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Abstract. In the framework of non-relativistic QED, we establish the relationship between the
renormalized mass of the electron due to its interaction with the quantized electromagnetic field,
and the kinematic mass appearing in its response to a slowly varying external force. Specifically,
we study the dynamics of an electron in a slowly varying external potential and with slowly varying
initial conditions and prove that, for a long time, it is accurately described by the effective dynamics
of a Schrödinger electron in the same external potential and for the same initial data, with a kinetic
energy operator determined by the renormalized dispersion law of the translation-invariant QED
model.


1. Introduction


In this paper we establish the relationship between the renormalized mass of the electron due to
its interaction with the quantized electromagnetic field, and the kinematic mass appearing in its
response to a slowly varying external force. We work in the standard framework of non-relativistic
quantum electrodynamics (QED). The renormalized electron mass is defined as the inverse cur-
vature of the dispersion relation E = E(p), the energy of a dressed electron as a function of its
momentum p (no external potentials present), while the kinematic mass is defined in terms of the
effective dynamics of the electron under the influence of an external force.


Our starting point is the dynamics generated by the Hamiltonian HV describing a non-relativistic
electron interacting with the quantized electromagnetic field and under the influence of a slowly
varying potential Vε. We consider the time evolution of states parametrized by wave functions
uε0 ∈ H1(R3), with ‖uε0‖L2 = 1 and ‖∇uε0‖L2 ≤ ε, and prove that this evolution is accurately
approximated, on a long time interval, by an effective Schrödinger dynamics generated by the
one-particle Schrödinger operator


Heff := E(−i∇x) + Vε(x) , (1.1)


with the kinetic energy given by the dispersion relation E(p). This result is in line with the idea
that every physical dynamics is an effective one, derived from a more precise theory. While results
of a similar nature were proven for massive bosons, [26], ours is the first result involving massless
photons and the resulting renormalized mass of the electrons. (Similarly, one may analyze the
effects of interactions with phonons and other massless bosons.)


In the framework of non-relativistic QED, the Hilbert space of states of the system is given by


H := L2(R3) ⊗ F , (1.2)


where L2(R3) denotes the Hilbert space associated with the electron degrees of freedom, neglecting
spin (for notational convenience). The space F is the Fock space of photons in the Coulomb gauge,
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F =
⊕


n≥0 Fn. Here, Fn := Sym(L2(R3 × {+,−} ) )⊗n denotes the physical Hilbert space of states
of n photons. The Hamiltonian is given on this space by the expression


HV = H + Vε ⊗ 1f , (1.3)


where H is the generator of the dynamics of a single, freely moving non-relativistic electron mini-
mally coupled to the quantized electromagnetic field, i.e.,


H :=
1


2
(−i∇x ⊗ 1f +


√
αA(x) )2 + 1el ⊗Hf , (1.4)


and where Vε(x) := V (εx) is a slowly varying potential, with ε > 0 small; its precise properties are
formulated in Theorem 1.1 below. Furthermore,


A(x) :=
∑
λ


∫
|k|≤1


dk


|k|1/2
{ ελ(k) e−ikx ⊗ aλ(k) + h.c. } (1.5)


denotes the quantized electromagnetic vector potential with an ultraviolet cutoff imposed, |k| ≤ 1,
and


Hf =
∑
λ


∫
dk |k| a∗λ(k) aλ(k) (1.6)


denotes the photon Hamiltonian. In (1.5) and (1.6), a∗λ(k), aλ(k) are the usual photon creation-
and annihilation operators; λ = ± indicates photon helicity, and ελ(k) is a polarization vector
perpendicular to k corresponding to helicity λ.


To give a precise formulation of our result, we observe that the Hamiltonian H is translation
invariant. We thus represent the Hilbert space of the system as a direct integral,


H =


∫ ⊕
dpHp , (1.7)


over the spectrum of the total momentum operator


Ptot := −i∇x ⊗ 1f + 1el ⊗ Pf , (1.8)


where Pf =
∑


λ


∫
dk k a∗λ(k)aλ(k) is the momentum operator associated to the quantized radiation


field, and each fiber Hilbert space Hp is isomorphic to F. We let H(p) = H|Hp denote the fiber
Hamiltonian corresponding to total momentum p. We define E(p) = inf specH(p), with p ∈ S,
where


S :=
{
p ∈ R3


∣∣ |p| ≤ 1


3


}
(1.9)


and continued suitably to p ∈ R3 \S. For ρ > 0, we introduce the family of maps J ρ0 : L2(R3) 7→ H,
from the quantum mechanical one-electron state space L2(R3) to a subset of dressed one-electron
states, as


J ρ0 (u ) :=


∫
S
dp û(p) e−ix(p−Pf ) χSµ(p) Φρ(p) , (1.10)


where x is the electron position, χSµ is a smooth approximate characteristic function of the set


Sµ := (1−µ)S ⊂ S ⊂ R3, (0 < µ < 1), and Φρ(p) is an approximate ground state of H(p) (dressed
by a cloud of soft photons with frequencies ≤ ρ).
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In this paper we study the time evolution of one-electron states, J ρ0 (uε0), with electron wave
functions uε0, dressed by an infrared cloud of photons with frequencies ≤ ρ. More precisely, we
study solutions of the Schrödinger equation


i∂tΨ(t) = HV Ψ(t) , with Ψ(0) = J ρ0 (uε0) . (1.11)


The key idea is to relate the solution Ψ(t) = e−itH
V J ρ0 (uε0) of this Schrödinger equation to the


solution of the Schrödinger equation


i∂tu(t) = Heff u(t) , with u(t = 0) = uε0 , (1.12)


corresponding to the one-particle Schrödinger operator (1.1), where E(p) has been defined above.
We consider the comparison state


J ρ0 (u(t)) ∈ H , (1.13)


where u(t) := e−itHeffuε0 is the solution of (1.12), and show that Ψ(t) remains close to J ρ0 (u(t)),
for a long time. The choice of initial data satisfying ‖∇uε0‖L2 ≤ ε guarantees that û(t) remains
concentrated in S during the time scales relevant in this problem.


Theorem 1.1. Let 0 < µ < 1 and 0 < ε < µ/3, and define Jρ0 by (1.10). Assume that uε0 ∈ L2(R3)
is a normalized vector obeying ‖∇uε0‖L2(R3) ≤ ε. Furthermore, assume that V ∈ L∞(R3;R) is such


that V̂ ∈ L1(R3) and that V̂ is supported in the unit ball,


supp(V̂ ) ⊂
{
k ∈ R3 | |k| ≤ 1


}
. (1.14)


Let 0 < δ < 2/3 and choose ρ = ε
2
3
−δ =: ρε. There exists αδ > 0 such that, for all 0 ≤ α ≤ αδ, the


bound


‖ e−itHV J ρε0 (uε0 ) − J ρε0 ( e−itHeff uε0 ) ‖H ≤ Cδ
(
ε2/3−δt+ ε4/3−δ/2t2


)
, (1.15)


holds for all times t.


1.1. Outline of proof strategy. To prove Theorem 1.1, we introduce an infrared regularized
version of the model defined by (1.3), (1.4), obtained by restricting the integration domain in the
quantized electromagnetic vector potential (1.5) to the region {σ ≤ |k| ≤ 1}, for an arbitrary
infrared cutoff σ > 0. Thereby, we obtain infrared regularized Hamiltonians HV


σ and Hσ, as well
as an infrared regularized family of maps J ρσ corresponding to J ρ0 .


We note that, unlike H(p), the infrared cut-off fiber Hamiltonian Hσ(p) has a ground state
Ψσ(p) ∈ Hp ∼= F, for every p ∈ S and for σ > 0, but Ψσ(p) does not possess a limit in Hp ∼= F, as
σ ↘ 0. In particular, we expect that the number of photons in the state Ψσ(p) diverges, as σ ↘ 0,
(thus the lack of convergence of Ψσ(p) in F). This is a well-known aspect of the infrared problem in
QED, [8, 9, 10, 11, 22]. It is remedied by applying a dressing transformation, W ρ


∇Eσ(p), defined in


(2.9), below, to Ψσ(p), where Eσ(p) = inf specHσ(p). The resulting vector, Φρ
σ(p) := W ρ


∇Eσ(p)Ψσ(p),


describes an infraparticle (or dressed electron) state containing infrared photons with frequencies
in [σ, ρ]. As σ ↘ 0, the limit


Φρ(p) = lim
σ→0


Φρ
σ(p) (1.16)


exists in F, see Proposition 2.2. This allows us to construct the map J ρ0 as the limit of the maps
J ρσ , as σ ↘ 0.
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We note that Φρ
σ(p) is the ground state eigenvector of the fiber Hamiltonian


Kρ
σ(p) := W ρ


∇Eσ(p)Hσ(p) (W ρ
∇Eσ(p))


∗ (1.17)


which is obtained by applying to Hσ(p) the Bogoliubov transformation corresponding to the dressing
transformation W ρ


∇Eσ(p).


In Theorem 2.3, below, we prove that an estimate similar to (1.15) holds for the infrared regu-
larized model,


‖ e−itHV
σ J ρεσ (uε0 ) − J ρεσ ( e−itHeff,σ uε0 ) ‖H ≤ Cδ


(
ε2/3−δt+ ε4/3−δ/2t2


)
, (1.18)


uniformly in σ ≥ 0, for ρε = ε
2
3
−δ. This result crucially uses the regularity properties of the dressed


electron states Φρ
σ(p), which allow us to take advantage of the fact that Vε is slowly varying. An


additional key ingredient is the bound ‖(Hσ(p) −Kρ
σ(p))Φρ


σ(p)‖F ≤ Cα
1
2 ρ


1
2 |p|, for p ∈ S, proven


in Appendix C.


In section 3, we control the limit σ ↘ 0, thus concluding the proof of Theorem 1.1. This requires
control of the radiation emitted by the electron due to its acceleration in the external potential Vε,
in the limit σ ↘ 0.


Remark 1.2. Theorem 1.1 implies that, for all δ′ such that δ < δ′ < 2/3,


‖ e−itHV J ρε0 (uε0 ) − J ρε0 ( e−itHeff uε0 ) ‖H ≤ Cδ ε
δ′−δ (1.19)


holds for all times t with 0 ≤ t ≤ ε−
2
3


+δ′. We note that the time scale of order O(ε−
2
3


+δ′) is
not sharp; we leave further investigation of an optimal time scale to future work. Indeed, for
a regularized model based on massive photons (see [26]), or nonzero infrared cutoff σ > 0, the
dynamics can be controlled up to a time scale O(ε−1). The main obstacle against passing beyond a


time scale of order O(ε−
2
3


+δ′) within our current approach comes from the θ-Hölder continuity of
Φρ
σ(p) in p, only established for θ < 2/3.


2. Infrared cut-off and construction of Φρ(p)


As noted in the introduction, we analyze the original dynamics by first imposing an infrared
cut-off, and controlling the dynamics generated by the resulting Hamiltonian. Thus, we define the
IR regularized Hamiltonian


HV
σ = Hσ + Vε(x)⊗ 1f , (2.1)


where


Hσ :=
1


2
(−i∇x ⊗ 1f +


√
αAσ(x) )2 + 1el ⊗Hf (2.2)


is the generator of the dynamics of a single, freely moving non-relativistic electron minimally coupled
to the electromagnetic radiation field. In (2.2),


Aσ(x) =
∑
λ


∫
σ≤|k|≤1


dk


|k|1/2
{ ελ(k) e−ikx ⊗ aλ(k) + h.c. } (2.3)
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denotes the quantized electromagnetic vector potential with an infrared and ultraviolet cutoff cor-
responding to σ ≤ |k| ≤ 1. Since V ∈ L∞(R3) is a bounded operator, D(HV


σ ) = D(Hσ) =
D(−∆x ⊗ 1f + 1el ⊗Hf ).


The Hamiltonian Hσ is translation invariant. Representing the Hilbert space of the system
as a direct integral, H =


∫ ⊕
dpHp , over the spectrum of the total momentum operator, Ptot


(see (1.7) and (1.8)), we let Hσ(p) = Hσ|Hp denote the fiber Hamiltonian corresponding to total
momentum p. While H(p) has a ground state only for p = 0, it is proven in [2, 6] that, for
p ∈ S := {p ∈ R3||p| ≤ 1/3} and σ > 0,


Eσ(p) = inf specHσ(p) (2.4)


is a non-degenerate eigenvalue (the fiber ground state energy) of Hσ(p). This motivates the intro-
duction of the cut-off. We let Ψσ(p) ∈ F, with ‖Ψσ(p)‖F = 1, denote the corresponding normalized
fiber ground state,


Hσ(p)Ψσ(p) = Eσ(p) Ψσ(p) , (2.5)


for p ∈ S. Properties of the fiber ground state energy Eσ(p), and of dressed electron states Φσ(p),
for p ∈ S, are given in the following proposition proven in [2, 6, 9, 10]:


Proposition 2.1. The infimum of the spectrum of the fiber Hamiltonian, Eσ(p) = inf spec(Hσ(p)),
satisfies:


(1) For any σ > 0, Eσ ∈ C2(S), and for all p ∈ S =
{
p ∈ R3 | |p| ≤ 1


3


}
, Eσ(p) is a simple


eigenvalue.


(2) For α > 0 sufficiently small, there exists a constant c, with 0 < c < ∞, such that, for any
p ∈ S,


|∇pEσ(p)− p| ≤ c α |p| , and 1− c α ≤ ∂2
|p|Eσ(p) ≤ 1 , (2.6)


hold uniformly in α (0 < α� 1) and σ ≥ 0.


(3) The following limit exists in C2(S)


lim
σ↘0


Eσ( · ) = E( · ). (2.7)


Let b∗λ(k), bλ(k) denote creation- and annihilation operators on the fiber space, see Appendix A.
For 0 < σ < ρ ≤ 1 and p ∈ S, we introduce the Weyl operators


W ρ
∇Eσ(p) := exp


[
α


1
2


∑
λ


∫
σ≤|k|≤ρ


dk
∇Eσ(p) · ελ(k)bλ(k)− h.c.
|k|1/2(|k| − ∇Eσ(p) · k)


]
, (2.8)


with ∇Eσ(p) ≡ ∇pEσ(p), which are unitary on F, for σ > 0. Moreover, we define dressed electron
states


Φρ
σ(p) := W ρ


∇Eσ(p) Ψσ(p) . (2.9)


The properties of these states are described in the following proposition


Proposition 2.2. For any p ∈ S, 0 < ρ ≤ 1, and for sufficiently small values of the finestructure
constant 0 < α � 1, the ground state eigenvector Φρ


σ(p) of Kρ
σ(p) := W ρ


∇Eσ(p)Hσ(p) (W ρ
∇Eσ(p))


∗


satisfies:







6 V. BACH, T. CHEN, J. FAUPIN, J. FRÖHLICH, AND I.M. SIGAL


(1) The strong limit


Φρ(p) := lim
σ→0


Φρ
σ(p) (2.10)


exists in F.


(2) For θ < 2
3 , the vectors Φρ


σ(p) are θ-Hölder continuous in p,


sup
p,q∈S


‖Φρ
σ(p)− Φρ


σ(q) ‖
|p− q|θ


≤ C(θ) , (2.11)


uniformly in σ and ρ, with 0 ≤ σ < ρ ≤ 1.


The proof of θ-Hölder continuity for θ < 2
3 is given in Appendix B; (see also [9, 10, 22] for earlier


results covering the range θ < 1
4 , in the case where ρ = 1).


For arbitrary u ∈ L2(R3) (with Fourier transform denoted by û), we define the linear map


J ρσ : u 7→
∫
S
dp û(p) e−ix(p−Pf ) χSµ(p) Φρ


σ(p) , (2.12)


where x is the electron position, χSµ is a smooth approximate characteristic function of the set


Sµ := (1− µ)S ⊂ S ⊂ R3, (2.13)


and 0 < µ < 1. Note that J ρσ : L2(R3)→M ⊂ H, where


M :=
{ ∫


R3


dp û(p) e−ix(p−Pf ) χSµ(p) Φρ
σ(p)


∣∣∣u ∈ L2(R3)
}
, (2.14)


the space of vectors in H supported on the one-particle shell of the operator
∫ ⊕
S dpKρ


σ(p).


We also note that in (2.14) we do not require that supp(û) ⊂ Sµ; instead, we cutoff û outside
the region Sµ by multiplying it by χSµ .


Furthermore, we consider an initial wave function uε0(x) satisfying ‖uε0‖L2 = 1 and ‖∇uε0‖L2 ≤ ε.
Our main goal in this paper is to study the solution of the Schrödinger equation


i∂tΨ(t) = HV
σ Ψ(t) , with Ψ(0) = J ρσ (uε0) , (2.15)


which is given by


Ψ(t) = e−itH
V
σ J ρσ (uε0) ∈ H , (2.16)


and, in particular, to determine its properties for large t.


The key idea is to relate Ψ(t) to the solution of the Schrödinger equation


i∂tu(t, x) = (Heff,σ u)(t, x) , u(0, x) = uε0(x) (2.17)


corresponding to the one-particle Schrödinger operator


Heff,σ := Eeff,σ(−i∇x) + Vε(x) , (2.18)


where (t, x) ∈ R× R3. The kinetic energy operator Eeff,σ(p) ∈ C2(R3) is defined by


Eeff,σ(p) := Eσ(p) , if p ∈ S , (2.19)


and suitably continued to R3 \ S. We consider the comparison state


J ρσ (u(t)) ∈ H , (2.20)
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where u(t) := e−itHeff,σuε0 is the solution of (2.17), and show that Ψ(t) remains close to J ρσ (u(t)),
for a long time. The choice of initial data satisfying ‖∇uε0‖L2 ≤ ε guarantees that û(t) remains
concentrated in S during the time scales relevant in this problem.


As a first step in proving Theorem 1.1, we will prove the following result.


Theorem 2.3. Under the conditions of Theorem 1.1, there exists αδ > 0 such that, for all 0 ≤
α ≤ αδ, the bound


‖ e−itHV
σ J ρσ (uε0 ) − J ρσ ( e−itHeff,σ uε0 ) ‖H ≤ Cδ (1 + ln(ρ−1)) ε


2
3
−δ t+ C α


1
2 ρ


1
2 ε t (1 + t) , (2.21)


holds uniformly in the infrared cutoff σ.


Proof. Our proof makes crucial use of the properties of the fiber ground state energy Eσ(p) and of
the corresponding dressed electron states Φρ


σ(p), for p ∈ S, given in Propositions 2.1 and 2.2 above.
We define the Bogoliubov-transformed fiber Hamiltonians


Kρ
σ(p) := W ρ


∇Eσ(p)Hσ(p) (W ρ
∇Eσ(p))


∗ (2.22)


for p ∈ S, and the operator Kρ
σ acting on H,


Kρ
σ :=


∫ ⊕
I−1
p Kρ


σ(p)Ip dp, (2.23)


and the perturbed operator KV
σ := Kρ


σ+Vε. Note that the dressed electron states Φρ
σ(p), for p ∈ S,


are the ground states of Kρ
σ(p), i.e.,


Kρ
σ(p) Φρ


σ(p) = Eσ(p) Φρ
σ(p) , (2.24)


and the operator Kρ
σ has the property that


Kρ
σJ ρσ = J ρσEeff,σ(−i∇). (2.25)


Next, we proceed to the proof of (2.21). We write the difference on the LHS of (2.21) as the
integral of a derivative, and separate it into


e−itH
V
σ J ρσ (uε0 ) − J ρσ ( e−itHeff,σ uε0) = −i e−itHV


σ


∫ t


0
ds eisH


V
σ (HV


σ J ρσ (u(s))− J ρσ (Heffu(s))


=: φ1(t) + φ2(t) , (2.26)


by substituting HV
σ → HV


σ −KV
σ +KV


σ inside the integral and grouping terms suitably. The first
term on the r.h.s. accounts for the radiation of infrared photons due to the motion of the dressed
electron in the external potential, while the second term accounts for the influence of the external
potential Vε on the full QED dynamics (2.16), as compared to the effective Schrödinger evolution
(2.20).


The first term on the r.h.s. of (2.26) has the form


φ1(t) := −i e−itHV
σ


∫ t


0
ds eisH


V
σ
(
Hσ −Kρ


σ


)
J ρσ (uε0 ) , (2.27)


where we have used the cancelation of V in HV
σ − KV


σ = Hσ − Kρ
σ. Using the fiber integral


decomposition, we obtain


‖φ1(t)‖H ≤ sup
p∈S


{ 1


|p|
‖(Hσ −Kρ


σ)(p) Φρ
σ(p)‖F


} ∫ t


0
‖∇u(s) ‖L2(R3) ds . (2.28)
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In Appendix C we prove the following key result:


sup
p∈S


{ 1


|p|
‖(Hσ −Kρ


σ)(p) Φρ
σ(p)‖F


}
≤ Cα


1
2 ρ


1
2 , (2.29)


uniformly in σ ≥ 0. Furthermore, we have the estimate∫ t


0
‖∇u(s) ‖L2(R3) ds ≤ C ε t (1 + t) , (2.30)


as shown below by using the condition ‖∇uε0‖L2(R3) ≤ ε on uε0, and the fact that the potential V
satisfies (1.14). We obtain


‖φ1(t)‖H ≤ C t (1 + t)α
1
2 ρ


1
2 ε, (2.31)


which yields the second contribution to the r.h.s. of (2.21).


For the second term on the r.h.s. of (2.26), we have that


φ2(t) := −i e−itHV
σ


∫ t


0
ds eisH


V
σ
(
KV
σ J ρσ (u(s))− J ρσ (Heffu(s))


)
= −i e−itHV


σ


∫ t


0
ds eisH


V
σ
(
VεJ ρσ (u(s))− J ρσ (Vεu(s))


)
, (2.32)


using the fiber decomposition and the equation Kρ
σ(p) Φρ


σ(p) = Eσ(p) Φρ
σ(p). Let ‖Φ‖Cθ(S) :=


supp,q∈S
‖Φ(p)−Φ(q) ‖
|p−q|θ . Below, we prove an estimate of the form


‖φ2(t)‖H ≤ t C ‖|̂∇|θVε‖L1(R3) (1 + ‖Φρ
σ‖Cθ(S)) , (2.33)


for θ < 2
3 . The key point here is that the θ-Hölder continuity of the fiber ground state Φρ


σ(p) enables


us to gain a θ derivative of the potential, yielding ‖|̂∇|θVε‖L1(R3) ≤ Cεθ. To summarize, we have


made use of the θ-Hölder continuity of Φρ
σ( · ), which holds uniformly in σ, with 0 < σ < ρ, and we


have used that


‖|̂∇|θV ‖L1(R3) ≤ γ , where γ := ‖V̂ (k)‖L1 < ∞ , (2.34)


(see (1.14)).


Moreover, in Proposition B.4, we prove that ‖Φρ
σ‖Cθ(S) ≤ Cδ (1 + ln(ρ−1)). Collecting the


estimates above, we arrive at


‖φ2(t)‖H ≤ Cδ t ε
θ (1 + ln(ρ−1)), (2.35)


which yields the first term on the RHS of (2.21). �


Proof of (2.30). To verify (2.30), a simple calculation shows that


∇u(s) = e−isHeff,σ ∇uε0 − i
∫ s


0
dv e−ivHeff,σ ∇Vε(x) e−i(s−v)Heff,σ uε0. (2.36)


Using that ‖∇uε0‖L2 ≤ ε, and that


‖∇Vε‖L∞ ≤ ‖∇̂Vε‖L1 ≤ γ ε , (2.37)


where γ is defined in (2.34), we conclude that


‖∇u(s) ‖L2 ≤ C ε (1 + s) , (2.38)
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and thus, ∫ t


0
ds ‖∇u(s) ‖L2 ≤ C ε t (1 + t) . (2.39)


This proves (2.30). �


Proof of (2.33). We define


ψs := VεJ ρσ (u(s))− J ρσ (Vεu(s)). (2.40)


Moreover, we define the generalized Fourier transform in the electron position, x, by


ψ̂(p) =
1


(2π)
3
2


∫
dx e−i(p−Pf )xψ(x) . (2.41)


By definitions (2.26) and (2.40) and the unitarity of the generalized Fourier transform proven in
Appendix A, we have that


‖φ2(t)‖H ≤
∫ t


0
ds ‖ψs‖L2


x⊗F =


∫ t


0
ds ‖ψ̂s‖L2


p⊗F. (2.42)


Using the definition of J ρσ and computing the Fourier transform, we find that


ψ̂s(p) =


∫
R3


dq V̂ε(p− q) û(s, q)
(
χSµ(q)Φρ


σ(q) − χSµ(p)Φρ
σ(p)


)
. (2.43)


It is important to note that, for any function f ∈ L2(R3) with supp(f) ⊂ Sµ,


supp(V̂ε ∗ f) ⊂ S, (2.44)


for ε ≤ µ/3, since we are assuming supp(V̂ ) ⊂ {k||k| ≤ 1}, so that supp(V̂ε) ⊂ {k||k| ≤ ε}. Since
the term in the integrand given by (û(s)χSµΦρ


σ)(q) is supported in q ∈ Sµ, so that, by (2.44), its


convolution with V̂ε has support in S, we find


ψ̂s(p) = 1S(p)


∫
R3


dq V̂ε(p− q) û(s, q) (χSµ(q) Φρ
σ(q)− χSµ(p)Φρ


σ(p)) , (2.45)


for ε ≤ µ/3, where 1S is the characteristic function of the set S. Inserting |p− q|θ|p− q|−θ = 1 into
(2.45), using the definition of |∇|θ by its Fourier transform and using that, since χSµ is a smooth
function,


sup
p,q∈S


|p− q|−θ‖
(
χSµ(q)Φρ


σ(q) − χSµ(p)Φρ
σ(p)


)
‖F ≤ C(1 + ‖Φρ


σ‖Cθ(S)) , (2.46)


we obtain the bound ‖ψ̂s‖L2
x⊗F ≤ C(1 + ‖Φρ


σ‖Cθ(S))‖ |1S û(s)|∗ ||̂∇|θVε| ‖L2(S). Next, using Young’s


inequality, ‖f ∗ g‖Lr ≤ ‖f‖L1‖g‖Lr , we find that


‖ψ̂s‖L2
x⊗F ≤ C(1 + ‖Φρ


σ‖Cθ(S)) ‖|̂∇|θVε‖L1(R3) sup
s∈[0,t]


‖1S û(s)‖L2(R3). (2.47)


Finally, observing that


‖1S û(s)‖L2(R3) ≤ ‖û(s)‖L2(R3) = ‖u(s)‖L2(R3) = ‖uε0‖L2(R3) = 1 , (2.48)


by unitarity of e−itHeff,σ , and using (2.42), we arrive at (2.33). �
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3. The limit σ ↘ 0


In this section we remove the infrared cut-off from the evolution.


Proposition 3.1. Under the conditions of Theorem 2.3, the strong limits


s− lim
σ↘0


e−itH
V
σ J ρσ (uε0 ) = e−itH


V J ρ0 (uε0 ) (3.1)


and


s− lim
σ↘0
J ρσ ( e−itHeff,σ uε0 ) = J ρ0 ( e−itHeff uε0 ) (3.2)


exist, for arbitrary |t| <∞.


Proof. We write


e−itH
V
σ J ρσ (uε0)− e−itHV J ρ0 (uε0) = (e−itH


V
σ − e−itHV


)J ρ0 (uε0) + e−itH
V
σ (J ρσ − J


ρ
0 )(uε0). (3.3)


Clearly, ∥∥∥e−itHV
σ (J ρσ − J


ρ
0 )(uε0)


∥∥∥ = ‖(J ρσ − J
ρ
0 )(uε0)‖ ≤ ‖uε0‖L2 sup


p∈Sµ
‖Φρ


σ(p)− Φρ(p)‖F .


Thus,


lim
σ↘0


∥∥∥e−itHV
σ (J ρσ − J


ρ
0 )(uε0)


∥∥∥ = 0 ,


follows from Proposition B.1.


Next, we discuss the first term on the right side of (3.3). In order to prove that it converges to
0, as σ ↘ 0, it suffices to show that HV


σ converges to HV in the norm resolvent sense; (see [24,
Theorem VIII.21]), i.e.,


lim
σ↘0


∥∥(HV
σ + i)−1 − (HV + i)−1


∥∥ = 0.


From the second resolvent equation and the fact that ‖(HV
σ + i)−1‖ ≤ 1, it follows that∥∥(HV


σ + i)−1 − (HV + i)−1
∥∥ =


∥∥(HV + i)−1Qσ (HV
σ + i)−1


∥∥ , (3.4)


where


Qσ :=HV −HV
σ = α


1
2A<σ(x) · vσ +


α


2
(A<σ(x))2 ,


and


vσ := −i∇x + α
1
2Aσ(x)


is the velocity operator. Here Aσ(x) is defined in (2.3), and


A<σ(x) :=
∑
λ


∫
|k|≤σ


dk


|k|1/2
{ ελ(k) e−ikx ⊗ aλ(k) + h.c. } . (3.5)


In order to estimate the norm of Qσ(HV + i)−1, we use the following well-known lemma.
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Lemma 3.2. Let f, g ∈ L2(R3 × {+,−};B(Hel)) be operator-valued functions such that ‖(1 +


|k|−1)1/2f‖, ‖(1 + |k|−1)1/2g‖ <∞. Then


‖a#(f)(Hf + 1)−
1
2 ‖ ≤ ‖(1 + |k|−1)


1
2 f‖, (3.6)


‖a#(f)a#(g)(Hf + 1)−1‖ ≤ ‖(1 + |k|−1)
1
2 f‖‖(1 + |k|−1)


1
2 g‖, (3.7)


where a# stands for a or a∗.


In particular, using the Kato-Rellich theorem, one easily shows that, for α small enough, D(HV ) =
D(−∆x ⊗ I + I ⊗Hf ) ⊂ D(Hf ). Thus, we have that∥∥(Hf + 1)(HV + i)−1


∥∥ ≤ C,


which when combined with Lemma 3.2 yields∥∥∥α
2


(A<σ(x))2(HV + i)−1
∥∥∥ ≤ C ασ. (3.8)


Likewise one verifies that ∥∥∥α 1
2A<σ(x) · vσ(HV + i)−1


∥∥∥ ≤ C α
1
2 σ


1
2 , (3.9)


since 0 ≤ v2
σ ≤ HV + ‖V ‖L∞ is bounded relative to HV . Estimates (3.8) and (3.9) yield∥∥Qσ(HV + i)−1


∥∥ ≤ C α
1
2 σ


1
2 .


By (3.4), we have shown that HV
σ converges to HV , as σ ↘ 0, in the norm resolvent sense. �


4. Proof of Theorem 1.1


In this section, we prove the bound in Theorem 1.1, which compares the full dynamics to the
effective dynamics for the system without infrared cutoff. We have that


‖ e−itHV J ρ0 (uε0 ) − J ρ0 ( e−itHeff uε0 ) ‖H
≤ ‖ e−itHV


σ J ρσ (uε0 ) − J ρσ ( e−itHeff,σ uε0 ) ‖H
+ ‖ e−itHV


σ J ρσ (uε0 ) − e−itH
V J ρ0 (uε0 ) ‖H


+ ‖J ρσ ( e−itHeff,σ uε0 ) − J ρ0 ( e−itHeff uε0 ) ‖H , (4.1)


for any t and 0 < σ < ρ ≤ 1. It follows from Theorem 2.3 that the first term on the r.s. of the


inequality sign is bounded by Cδ (1 + ln(ρ−1)) ε
2
3
−δ t+ C α


1
2 ρ


1
2 ε t (1 + t), uniformly in σ > 0.


From Proposition 3.1, it follows that the second and third term on the r.s. converge to zero, as
σ ↘ 0.


We thus conclude that


‖ e−itHV J ρ0 (uε0 ) − J ρ0 ( e−itHeff uε0 ) ‖H ≤ Cδ (1 + ln(ρ−1)) ε
2
3
−δ t+ C α


1
2 ρ


1
2 ε t (1 + t) , (4.2)


by taking σ to zero. This concludes the proof of Theorem 1.1. �
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Appendix A. Generalized Fourier transform


For ψ ∈ H, we define the Fourier transform in the electron position, x, by


ψ̂(p) =
1


(2π)
3
2


∫
dx e−i(p−Pf )xψ(x) . (A.1)


Our claim is that


φ∨(x) =
1


(2π)
3
2


∫
dp ei(p−Pf )xφ(p) (A.2)


corresponds to the inverse Fourier transform, in the following sense.


Lemma A.1. The above linear operations define unitary maps H → H, and are mutual inverses.


Proof. By density, we may assume that ψ is smooth in x and of rapid decay, i.e., belongs to the
space


SF :=
{
ψ ∈ H


∣∣ sup
x


∥∥xα∂βxψ∥∥F < ∞ , ∀α, β ∈ N3
0


}
. (A.3)


Then,


(ψ̂)∨(x) =
1


(2π)
3
2


∫
dp e−i(p−Pf )x 1


(2π)
3
2


∫
dx′ ei(p−Pf )x′ ψ(x′)


=
1


(2π)3


∫
dx′


∫
dp e−ip(x−x


′)eiPf (x−x′) ψ(x′)


=


∫
dx′ δ(x− x′) eiPf (x−x′) ψ(x′)


= ψ(x) . (A.4)


Likewise, for φ ∈ SF,


(φ∨)̂ (p) =
1


(2π)
3
2


∫
dx ei(p−Pf )x 1


(2π)
3
2


∫
dq e−i(q−Pf )x φ(q)


=
1


(2π)3


∫
dq


∫
dx ei(p−q)x φ(q)


=


∫
dq δ(p− q)φ(q)


= φ(p) . (A.5)


From the density of SF in H, we infer that (A.1) and (A.2) define linear maps H → H, and are
mutual inverses. Moreover, the identity∫


dp
∥∥ψ̂(p)


∥∥2


F
=


∫
dp
〈 1


(2π)
3
2


∫
dxe−i(p−Pf )x ψ(x) ,


1


(2π)
3
2


∫
dx′ e−i(p−Pf )x′ ψ(x′)


〉
F


= (2π)−3


∫
dx


∫
dx′


( ∫
dp eip(x−x


′)
)


︸ ︷︷ ︸
= (2π)3δ(x−x′)


〈
eiPfxψ(x) , eiPfx


′
ψ(x′)


〉
F


=


∫
dx
∥∥ψ(x)


∥∥2


F
(A.6)
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proves unitarity. �


As an application, we observe that


P̂totψ(p) =
1


(2π)
3
2


∫
dx ei(p−Pf )x(−i∇x + Pf )ψ(x)


=
1


(2π)
3
2


∫
dx
(


(−i∇x + Pf )ei(p−Pf )x
)
ψ(x)


= p ψ̂(p) . (A.7)


To each fiber space Hp there corresponds an isomorphism Ip : Hp → Fb where Fb is the Fock


space corresponding to creation- and annihilation operators b∗λ(k) (given by e−ikxa∗λ(k)), and bλ(k)


(given by eikxaλ(k)) commuting with Ptot. The vacuum Ωf ∈ Fb is given by Ip(e
ipx). To define Ip


explicitly, we consider an improper state in Hp with a definite total momentum p describing the
electron at position x together with n photons. Its wave function has the form


ei(p−k1−···−kn)x φ(n)(k1, λ1; . . . ; kn, λn) . (A.8)


Then the equation


Ip


(
ei(p−k1−···−kn)x φ(n)(k1, λ1; . . . ; kn, λn)


)
(A.9)


=
∑


λ1,...,λn


∫
dk1 · · · dkn φ(n)(k1, λ1; . . . ; kn, λn) b∗λ1


(k1) · · · b∗λn(kn) Ωf


defines Ip.


Next, we discuss the Hamiltonian (2.2). It is easy to see that Hσ is translation-invariant, so that
[Hσ, Ptot] = 0. Accordingly,


(Hσψ)̂(p) = Hσ(p)ψ̂(p), (A.10)


where Hσ(p) is the fiber Hamiltonian corresponding to total momentum p. Applying the isomor-
phism Ip : Hp → Fb, Hσ(p) is represented on Fb by


Hb
σ(p) := IpHσ(p)I−1


p =
1


2
( p − P bf +


√
αAbσ )2 + Hb


f (A.11)


where


Abσ =
∑
λ


∫
σ≤|k|≤1


dk
dk


|k|1/2
{ ελ(k) bλ(k) + h.c. } (A.12)


and


P bf =
∑
λ


∫
k b∗λ(k) bλ(k) dk (A.13)


Hb
f =


∑
λ


∫
|k| b∗λ(k) bλ(k) dk . (A.14)


We note that


Hσ =


∫ ⊕
I−1
p Hb


σ(p)Ip dp (A.15)







14 V. BACH, T. CHEN, J. FAUPIN, J. FRÖHLICH, AND I.M. SIGAL


is the direct integral decomposition of Hσ over the spectrum of Ptot.


Remark A.2. Throughout this paper, we have usually dropped the superscripts in Hb
σ(p) and Fb,


etc., while keeping the notation b∗λ(k), bλ(k) for the creation- and annihilation operators on Fb.


Appendix B. Hölder continuity of the ground state


We recall that Φρ
σ(p) denotes a normalized ground state of the Bogoliubov transformed fiber


Hamiltonian Kρ
σ(p) = W ρ


∇Eσ(p)Hσ(p) (W ρ
∇Eσ(p))


∗, with infrared cutoff σ > 0 (see (2.22)). Our aim


in this appendix is to prove that, for a suitable choice of the vectors Φρ
σ(p), the map p 7→ Φρ


σ(p) is
θ-Hölder continuous, for θ < 2/3.


For ρ = 1, we set


Φσ(p) := Φ1
σ(p), Kσ(p) := K1


σ(p). (B.1)


We remark that


Kρ
σ(p) =


(
W ρ,1
∇Eσ(p)


)∗
Kσ(p)W ρ,1


∇Eσ(p) , Φρ
σ(p) =


(
W ρ,1
∇Eσ(p)


)∗
Φσ(p) , (B.2)


where


W ρ,1
∇Eσ(p) := exp


[
α


1
2


∑
λ


∫
ρ≤|k|≤1


dk
∇Eσ(p) · ελ(k) bλ(k)− h.c.
|k|1/2(|k| − ∇Eσ(p) · k)


]
.


Letting


Fσ :=
⊕
n≥0


Sym(L2({k ∈ R3, |k| ≥ σ} × {+,−} ) )⊗n (B.3)


denote the Fock space of photons of energies ≥ σ, and identifying Fσ with a subspace of F, we
observe that Kσ(p) leaves Fσ invariant. Let K̃σ(p) denote the restriction of Kσ(p) to Fσ. An
important property, proven in [3, 10, 13], is that there is an energy gap of size ησ, η > 0, in the


spectrum of K̃σ(p) above the ground state energy Eσ(p). Moreover, one can choose


Φσ(p) = Φ̃σ(p)⊗ Ωf , (B.4)


in the representation F ' Fσ ⊗ F<σ, where


F<σ :=
⊕
n≥0


Sym(L2({k ∈ R3, |k| ≤ σ} × {+,−} ) )⊗n . (B.5)


Now, by [10, 13], Φ̃σ(p) can be chosen in the following way:


Φ̃σ(p) =
Π̃σ(p)Ωf


‖Π̃σ(p)Ωf‖
, (B.6)


where Ωf denotes the vacuum in Fock space and Π̃σ(p) is the rank-one projection onto the eigenspace


associated with Eσ(p) = inf spec(K̃σ(p)). We recall from [10, 13] that


‖Π̃σ(p)Ωf‖ ≥
1


3
, (B.7)
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for arbitrary σ > 0 and |p| ≤ 1/3 provided that α is chosen sufficiently small.


Let N denote the number operator,


N =
∑
λ


∫
dk b∗λ(k) bλ(k) . (B.8)


The following proposition has been proven in [8, 10, 13].


Proposition B.1. For α� 1 and |p| ≤ 1/3, there exists a vector Φ(p) in the Fock space such that
Φσ(p)→ Φ(p), strongly, as σ → 0. The following bound holds,


‖N
1
2 Φσ(p)‖ ≤ C <∞ , (B.9)


uniformly in σ ≥ 0. Moreover, For all δ > 0, there exists αδ > 0 and Cδ < ∞ such that, for all
0 ≤ α ≤ αδ, 0 ≤ σ′ < σ ≤ 1 and |p| ≤ 1/3,


‖Φσ(p)− Φσ′(p)‖ ≤ Cδ α
1
4 σ1−δ, (B.10)


|∇Eσ(p)−∇Eσ′(p)| ≤ Cδ α
1
4 σ1−δ. (B.11)


As a consequence, we show the following corollary.


Corollary B.2. Let 0 < ρ < 1. For all δ > 0, there exists αδ > 0 such that, for all 0 ≤ α ≤ αδ
and |p| ≤ 1/3, there exists a vector Φρ(p) in the Fock space such that Φρ


σ(p)→ Φρ(p), strongly, as
σ → 0. Moreover, there exists a constant Cδ < ∞ such that, for all 0 ≤ α ≤ αδ, 0 ≤ σ′ < σ ≤ 1
and |p| ≤ 1/3,


‖Φρ
σ(p)− Φρ


σ′(p)‖ ≤ Cδ α
1
4 σ1−δ (1 + ln(ρ−1)) . (B.12)


Proof. Using (B.2), we split


Φρ
σ(p)− Φρ


σ′(p) =
((
W ρ,1
∇Eσ(p)


)∗ − (W ρ,1
∇Eσ′ (p)


)∗)
Φσ(p) +


(
W ρ,1
∇Eσ′ (p)


)∗(
Φσ(p)− Φσ′(p)


)
. (B.13)


By Proposition B.1 and unitarity of W ρ,1
∇Eσ(p), the second term is estimated as∥∥∥(W ρ,1


∇Eσ′ (p)
)∗(


Φσ(p)− Φσ′(p)
)∥∥∥ ≤ Cδ α 1


4 σ1−δ . (B.14)


The first term in the right side of (B.13) is estimated as∥∥∥((W ρ,1
∇Eσ(p)


)∗ − (W ρ,1
∇Eσ′ (p)


)∗)
Φσ(p)


∥∥∥ =
∥∥∥(1−W ρ,1


∇Eσ(p)


(
W ρ,1
∇Eσ′ (p)


)∗)
Φσ(p)


∥∥∥
≤
∥∥B(ρ)Φσ(p)


∥∥ , (B.15)


by unitarity of W ρ,1
∇Eσ(p) and the spectral theorem, where


B(ρ) := α
1
2


∑
λ


∫
ρ≤|k|≤1


dk
(∇Eσ(p) · ελ(k) bλ(k)− h.c.
|k|1/2(|k| − ∇Eσ(p) · k)


− ∇Eσ
′(p) · ελ(k) bλ(k)− h.c.


|k|1/2(|k| − ∇Eσ′(p) · k)


)
. (B.16)


To estimate ‖B(ρ)Φσ(p)‖, we use the well known fact that, for any f ∈ L2(R3 × {+,−}),


‖a#(f)(N + 1)−
1
2 ‖ ≤


√
2‖f‖L2 . (B.17)
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Clearly,


∇Eσ(p) · ελ(k)


|k|1/2(|k| − ∇Eσ(p) · k)
− ∇Eσ′(p) · ελ(k)


|k|1/2(|k| − ∇Eσ′(p) · k)


=
(∇Eσ(p)−∇Eσ′(p)) · ελ(k)


|k|1/2(|k| − ∇Eσ(p) · k)
+


∇Eσ′(p) · ελ(k)


|k|1/2(|k| − ∇Eσ(p) · k)


(∇Eσ(p)−∇Eσ′(p)) · k
(|k| − ∇Eσ′(p) · k)


. (B.18)


Hence, by (B.11) and the facts that |∇Eσ(p)|, |∇Eσ′(p)| ≤ 1/2 for α small enough (see Proposition
2.1 (2)), we obtain∣∣∣ ∇Eσ(p) · ελ(k)


|k|1/2(|k| − ∇Eσ(p) · k)
− ∇Eσ′(p) · ελ(k)


|k|1/2(|k| − ∇Eσ′(p) · k)


∣∣∣ ≤ Cδ α
1
4 σ1−δ


|k|
3
2


. (B.19)


Thus, (B.16) and (B.17) yield that∥∥B(ρ)Φσ(p)
∥∥ ≤ Cδ α


3
4 σ1−δ


∥∥∥1ρ≤|k|≤1(|k|)


|k|
3
2


∥∥∥
L2
k


∥∥(N + 1)
1
2 Φσ(p)


∥∥
≤ Cδ α


3
4 σ1−δ ln(ρ−1) . (B.20)


where we used (B.9) in the last inequality. Together with (B.13) – (B.15), this concludes the proof
of the corollary. �


The following result follows from [10, 13] (it is also a consequence of (2.6) in Proposition 2.1
(2)).


Proposition B.3. There exist αc > 0 and C > 0 such that, for all 0 ≤ α ≤ αc and p, p′ satisfying
|p| ≤ 1/3, |p′| ≤ 1/3, ∣∣∇Eσ(p)−∇Eσ(p′)


∣∣ ≤ C |p− p′|, (B.21)


uniformly in σ > 0.


We now prove the following proposition.


Proposition B.4. Let 0 < ρ < 1. For all δ > 0, there exist αδ > 0 and Cδ <∞ such that, for all
0 ≤ α ≤ αδ, σ > 0 and p, k ∈ R3 satisfying |p| ≤ 1/3, |p+ k| ≤ 1/3,


‖Φρ
σ(p+ k)− Φρ


σ(p)‖ ≤ Cδ (1 + ln(ρ−1)) |k|
2
3
−δ. (B.22)


We recall the following easy lemma (see e.g. [3]).


Lemma B.5. Let H be a Hilbert space and let Π1 and Π2 be two rank-one projections in H. Let
Φ1 ∈ Ran Π1, ‖Φ1‖ = 1 and Φ2 ∈ Ran Π2, ‖Φ2‖ = 1. We have that


‖Π1 −Π2‖ =
∣∣〈Φ1, (Π1 −Π2)Φ1〉|


1
2 =


∣∣〈Φ2, (Π2 −Π1)Φ2〉|
1
2 . (B.23)


Proof of Proposition B.4
Step 1. We first prove that, for all 0 < σ < ρ ≤ 1,


‖Φρ
σ(p+ k)− Φρ


σ(p)‖ ≤ C |k|σ−
1
2 . (B.24)
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We decompose


Φρ
σ(p+ k)− Φρ


σ(p) =
(
W ρ,1
∇Eσ(p+k)


)∗
Φσ(p+ k) −


(
W ρ,1
∇Eσ(p)


)∗
Φσ(p)


=
((
W ρ,1
∇Eσ(p+k)


)∗ − (W ρ,1
∇Eσ(p)


)∗)
Φσ(p)


+
(
W ρ,1
∇Eσ(p+k)


)∗ (
Φσ(p+ k)− Φσ(p)


)
. (B.25)


To estimate the first term in the right side of (B.25), we proceed as in the proof of Corollary B.2.
Namely, we have that∥∥∥((W ρ,1


∇Eσ(p+k)


)∗ − (W ρ,1
∇Eσ(p)


)∗)
Φσ(p)


∥∥∥ =
∥∥∥(1−W ρ,1


∇Eσ(p+k)


(
W ρ,1
∇Eσ(p)


)∗)
Φσ(p)


∥∥∥
≤
∥∥C(ρ)Φσ(p)


∥∥ , (B.26)


by the spectral theorem, where


C(ρ) := α
1
2


∑
λ


∫
ρ≤|k̃|≤1


dk̃
(∇Eσ(p+ k) · ελ(k̃) bλ(k̃)− h.c.
|k̃|1/2(|k̃| − ∇Eσ(p+ k) · k̃)


− ∇Eσ(p) · ελ(k̃) bλ(k̃)− h.c.
|k̃|1/2(|k̃| − ∇Eσ(p) · k̃)


)
.


Using Proposition B.3, one verifies that∣∣∣ ∇Eσ(p+ k) · ελ(k̃)


|k̃|1/2(|k̃| − ∇Eσ(p+ k) · k̃)
− ∇Eσ(p) · ελ(k̃)


|k̃|1/2(|k̃| − ∇Eσ(p) · k̃)


∣∣∣ ≤ C |k|
|k̃|


3
2


. (B.27)


Hence (B.17) implies that


∥∥C(ρ)Φσ(p)
∥∥ ≤ C |k|


∥∥∥1ρ≤|k̃|≤1(k̃)


|k̃|
3
2


∥∥∥
L2
k̃


∥∥(N + 1)
1
2 Φσ(p)


∥∥
≤ C |k| ln(ρ−1) , (B.28)


where we used (B.9) in the last inequality. Equations (B.26) and (B.28) yield∥∥∥((W ρ,1
∇Eσ(p+k)


)∗ − (W ρ,1
∇Eσ(p)


)∗)
Φσ(p)


∥∥∥ =
∥∥∥(1−W ρ,1


∇Eσ(p+k)


(
W ρ,1
∇Eσ(p)


)∗)
Φσ(p)


∥∥∥
≤ C |k|σ−


1
2 σ


1
2 ln(ρ−1)


≤ C |k|σ−
1
2 , (B.29)


since 0 < σ < ρ ≤ 1.


It remains to estimate the second term in the right side of (B.25). By unitarity of W ρ,1
∇Eσ(p+k), it


suffices to estimate ‖Φσ(p+ k)− Φσ(p)‖, and, by (B.4),


‖Φσ(p+ k)− Φσ(p)‖ = ‖Φ̃σ(p+ k)− Φ̃σ(p)‖ . (B.30)


It follows from (B.7) and Lemma B.5 that


‖Φ̃σ(p+ k)− Φ̃σ(p)‖ ≤
( 1


‖Π̃σ(p)Ωf‖
+


1


‖Π̃σ(p+ k)Ωf‖


)∥∥Π̃σ(p)Ωf − Π̃σ(p+ k)Ωf


∥∥
≤ 6


∥∥Π̃σ(p)− Π̃σ(p+ k)
∥∥


= 6
∣∣〈Φ̃σ(p), Π̄σ(p+ k)Φ̃σ(p)


〉∣∣ 1
2 , (B.31)
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where Π̄σ(p+ k) := I − Π̃σ(p+ k). Using that there is an energy gap of size ησ above Eσ(p+ k) in


the spectrum of the operator K̃σ(p+ k), we can estimate∣∣〈Φ̃σ(p), Π̄σ(p+ k)Φ̃σ(p)
〉∣∣ 1


2


≤
∥∥(K̃σ(p+ k)− Eσ(p+ k))−1Π̄σ(p+ k)


∥∥ 1
2
∥∥(K̃σ(p+ k)− Eσ(p+ k))


1
2 Φ̃σ(p)


∥∥
≤ η−


1
2 σ−


1
2


∥∥(K̃σ(p+ k)− Eσ(p+ k))
1
2 Φ̃σ(p)


∥∥. (B.32)


Let


∇pKσ(p) := W∇Eσ(p)∇pHσ(p)W ∗∇Eσ(p) , (B.33)


where


∇pHσ(p) = p − Pf + α
1
2Aσ . (B.34)


Using the Feynman-Hellman formula,


〈Φ̃σ(p),∇pKσ(p)Φ̃σ(p)〉 = ∇Eσ(p) , (B.35)


together with the mean-value theorem and Proposition B.3, we have that (see also [7, Lemma 3.6])∥∥(K̃σ(p+ k)− Eσ(p+ k))
1
2 Φ̃σ(p)


∥∥2


=
〈
Φ̃σ(p), (K̃σ(p+ k)− Eσ(p+ k))Φ̃σ(p)


〉
=
〈
Φ̃σ(p), (K̃σ(p) + k · (∇pKσ(p)) + k2/2− Eσ(p+ k))Φ̃σ(p)


〉
= Eσ(p)− Eσ(p+ k) + k · (∇pEσ(p)) + k2/2


≤ C k2. (B.36)


Hence, ∥∥(K̃σ(p+ k)− Eσ(p+ k)
) 1


2 Φ̃σ(p)
∥∥ ≤ C |k|. (B.37)


Combining (B.31), (B.32) and (B.37), we obtain that


‖Φ̃σ(p+ k)− Φ̃σ(p)‖ ≤ C |k|σ−
1
2 , (B.38)


and hence (B.24) follows.


Step 2. We now prove that ‖Φρ
σ(p+ k)− Φρ


σ(p)‖ ≤ Cδ |k|2/3−δ (with Cδ <∞ for δ > 0).


Suppose first that σ ≥ |k|2/3. Then by Step 1, we have that


‖Φρ
σ(p+ k)− Φρ


σ(p)‖ ≤ C |k| |k|−
1
3 = C |k|


2
3 . (B.39)


Newt, we assume that σ ≤ |k|2/3. We write


‖Φρ
σ(p+ k)− Φρ


σ(p)‖ ≤ ‖Φρ
σ(p+ k)− Φρ(p+ k)‖+ ‖Φρ(p+ k)− Φρ


|k|2/3(p+ k)‖


+ ‖Φρ
σ(p)− Φρ(p)‖+ ‖Φρ(p)− Φρ


|k|2/3(p)‖


+ ‖Φρ


|k|2/3(p+ k)− Φρ


|k|2/3(p)‖. (B.40)
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By Corollary B.2, the first two lines are bounded by


‖Φρ
σ(p+ k)− Φρ(p+ k)‖+ ‖Φρ(p+ k)− Φρ


|k|2/3(p+ k)‖


+ ‖Φρ
σ(p)− Φρ(p)‖+ ‖Φρ(p)− Φρ


|k|2/3(p)‖


≤ Cδ α
1
4 (1 + ln(ρ−1)) |k|


2
3


(1−δ) , (B.41)


whereas by Step 1, the last term is bounded by C |k|2/3. Setting δ′ = 2δ/3 and changing notations
concludes the proof of the proposition. �


Appendix C. Proof of Estimate (2.29)


In this Appendix, we prove (2.29). It asserts that


‖(Kρ
σ(p) − Hσ(p))Φρ


σ(p)‖F ≤ C α
1
2 ρ


1
2 |p| , (C.1)


for all p ∈ S, for a constant independent of α and σ, ρ such that 0 < σ < ρ ≤ 1.


To begin with, we note that


‖(Kρ
σ(p) − Hσ(p))Φρ


σ(p)‖F = ‖(Kρ
σ(p) − Hσ(p))Ψσ(p)‖F , (C.2)


which follows from


(Hσ −Kρ
σ)(p)Φσ(p) =


(
Hσ(p) − W ρ


∇Eσ(p)Hσ(p)(W ρ
∇Eσ(p))


∗)Φρ
σ(p)


= W ρ
∇Eσ(p)(K


ρ
σ(p) − Hσ(p) )Ψσ(p) , (C.3)


and unitarity of W ρ
∇Eσ(p). Here we recall that Ψρ


σ(p) = (W ρ
∇Eσ(p))


∗Φρ
σ(p).


Next, we let


v]λ(k) := α
1
2 1σ≤|k|≤ρ(|k|)


∇Eσ(p) · ε]λ(k)


|k|1/2(|k| − ∇Eσ(p) · k)
, (C.4)


(scalar-valued) and


w]λ(k) := α
1
2 1σ≤|k|≤1(|k|)


ε]λ(k)


|k|1/2
(C.5)


(vector-valued). We note that


|vλ(k)| ≤ C α
1
2 |p|


1σ≤|k|≤ρ(|k|)


|k|
3
2


(C.6)


and


|wλ(k)| ≤ C α
1
2
1σ≤|k|≤1(|k|)


|k|
1
2


(C.7)


where we have used that |∇Eσ(p)| ≤ C |p|, uniformly in the infrared cutoff 0 ≤ σ ≤ 1.


Using that


W ρ
∇Eσ(p) a


]
λ(k) (W ρ


∇Eσ(p))
∗ = a]λ(k) + v]λ(k) , (C.8)
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a straightforward calculation yields


Kρ
σ(p) − Hσ(p)


= W ρ
∇Eσ(p)Hσ(p) (W ρ


∇Eσ(p))
∗ − Hσ(p)


= (∇pHσ(p)) · V (p) + V (p) · (∇pHσ(p)) + V 2(p) + Y (p) , (C.9)


where ∇pHσ(p) is defined in (B.34), and


V (p) :=
∑
λ


[
aλ(kvλ) + a∗λ(kvλ) + 2Re(wλ, vλ) + (vλ, kvλ)


]
, (C.10)


(vector-valued operator) and


Y (p) :=
∑
λ


[
aλ(|k|vλ) + a∗λ(|k|vλ) + (vλ, |k|vλ)


]
, (C.11)


(scalar-valued operator). We observe that both V (p) and Y (p) are proportional to |∇Eσ(p)| since
all terms are of first or higher order in vλ (which is proportional to |∇Eσ(p)| ≤ C|p|).


Let us first consider


‖Y (p) Ψσ(p)‖F ≤
∥∥∥∑


λ


aλ(|k|vλ)Ψσ(p)
∥∥∥
F


+
∥∥∥∑


λ


a∗λ(|k|vλ)Ψσ(p)
∥∥∥
F


+
∑
λ


(vλ, |k|vλ)‖Ψσ(p)‖F


≤ 2 ‖|k|
1
2 vλ‖L2(R3×{+,−})‖(Hf + 1)


1
2 Ψσ(p)‖F +


∑
λ


(vλ, |k|vλ), (C.12)


where we used Lemma 3.2 in the second inequality. Since Hf ≤ Hσ(p), we have that


‖(Hf + 1)
1
2 Ψσ(p)‖F ≤ ‖(Hσ(p) + 1)


1
2 Ψσ(p)‖F


= (Eσ(p) + 1)
1
2 =


(p2


2
+O(α) + 1


) 1
2 ≤ C, (C.13)


where we used the Rayleigh-Ritz principle in the last equality. Since


‖|k|
1
2 vλ‖L2(R3×{+,−}) ≤ C α


1
2 ρ


1
2 |p| , (C.14)


(see (C.6)) we conclude that


‖Y (p) Ψσ(p)‖F ≤ C α
1
2 ρ


1
2 |p| . (C.15)


To bound ‖V 2(p) Ψσ(p)‖ and ‖V (p) · (∇pHσ(p))Ψσ(p)‖F, we use the following lemma.


Lemma C.1. For all p ∈ S, 0 ≤ σ ≤ 1 and α small enough,


‖H(p)Ψσ(p)‖ ≤ C, (C.16)


uniformly with respect to p, σ and α.


The proof of Lemma C.1 is given below.


Let us then consider


‖V 2(p) Ψσ(p)‖ ≤ ‖V 2(p)(Hf + 1)−1‖ ‖(Hf + 1)(H(p) + 1)−1‖ ‖(H(p) + 1)Ψσ(p)‖.
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The first term is bounded as above, using (3.7) in Lemma 3.2, which yields


‖V 2(p)(Hf + 1)−1‖ ≤ C αρ p2 . (C.17)


The second term is bounded by using the fact that


D(H(p)) = D(P 2
f +Hf ) ⊂ D(Hf ), (C.18)


and the last term is uniformly bounded by Lemma C.1. Combining these estimates we obtain


‖V 2(p) Ψσ(p)‖ ≤ C αρ p2 . (C.19)


Finally, to bound ‖V (p) · (∇pHσ(p))Ψσ(p)‖F, we recall that


∇pHσ(p) = p − Pf + α
1
2Aσ , (C.20)


where


Aσ =
∑
λ


(
aλ(wλ) + a∗λ(wλ)


)
. (C.21)


We decompose


‖V (p) · (∇pHσ(p))Ψσ(p)‖F ≤ ‖V (p) · pΨσ(p)‖F + α
1
2 ‖V (p) ·AσΨσ(p)‖F


+‖V (p) · PfΨσ(p)‖F . (C.22)


The first two terms are estimated in the same way as in (C.15) and (C.19), which gives


‖V (p) · pΨσ(p)‖F ≤ C α
1
2 ρ


1
2 p2


α
1
2 ‖V (p) ·AσΨσ(p)‖F ≤ C αρ


1
2 |p|. (C.23)


It remains to estimate ‖V (p) · PfΨσ(p)‖F. Let


φjl := −i
∑
λ


[
aλ(ikjklvλ) + a∗λ(ikjklvλ)


]
. (C.24)


Using that [Pf,j , V (p)l] = φjl, we find that


‖V (p) · PfΨσ(p)‖2F =
∑
j,l


〈Ψσ(p), Pf,jV (p)jV (p)lPf,lΨσ(p)〉


=
∑
j,l


〈Ψσ(p), φjjV (p)lPf,lΨσ(p)〉+
∑
j,l


〈Ψσ(p), V (p)jPf,jV (p)lPf,lΨσ(p)〉


=
∑
j,l


〈Ψσ(p), φjjV (p)lPf,lΨσ(p)〉+
∑
j,l


〈Ψσ(p), V (p)jφjlPf,lΨσ(p)〉


+
∑
j,l


〈Ψσ(p), V (p)jV (p)lPf,jPf,lΨσ(p)〉 . (C.25)


Proceeding in the same way as in (C.19), we obtain that


‖V (p)lφjjΨσ(p)‖ ≤ C αρ2 p2 ,


‖φjlV (p)lΨσ(p)‖ ≤ C αρ2 p2 ,


‖V (p)lV (p)jΨσ(p)‖ ≤ C αρ p2 .
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Furthermore,


‖Pf,lΨσ(p)‖ ≤ ‖HfΨσ(p)‖
≤ ‖Hf (H(p) + 1)−1‖‖(H(p) + 1)Ψσ(p)‖ ≤ C , (C.26)


by Lemma C.1 and the fact that D(H(p)) ⊂ D(Hf ), and, likewise,


‖Pf,jPf,lΨσ(p)‖ ≤ ‖P 2
f Ψσ(p)‖


≤ ‖P 2
f (H(p) + 1)−1‖‖(H(p) + 1)Ψσ(p)‖ ≤ C , (C.27)


since D(H(p)) ⊂ D(P 2
f ). Combining (C.25) with the Cauchy-Schwarz inequality and the previous


estimates, we obtain


‖V (p) · (∇pHσ(p))Ψσ(p)‖F ≤ C α
1
2 ρ


1
2 |p|. (C.28)


The term ‖(∇pHσ(p)) · V (p)Ψσ(p)‖F can be estimated exactly in the same way, which, together
with (C.15) and (C.19), concludes the proof of Lemma 4.2.


We conclude with proving Lemma C.1.


Proof of Lemma C.1. Since Hσ(p)Ψσ(p) = Eσ(p)Ψσ(p) and ‖Ψσ(p)‖ = 1, we can write


‖H(p)Ψσ(p)‖ ≤ Eσ(p) + ‖Qσ(p)Ψσ(p)‖


≤ p2


2
+O(α) + ‖Qσ(p)Ψσ(p)‖ , (C.29)


where


Qσ(p) := H(p)−Hσ(p) = α
1
2A<σ · (p− Pf + α


1
2Aσ) +


α


2
A2
σ .


Here Aσ is defined in (A.12), and


A<σ :=
∑
λ


∫
|k|≤σ


dk
dk


|k|1/2
{ ελ(k) bλ(k) + h.c. } . (C.30)


From Lemma 3.2, it follows, using that D(H(p)) ⊂ D(Hf ), that


‖α
1
2 (A<σ · p)Ψσ(p)‖ ≤ C α


1
2 σ


1
2 |p| ‖(H(p) + 1)Ψσ(p)‖ ,


‖α(A<σ ·Aσ)Ψσ(p)‖ ≤ C ασ
1
2 ‖(H(p) + 1)Ψσ(p)‖ ,


‖α(Aσ)2Ψσ(p)‖ ≤ C α ‖(H(p) + 1)Ψσ(p)‖ . (C.31)


Moreover, since A<σ and Pf commute, we can estimate


‖α
1
2 (A<σ · Pf )Ψσ(p)‖2 ≤ α ‖A2


<σΨσ(p)‖‖P 2
f Ψσ(p)‖


≤ C ασ ‖(H(p) + 1)Ψσ(p)‖2 , (C.32)


where in the last inequality we used again Lemma 3.2 together with D(H(p)) ⊂ D(Hf ) ∩D(P 2
f ).


From (C.29)–(C.32), we obtain that


‖H(p)Ψσ(p)‖ ≤ C + C α
1
2 ‖H(p)Ψσ(p)‖ , (C.33)


for any p ∈ S. Assuming that α is sufficiently small, the result follows. �
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