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1 Introduction


We recall that a linear operator L, which acts from a Banach space E into another Banach
space F possesses the Fredholm property when its image is closed, the dimension of its kernel
and the codimension of its image are finite. Consequently, the equation Lu = f is solvable
if and only if φk(f) = 0 for a finite number of functionals φk from the dual space F ∗. Such
properties of Fredholm operators are broadly used in various methods of linear and nonlinear
analysis.


Elliptic problems considered in bounded domains with a sufficiently smooth boundary
satisfy the Fredholm property when the ellipticity condition, proper ellipticity and Lopatin-
skii conditions are fulfilled (see e.g. [1], [11], [13]), which is the main result of the theory of
linear elliptic problems. When dealing with unbounded domains, these conditions may not
be sufficient and the Fredholm property may not be satisfied. For instance, for the Laplace
operator, Lu = ∆u considered in Rd Fredholm property does not hold when the problem
is studied either in Hölder spaces, such that L : C2+α(Rd) → Cα(Rd) or in Sobolev spaces,
L : H2(Rd) → L2(Rd).
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For linear elliptic problems studied in unbounded domains the Fredholm property is
fulfilled if and only if, in addition to the conditions stated above, limiting operators are
invertible (see [14]). In certain simple cases, limiting operators can be constructed explicitly.
For instance, when


Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,


with the coefficients of the operator having limits at infinity,


a± = limx→±∞a(x), b± = limx→±∞b(x), c± = limx→±∞c(x),


the limiting operators are given by


L±u = a±u
′′ + b±u


′ + c±u.


Due to the fact that the coefficients here are constants, the essential spectrum of the operator,
which is the set of complex numbers λ for which the operator L − λ does not possess the
Fredholm property, can be found explicitly via the standard Fourier transform, such that


λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.


The limiting operators are invertible if and only if the origin is not contained in the essential
spectrum.


For general elliptic problems the analogous assertions are valid. The Fredholm property
is fulfilled when the essential spectrum does not contain the origin or when the limiting
operators are invertible. Such conditions may not be written explicitly.


For non-Fredholm operators we may not apply the standard solvability conditions and in
a general case solvability conditions are unknown. However, solvability conditions were ob-
tained recently for certain classes of operators. For instance, consider the following equation


Lu ≡ ∆u+ au = f (1.1)


in Rd, d ∈ N with a positive constant a. Here the operator L and its limiting operators
coincide. The corresponding homogeneous equation admits a nontrivial bounded solution,
such that the Fredholm property is not fulfilled. Due to the fact that the differential operator
involved in (1.1) has constant coefficients, we are able to find the solution explicitly by
applying the standard Fourier transform. In [25] we obtained the following solvability
conditions. Let f(x) ∈ L2(Rd) and xf(x) ∈ L1(Rd). Then problem (1.1) admits a unique
solution in H2(Rd) if and only if


(
f(x),


eipx


(2π)
d
2


)


L2(Rd)


= 0, p ∈ Sd√
a a.e.


Here and further down Sd
r stands for the sphere in Rd of radius r centered at the origin.


Hence, although the Fredholm property is not fulfilled for the operator, we are able to
formulate solvability conditions in a similar way. Note that this similarity is only formal due
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to the fact that the range of the operator is not closed. In the situation when the operator
involves a scalar potential, such that


Lu ≡ ∆u+ b(x)u = f,


we cannot apply the standard Fourier transform directly. However, solvability conditions
in three dimensions can be derived by means of the spectral and the scattering theory
of Schrödinger type operators (see [16]). As in the constant coefficient case, solvability
conditions are expressed in terms of orthogonality to solutions of the adjoint homogeneous
problem. We obtain solvability conditions for several other examples of non Fredholm linear
elliptic operators (see [14] – [22], [25]).


Solvability conditions are crucial in the analysis of nonlinear elliptic equations. When
non-Fredholm operators are involved, in spite of some progress in studies of linear problems,
nonlinear non-Fredholm operators were analyzed only in few examples (see [5]– [7], [23],
[25]). Obviously, this situation can be explained by the fact that the majority of methods
of linear and nonlinear analysis rely on the Fredholm property. In the present work we
study certain systems of N nonlinear integro-differential reaction-diffusion type equations,
for which the Fredholm property may not be satisfied:


∂uk


∂t
= ∆uk +


∫


Ω


Gk(x− y)Fk(u1(y, t), u2(y, t), ..., uN(y, t), y)dy+ akuk, 1 ≤ k ≤ N. (1.2)


Here {ak}Nk=1 are nonnegative, Ω ⊆ Rd, d = 1, 2, 3 are the more physically relevant di-
mensions. In population dynamics the integro-differential problems are used to describe
biological systems with intra-specific competition and nonlocal consumption of resources
(see e.g. [2], [4], [8], [24]). The stability issues for the travelling fronts of reaction- diffusion
type equations with the essential spectrum of the linearized operator crossing the imaginary
axis were also addressed in [3] and [9]. Note that the single equation of (1.2) type has
been studied in [23]. Reaction-diffusion type equations in which in the diffusion term the
Laplacian is replaced by the nonlocal operator with an integral kernel were treated in [12].


The nonlinear terms of system (1.2) will satisfy the following regularity requirements.


Assumption 1. Functions Fk(u, x) : R
N × Ω → R, 1 ≤ k ≤ N are such that


√√√√
N∑


k=1


F 2
k (u, x) ≤ k|u|RN + h(x) for u ∈ R


N , x ∈ Ω, (1.3)


with a constant k > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, they are Lipschitz
continuous functions, such that


√√√√
N∑


k=1


(Fk(u(1), x)− Fk(u(2), x))2 ≤ l|u(1) − u(2)|RN for any u(1),(2) ∈ R
N , x ∈ Ω,


(1.4)
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where a constant l > 0.


Here and further down we use the notations for a vector u := (u1, u2, ..., uN) ∈ RN and


its norm |u|RN :=
√∑N


k=1 u
2
k. Apparently, the stationary solutions of system (1.2), if any


exist, will solve the system of nonlocal elliptic equations


∆uk +


∫


Ω


Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy + akuk = 0, ak ≥ 0, 1 ≤ k ≤ N.


For the technical purposes we consider the auxiliary semi-linear problem


−∆uk − akuk =


∫


Ω


Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, 1 ≤ k ≤ N. (1.5)


Let us designate (f1(x), f2(x))L2(Ω) :=
∫
Ω
f1(x)f̄2(x)dx, with a slight abuse of notations in


the case when these functions do not belong to L2(Ω), like for instance those used in the
orthogonality conditions of the assumption below. Indeed, if f1(x) ∈ L1(Ω) and f2(x) is
bounded there, then the integral over Ω mentioned above is well defined. We begin the
article with the studies of the whole space case, such that Ω = Rd and the corresponding
Sobolev space is equipped with the norm


‖u‖2H2(Rd, RN ) :=
N∑


k=1


‖uk‖2H2(Rd) =
N∑


k=1


{‖uk‖2L2(Rd) + ‖∆uk‖2L2(Rd)},


where u(x) : Rd → RN . The primary obstacle in solving problem (1.5) is that operators
−∆ − ak : H2(Rd) → L2(Rd), ak ≥ 0 do not satisfy the Fredholm property. The analogous
situations in linear problems, which can be self- adjoint or non self-adjoint containing non
Fredholm second, fourth and sixth order differential operators or even systems of equations
including non Fredholm operators have been studied actively in recent years (see [16]-[22]).
We manage to prove that system of equations (1.5) defines a map Ta : H2(Rd, RN) →
H2(Rd, RN), ak ≥ 0, 1 ≤ k ≤ N , which is a strict contraction under specified technical
conditions. The notation Sd


r will designate the sphere of radius r in Rd centered at the origin.
We make the following assumption on the integral kernels involved in the nonlocal parts of
system (1.5).


Assumption 2. Let Gk(x) : Rd → R, Gk(x) ∈ L1(Rd), 1 ≤ k ≤ N, 1 ≤ d ≤ 3 and
1 ≤ m ≤ N − 1, m ∈ N with N ≥ 2.


I) Let ak > 0, 1 ≤ k ≤ m, assume that xGk(x) ∈ L1(Rd) and


(
Gk(x),


e±i
√
akx


√
2π


)


L2(R)


= 0 when d = 1. (1.6)


(
Gk(x),


eipx


(2π)
d
2


)


L2(Rd)


= 0 for p ∈ Sd√
ak


a.e. when d = 2, 3. (1.7)
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II) Let ak = 0, m+ 1 ≤ k ≤ N , assume that x2Gk(x) ∈ L1(Rd) and


(Gk(x), 1)L2(Rd) = 0 and (Gk(x), xs)L2(Rd) = 0, 1 ≤ s ≤ d. (1.8)


We will use the hat symbol here and further down to denote the standard Fourier transform,
such that


Ĝk(p) :=
1


(2π)
d
2


∫


Rd


Gk(x)e
−ipxdx, p ∈ R


d.


Hence


‖Ĝk(p)‖L∞(Rd) ≤
1


(2π)
d
2


‖Gk‖L1(Rd).


We define the following auxiliary quantities


Mk := max


{∥∥∥∥
Ĝk(p)


p2 − ak


∥∥∥∥
L∞(Rd)


,


∥∥∥∥
p2Ĝk(p)


p2 − ak


∥∥∥∥
L∞(Rd)


}
, 1 ≤ k ≤ m. (1.9)


Mk := max


{∥∥∥∥
Ĝk(p)


p2


∥∥∥∥
L∞(Rd)


,


∥∥∥∥Ĝk(p)


∥∥∥∥
L∞(Rd)


}
, m+ 1 ≤ k ≤ N. (1.10)


Note that expressions (1.9) and (1.10) are finite by means of Lemma A1 in one dimension
and Lemma A2 for d = 2, 3 of [23] under our Assumption 2. Hence let us define


M := maxMk, 1 ≤ k ≤ N, (1.11)


where Mk are given by (1.9) and (1.10). We have the following statement.


Theorem 3. Let Ω = Rd, d = 1, 2, 3, Assumptions 1 and 2 hold and
√
2(2π)


d
2Ml < 1.


Then the map Tav = u on H2(Rd, RN) defined by the system of equations (1.5) has a
unique fixed point va(x) : R


d → RN , which is the only stationary solution of problem (1.2)
in H2(Rd, RN ). This fixed point va(x) is nontrivial provided the intersection of supports of


the Fourier transforms of functions suppF̂k(0, x)(p)∩suppĜk(p) is a set of nonzero Lebesgue
measure in Rd for some 1 ≤ k ≤ N .


Then we turn our attention to the studies of the analogical system of equations on the
interval Ω = I := [0, 2π] with periodic boundary conditions for the solution vector function
and its first derivative. Let us assume the following about the integral kernels present in the
nonlocal parts of problem (1.5) in this case.


Assumption 4. Let Gk(x) : I → R, Gk(x) ∈ L1(I) with Gk(0) = Gk(2π), 1 ≤ k ≤ N ,
where N ≥ 3 and 1 ≤ m < q ≤ N − 1, m, q ∈ N.


I) Let ak > 0 and ak 6= n2, n ∈ Z for 1 ≤ k ≤ m.
II) Let ak = n2


k, nk ∈ N and
(
Gk(x),


e±inkx


√
2π


)


L2(I)


= 0 for m+ 1 ≤ k ≤ q. (1.12)
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III) Let ak = 0 and


(Gk(x), 1)L2(I) = 0 for q + 1 ≤ k ≤ N. (1.13)


Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, ..., N .


Let us introduce the Fourier transform for functions on the [0, 2π] interval as


Gk, n :=


∫ 2π


0


Gk(x)
e−inx


√
2π


dx, n ∈ Z


and define the following expressions


Pk := max


{∥∥∥∥
Gk, n


n2 − ak


∥∥∥∥
l∞


,


∥∥∥∥
n2Gk, n


n2 − ak


∥∥∥∥
l∞


}
, 1 ≤ k ≤ m. (1.14)


Pk := max


{∥∥∥∥
Gk, n


n2 − n2
k


∥∥∥∥
l∞


,


∥∥∥∥
n2Gk, n


n2 − n2
k


∥∥∥∥
l∞


}
, m+ 1 ≤ k ≤ q. (1.15)


Pk := max


{∥∥∥∥
Gk, n


n2


∥∥∥∥
l∞


,


∥∥∥∥Gk, n


∥∥∥∥
l∞


}
, q + 1 ≤ k ≤ N. (1.16)


By means of Lemma A3 of [23] under Assumption 4 the quantities given by (1.14), (1.15)
and (1.16) are finite, which enables us to define


P := maxPk, 1 ≤ k ≤ N,


where Pk are stated in formulas (1.14), (1.15) and (1.16). For the studies of the existence of
stationary solutions of our problem we use the corresponding functional space


H2(I) = {v(x) : I → R | v(x), v′′(x) ∈ L2(I), v(0) = v(2π), v′(0) = v′(2π)},


aiming at uk(x) ∈ H2(I), 1 ≤ k ≤ m. Then we introduce the following auxiliary constrained
subspaces


H2
k(I) :=


{
v ∈ H2(I) |


(
v(x),


e±inkx


√
2π


)
L2(I)


= 0


}
, nk ∈ N, m+ 1 ≤ k ≤ q,


with the goal of having uk(x) ∈ H2
k(I), m+ 1 ≤ k ≤ q. And, finally


H2
0 (I) = {v ∈ H2(I) | (v(x), 1)L2(I) = 0}, q + 1 ≤ k ≤ N.


Our goal is to have uk(x) ∈ H2
0 (I), q + 1 ≤ k ≤ N . The constrained subspaces defined


above are Hilbert spaces as well (see e.g. Chapter 2.1 of [10]). The resulting space used for
establishing the existence of solutions u(x) : I → RN of problem (1.5) will be the direct sum
of the spaces mentioned above, namely


H2
c (I, R


N ) := ⊕m
k=1H


2(I)⊕q


k=m+1 H
2
k(I)⊕N


k=q+1 H
2
0 (I),
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such that the corresponding Sobolev norm is given by


‖u‖2H2
c (I, RN ) :=


N∑


k=1


{‖uk‖2L2(I) + ‖u′′
k‖2L2(I)},


where u(x) : I → RN . We show that the system of equations (1.5) in this case defines a map
on the space mentioned above, which will be a strict contraction under given assumptions.


Theorem 5. Let Ω = I, Assumptions 1 and 4 hold and 2
√
πP l < 1.


Then the map τav = u on H2
c (I,R


N) defined by the system of equations (1.5) possesses a
unique fixed point va(x) : I → RN , the only stationary solution of problem (1.2) in H2


c (I,R
N).


This fixed point va(x) is nontrivial provided the Fourier coefficients Gk, nFk(0, x)n 6= 0 for
some k = 1, ..., N and some n ∈ Z.


Note that the constrained subspaces H2
k(I) and H2


0 (I) involved in the direct sum of spaces
H2


c (I,R
N) are such that the operators


− d2


dx2
− n2


k : H2
k(I) → L2(I) and − d2


dx2
: H2


0 (I) → L2(I)


having the Fredholm property, possess trivial kernels.


Finally, we turn our attention to the studies of our system of equations in the layer
domain, which is the product of the two spaces, such that one is the I interval with periodic
boundary conditions as in the previous part of the article and another is the whole space
of dimension either one or two, namely Ω = I × Rd = [0, 2π] × Rd, d = 1, 2 and x =
(x1, x⊥), where x1 ∈ I and x⊥ ∈ Rd. The total Laplace operator in this context will be


∆ :=
∂2


∂x2
1


+
d∑


s=1


∂2


∂x2
⊥, s


. The corresponding Sobolev space for our problem will beH2(Ω, RN)


of vector functions u(x) : Ω → RN , such that for k = 1, ..., N


uk(x),∆uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),
∂uk


∂x1
(0, x⊥) =


∂uk


∂x1
(2π, x⊥),


where x⊥ ∈ Rd a.e. It is equipped with the norm


‖u‖2H2(Ω, RN ) =


N∑


k=1


{‖uk‖2L2(Ω) + ‖∆uk‖2L2(Ω)}.


Analogously to the whole space case discussed in Theorem 3, the operators −∆ − ak :
H2(Ω) → L2(Ω) for ak ≥ 0 do not have the Fredholm property. We prove that problem (1.5)
in this case defines a map ta : H


2(Ω, RN ) → H2(Ω, RN ), which is a strict contraction under
the appropriate technical assumptions given below.
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Assumption 6. Let Gk(x) : Ω → R, Gk(x) ∈ L1(Ω), Gk(0, x⊥) = Gk(2π, x⊥) and
Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd a.e., u ∈ RN , d = 1, 2 and k = 1, ..., N . Let N ≥ 3
and 1 ≤ m < q ≤ N − 1 with m, q ∈ N.


I) Assume for 1 ≤ k ≤ m we have n2
k < ak < (nk + 1)2, nk ∈ Z+ = N ∪ {0}, x⊥Gk(x) ∈


L1(Ω) and


(
Gk(x1, x⊥),


einx1


√
2π


e±i
√


ak−n2x⊥


√
2π


)


L2(Ω)


= 0, |n| ≤ nk for d = 1, (1.17)


(
Gk(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)


L2(Ω)


= 0, p ∈ S2√
ak−n2


a.e., |n| ≤ nk for d = 2. (1.18)


II) Assume for m+ 1 ≤ k ≤ q we have ak = n2
k, nk ∈ N, x2


⊥Gk(x) ∈ L1(Ω) and


(
Gk(x1, x⊥),


einx1


√
2π


e±i
√


n2
k
−n2x⊥


√
2π


)


L2(Ω)


= 0, |n| ≤ nk − 1 for d = 1, (1.19)


(
Gk(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)


L2(Ω)


= 0, p ∈ S2√
n2
k
−n2


a.e., |n| ≤ nk − 1 for d = 2, (1.20)


(
Gk(x1, x⊥),


e±inkx1


√
2π


)


L2(Ω)


= 0,


(
Gk(x1, x⊥),


e±inkx1


√
2π


x⊥, s


)


L2(Ω)


= 0, 1 ≤ s ≤ d. (1.21)


III) Assume for q + 1 ≤ k ≤ N we have ak = 0, x2
⊥Gk(x) ∈ L1(Ω) and


(Gk(x), 1)L2(Ω) = 0, (Gk(x), x⊥, s)L2(Ω) = 0, 1 ≤ s ≤ d. (1.22)


We will use the Fourier transform for functions on such a product of spaces, such that


Ĝk, n(p) :=
1


(2π)
d+1


2


∫


Rd


dx⊥e
−ipx⊥


∫ 2π


0


Gk(x1, x⊥)e
−inx1dx1, p ∈ R


d, n ∈ Z, k = 1, ..., N.


Hence


‖Ĝk, n(p)‖L∞
n,p


:= sup{p∈Rd, n∈Z}|Ĝk, n(p)| ≤
1


(2π)
d+1


2


‖Gk‖L1(Ω).


Let us introduce the following quantities


Rk := max


{∥∥∥∥
Ĝk, n(p)


p2 + n2 − ak


∥∥∥∥
L∞
n,p


,


∥∥∥∥
(p2 + n2)Ĝk, n(p)


p2 + n2 − ak


∥∥∥∥
L∞
n,p


}
, k = 1, ..., m. (1.23)


Rk := max


{∥∥∥∥
Ĝk, n(p)


p2 + n2 − n2
k


∥∥∥∥
L∞
n,p


,


∥∥∥∥
(p2 + n2)Ĝk, n(p)


p2 + n2 − n2
k


∥∥∥∥
L∞
n,p


}
, k = m+ 1, ..., q. (1.24)


Rk := max


{∥∥∥∥
Ĝk, n(p)


p2 + n2


∥∥∥∥
L∞
n,p


,


∥∥∥∥Ĝk, n(p)


∥∥∥∥
L∞
n,p


}
, k = q + 1, ..., N. (1.25)
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Assumption 6 along with Lemmas A4, A5 and A6 of [23] imply that the expressions given
by (1.23), (1.24) and (1.25) are finite. Hence we can define


R := maxRk, k = 1, ..., N,


where Rk are given in (1.23), (1.24) and (1.25). Our final statement is as follows.


Theorem 7. Let Ω = I×Rd, d = 1, 2, Assumptions 1 and 6 hold and
√
2(2π)


d+1


2 Rl < 1.
Then the map tav = u on H2(Ω, RN), which is defined by the system of equations (1.5)
possesses a unique fixed point va(x) : Ω → RN , which is the only stationary solution of system
(1.2) in H2(Ω, RN). This fixed point va(x) is nontrivial provided that the intersection of


supports of the Fourier images of functions suppF̂k(0, x)n(p)∩suppĜk, n(p) is a set of nonzero
Lebesgue measure in Rd for some k = 1, ..., N and some n ∈ Z.


Note that the maps considered in the theorems above are applied to real valued vector
functions by means of the assumptions on Fk(u, x) and Gk(x), k = 1, ..., N present in the
nonlocal terms of (1.5).


2 The Problem in the Whole Space


Proof of Theorem 3. First we suppose that in the case of Ω = Rd, d = 1, 2, 3 there exists
v(x) ∈ H2(Rd, RN) such that problem (1.5) possesses two solutions u(1),(2)(x) ∈ H2(Rd, RN).
Hence the difference vector function w(x) := u(1)(x) − u(2)(x) ∈ H2(Rd, RN ) solves the
homogeneous system of equations


−∆wk = akwk, 1 ≤ k ≤ N.


Since the negative Laplacian does not possess any nontrivial eigenfunctions belonging to
L2(Rd), we have wk(x) = 0 a.e. in Rd for k = 1, ..., N .


Consider an arbitrary vector function v(x) ∈ H2(Rd, RN) and apply the standard Fourier
transform to both sides of system (1.5). This yields


ûk(p) = (2π)
d
2


Ĝk(p)f̂k(p)


p2 − ak
, k = 1, ..., N. (2.26)


Here f̂k(p) stands for the Fourier image of Fk(v(x), x). We have the trivial estimates using
expressions (1.9) and (1.10)


|ûk(p)| ≤ (2π)
d
2Mk|f̂k(p)| and |p2ûk(p)| ≤ (2π)


d
2Mk|f̂k(p)|, k = 1, ..., N.


This implies the upper bound for the norm


‖u‖2H2(Rd, RN ) ≤ 2(2π)d
N∑


k=1


M2
k‖Fk(v(x), x)‖2L2(Rd) < ∞
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due to inequality (1.3) of Assumption 1. Hence for any v(x) ∈ H2(Rd, RN) there exists a
unique vector function u(x) ∈ H2(Rd, RN), which solves problem (1.5) and its Fourier image
is given by (2.26), such that the map Ta : H


2(Rd, RN) → H2(Rd, RN) is well defined.
Therefore, we can choose arbitrary v(1),(2)(x) ∈ H2(Rd, RN) and obtain their images


under the map u(1),(2) = Tav
(1),(2) ∈ H2(Rd, RN) and arrive easily at the bounds for k =


1, ..., N ∣∣∣∣û
(1)
k (p)− û


(2)
k (p)


∣∣∣∣ ≤ (2π)
d
2M


∣∣∣∣f̂
(1)
k (p)− f̂


(2)
k (p)


∣∣∣∣,
∣∣∣∣p2û


(1)
k (p)− p2û


(2)
k (p)


∣∣∣∣ ≤ (2π)
d
2M


∣∣∣∣f̂
(1)
k (p)− f̂


(2)
k (p)


∣∣∣∣.


Here
̂
f
(1),(2)
k (p) denote the Fourier transforms of Fk(v


(1),(2)(x), x). This implies the bound on
the corresponding norm of the difference of vector functions


‖u(1) − u(2)‖2H2(Rd, RN ) ≤ 2(2π)dM2
N∑


k=1


‖Fk(v
(1)(x), x)− Fk(v


(2)(x), x)‖2L2(Rd).


Due to the Sobolev embedding theorem for k = 1, ..., N we have v
(1),(2)
k (x) ∈ H2(Rd) ⊂


L∞(Rd), 1 ≤ d ≤ 3. Inequality (1.4) easily implies


‖Tav
(1) − Tav


(2)‖H2(Rd, RN ) ≤
√
2(2π)


d
2Ml‖v(1) − v(2)‖H2(Rd, RN ).


The constant in the right side of this estimate is less than one according to the assumption
of the theorem. Hence, the Fixed Point Theorem yields the existence of a unique vector
function va(x) ∈ H2(Rd,RN), such that Tava = va. This is the only stationary solution of
problem (1.2) in H2(Rd, RN). Finally, let us suppose that va(x) = 0 a.e. in Rd. This will
imply the contradiction to our assumption that for some k = 1, ..., N the Fourier transforms
of Gk(x) and Fk(0, x) do not vanish simultaneously on some set of nonzero Lebesgue measure
in Rd.


3 The Problem on the [0, 2π] Interval


Proof of Theorem 5. Let us first suppose that for v(x) ∈ H2
c (I,R


N) there exist two solutions
u(1),(2)(x) ∈ H2


c (I,R
N) of problem (1.5) with Ω = I. Then the difference vector function


w(x) := u(1)(x)− u(2)(x) ∈ H2
c (I,R


N) will satisfy the equation


−w′′
k = akwk, k = 1, ..., N.


But according to Assumption 4, we have ak 6= n2, n ∈ Z when k = 1, ..., m and consequently,


they are not the eigenvalues of the operator − d2


dx2
on L2(I) with periodic boundary condi-


tions. Hence, wk(x) vanishes a.e. in I when k = 1, ..., m. For k = m + 1, ..., q the values of
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ak coincide with the eigenvalues of the negative Laplacian operator with periodic boundary
conditions on the [0, 2π] interval but wk belong to the constraned subspaces H2


k(I). Thus,


wk = 0 a.e. in I for k = m+ 1, ..., q due to their orthogonality to the eigenfunctions
e±inkx


√
2π


.


By means of Assumption 4 the constants ak vanish when k = q +1, ..., N . But wk belong to


the constrained subspace H2
0 (I) of functions orthogonal to the zero mode of − d2


dx2
on L2(I)


with periodic boundary conditions. Thus, wk(x) vanishes a.e. in I when k = q + 1, ..., N as
well.


Let us assume that v(x) ∈ H2
c (I,R


N) is arbitrary. We apply the Fourier transform to
both sides of the system of equations (1.5) considered on the interval [0, 2π] and obtain


uk, n =
√
2π


Gk, nfk, n


n2 − ak
, n ∈ Z, (3.1)


where fk, n := Fk(v(x), x)n. Evidently, the Fourier coefficients of the second derivatives are
given by


(−u′′
k)n =


√
2π


n2Gk, nfk, n


n2 − ak
, n ∈ Z.


We easily arrive at the upper bound


‖u‖2H2
c (I, RN ) =


N∑


k=1


{ ∞∑


n=−∞
|uk, n|2 +


∞∑


n=−∞
|n2uk, n|2


}
≤ 4π


N∑


k=1


P 2
k ‖Fk(v(x), x)‖2L2(I) < ∞,


which follows from inequality (1.3) of Assumption 1. Therefore, for an arbitrarily chosen
vector function v(x) ∈ H2


c (I, R
N) there exists a unique u(x) ∈ H2


c (I, R
N), which solves the


system of equations (1.5) and its Fourier coefficients are given by formula (3.1), such that the
map τa : H


2
c (I, R


N ) → H2
c (I, R


N) is well defined. Note that orthogonality conditions (1.12)
and (1.13) along with (3.1) imply that for k = m+ 1, ..., q components uk(x) are orthogonal


to Fourier harmonics
e±inkx


√
2π


in L2(I) and for k = q+1, ..., N functions uk(x) are orthogonal


to 1 in L2(I), since the corresponding Fourier coeffients can be made equal to zero.
Then we consider arbitary vector functions v(1),(2)(x) ∈ H2


c (I, RN), such that their
images under the map defined above are u(1),(2) = τav


(1),(2) ∈ H2
c (I, RN) and obtain easily


the estimate


‖u(1) − u(2)‖2H2
c (I, RN ) =


N∑


k=1


{ ∞∑


n=−∞
|u(1)


k, n − u(2)
k, n|2 +


∞∑


n=−∞
|n2(u(1)


k, n − u(2)
k, n)|2


}
≤


≤ 4π


N∑


k=1


P 2
k ‖Fk(v


(1)(x), x)− Fk(v
(2)(x), x)‖2L2(I).
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Clearly, via the Sobolev embedding theorem v
(1),(2)
k (x) ∈ H2(I) ⊂ L∞(I) for k = 1, ..., N .


Using (1.4) we easily arrive at


‖τav(1) − τav
(2)‖H2


c (I, RN ) ≤ 2
√
πP l‖v(1) − v(2)‖H2


c (I, RN ).


The constant in the right side of this inequality is less than one by the assumption of the
theorem. Hence, the Fixed Point Theorem yields the existence and uniqueness of a vector
function va(x) ∈ H2


c (I, RN), which satisfies τava = va. This is the only stationary solution
of the system of equations (1.2) in H2


c (I, RN). Finally, let us suppose that va(x) vanishes
a.e. in the interval I. This will imply the contradiction to our assumption that the Fourier
coefficients Gk, nFk(0, x)n 6= 0 for some k = 1, ..., N and some n ∈ Z.


4 The Problem in the Layer Domain


Proof of Theorem 7. Let us suppose that there exists v(x) ∈ H2(Ω, RN) generating
u(1),(2)(x) ∈ H2(Ω, RN), which solve system (1.5). Then the difference of these vector
functions w(x) := u(1)(x) − u(2)(x) ∈ H2(Ω, RN) will satisfy the homogeneous system of
equations


−∆wk = akwk, k = 1, ..., N.


Let us apply the partial Fourier transform to this system, which yields


−∆⊥wk, n(x⊥) = (ak − n2)wk, n(x⊥), k = 1, ..., N, n ∈ Z,


where wk, n(x⊥) :=
1√
2π


∫ 2π


0


wk(x1, x⊥)e
−inx1dx1. Evidently


‖wk‖2L2(Ω) =


∞∑


n=−∞
‖wk, n‖2L2(Rd).


Hence wk, n(x⊥) ∈ L2(Rd), k = 1, ..., N, n ∈ Z. But the negative transversal Laplacian
operator −∆⊥ considered on L2(Rd) does not possess any nontrivial square integrable eigen-
functions. Therefore, w(x) = 0 a.e. in Ω.


Consider an arbitrary vector function v(x) ∈ H2(Ω, RN ) and apply the Fourier transform
to both sides of the system of equations (1.5). We arrive at


ûk, n(p) = (2π)
d+1


2


Ĝk, n(p)f̂k, n(p)


p2 + n2 − ak
, k = 1, ..., N, n ∈ Z, p ∈ R


d, d = 1, 2, (4.1)


where f̂k, n(p) denotes the Fourier image of Fk(v(x), x). Evidently, for the above mentioned
values of k, n and p we have the bounds in terms of the quantities given by (1.23), (1.24)
and (1.25) as


|ûk, n(p)| ≤ (2π)
d+1


2 Rk|f̂k, n(p)| and |(p2 + n2)ûk, n(p)| ≤ (2π)
d+1


2 Rk|f̂k, n(p)|.
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Hence using (1.3) of Assumption 1 we obtain


‖u‖2H2(Ω, RN ) =


N∑


k=1


{ ∞∑


n=−∞


∫


Rd


|ûk, n(p)|2dp+
∞∑


n=−∞


∫


Rd


|(p2 + n2)ûk, n(p)|2dp
}


≤


≤ 2(2π)d+1
N∑


k=1


Rk
2‖Fk(v(x), x)‖2L2(Ω) < ∞.


Therefore, for any vector function v(x) ∈ H2(Ω, RN) there exists a unique u(x) ∈ H2(Ω, RN)
which satisfies the system of equations (1.5) and its Fourier transform is given by formula
(4.1). Thus, the map ta : H


2(Ω, RN) → H2(Ω, RN) is well defined.
Let us consider two arbitrary functions v(1),(2) ∈ H2(Ω, RN) such that their images under


the map discussed above are u(1),(2) = tav
(1),(2) ∈ H2(Ω, RN). Thus


‖u(1) − u(2)‖2H2(Ω, RN ) =


N∑


k=1


∞∑


n=−∞


∫


Rd


dp


{
|û(1)


k, n(p)− û(2)
k, n(p)|2+


+|(p2+n2)(û(1)
k, n(p)−û(2)


k, n(p))|2
}


≤ 2(2π)d+1R2
N∑


k=1


‖Fk(v
(1)(x), x)−Fk(v


(2)(x), x)‖2L2(Ω).


Evidently, due to the Sobolev embedding theorem v
(1),(2)
k (x) ∈ H2(Ω) ⊂ L∞(Ω) for k =


1, ..., N . By means of (1.4) we easily obtain the inequality


‖tav(1) − tav
(2)‖H2(Ω, RN ) ≤


√
2(2π)


d+1


2 Rl‖v(1) − v(2)‖H2(Ω, RN ),


such that the constant in its right side is less than one according to our assumption.
Hence, the Fixed Point Theorem implies the existence and uniqueness of a function va(x) ∈
H2(Ω, RN), for which tava = va holds. This is the only stationary solution of the sys-
tem of equations (1.2) in H2(Ω, RN ). Let us suppose that the function va(x) vanishes a.e.
in Ω. This will imply the contradiction to the assumption of the theorem that there ex-


ists k = 1, ..., N and n ∈ Z, such that suppF̂k(0, x)n(p) ∩ suppĜk, n(p) is a set of nonzero
Lebesgue measure in Rd.


References


[1] M.S Agranovich: Elliptic boundary problems, Encyclopaedia Math. Sci., vol 79,
Partial Differential Equations, IX, Springer, Berlin, 1997, pp. 1–144


[2] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter: Spatial Structures
and Generalized Travelling Waves for an Integro- Differential Equation, Discrete
Contin. Dyn. Syst. Ser. B 13, 3 (2010), 537–557


13







[3] M. Beck, A. Ghazaryan, B. Sandstede: Nonlinear convective stability of travel-
ling fronts near Turing and Hopf instabilities, J. Differential Equations 246, 11
(2009), 4371–4390


[4] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik: The non-local Fisher-
KPP equation: traveling waves and steady states, Nonlinearity 22, 12 (2009),
2813–2844


[5] A. Ducrot, M. Marion and V. Volpert: Systemes de réaction-diffusion sans
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