 2}.


Let L0 be the common length of these periodic billiard trajectories. Let x(t) be an arc-length
parametrization of any of these trajectories. Let µ(t) = (µ0(t), . . . , µn−1(t)) be the corresponding
parametrization in elliptic coordinates. Then:


1. c2 j ≤ µ j(t) ≤ c2 j+1 for all t ∈ R.
2. Functions µ j(t) are smooth everywhere, except µ0(t) which is non-smooth at impact points


—that is, when x(t?) ∈ Q—, in which case µ′0(t?+) = −µ′0(t?−) , 0.
3. If µ j(t) is smooth at t = t?, then µ′j(t?) = 0⇔ µ j(t?) ∈ {c2 j, c2 j+1}.
4. µ j(t) makes exactly m j complete oscillations (round trips) inside the interval [c2 j, c2 j+1]


along one period 0 ≤ t ≤ L0.
5. µ(t) has period L = L0/ gcd(m0, . . . ,mn−1).


Definition 2. The numbers m0, . . . ,mn−1 are called winding numbers. Theorem 5 contains three
equivalent definitions for them: by means of the property regarding hyperelliptic integrals given
in (4), as a geometric description of how the periodic billiard trajectories fold in Rn, and as the
number of oscillations of the elliptic coordinates along one period.


Most of the statements of Theorem 5 can be found in [18, 20], but the one about the even
character of some winding numbers and the ones regarding gcd(m0, . . . ,mn−1). The first state-
ment is trivial; suffice it to realize that a periodic billiard trajectory can only have an even number
of crossings with any coordinate hyperplane. The second ones follow from the oscillating be-
haviour of elliptic coordinates along billiard trajectories described in Theorem 5; suffice it to
note that all elliptic coordinates make an integer number of complete oscillations inside their
corresponding intervals along one half-period L0/2 when gcd(m0, . . . ,mn−1) = 2.


The following conjecture was stated in [24], where it was numerically tested.
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Conjecture 1. Winding numbers are always ordered in a strict decreasing way; that is,


2 ≤ mn−1 < · · · < m1 < m0.


It is known that the conjecture holds in the planar case. If this conjecture holds, then any
nonsingular periodic billiard trajectory inside Q has period at least n + 1. By the way, there are
periodic billiard trajectories of smaller periods, but all of them are singular —they are contained
in some coordinate hyperplane or in some ruled quadric of the confocal family.


In light of the last item of Theorem 5, we present the following definitions.


Definition 3. The elliptic period m and the elliptic winding numbers m̃0, . . . , m̃n−1 of the nonsin-
gular periodic billiard trajectories with period m0 and winding numbers m0, . . . ,mn−1 are


m = m0/d, m̃ j = m j/d,


where d = gcd(m0, . . . ,mn−1).


Roughly speaking, the difference between the period m0 and the elliptic period m is that pe-
riodic billiard trajectories close in Cartesian (respectively, elliptic) coordinates after exactly m0
(respectively, m) bounces. In order to clarify this difference, let us consider the six planar peri-
odic trajectories shown in Figure 1; see Section 7. Only the trajectory in Figure 1(c) verifies that
m = m0. On the contrary, the trajectories in figures 1(a), 1(b), and 1(e) (respectively, Figure 1(d))
(respectively, Figure 1(f)) have even period m0 and any of their impact points becomes its reflec-
tion with respect to the origin (respectively, the vertical axis) (respectively, the horizontal axis)
after m0/2 bounces, so they have elliptic period m = m0/2.


It turns out that given any ellipsoid of the form (1) and any proper coordinate subspace of
Rn, there exist infinitely many sets of n − 1 distinct nonsingular caustics such that their tangent
trajectories are periodic with even period, say m0, and any of their impact points becomes its
reflection with respect to that coordinate subspace after m0/2 bounces. We will not prove this
claim, since the proof requires some convoluted ideas developed in [24, 25].


It is natural to look for caustics giving rise to periodic billiard trajectories inside that ellipsoid.
Such caustics can be found by means of certain algebraic conditions, called generalized Cayley
conditions. They are found by working in elliptic coordinates, so they depend on the elliptic
period m, not on the (Cartesian) period m0.


Theorem 6 (Generalized Cayley conditions). The nonsingular billiard trajectories inside the
ellipsoid Q sharing the caustics Qλ1 , . . . ,Qλn−1 are periodic with elliptic period m if and only if
m ≥ n and


rank



fm+1 · · · fn+1
...


...
f2m−1 · · · fm+n−1


 < m − n + 1,


where f (t) =
∑


l≥0 fltl :=
√∏2n−1


i=1 (1 − t/ci).


Cayley proved this theorem for conics [13]. Later on, this result was generalized to any
dimension by Dragović and Radnović in [15, 16]. These authors have also given similar Cayley
conditions in many other billiard frameworks; see [17–21].


Definition 4. C(m, n) denotes the generalized Cayley condition that characterizes billiard trajec-
tories of elliptic period m inside ellipsoids of Rn given in Theorem 6.
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3. On the matrix formulation of the generalized Cayley conditions


The matrix formulation of the generalized Cayley condition C(m, n) stated in Theorem 6 is
very nice from a theoretical point of view, but has strong limitations from a practical point of
view. Let us describe them.


The function f (t) is symmetric in the inverse quantities γi = 1/ci. In order to exploit it, we
introduce some notations about symmetric polynomials. Let Qhom,sym


l [x1, . . . , xs] be the vectorial
space over Q of all homogeneous symmetric polynomials with rational coefficients of degree l
in the variables x1, . . . , xs. Let el(x1, . . . , xs) be the elementary symmetric polynomial of degree l
in the variables x1, . . . , xs. That is,


∏s
i=1(1 + xit) =


∑
l≥0 el(x1, . . . , xs)tl, so el(x1, . . . , xs) = 0 for


all l > s. Clearly, el = el(x1, . . . , xs) ∈ Qhom,sym
l [x1, . . . , xs].


We stress that fl = fl(γ1, . . . , γ2n−1) ∈ Qhom,sym
l [γ1, . . . , γ2n−1], which is one of the reasons for


the introduction of the inverse quantities γi = 1/ci. Indeed, using that f 2(t) =
∏2n−1


i=1 (1 − γit), we
get the recursive relations


f0 = 1, 2 fl = (−1)lel(γ1, . . . , γ2n−1) −
l−1∑
k=1


fk fl−k, ∀l ≥ 1.


Hence, it is possible to compute recursively all Taylor coefficients fl, although their expressions
are rather complicated when l is big. Nevertheless, the computation of the Taylor coefficients
fn+1, . . . , f2m−1 is the simplest step in the practical implementation of the generalized Cayley
condition C(m, n). Next, we must impose that all (m − n + 1) × (m − n + 1) minors of the matrix
that appear in Theorem 6 vanish. For simplicity, let us consider the minors formed by the first
m−n rows and the (m−n+l)-th row of that matrix, for l = 1, . . . , n−1. Then the Cayley condition
C(m, n) can be written as the system of n − 1 polynomial equations


Mm,n,l = Mm,n,l(γ1, . . . , γ2n−1) :=


∣∣∣∣∣∣∣∣∣∣∣∣
fm+1 · · · fn+1
...


...
f2m−n · · · fm


f2m−n+l · · · fm+l


∣∣∣∣∣∣∣∣∣∣∣∣ = 0, 1 ≤ l ≤ n − 1. (5)


One can check that Mm,n,l(γ1, . . . , γ2n−1) ∈ Qhom,sym
(m−n+2)m−n+l[γ1, . . . , γ2n−1] from the Leibniz formula


for determinants. This implies that the resolution of system (5) is a formidable challenge, even
from a purely numerical point of view and for relatively small values of m.


We want to write down the solutions of system (5) in an explicit algebraic way. Let us focus
on the planar case n = 2, when condition C(m, 2) becomes a single homogeneous symmetric
polynomial equation of degree m2 − 1 in three unknowns; namely,


Mm = Mm(γ1, γ2, γ3) :=


∣∣∣∣∣∣∣∣∣∣
fm+1 · · · f3
...


...
f2m−1 · · · fm+1


∣∣∣∣∣∣∣∣∣∣ = 0.


For instance, condition C(2, 2) can be easily solved, since


−16M2 = γ3
1 + γ


3
2 + γ


3
3 − γ2


1γ2 − γ2
1γ3 − γ2


2γ1 − γ2
2γ3 − γ2


3γ1 − γ2
3γ2 + 2γ1γ2γ3


= (γ1 − γ2 − γ3)(γ3 − γ1 − γ2)(γ2 − γ3 − γ1).
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The inverse quantities γi = 1/ci verify that 0 < γ3 < γ2 < γ1, since 0 < c1 < c2 < c3. Therefore,
only the first factor of the above formula provides a feasible solution, and so condition C(2, 2)
has a unique solution:


γ1 = γ2 + γ3.


The computations for condition C(3, 2) are much harder, so we have implemented them using
a computer algebra system. We got the factorization −16384M3 = q0q1q2q3, where


q0 = γ2
1 + γ


2
2 + γ


2
3 − 2γ1γ2 − 2γ1γ3 − 2γ2γ3,


qk = 3γ2
k − 2(γi + γ j)γk − (γi − γ j)2, {i, j, k} = {1, 2, 3}.


The first factor q0 can, in its turn, be factored as


q0 = (
√
γ1 −


√
γ2 −


√
γ3)(
√
γ1 +


√
γ2 −


√
γ3)(
√
γ1 −


√
γ2 +


√
γ3)(
√
γ1 +


√
γ2 +


√
γ3).


The factor q0 provides a unique feasible solution:
√
γ1 =


√
γ2 +


√
γ3, because 0 < γ3 < γ2 < γ1.


Next, we consider the factor qk as a second-order polynomial in the variable γk with coefficients
in Zsym[γi, γ j]. Then we get the solutions


γk = γ
±
k (γi, γ j) :=


γi + γ j


3
± 2


3


√
γ2


i + γ
2
j − γiγ j.


It turns out that γ−k ≤ 0 < max(γi, γ j) < γ+k , so only the factor q1 gives a solution compatible with
the ordering 0 < γ3 < γ2 < γ1; namely, γ1 = γ


+
1 (γ2, γ3). Hence, C(3, 2) has only two solutions:


√
γ1 =


√
γ2 +


√
γ3 and 3γ1 = γ2 + γ3 + 2


√
γ2


2 + γ
2
3 − γ2γ3. (6)


We have tried to write down explicitly the solutions of system (5) in other cases, but we did
not succed, even after implementing the computations in a computer algebra system. This shows
the limitations of the matrix formulation.


4. A polynomial formulation of the generalized Cayley conditions


Theorem 7. Let r(t) =
∏2n−1


i=1 (1 − t/ci) and f (t) =
√


r(t). The generalized Cayley condition
C(m, n) is equivalent to any of the following two conditions:


(i) There exists a non-zero polynomial s(t) ∈ Rm−n[t] such that


dl


dtl


∣∣∣∣∣∣
t=0
{s(t) f (t)} = 0, l = m + 1, . . . , 2m − 1. (7)


(ii) There exist α , 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that s(0) = q(0) = 1 and


s2(t)r(t) = (αtm + q(t))q(t). (8)


Proof. We split the proof in three steps.
Step 1: C(m, n) ⇔ (i). C(m, n) means that the m − n + 1 columns of the matrix given in


Theorem 6 are linearly dependent, so there exist s0, . . . , sm−n ∈ R, not all zero, such that


s0 × (first column) + · · · + sm−n × (last column) = 0,
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which is equivalent to condition (7) when s(t) =
∑m−n


l=0 sltl ∈ Rm−n[t].
Step 2: (i)⇒ (ii). If s(t) ∈ Rm−n[t] verifies (7), then g(t) =


∑
l≥0 gltl := s(t) f (t) verifies that


gl = 0 for l = m + 1, . . . , 2m − 1. Hence,


g(t) = q(t) + αtm/2 + O(t2m),


where q(t) = g0 + · · · + gm−1tm−1 ∈ Rm−1[t] and α = 2gm. Therefore,


s2r = s2 f 2 = g2 = q2 + αtmq + O(t2m) = (q + αtm)q + O(t2m),


and so s2r = (q + αtm)q, since deg[s2r] ≤ 2m − 1 and deg[(q + αtm)q] ≤ 2m − 1. Besides, α , 0,
because deg[r] is odd and s(t) . 0.


Let h(t) =
∑


l≥0 hltl := g2(t) = s2(t)r(t) ∈ R2m−1[t]. Then


0 = h2m =


2m∑
l=0


glg2m−l = (gm)2 + 2g0g2m ⇒ g0g2m = −α2/8 , 0.


From this property, we deduce that q(0) = g0 , 0 and s2(0) = q2(0)/r(0) , 0. Thus, we can nor-
malize s(t) by imposing s(0) = 1, since condition (7) only determines s(t) up to a multiplicative
constant. This implies that q2(0) = s2(0)r(0) = 1, so q(0) = ±1. We can assume, without loss of
generality, that q(0) = 1. On the contrary, we substitute q(t) and α in the identity s2r = (αtm+q)q,
by −q(t) and −α, respectively.


Step 3: (ii) ⇒ (i). If there exist α , 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that s(0) =
q(0) = 1 and relation (8) holds, we set g(t) =


∑
l≥0 gltl := s(t) f (t). Then,


g2 = s2 f 2 = s2r = (q + αtm)q = (1 + αtm/q)q2.


The last operation is well-defined for small values of |t|, because q(0) , 0. Hence,


g = ±q
√


1 +
αtm


q
= ±q


(
1 +
αtm


2q
+ O(t2m)


)
= ±q ± αtm


2
+ O(t2m),


so gl = 0 for l = m + 1, . . . , 2m − 1.


Next, we present three examples of the results that can be obtained from this formulation.


Theorem 8. The nonsingular billiard trajectories inside the ellipsoid (1) sharing the caustics
Qλ1 , . . . ,Qλn−1 are periodic with:


• Elliptic period m = n if the roots of tn −∏n
j=1(t − a j) are the caustic parameters;


• Elliptic period m = n+1 if there exists d ∈ R such that the roots of tn+1−(t−d)2 ∏n−1
k=1(t−λk)


are the ellipsoidal parameters; and


• Elliptic period m = 2n − 1 if all the roots of t2n−1 −∏n
j=1(t − a j)


∏n−1
k=1(t − λk) are double.


Proof. Suffice it to find α , 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that


s2(t)r(t) = (αtm + q(t))q(t), s(0) = q(0) = 1,


9







for m = n, m = n + 1, and m = 2n − 1, respectively; see Theorem 7. We recall that r(t) =∏2n−1
i=1 (1 − t/ci) with {c1, . . . , c2n−1} = {a1, . . . , an} ∪ {λ1, . . . , λn−1}.


Case m = n. If the caustic parameters are the roots of tn −∏n
j=1(t − a j), then


tn −∏n
j=1(t − a j) = κ


∏n−1
k=1(t − λk),


for some factor κ ∈ R. Indeed, κ =
∏n


j=1 a j
∏n−1


k=1 λ
−1
k . We take α = (−1)n ∏n


j=1 a−1
j , s(t) ≡ 1, and


q(t) =
∏n−1


k=1(1 − t/λk). Clearly, α , 0, s(t) ∈ R0[t], q(t) ∈ Rn−1[t], and s(0) = q(0) = 1. Besides,


s2(t)r(t) =
∏n


j=1(1 − t/a j)
∏n−1


k=1(1 − t/λk) = (αtn + q(t))q(t),


since
∏n


j=1(1 − t/a j) = α
∏n


j=1(t − a j) = αtn − ακ∏n−1
k=1(t − λk) = αtn + q(t).


Case m = n + 1. If a1, . . . , an are the roots of tn+1 − (t − d)2 ∏n−1
k=1(t − λk), then


tn+1 − (t − d)2 ∏n−1
k=1(t − λk) = κ


∏n
j=1(t − a j),


for some κ ∈ R. Indeed, κ = d2 ∏n−1
k=1 λk


∏n
j=1 a−1


j . We take α = (−1)n+1d−2 ∏n−1
k=1 λ


−1
k , s(t) =


(1−t/d), and q(t) =
∏n


j=1(1−t/a j). Clearly, α , 0, s(t) ∈ R1[t], q(t) ∈ Rn[t], and s(0) = q(0) = 1.
Besides,


s2(t)r(t) = (1 − t/d)2
n∏


j=1


(1 − t/ai)
n−1∏
k=1


(1 − t/λk) = (αtn+1 + q(t))q(t),


since (1− t/d)2 ∏n−1
k=1(1− t/λk) = α(t−d)2 ∏n−1


k=1(1− t/λk) = αtn+1−ακ∏n
j=1(t−a j) = αtn+1+q(t).


Case m = 2n − 1. If t2n−1 −∏2n−1
i=1 (t − ci) has double roots d1, . . . , dn−1, then


t2n−1 −∏2n−1
i=1 (t − ci) = κ


∏n−1
l=1 (t − dl)2,


for some κ ∈ R. Indeed, κ =
∏2n−1


i=1 ci
∏n−1


l=1 d−2
l . We take α = −∏2n−1


i=1 c−1
i , s(t) =


∏n−1
l=1 (1 − t/dl),


and q(t) = s2(t). Clearly, α , 0, s(t) ∈ Rn−1[t], q(t) ∈ R2n−2[t], and s(0) = q(0) = 1. Besides,


s2(t)r(t) =
∏n−1


l=1 (1 − t/dl)2 ∏2n−1
i=1 (1 − t/ci) = (αt2n−1 + q(t))q(t),


since
∏2n−1


i=1 (1 − t/ci) = α
∏2n−1


i=1 (t − ci) = αt2n−1 − ακ∏n−1
l=1 (t − dl)2 = αt2n−1 + q(t).


Several questions arise about the periodic trajectories found in the previous theorem. Let
us mention just three. Which are their caustic types, their (Cartesian) periods, and their wind-
ing numbers? Inside what ellipsoids exist them? Are there other nonsingular periodic billiard
trajectories with elliptic period three, four or five?


We will give some partial answers in the next sections.
Some technicalities become simpler after the change of variables t = 1/x. Thus, we state


another polynomial formulation of the generalized Cayley condition C(m, n).


Proposition 9. Let R(x) = x
∏2n−1


i=1 (x − γi), where γi = 1/ci. The generalized Cayley condi-
tion C(m, n) holds if and only if there exist two monic polynomials S (x),R(x) ∈ R[x] such that
deg[S ] = m − n, deg[P] = m, P(0) , 0, and


S 2(x)R(x) = P(x)
(
P(x) − P(0)


)
. (9)


Furthermore, if such polynomials S (x) and P(x) exist, the following properties hold:
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1. S (x) has no multiple roots;
2. All the real roots of S (x) are contained in {x ∈ R : R(x) < 0};
3. All the roots of S (x) are real when m ≤ n + 3; and
4. P(x) and P(x) − P(0) have the same number of real roots (counted with multiplicity).


Proof. The “if and only if” follows directly from the change of variables t = 1/x. Concretely,
the relation between the objects of identities (8) and (9) is


R(x) = x2nr(1/x), S (x) = xm−ns(1/x), P(x) = α + xmq(1/x).


Then P(0) , 0 if and only if α , 0, s(0) = 1 if and only if S (x) is a monic polynomial of degree
m − n, and q(0) = 1 if and only if P(x) is a monic polynomial of degree m.


To prove the first two properties, suffice it to prove that gcd[S ,RS ′] = 1 and


l+ := #{x ∈ R : S (x) = 0 < R(x)} = 0.


If W(x) = P(x)(P(x) − P(0)) and T (x) = P(x) − P(0)/2, we get from (9) that


W(x) = S 2(x)R(x) = T 2(x) − P2(0)/4,
W ′(x) = S (x)(S (x)R′(x) + 2R(x)S ′(x)) = 2T (x)P′(x).


We consider the factorization W′(x) = 2mW−(x)W0(x)W+(x)W∗(x), where if z ∈ C is a root
of multiplicity β of W′(x) such that W(z) < 0, W(z) = 0, W(z) > 0, or W(z) < R, then (x − z)β


is included in the monic factor W−(x), W0(x), W+(x), or W∗(x), respectively. Next, we find some
lower bounds of the degrees of these factors.


First, T is divisor of W−, because W takes the negative value −P2(0)/4 at each root of T .
Hence, deg[W−] ≥ deg[T ] = m. Second, S gcd[S ,RS ′] is a divisor of W0, because W vanishes at
each root of S . Thus, deg[W0] ≥ m − n + l0, where l0 denotes the degree of gcd[S ,RS ′]. Third,


deg[W+] ≥ #


(a, b) ⊂ R :
W(a) = W(b) = 0
R(x) > 0 for all x ∈ (a, b)
S (x) , 0 for all x ∈ (a, b)


 = n − 1 + l+.


To understand the above inequality, we realize that if (a, b) is an open bounded interval that
satisfies the above three properties, then W(x) = S 2(x)R(x) > 0 for all x ∈ (a, b), and W ′(x)
vanishes at some point c ∈ (a, b), by Rolle’s Theorem. Therefore, deg[W+] is at least the number
of such intervals. We combine these three lower bounds:


2m − 1 = deg[W ′] ≥ deg[W−] + deg[W0] + deg[W+] ≥ 2m − 1 + l0 + l+.


This implies that l0 = l+ = 0. Indeed, W− = T , W0 = S , W∗ = 1, and gcd[S ,RS ′] = 1.
Next, we prove the property about the number of roots of P(x) and P(x) − P(0). Let z be


a root of the derivative P′. Since W ′ = 2T P′ and W− = T , we deduce that W(z) cannot be a
negative number. This implies that if P(z) is a real value between 0 and P(0), then P′(z) , 0,
since W(z) = P(z)(P(z) − P(0)) < 0. In particular, we deduce that the number of real roots
(counted with multiplicity) of the polynomial P(x) − η does not change when the constant η ∈ R
moves from 0 to P(0).


Finally, we prove that S (x) has only real roots when m ≤ n+ 3. Let us suppose that z < R is a
root of S (x). Then z̄ is also a root of S (x), so (x − z)(x − z̄)


∣∣∣ S (x). Using the identity S 2(x)R(x) =
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P(x)(P(x)−P(0)), we get that (x− z)2(x− z̄)2 is either a divisor of P(x) or a divisor of P(x)−P(0),
since P(x) and P(x) − P(0) have no common factors. But P(x) and P(x) − P(0) have the same
number of real roots, so there exists another w < R ∪ {z, z̄} such that (x − w)2(x − w̄)2 is a divisor
of P(x)(P(x) − P(0)). This implies that S (x) has, at least, four different complex roots, and so
m − n = deg[S ] ≥ 4.


There are some theoretical arguments against the existence of non-real roots of polynomial
S (x), although we have not been able to prove it.


Conjecture 2. Let R(x) = x
∏2n−1


i=1 (x − γi) with 0 < γ2n−1 < · · · < γ1. If relation (9) holds for
some polynomials S (x), P(x) ∈ R[x] such that P(0) , 0, then S (x) has only real roots.


5. Generalized Cayley conditions in the minimal case


Let us consider the case of minimal elliptic periods; that is, m = n.
We begin with a technical lemma to describe how the roots of the polynomials of the form


P(x)(P(x) − P(0)) with P(0) , 0 are ordered in the real line, assuming that all these roots are
positive —but the trivial one—, and have multiplicity at most two.


Lemma 10. Let P(x) ∈ R[x] be a monic polynomial of degree m such that P(0) , 0 and all the
roots of P(x)(P(x) − P(0)) are positive —but a simple root at x = 0—, and have multiplicity at
most two. Let αm ≤ · · · ≤ α1 be the positive roots of P(x). Let βm−1 ≤ · · · ≤ β1 be the positive
roots of P(x) − P(0).


If m is odd, then β2l−1, β2l ∈ (α2l, α2l−1) for all l = 1, . . . , (m − 1)/2; so


0 < αm ≤ αm−1 < βm−1 ≤ βm−2 < αm−2 ≤ αm−3 < · · · < α3 ≤ α2 < β2 ≤ β1 < α1.


If m is even, then β1 > α1 and β2l, β2l+1 ∈ (α2l+1, α2l) for all l = 1, . . . , (m − 2)/2; so


0 < αm ≤ αm−1 < βm−1 ≤ βm−2 < αm−2 ≤ αm−3 < · · · < β3 ≤ β2 < α2 ≤ α1 < β1.


Proof. Let η ∈ R. Using that the only critical points of P(x) are non-degenerate local maxima or
non-degenerate local minima, we deduce that the polynomial P(x) − η has m real roots (counted
with multiplicity) if and only if η ≤ η ≤ η, where


η = min
{
P(x) : x is a non-degenerate local maximum of P(x)


}
,


η = max
{
P(x) : x is a non-degenerate local minimum of P(x)


}
.


Therefore, η ≤ min(0, P(0)) and η ≥ max(0, P(0)).
We begin with the case m odd, so P(0) = (−1)m ∏m


j=1 α j < 0, η ≤ P(0), and η ≥ 0. The
roots of P(x) and P(x) − P(0) can be viewed as the abscissae of the intersections of the graph
{y = P(x)} with the horizontal line {y = 0} and {y = P(0)}, respectively. Double roots correspond
to tangential intersections. We know that P(x) ≥ η ≥ 0 at the local maxima, and P(x) ≤ η ≤ P(0)
at the local minima. This means that the intersections of the graph {y = P(x)} with the lines
{y = 0} and {y = P(0)} have the following pattern from left to right. First, the graph crosses
{y = P(0)} at the abscissa x = 0; second, it intersects {y = 0} at two abscissae αm and αm−1,
which may coincide giving rise to a double root of P(x); third, it intersects {y = P(0)} at two
abscissae βm−1 and βm−2, which may coincide giving rise to a double root of P(x) − P(0); fourth,
it intersects {y = 0} at two abscissae αm−2 and αm−3, which may coincide giving rise to a double
root of P(x); and so on. The last intersection correspond to the abscissa x = α1.


The proof for m even is similar. We skip the details.
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We emphasize that ellipsoidal parameters 0 < a1 < · · · < an and nonsingular caustic pa-
rameters λ1 < · · · < λn−1 verify restrictions (2); then the parameters 0 < c1 < · · · < c2n−1 are
defined in (3); next the inverse quantities 0 < γ2n−1 < · · · < γ1 are given by γi = 1/ci; and finally,
R(x) = x


∏2n−1
i=1 (x − γi). We will make use of these notations, orderings, and conventions along


the paper without any explicit mention.


Corollary 11. Let {1, . . . , 2n − 1} = Jn ∪ Kn be the decomposition defined by


J1 = {1}, J2 = {2, 3}, Jn = Jn−2 ∪ {2n − 2, 2n − 1}, Kn = Jn−1.


If P(x) ∈ R[x] is a monic polynomial of degree n such that P(0) , 0 and


R(x) = P(x)(P(x) − P(0)),


then P(x) =
∏


j∈Jn
(x − γ j) = P(0) + x


∏
k∈Kn


(x − γk).


Proof. There exists a decomposition {1, . . . , 2n − 1} = J′ ∪ K′ such that #J′ = n, #K′ = n − 1,
and P(x) =


∏
j∈J′(x− γ j) = P(0)+ x


∏
k∈K′(x− γk). The polynomial P(x) verifies the hypotheses


stated in Lemma 10, so the roots {α1, . . . , αm} = {γ j : j ∈ J′} and {β1, . . . , βm−1} = {γk : k ∈ K′}
obey the ordering described in that lemma. Therefore, J′ = Jn and K′ = Kn.


We rewrite now the generalized Cayley condition C(n, n) using the previous results. For
brevity, we omit the dependence of the decomposition {1, . . . , 2n−1} = J∪K on the index n. We
note that #J = n and #K = n − 1. The symbol el(“a set of parameters”) denotes the elementary
symmetric polynomial of degree l in those parameters.


Proposition 12. C(n, n) is equivalent to any of the following four conditions:


(i) If P(x) =
∏


j∈J(x − γ j), then P(x) − P(0) = x
∏


k∈K(x − γk).
(ii)


∏
j∈J(γ j − γk) =


∏
j∈J γ j, for all k ∈ K.


(iii) el({γ j} j∈J) = el({γk}k∈K), for all l = 1, . . . , n − 1.
(iv)


∑
j∈J γ


l
j =


∑
k∈K γ


l
k, for all l = 1, . . . , n − 1.


Proof. We split the proof in four steps.
Step 1: C(n, n)⇔ (i). Let us assume that C(n, n) holds. Then there exist a monic polynomial


P(x) ∈ R[x] of degree n such that P(0) , 0 and


R(x) = P(x)(P(x) − P(0)).


Thus, condition (i) follows from Corollary 11.
Reciprocally, if condition (i) holds, P(x)(P(x) − P(0)) = x


∏2n−1
i=1 (x − γi), so C(n, n) holds.


Step 2: (i)⇔ (ii). If P(x) =
∏


j∈J(x − γ j) and Q(x) = x
∏


k∈K(x − γk), then


Q(x) = P(x) − P(0)⇔ P(γk) = P(0), ∀k ∈ K ⇔∏
j∈J(γ j − γk) =


∏
j∈J γ j, ∀k ∈ K.


Step 3: (i)⇔ (iii). If P(x) =
∏


j∈J(x − γ j) and Q(x) = x
∏


k∈K(x − γk), then


Q(x) = xn +


n−1∑
l=1


(−1)lel({γk}k∈K)xn−l, P(x) = xn +


n−1∑
l=1


(−1)lel({γ j} j∈J)xn−l + P(0).


Step 4: (iii)⇔ (iv). It follows from the Newton’s identities connecting the elementary sym-
metric polynomials and the power sum symmetric polynomials; see [26].
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Example 1. The quantities γ3 = 1, γ2 = 2, and γ1 = 3 verify C(2, 2), because 1 + 2 = 3. This
means that the billiard trajectories


• Inside the ellipse Q : x2 + 2y2 = 1 with caustic parameter λ = 1/3; or


• Inside the ellipse Q : x2 + 3y2 = 1 with caustic parameter λ = 1/2;


are periodic with elliptic periodic m = 2. Their caustic types are ς = 0 and ς = 1, respectively.


Example 2. The quantities γ5 = 1, γ4 = 2, γ3 = 4, γ2 = 5, and γ1 = 6 verify C(3, 3), because
1 + 2 + 6 = 4 + 5 and 12 + 22 + 62 = 42 + 52. Hence, the billiard trajectories


• Inside the ellipsoid Q : x2 + 2y2 + 5z2 = 1 with caustic parameters λ1 =
1
6 and λ2 =


1
4 ; or


• Inside the ellipsoid Q : x2 + 2y2 + 6z2 = 1 with caustic parameters λ1 =
1
5 and λ2 =


1
4 ; or


• Inside the ellipsoid Q : x2 + 4y2 + 5z2 = 1 with caustic parameters λ1 =
1
6 and λ2 =


1
2 ; or


• Inside the ellipsoid Q : x2 + 4y2 + 6z2 = 1 with caustic parameters λ1 =
1
5 and λ2 =


1
2 ;


are periodic with elliptic periodic m = 3. Their caustic types are ς = (0, 1), ς = (1, 1), ς = (0, 2),
and ς = (1, 2), respectively. We recall that these caustic types were denoted EH1, H1H1, EH2,
and H1H2 in the introduction.


Let us compare the system of homogeneous symmetric polynomial equations (5), which was
obtained directly from the matrix formulation, with the system of homogeneous non-symmetric
polynomial equations


∑
j∈J γ


l
j =


∑
k∈K γ


l
k, 1 ≤ l ≤ n− 1, obtained in the previous proposition. We


are dealing with the case m = n, so the l-th equation of the former system has degree n+l, whereas
the l-th equation of the new system has degree l. Besides, the new system has a remarkably simple
closed expression. This shows that the polynomial formulation simplifies the problem.


The beauty of the conditions regarding the elementary symmetric polynomials and the power
sum symmetric polynomials given in Proposition 12 has been the motivation for the introduction
of the inverse quantities γi = 1/ci. Nevertheless, we find useful to state the following result in
terms of the ellipsoidal parameters a j, in order to answer some questions about the nonsingular
periodic billiard trajectories found in the first item of Theorem 8.


Theorem 13. There exist nonsingular periodic billiard trajectories inside the ellipsoid (1) with
elliptic period m = n and caustic type


ς =


{
(1, 1, 3, 3, . . . , n − 2, n − 2) for n odd
(0, 2, 2, 4, 4, . . . , n − 2, n − 2) for n even (10)


if and only if all the roots of tn − ∏n
j=1(t − a j) are real and simple. These periodic billiard


trajectories have the roots of tn −∏n
j=1(t − a j) as caustic parameters, period m0 = 2n, and even


winding numbers m0, . . . ,mn−1. Indeed,


m j = 2m̃ j = 2(n − j), j = 0, . . . , n − 1, (11)


provided Conjecture 1 on the strict decreasing ordering of winding numbers holds.


Proof. Let us assume that there exist nonsingular periodic billiard trajectories with elliptic period
n and caustic type (10). By definition of caustic type, the caustic parameters λ1 < · · · < λn−1 of
such trajectories verify that
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• If n is odd, then λ2l−1, λ2l ∈ (a2l−1, a2l), for l = 1, . . . , (n − 1)/2;


• If n is even, then λ1 ∈ (0, a1), and λ2l, λ2l+1 ∈ (a2l, a2l+1), for l = 1, . . . , (n − 2)/2.


Hence, we can split the set {γi = 1/ci : i = 1, . . . , 2n − 1} as the disjoint union of the sets


{γ j : j ∈ J} = {1/a1, . . . , 1/an}, {γk : k ∈ K} = {1/λ1, . . . , 1/λn−1},


where {1, . . . , 2n − 1} = J ∪ K is the decomposition described in Corollary 11. Thus, we know
from condition iv of Proposition 12 that


n∏
j=1


(
1
a j
− 1
λk


)
=


n∏
j=1


1
a j
, k = 1, . . . , n − 1.


This identity can be written as λn
k =


∏n
j=1(λk − a j), for all k = 1, . . . , n − 1, which implies that


the caustic parameters λ1, . . . , λn−1 are the roots of tn −∏n
j=1(t − a j).


Reciprocally, let us assume that the roots of q(t) = tn −∏n
j=1(t − a j) are real and simple. Let


λ1 < · · · < λn−1 be these roots. None of them is zero, since q(0) , 0. Besides, λk is a root of q(t)
if and only if βk := 1/λk , 0 is a root of


Q(x) :=
(−1)n−1xnq(1/x)


a1 · · · an
= P(x) − P(0),


where P(x) =
∏n


j=1(x − α j) with α j = 1/a j. Therefore, the roots α j = 1/a j and βk = 1/λk are or-
dered as stated in Lemma 10. The consequences are two-fold. On the one hand, λk ∈ (aςk , aςk+1),
where ς = (ς1, . . . , ςn−1) is the caustic type given in (10). On the other hand, there exist non-
singular billiard trajectories inside the ellipsoid Q sharing the caustics Qλ1 , . . . ,Qλn−1 , because
the existence conditions (2) hold. Thus, the trajectories sharing the caustics Qλ1 , . . . ,Qλn−1 are
periodic with elliptic period n and caustic type ς, since the generalized Cayley condition C(n, n)
holds; see Proposition 12.


Next, we prove the claims on the (Cartesian) period and the winding numbers. The caus-
tic parameters are located in the intervals delimited by the ellipsoidal parameters given at the
beginning of the proof, which implies that


{c2 j, c2 j+1} ∩ {a1, . . . , an} , ∅, j = 0, . . . , n − 1,


where c0 := 0 < c1 < · · · < c2n−1 are defined in (3). Thus, all winding numbers are even —see
Theorem 5— and so, by definition of elliptic period, m0 = 2m = 2n.


Finally, let us assume that winding numbers are ordered as stated in Conjecture 1, so 2 ≤
mn−1 < · · · < m0 = 2n with m0, . . . ,mn−1 even. Then m j = 2m̃ j = 2(n − j).


Remark 1. If all the roots of tn −∏n
j=1(t− a j) are real, but some of them are double, then we get


singular periodic billiard trajectories. In that case, there are only two possible scenarios. Either
n is odd and λ2l−1 = λ2l for some l = 1, . . . , (n − 1)/2; or n is even and λ2l = λ2l+1 for some
l = 1, . . . , (n − 2)/2. In all these cases, the singular periodic trajectories are formed by segments
contained in some nonsingular ruled confocal quadrics.


Remark 2. All the periodic billiard trajectories mentioned in Theorem 13 have caustic type (10).
One may establish similar theorems for other caustic types. For instance, the versions EH1,
H1H1, EH2, and H1H2 of Theorem 13 in the spatial case will be listed in Table 2.
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6. Cayley conditions in the general case


Once we have understood the minimal case m = n, we tackle the general case m ≥ n.
Let us explain the fundamental question by means of an example. In Section 3 we saw that


condition C(3, 2) becomes a single homogeneous symmetric polynomial equation of degree eight
in the variables γ1, γ2, γ3, with only two feasible solutions; namely, the ones given in (6). Thus,
it is natural to ask whether can we rewrite C(3, 2) as a set of two simpler conditions such that
each one of them gives rise to one of the solutions given in (6).


By the way, we raise this question for any m ≥ n. Can we rewrite C(m, n) as a set of “simpler”
conditions such that each one of them gives rise to just “one” solution of C(m, n)? We answer this
question in the affirmative. Indeed, we parametrize these “simpler” conditions by the elements
of the set


T (m, n) =
{
(τ1, . . . , τn) ∈ Zn : τ1 + · · · + τn = m − n, τ1, . . . , τn ≥ 0


}
.


The cardinal of T (m, n) is the number of monomials of degree m − n in n variables. Thus,
#T (m, n) =


(
m−1
n−1


)
, which gives a precise estimate of the complexity of the Cayley condition


C(m, n) when m grows. We will refer to the elements of T (m, n) as signatures. We set γ2n = 0 in
order to simplify some notations.


Definition 5. Given any signature τ = (τ1, . . . , τn) ∈ T (m, n), we say that condition C(m, n; τ)
holds if and only if there exist two monic polynomials S (x), P(x) ∈ R[x] such that deg[S ] = m−n,
deg[P] = m, P(0) , 0, S 2(x)R(x) = P(x)(P(x) − P(0)), and S (x) has m − n simple real roots
δm−n < · · · < δ1 such that


#
(
{δ1, . . . , δm−n} ∩ (γ2r, γ2r−1)


)
= τr, r = 1, . . . , n. (12)


Corollary 14. If there exists τ ∈ T (m, n) such that C(m, n; τ) holds, then C(m, n) also holds. The
reciprocal implication is true for m ≤ n + 3 (or provided Conjecture 2 holds).


Proof. The first implication is obvious. For the reciprocal implication, we simply recall that S (x)
has only real roots when m ≤ n + 3 and all its real roots are contained in {x ∈ R : R(x) < 0} =⋃n


r=1(γ2r, γ2r−1); see Proposition 9.


Definition 6. Given any signature τ ∈ T (m, n), let {1, . . . , 2n− 1} = Jτ ∪Kτ and {1, . . . ,m− n} =
Vτ∪Wτ be the decompositions determined as follows. If δm−n < · · · < δ1 is any ordered sequence
verifying (12), then the elements of the multisets


{α1, . . . , αm} = {γ j : j ∈ Jτ} ∪ {δv, δv : v ∈ Vτ},
{β1, . . . , βm−1} = {γk : k ∈ Kτ} ∪ {δw, δw : w ∈ Wτ},


are ordered as in Lemma 10.


Multisets are a generalization of sets in which members are allowed to appear more than
once; see [27]. In our case, the numbers δ1, . . . , δm−n appear twice.


These decompositions are well-defined. That is, they only depend on the signature τ, since
any ordered sequence δm−n < · · · < δ1 verifying (12) gives rise to the same decomposition. The
decomposition {1, . . . , 2n− 1} = Jn ∪Kn given in Corollary 11 correspond to the trivial signature
τ = (0, . . . , 0) ∈ T (n, n).


Next, we generalize Corollary 11 and Proposition 12 to the case m ≥ n.
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Corollary 15. Let δm−n < · · · < δ1 be an ordered sequence verifying (12) for some signature
τ ∈ T (m, n). If P(x) is a monic polynomial of degree m such that P(0) , 0 and∏m−n


u=1 (x − δu)2 · R(x) = P(x)(P(x) − P(0)),


then P(x) =
∏


j∈Jτ (x − γ j)
∏


v∈Vτ (x − δv)2 = P(0) + x
∏


k∈Kτ (x − γk)
∏


w∈Wτ (x − δw)2.


Proof. There exist two decompositions {1, . . . , 2n − 1} = J′ ∪ K′ and {1, . . . ,m − n} = V ′ ∪W′


such that P(x) =
∏


j∈J′(x − γ j)
∏


v∈V ′(x − δv)2 = P(0) + x
∏


k∈K′ (x − γk)
∏


w∈W′ (x − δw)2. The
polynomial P(x) verifies the hypotheses stated in Lemma 10, so the roots


{α1, . . . , αm} = {γ j : j ∈ J′} ∪ {δv, δv : v ∈ V ′}
{β1, . . . , βm−1} = {γk : k ∈ K′} ∪ {δw, δw : w ∈ W′}


obey the ordering described in that lemma. Hence, J′ = Jτ, K′ = Kτ, V ′ = Vτ, and W ′ = Wτ.


Proposition 16. Condition C(m, n; τ) holds if and only if there exists a sequence δm−n < · · · < δ1
verifying (12) such that the following three equivalent properties hold:


(i) If P(x) =
∏


j∈Jτ (x− γ j)
∏


v∈Vτ (x− δv)2, then P(x)− P(0) = x
∏


k∈Kτ (x− γk)
∏


w∈Wτ (x− δw)2.


(ii) el


(
{γ j} j∈Jτ ∪ {δv, δv}v∈Vτ


)
= el


(
{γk}k∈Kτ ∪ {δw, δw}w∈Wτ


)
, for all l = 1, . . . ,m − 1.


(iii)
∑


j∈Jτ γ
l
j + 2


∑
v∈Vτ δ


l
v =


∑
k∈Kτ γ


l
k + 2


∑
w∈Wτ δ


l
w, for all l = 1, . . . ,m − 1.


Proof. We simply repeat the steps of the proof of Proposition 12, but using Corollary 15 instead
of Corollary 11.


Example 3. The quantities γ3 = 1, γ2 = 4, and γ1 = 9 verify condition C(3, 2; τ) with τ = (1, 0),
because 1 + 4 + 9 = 2 · 7, 12 + 42 + 92 = 2 · 72, and 7 ∈ (4, 9). Hence, the billiard trajectories


• Inside the ellipse Q : x2 + 4y2 = 1 with caustic parameter λ = 1/9; or


• Inside the ellipse Q : x2 + 9y2 = 1 with caustic parameter λ = 1/4;


are periodic with elliptic periodic m = 3. Their caustic types are ς = 0 and ς = 1, respectively.


All conditions C(m, n; τ), τ ∈ T (m, n), give rise to nonsingular periodic billiard trajectories
with elliptic period m, so we wondered which is the dynamical meaning of the signature τ.
We believe that there exists a one-to-one correspondence between the elliptic winding numbers
m̃0, . . . , m̃n−1 —see Definition 3— and the signature τ = (τ1, . . . , τn).


Conjecture 3. Set m̃n = 0. Then m̃ j = m̃ j+1 + τ j+1 + 1 for all j = 0, . . . , n − 1.


This conjecture follows from the interpretation of C(m, n; τ) as a singular limit of C(m,m)
when m − n couples of simple roots collide, so they become double roots. Unfortunately, we
have not been able to transform this argument into a rigorous proof, although all our analytical
and numerical computations agree with the conjecture.


To end this section, we stress that if conjectures 2 and 3 hold, then the elliptic winding num-
bers m̃0, . . . , m̃n−1 of any nonsingular periodic billiard trajectory verify the above-mentioned rela-
tions for some signature τ = (τ1, . . . , τn) with non-negative entries, so the sequence m̃0, . . . , m̃n−1
strictly decreases, and Conjecture 1 holds.
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7. The planar case


We adapt the previous setting of billiards inside ellipsoids of Rn to the planar case n = 2. To
follow traditional conventions in the literature, we write the ellipse as


Q =
{


(x, y) ∈ R2 :
x2


a
+


y2


b
= 1


}
, a > b > 0. (13)


Any nonsingular billiard trajectory inside Q is tangent to one confocal caustic


Qλ =
{


(x, y) ∈ R2 :
x2


a − λ +
y2


b − λ = 1
}
,


where λ ∈ Λ = E ∪ H, with E = (0, b) and H = (b, a).
The names of the connected components ofΛ come from the fact that Qλ is a confocal ellipse


for λ ∈ E and a confocal hyperbola for λ ∈ H. The singular cases λ = b and λ = a correspond
to the x-axis and y-axis, respectively. We say that the caustic type of a billiard trajectory is E or
H, when its caustic is an ellipse or a hyperbola (compare with Definition 1). We also distinguish
between E-caustics and H-caustics.


We recall some concepts related to periodic trajectories of billiards inside ellipses. These
results can be found, for instance, in [9, 24]. To begin with, we introduce the function ρ : Λ→ R
given by the quotient of elliptic integrals


ρ(λ) = ρ(λ; b, a) :=


∫ min(b,λ)
0


dt√
(λ−t)(b−t)(a−t)


2
∫ a


max(b,λ)
dt√


(λ−t)(b−t)(a−t)


. (14)


It is called the rotation number and characterizes the caustic parameters that give rise to periodic
trajectories. To be precise, the billiard trajectories with caustic Qλ are periodic if and only if


ρ(λ) = m1/2m0 ∈ Q


for some integers 2 ≤ m1 < m0, which are the winding numbers. On the one hand, m0 is the
period, On the other hand, m1 is twice the number of turns around the ellipse Qλ for E-caustics,
and the number of crossings of the y-axis for H-caustics. Thus, m1 is always even. Besides, all
periodic trajectories with H-caustics have even period. (Compare with Theorem 5.)


Proposition 17. The winding numbers 2 ≤ m1 < m0, rotation number ρ = m1/2m0, signature
τ = (τ1, τ2) ∈ T (m, 2), caustic type (E or H), and caustic parameter λ of all nonsingular periodic
billiard trajectories inside the ellipse (13) with elliptic period m ∈ {2, 3} are listed in Table 1.
The ellipses where such trajectories take place are also listed.


Proof. We split the proof in four steps.
Step 1: To find the solutions of C(m, 2) in terms of the inverse quantities γi. First, we saw in


Proposition 12 that C(2, 2) holds if and only if γ1 = γ2 + γ3.
Next, we focus on the case m = 3. We note that C(3, 2) holds if and only if C(3, 2; τ) holds


for some τ = (τ1, τ2) ∈ Z2 such that τ1 + τ2 = 1 and τ1, τ2 ≥ 0; see Corollary 14.
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m m0 m1 ρ τ Type Ellipses Caustic parameter
2 4 2 1/4 (0, 0) E any ab


a+b
2 4 2 1/4 (0, 0) H 2b < a ab


a−b
3 6 2 1/6 (1, 0) E any ab


a+b+2
√


ab
3 6 2 1/6 (1, 0) H 4b < a ab


a+b−2
√


ab
3 3 2 1/3 (0, 1) E any 3ab


a+b+2
√


a2−ab+b2


3 6 4 1/3 (0, 1) H 4b < 3a ab
2
√


a2−ab+b−a


Table 1: Algebraic formulas for the caustic parameter corresponding to nonsingular periodic billiard trajectories with
elliptic period m ∈ {2, 3} in the planar case.


Let us begin with the signature τ = (1, 0). After a straightforward check, we get that the
decompositions presented in Definition 6 are Jτ = {1, 2, 3}, Kτ = Vτ = ∅, and Wτ = {1}. Thus,
C(3, 2; τ) holds if and only if there exists some δ1 ∈ (γ2, γ1) such that


P(x) = (x − γ1)(x − γ2)(x − γ3) = P(0) + x(x − δ1)2,


or, equivalently, if and only if the discriminant of the polynomial


Q(x) =
P(x) − P(0)


x
= x2 − e1(γ1, γ2, γ3)x + e2(γ1, γ2, γ3)


is equal to zero. The discriminant of Q(x) is


∆ = γ2
1 + γ


2
2 + γ


2
3 − 2γ1γ2 − 2γ1γ3 − 2γ2γ3.


We already saw in Section 3 that the only feasible solution of ∆ = 0 is
√
γ1 =


√
γ2 +


√
γ3.


When τ = (0, 1), the decompositions are Jτ = {1}, Kτ = {2, 3},Vτ = {1}, and Wτ = ∅. Thus,
C(3, 2; τ) holds if and only if there exists some δ1 ∈ (0, γ3) such that


γ1 + 2δ1 = γ2 + γ3, γ2
1 + 2δ21 = γ


2
2 + γ


2
3,


or, equivalently, if and only if


3γ2
1 − 2(γ2 + γ3)γ1 − (γ2 − γ3)2 = (γ2 + γ3 − γ1)2 − 2(γ2


2 + γ
2
3 − γ2


1)
= (2δ1)2 − 4δ21 = 0.


And we already saw in Section 3 that the only feasible solution of the above equation is


3γ1 = γ2 + γ3 + 2
√
γ2


2 + γ
2
3 − γ2γ3.


Step 2: To express the above solutions in terms of a, b, and λ. If the caustic type is E, then
λ ∈ (0, b), γ1 = 1/λ, γ2 = 1/b, and γ3 = 1/a. Thus,


γ1 = γ2 + γ3 ⇔ λ = ab
a+b ,√


γ1 =
√
γ2 +


√
γ3 ⇔ λ = ab


a+b+2
√


ab


3γ1 = γ2 + γ3 + 2
√
γ2


2 + γ
2
3 − γ2γ3 ⇔ λ = 3ab


a+b+2
√


a2−ab+b2
.
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(a) λ = ab
a+b (b) λ = ab


a+b+2
√


ab
(c) λ = 3ab


a+b+2
√


a2−ab+b2


(d) λ = ab
a−b (e) λ = ab


a+b−2
√


ab
(f) λ = ab


2
√


a2−ab+b−a


Figure 1: Periodic trajectories corresponding to the caustic parameters listed in Table 1. The ellipse for λ = ab
a+b−2


√
ab


is
flatter, because it must satisfy condition 4b < a.


If the caustic type is H, then λ ∈ (b, a), γ1 = 1/b, γ2 = 1/λ, and γ3 = 1/a. Thus,


γ1 = γ2 + γ3 ⇔ λ = ab
a−b ,√


γ1 =
√
γ2 +


√
γ3 ⇔ λ = ab


a+b−2
√


ab


3γ1 = γ2 + γ3 + 2
√
γ2


2 + γ
2
3 − γ2γ3 ⇔ λ = ab


2
√


a2−ab+b−a
.


Step 3: To determine the ellipses where such periodic billiard trajectories take place. We ask
whether the caustic parameters found above belong to the interval (0, b) for E-caustics, and to
the interval (b, a) for H-caustics. The caustic type E does not give any restriction, because


0 < b < a and λ ∈
{


ab
a+b ,


ab
a+b+2


√
ab
, 3ab


a+b+2
√


a2−ab+b2


}
⇒ λ ∈ (0, b).


On the contrary, the caustic type H gives rise to some restrictions. Namely,


b < ab
a−b < a ⇔ 2b < a,


b < ab
a+b−2


√
ab
< a ⇔ 4b < a,


b < ab
2
√


a2−ab+b−a
< a ⇔ 4b < 3a.


Step 4: To find the winding numbers and the rotation number. The winding numbers 2 ≤
m1 < m0 and the rotation number ρ(λ) = m1/2m0 are obtained from geometric arguments. To be
precise, we draw in Figure 1 a billiard trajectory tangent to Qλ for each of the caustic parameters
listed in Table 1. Then we recall that m0 is the period and m1 is twice the number of turns around
the ellipse Qλ for E-caustics, and the number of crossings of the y-axis for H-caustics.
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Let ρ∗ ∈ {1/3, 1/4, 1/6}. We have seen above that inside any ellipse (13) there exists a unique
E-caustic whose tangent billiard trajectories have rotation number ρ∗. Besides, if λE(a, b; ρ∗) and
λH(a, b; ρ∗) denote the caustic parameters associated to the E-caustic and H-caustic with rotation
number ρ∗, we see that


λE(b, a; ρ∗) = λE(a, b; ρ∗), b = λE(a, λH(a, b; ρ∗); ρ∗). (15)


These properties can be generalized. On the one hand, the rotation number (14) is an in-
creasing function in the interval (0, b) such that ρ(0) = 0 and ρ(b) = 1/2; see [24]. This means
that given any ρ∗ ∈ (0, 1/2), there exists a unique λ∗ ∈ (0, b) such that ρ(λ∗) = ρ∗, and so, there
exists a unique E-caustic whose tangent billiard trajectories have rotation number ρ∗. On the
other hand, relations (15) can be obtained by using that the rotation number (14) is symmetric
in the three parameters a, b, and λ. Consequently, one can find the formula for λH (respectively,
λE) from the formula for λE (respectively, λH) by using the second relation.


It is interesting to realize that the results in Table 1 agree with Conjecture 3.
In the planar case n = 2, the caustic type (10) is ς = 0 or, equivalently, E. Hence, the planar


version of Theorem 13 is shown in the first row of Table 1, because λ = λE(a, b; 1/4) = ab/(a+b)
is the root of t2 − (t − a)(t − b). This naive observation was the germ of this paper.


8. The spatial case


In order to study the spatial case n = 3, we consider the triaxial ellipsoid


Q =
{


(x, y, z) ∈ R3 :
x2


a
+


y2


b
+


z2


c
= 1


}
, a > b > c > 0. (16)


Any nonsingular billiard trajectory inside Q is tangent to two distinct nonsingular caustics
Qλ1 and Qλ2 , with λ1 < λ2, of the confocal family


Qλ =
{


(x, y, z) ∈ R3 :
x2


a − λ +
y2


b − λ +
z2


c − λ = 1
}
. (17)


The caustic Qλ is an ellipsoid for λ ∈ (0, c), a hyperboloid of one sheet when λ ∈ (c, b), and a
hyperboloid of two sheets if λ ∈ (b, a). Not all combinations of nonsingular caustics can take
place, but only the four caustic types EH1, H1H1, EH2, and H1H2.


Proposition 18. The caustic type and caustic parameters of all nonsingular periodic billiard
trajectories inside the triaxial ellipsoid (16) with elliptic period m = 3 are listed in Table 2. The
ellipsoids where such trajectories take place are also listed.


Proof. If a, b, and c are the ellipsoidal parameters, and λ1 and λ2 are the caustic parameters, we
set {c1, c2, c3, c4, c5} = {a, b, c, λ1, λ2}, where 0 < c1 < c2 < c3 < c4 < c5. We also set γi = 1/ci.
Let {1, 2, 3, 4, 5} = J ∪ K, with J = {1, 4, 5} and K = {2, 3}, be the decomposition defined in
Corollary 11 when n = 3. From Proposition 12 we know that


C(3, 3) ⇔ γ2 + γ3 = γ1 + γ4 + γ5 and γ2
2 + γ


2
3 = γ


2
1 + γ


2
4 + γ


2
5


⇔ (γ1 − γk)(γ4 − γk)(γ5 − γk) = γ1γ4γ5, for k = 2, 3
⇔ c3


k = (ck − c1)(c4 − ck)(c5 − ck), for k = 2, 3.
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Type Ellipsoids Caustic parameters


EH1 c <
ab


a + b +
√


ab


{
c3 = (c − λ1)(b − c)(a − c)


1/λ2 + 1/c = 1/a + 1/b + 1/λ1


H1H1 c <
ab


a + b + 2
√


ab
Roots of t3 − (t − a)(t − b)(t − c)


EH2


 c <
a − 2b
2a − 3b


a


2b < a
Roots of (a − b)(a − c)t2 + (bc − a(b + c))at + a2bc


H1H2



c <


a − 2b
(a − b)2 ab


b >
ac


a + c −
√


ac


{
b3 = (b − c)(λ2 − b)(a − b)


1/λ1 + 1/b = 1/a + 1/c + 1/λ2


Table 2: Algebraic formulas for the caustic parameters corresponding to the nonsingular periodic trajectories with elliptic
period m = 3 in the spatial case.


In the rest of the proof, we study each caustic type separately.
Caustic type EH1. In this case 0 < λ1 < c < λ2 < b < a, so


c1 = λ1, c2 = c, c3 = λ2, c4 = b, c5 = a.


Thus the formula for λ1 follows from relation c3
2 = (c2−c1)(c4−c2)(c5−c2), whereas the formula


for λ2 follows from relation γ2 +γ3 = γ1 +γ4 +γ5. Next, we look for ellipsoidal parameters such
that the caustic parameters computed using these two formulas are placed in the right intervals:
λ1 ∈ (0, c) and λ2 ∈ (c, b).


To begin with, we note that λ1 < c, since (c − λ1)(b − c)(a − c) = c3 > 0. Besides,


λ1 =
ab − (a + b)c
(b − c)(a − c)


c > 0⇔ c <
ab


a + b
.


On the other hand, if λ1 ∈ (0, c), then


1/λ2 = 1/a + 1/b + (1/λ1 − 1/c) > 1/a + 1/b > 1/b,


so λ2 < b. Finally,


λ2 > c ⇔ 1
c
+


c
ab − (a + b)c


=
1
λ1
=


1
λ2
+


1
c
− 1


a
− 1


b
<


2
c
− 1


a
− 1


b


⇔ c <
ab


a + b +
√


ab
.


Therefore, λ1 ∈ (0, c) and λ2 ∈ (c, b) if and only if c < ab/(a + b +
√


ab).
Caustic type H1H1. If n = 3, then the caustic type (10) is ς = (1, 1) or, equivalently, H1H1.


Hence, the study for the caustic type H1H1 was already carried out in Theorem 13. Suffice it to
note that the polynomial


t3 − (t − a)(t − b)(t − c) = (a + b + c)t2 − (ab + ac + bc)t + abc


has two real simple roots if and only if its discriminant


∆ = (ab + ac + bc)2 − 4abc(a + b + c) = (a − b)2c2 − 2ab(a + b)c + a2b2
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is positive. This discriminant is a second-degree polynomial in c whose roots are


c± =
ab(a + b) ± 2ab


√
ab


(a − b)2 =
ab


a + b ∓ 2
√


ab
.


We note that 0 < c− < b < c+. Thus, using that 0 < c < b < a, we get ∆ > 0⇔ c < c−.
Caustic type EH2. In this case 0 < λ1 < c < b < λ2 < a, so


c1 = λ1, c2 = c, c3 = b, c4 = λ2, c5 = a.


Using relations γl
2 + γ


l
3 = γ


l
1 + γ


l
4 + γ


l
5, with l = 1, 2, we know that


sl :=
1
λl


1


+
1
λl


2


=
1
cl +


1
bl −


1
al , l = 1, 2.


Hence, 1/λ1 and 1/λ2 are the roots of the polynomial


(x − 1/λ1)(x − 1/λ2) = x2 − s1x +
s2


1 − s2


2
= x2 +


bc − a(b + c)
abc


x +
(a − b)(a − c)


a2bc
.


Thus, using the change of variables t = 1/x, we get that λ1 and λ2 are the roots of


Q(t) = (a − b)(a − c)t2 + (bc − a(b + c))at + a2bc.


We look for ellipsoidal parameters such that Q(t) has a root in (0, c) and a root in (b, a). The
root in (0, c) always exists, since Q(0) = a2bc > 0 and Q(c) = −c3(a − b) < 0. Besides,
Q(b) = −b3(a − c) < 0 and limt→+∞ Q(t) = +∞, so Q(t) has a root in (b, a) if and only if


Q(a) = a2
(
a2 − 2a(b + c) + 3bc


)
> 0,


or, equivalently, if and only if c < (a−2b)a/(2a−3b) and 2b < a. We have used that 0 < c < b < a
in the last equivalence.


Caustic type H1H2. In this case 0 < c < λ1 < b < λ2 < a, so


c1 = c, c2 = λ1, c3 = b, c4 = λ2, c5 = a.


Thus the formula for λ2 follows from relation c3
2 = (c2−c1)(c4−c2)(c5−c2), whereas the formula


for λ1 follows from relation γ2+γ3 = γ1+γ4+γ5. Next, we look for conditions on the ellipsoidal
parameters such that the caustic parameters computed from the previous formulas are placed in
the right intervals: λ1 ∈ (c, b) and λ2 ∈ (b, a).


To begin with, we note that λ2 > b, because (b − c)(λ2 − b)(a − b) = b3 > 0. Besides,


(a + c)b − ac
(a − b)(b − c)


b = λ2 < a⇔ c <
a − 2b


(a − b)2 ab.


On the other hand, using that 0 < c < b < a, we get that


c < λ1 < b ⇔ 2
b
− 1


a
− 1


c
<


1
λ2
=


1
λ1
+


1
b
− 1


a
− 1


c
<


1
b
− 1


a


⇔ 2
b
− 1


a
− 1


c
<


1
b
− b


(a + c)b − ac
<


1
b
− 1


a


⇔ b >
ac


a + c −
√


ac
.


Thus, λ1 ∈ (0, c) and λ2 ∈ (b, a) if and only if c < (a−2b)ab/(a−b)2 and b > ac/(a+c−
√


ac).
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Let us look for the winding numbers of the trajectories described in the previous proposition.
The winding numbers m0, m1, and m2 describe how the periodic billiard trajectories fold in R3.
The following results can be found in [24, table 1]. First, m0 is the period. Second, m1 is the
number of xy-crossings and m2 is twice the number of turns around the z-axis for EH1-caustics;
m1 is twice the number of turns around the x-axis and m2 is the number of yz-crossings for
EH2-caustics; m1 is the number of tangential touches with each hyperboloid of one sheet caustic
and m2 is twice the number of turns around the z-axis for H1H1-caustics; m1 is the number
of xz-crossings and m2 is the number of yz-crossings for H1H2-caustics. Besides, all periodic
trajectories with H1H1-caustics or H1H2-caustics have even period. Several periodic billiard
trajectories with elliptic period m = 3 were depicted in [25, Table XV and Table XVII]. We
conclude by direct inspection of those pictures that the nonsingular periodic billiard trajectories
inside a triaxial ellipsoid with elliptic period m = 3 have winding numbers


m2 = 2, m1 = 4, m0 = 6.


This agrees with the formulas (11) given in Theorem 13. We emphasize that those formulas were
not rigorously proved, because their “proof” was based on Conjecture 1.


Next, we establish the algebraic formulas for the caustic parameters of other nonsingular
periodic billiard trajectories. We begin with a technical lemma about four-degree polynomials.


Lemma 19. Let Q(x) = (x − α−)(x − β−)(x − β+)(x − α+) for some α− < β− < β+ < α+. Let
ν− ∈ (α−, β−), ν ∈ (β−, β+), and ν+ ∈ (β+, α+) be the three roots of Q′(x). Then


Q(ν+) < Q(ν−)⇔ α− + α+ > β− + β+.


Proof. If we set η = (β+ + β−)/2 and ξ = (β+ − β−)/2, then


Q(η + s) − Q(η − s) = 2(s2 − ξ2)(β− + β+ − α− − α+)s, ∀s ∈ R.


On the one hand, if α− + α+ > β− + β+, then Q(η+ s) < Q(η− s) for all s > ξ, which implies that
Q(ν+) < Q(ν−). On the other hand, if α− + α+ < β− + β+, then Q(η + s) > Q(η − s) for all s > ξ,
which implies that Q(ν+) > Q(ν−). Finally, if α− + α+ = β− + β+, then Q(η + s) = Q(η − s) for
all s ∈ R, which implies that Q(ν+) = Q(ν−).


We can now answer some questions about the nonsingular periodic billiard trajectories found
in the second item of Theorem 8, although the study is restricted to the spatial case.


Proposition 20. There exist periodic billiard trajectories inside the triaxial ellipsoid (16) with
elliptic period m = 4, signature τ = (0, 0, 1), and caustic type H1H1 if and only if


c < ab/(a + b).


Besides, the caustic parameters λ1 and λ2 of such periodic billiard trajectories are the roots of
the quadratic polynomial (s2


1 − s2)t2/2 − s1t + 1, where


sl = 1/al + 1/bl + 1/cl − 2/dl, l = 1, 2, (18)


and d is the only root of the cubic polynomial t3 − 2(a + b + c)t2 + 3(ab + ac + bc)t − 4abc in the
interval (a,+∞).


24







Proof. If τ = (0, 0, 1), the decompositions presented in Definition 6 are Jτ = {2, 3}, Kτ = {1, 4, 5},
Vτ = {1}, and Wτ = ∅. Thus, C(4, 3; τ) holds if and only if there exists some δ1 ∈ (0, γ5) such that
the following two equivalent properties hold:


(i) P(x) = (x − δ1)2(x − γ2)(x − γ3)⇒ Q(x) := x(x − γ1)(x − γ4)(x − γ5) = P(x) − P(0).
(ii) γl


2 + γ
l
3 + 2δl1 = γ


l
1 + γ


l
4 + γ


l
5, for l = 1, 2, 3.


If the caustic type is H1H1, then 0 < c < λ1 < λ2 < b < a, so


γ1 = 1/c, γ2 = 1/λ1, γ3 = 1/λ2, γ4 = 1/b, γ5 = 1/a.


Let el = el(γ1, γ4, γ5) for l = 1, 2, 3. We set d = 1/δ1 > a. Then Q(x) = x4 − e1x3 + e2x2 − e1x
and δ1 is a root of Q′(x) = 4x3 − 3e1x2 + 2e2x − e3. Hence, d is a root of the cubic polynomial


q(t) = −abct3Q′(1/t) = t3 − 2(a + b + c)t2 + 3(ab + ac + bc)t − 4abc.


We note that q(0) = −4abc < 0, q(b) = −b(b − a)(b − c) > 0, q(a) = −a(a − b)(a − c) < 0, and
limt→+∞ q(t) = +∞. This shows that q(t) has just one root in the interval (a,+∞).


From property (ii) above, we deduce that the sums sl := 1/λl
1 + 1/λl


2 verify relations (18).
Besides, 1/λ1 and 1/λ2 are the roots of (x − 1/λ1)(x − 1/λ2) = x2 − s1x + (s2


1 − s2)/2, so that λ1
and λ2 are the roots of the quadratic polynomial (s2


1 − s2)t2/2 − s1t + 1.
We look for ellipsoidal parameters such that the previous periodic trajectories exist. From


property (i) above, we deduce that such ellipsoidal parameters exist if and only the graph {y =
Q(x)} intersects the horizontal line {y = Q(δ1)} at two different points γ2, γ3 ∈ (γ4, γ5) or, equiv-
alently, if and only if Q(δ3) < Q(δ1), where δ1 < δ2 < δ3 are the three ordered roots of the
derivative of the polynomial Q(x) = x(x − γ1)(x − γ4)(x − γ5). But


Q(δ3) < Q(δ1)⇔ γ1 > γ4 + γ5 ⇔ c < ab/(a + b),


according to Lemma 19.


As we have explained before, the period and winding numbers of any nonsingular periodic
billiard trajectory can be determined by direct inspection of its corresponding figure. A periodic
billiard trajectory with elliptic period m = 4 and caustic type H1H1 whose caustic parameters
verify the relations given in Proposition 20 is displayed in [24, Figure 13]. That trajectory has
(Cartesian) period m0 = 4 and winding numbers


m2 = 2, m1 = 3, m0 = 4.


Hence, gcd(m0,m1,m2) = 1, so the elliptic winding numbers are m̃2 = 2, m̃1 = 3, and m̃0 = 4.
This result reinforces Conjecture 3. Besides, these nonsingular four-periodic billiard trajectories
with caustic type H1H1 are quite interesting, because they display the minimal period among all
nonsingular periodic billiard trajectories; see [24, Theorem 1].


We end the study at this point. We just mention that there exist similar results when the
signature or the caustic type do not coincide with the ones given in Proposition 20. Analogously,
the case m = 5 can be dealt with using the same techniques, although the final formulas become
more complicated. For instance, it can be easily checked that the caustic parameters λ1 and
λ2 of the billiard trajectories with elliptic period m = 5 and signature τ = (1, 1, 0) verify the
homogeneous symmetric polynomial equations


8s3 + s3
1 = 6s1s2, 16s4 + s4


1 = 4s2
1s2 + 4s2


2,
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where sl = 1/al+1/bl+1/cl+1/λl
2+1/λl


1 for l = 1, 2, 3, 4. Each of the other signatures τ ∈ T (5, 3)
gives rise to similar homogeneous —although not symmetric— polynomial equations of degrees
three and four in the variables 1/a, 1/b, 1/c, 1/λ1 and 1/λ2. We left the details to the reader.
Finally, we remember that the original matrix formulation of the generalized Cayley condition
C(5, 3) gives rise to two homogeneous symmetric polynomial equations of degrees 23 and 24 in
those five variables, as explained in Section 3. This confirms, once again, that the polynomial
formulation offers great computational advantages over the matrix formulation.
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