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Abstract


We consider a singular Schrödinger operator in L2(R2) written for-
mally as −∆ − βδ(x − γ) where γ is a C4 smooth open arc in R2 of
length L with regular ends. It is shown that the jth negative eigen-
value of this operator behaves in the strong-coupling limit, β → +∞,
asymptotically as


Ej(β) = −β
2


4
+ µj +O


( log β
β


)
,


where µj is the jth Dirichlet eigenvalue of the operator


− d2


ds2
− κ(s)2


4


on L2(0, L) with κ(s) being the signed curvature of γ at the point
s ∈ (0, L).


1 Introduction


Singular Schrödinger operators with interaction supported by manifolds of
a lower dimension have been a subject of investigation in numerous papers,
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particularly in the last decade. One motivation came from physics where
operators formally written as


−∆− βδ(x− γ)


with β > 0, where γ is metric graph embedded in a Euclidean space, are used
as models of ‘leaky quantum graphs’ describing motion of particles confined
to a graph in a way allowing quantum tunneling between different parts of γ.
At the same time there is a mathematical motivation to study such operators
because they exhibit nontrivial and intetesting relations between spectral
properties and the geometry of the interaction support. In the informal
language, the above operator is the Laplacian with the boundary conditions
on γ, [∂f ] = βf , where [∂f ] denotes the jump of the normal derivative of f
on γ; the rigorous definition is given by the associated sesquilinear form [3],
see below, and the boundary conditions should be understood in a certain
weak sense.
An overview of known results concerning leaky quantum graphs is given
in [5] which also offers a number of open problems. Some of them concern
the strong-coupling behavior of such operators. For large β one expects the
eigenfunctions corresponding to eigenvalues at the bottom of the spectrum
to be strongly concentrated around γ which suggests the asymptotic spectral
behaviour might be determined by a one-dimensional problem.
In the simplest case when we consider the indicated operator in L2(R2) and
γ is a sufficiently smooth curve without self-intersections and endpoints —
either an infinite one with a suitable asymptotic behaviour or a loop — such
result is indeed known [5,6]: the eigenvalues at the bottom of the spectrum
diverge as −1


4β
2 but the next term in the expansion is the respective eigen-


value of a one-dimensional Schrödinger operator with a potential determined
by the curvature of γ. We note that the smoothness hypothesis is essential;
the asymptotics is expected to be completely different, e.g., if γ has corners,
cf. [8].
One asks naturally how such an asymptotics could look like if the curve has
endpoints and one has to impose boundary conditions to make the corre-
sponding one-dimensional Schrödinger operator self-adjoint. Note that the
Hamiltonian in question can be viewed as a special type mixed problem, cf.
e.g. [2, 7].
A conjecture was made in Sec. 7.12 of [5] that under proper regularity as-
sumptions it is the Dirichlet condition which gives the asymptotics. The
aim of the present paper is to prove this conjecture in the case when γ is a
C4 smooth arc in R2 with regular endpoints. A precise formulation of this
result is stated in the next section and the rest of the paper is devoted to
the proof.
As in the case of a curve without endpoints we employ a bracketing argument
imposing Dirichlet and Neumann condition at the boundary of a tubular
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neighbourhood of γ. In the present case, however, we need a neighbourhood
extending beyond the endpoints and we loose the asymptotic separation
of variables employed in [6]. Instead we have to establish the decay of
eigenfunctions away of γ which is technically the main part of the proof.


2 Main result


Let γ be an open C4 arc in R2 of length L > 0 and with regular ends.
More precisely, we assume that, for some l0 > 0, there is an injective C4


function Γ : [−l0, L + l0] 3 s 7→
(
Γ1(s),Γ2(s)


)
∈ R2 satisfying at any point∣∣Γ′(s)∣∣ = 1, and the arc γ is identified with Γ
(
(0, L)


)
. Denote by κ(s) the


signed curvature of γ at Γ(s), i.e.


κ(s) := Γ′1(s)Γ′′2(s)− Γ′′1(s)Γ′2(s).


Let β > 0. Consider the sesquilinear form hβ defined on H1(R2) by


hβ(f, f) =
∫∫
R2


|∇f |2dx− β
∫
γ


|f(x)|2 dS,


and let Hβ be the self-adjoint operator in L2(R2) associated with hβ. Since
γ has a finite length, it is easy to see that the essential spectrum of Hβ


is [0,+∞). Denote by E1(β) ≤ E2(β) ≤ . . . Ej(β) ≤ . . . the negative
eigenvalues of Hβ with their multiplicities taken into account. Our main
result reads as follows:


Theorem 1. For any j ∈ N, the asymptotic expansion


Ej(β) = −β
2


4
+ µj +O


( log β
β


)
,


holds for strong coupling, β → +∞, where µj is the jth Dirichlet eigenvalue
of the Schrödinger operator


− d2


ds2
− κ(s)2


4


with curvature-induced potential on [0, L].


3 Scheme of the proof


We put


τ(s) :=
(


Γ′1(s)
Γ′2(s)


)
, n(s) :=


(
−Γ′2(s)
Γ′1(s)


)
;
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in other words τ(s) is a unit tangent vector and n(s) is a unit normal vector
to γ at the point Γ(s), by assumption both continuously depending on the
arc-length parameter, not only on the arc itself but also on the extensions
beyond its endpoints, i.e. for s ∈ [−l0, L+ l0]. In what follows we denote


K := ‖κ‖L∞(−l0,L+l0).


For any α ∈ (0, l0) let us introduce the following subdomains in R2:


P (α) := (−α,L+ α)× (−α, α), (1)
Ω(α) :=


{
Γ(s) + tn(s) : (s, t) ∈ (0, L)× (−α, α)


}
, (2)


Π(α) :=
{


Γ(s) + tn(s) : (s, t) ∈ P (α)
}


(3)


and the prolonged arc


γa := Γ
(
(−a, L+ a)


)
⊂ Π(a).


Clearly, γ ⊂ γa for any a > 0. Furthermore, one can check in a similar way


as in [6] that there is a0 ∈
(


0,
1


2K


)
such that the map


P (a) 3 (s, t) 7→ Φ(s, t) = Γ(s) + tn(s) ∈ Π(a) (4)


is a diffeomorphism for any fixed a ∈ (0, a0]. Throughout the rest of the
paper we will always use


a =
6 log β
β


. (5)


Let us introduce the following sesquilinear forms:


hβ,a =
∫∫
Π(a)


|∇f |2dx− β
∫
γ


|f |2dS, f ∈ H1
0


(
Π(a)


)
, (6)


h̃β,a =
∫∫
Ω(a)


|∇f |2dx− β
∫
γ


|f |2dS, f ∈ H1
0


(
Ω(a)


)
, (7)


ĥβ,a =
∫∫
Π(a)


|∇f |2dx− β
∫
γa


|f |2dS, f ∈ H1
0


(
Π(a)


)
, (8)


and denote the associated self-adjoint operators, acting respectively in
L2
(
Π(a)


)
, L2


(
Ω(a)


)
and L2


(
Π(a)


)
, by Lβ, L̃β, L̂β. We consider their eigen-


values Λj(β), Λ̃j(β), Λ̂j(β) enumerated in the non-decreasing order taking
their multiplicities into account; by the max-min principle we have


Ej(β) ≤ Λj(β). (9)


The asymptotic behavior of the right-hand side can be found easily:
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Proposition 2. For all sufficiently large β one has


Λj(β) = −β
2


4
+ µj +O


( log β
β


)
.


Proof. Due to the max-min principle for any j ∈ N we have


Λ̂j(β) ≤ Λj(β) ≤ Λ̃j(β).


Furthermore, the asymptotics of the estimating eigenvalues Λ̃j and Λ̂j can
be obtained using the technique introduced in [6], that is, an asymptotic
separation of variables:


Λ̃j(β) = −β
2


4
+ µj +O


( log β
β


)
, Λ̂j(β) = −β


2


4
+ µj(β) +O


( log β
β


)
,


where µj and µj(β) are the jth Dirichlet eigenvalues of the operators acting
as


− d2


ds2
− κ(s)2


4
on [0, L] and [−a, L + a], respectively; recall that a depends on β. As the
Dirichlet eigenvalues are C1 functions of the interval edges, see e.g. [4], we


have µj(β) = µj +O(a) = µj +O
( log β


β


)
, which proves the result.


Hence the claim of Theorem 1 will be a consequence of the following asymp-
totic relation:


Proposition 3. For any j ∈ N one has


Λj(β)− Ej(β) = O
( log β


β


)
as the coupling parameter β tends to +∞.


This is our main estimate and the rest of the paper will dedicated to the
proof of Proposition 3.


4 Technical estimates


We denote by d(x, γ) the distance between a point x ∈ R2 and the arc γ. In
the present section we give some expressions of d(x, γ) for x ∈ Π(a) which we
need in the following. Some the formulæ are known, but we prefer to collect
all the necessary information in this section for the sake of completeness.
Recall first the Frenet formulæ


τ ′(s) = κ(s)n(s), n′(s) = −κ(s)τ(s). (10)
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In particular, for all (s, t), (s′, t′) ∈ P (a0) one has the representations


Γ(s′) = Γ(s) + (s′ − s)τ(s) + (s′ − s)2ρ1(s′, s), (11)


n(s′) = n(s)− (s′ − s)κ(s)τ(s) + (s′ − s)2ρ2(s′, s), (12)


τ(s′) = τ(s) + (s′ − s)κ(s)n(s) + (s′ − s)2ρ3(s′, s), (13)
Φ(s′, t′) = Φ(s, t) + (s′ − s)


(
1− t′κ(s)


)
τ(s) + (t′ − t)n(s)


+ (s′ − s)2
(
ρ1(s′, s) + t′ρ2(s′, s)


)
= Φ(s, t) + (s′ − s)


(
1− t′κ(s)


)
τ(s) + (t′ − t)n(s)


+ (s′ − s)2ρ4(s, t, s′, t′), (14)


with
ρ1, ρ2, ρ3 ∈ L∞


(
(−a0, L+ a0)2


)
, ρ4 ∈ L∞


(
P (a0)2


)
.


Lemma 4. Let α ∈ (0, a0). Then there are C1, C2 > 0 such that


C1


(
(s−s′)2 +(t−t′)2


)
≤
∣∣Φ(s, t)−Φ(s′, t′)


∣∣2 ≤ C2


(
(s−s′)2 +(t−t′)2


)
(15)


holds for all (s, t), (s′, t′) ∈ P (α).


Proof. We have P (α) ⊂ P (a0) and Π(α) ⊂ Π(a0). The upper bound in
(15) follows then from the boundedness of the partial derivatives of Φ on
P (α). Let us prove the lower one.
Suppose that the inequality is not valid, then one can find sequences
(sn, tn), (s′n, t


′
n) ⊂ P (α) such that, for all n ∈ N,


|Φ(s′n, t
′
n)− Φ(sn, tn)


∣∣2 < rn
n
, rn := (s′n − sn)2 + (t′n − tn)2. (16)


As P (α) is compact, without loss of generality we may assume that both
the sequences converge, (sn, tn) → (s, t) and (s′n, t


′
n) → (s′, t′) as n → ∞


with some (s, t), (s′, t′) ∈ P (α), and by (16) one has Φ(s, t) = Φ(s′, t′). As
Φ is a diffeomorphism between P (a0) ⊃ P (α) and Π(a0), one has (s, t) =
(s′, t′), and consequently limn→∞ rn = 0. On the other hand, using the
representation (14) and the fact that τ(s) and n(s) are unit vectors, we get∣∣Φ(s′n, t


′
n)− Φ(sn, tn)


∣∣2 =
(
1− t′nκ(sn)


)2(s′n − sn)2 + (t′n − tn)2 +O(r3/2
n ).


We have |t′n| < α < a0 <
1


2K
for any n, and choosing n large enough (hence


having rn small), we obtain∣∣Φ(s′n, t
′
n)− Φ(sn, tn)


∣∣2 ≥ rn
4


which contradicts, however, to relation (16).
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Lemma 5. There exists α ∈ (0, a0) such that d
(
Φ(s, t), γ


)
= |t| holds for


all (s, t) ∈ (0, L)× (−α, α).


Proof. Let us pick (s, t) ∈ (0, L) × (−α, α) and consider the function f :
(0, L)→ R+ defined by


f(σ) =
∣∣Φ(s, t)− Φ(σ, 0)


∣∣2 =
∣∣Γ(σ)− Γ(s)


∣∣2 − 2tn(s) ·
(
Γ(σ)− Γ(s)


)
+ t2.


Using again the fact that |τ(σ)| = 1 we find


f ′(σ) = 2τ(σ) ·
(
Γ(σ)− Γ(s)


)
− 2tn(s) · τ(σ),


f ′′(σ) = 2k(σ)n(σ) ·
(
Γ(σ)− Γ(s)


)
+ 2− 2tk(σ)n(s) · n(σ),


in particular, f(s) = t2, f ′(s) = 0 and f ′′(s) = 2 − 2tκ(s). Hence one
can choose α1 sufficiently small to have f ′′(s) > 1 for all (s, t) ∈ (0, L) ×
(−α1, α1), in which case s is a local minimum of f . Note also that f ′′′ is
bounded. Therefore, using the Taylor expansion, we see that one can find
δ1 > 0 such that ∣∣Φ(s, t)− Φ(σ, 0)


∣∣2 ≥ t2 +
(s− σ)2


4
> t2 (17)


for all (s, t) ∈ (0, L)× (−α1, α1) and all σ with 0 < |s− σ| < δ1.
On the other hand, we infer from Lemma 4 that there are α2 > 0 and c > 0
such that ∣∣Φ(s, t)− Φ(σ, 0)


∣∣2 ≥ c2
(
t2 + (s− σ)2


)
≥ c2(s− σ)2 (18)


holds for all (s, t) ∈ (0, L)× (−α2, α2) and all σ ∈ (0, L).
Choosing now α < min(cδ1, α1), we get for any (s, t) ∈ (0, L)× (−α, α) the
following alternatives


∣∣Φ(s, t)− Φ(σ, 0)
∣∣ 


≥ cδ1 > α > |t|, |s− σ| ≥ δ1 by (18),
> |t|, 0 < |s− σ| < δ1 by (17),
= |t|, σ = s,


which concludes the proof.


Lemma 6. There exists α ∈ (0, a0) such that


d
(
Φ(s, t), γ


)
=


{∣∣Φ(s, t)− Φ(0, 0)
∣∣, (s, t) ∈ (−α, 0)× (−α, α),∣∣Φ(s, t)− Φ(L, 0)
∣∣, (s, t) ∈ (L,L+ α)× (−α, α).


Proof. We will prove the first equality only, the second one can be demon-
strated in a similar way. Pick (s, t) ∈ (−a0, 0)× (−a0, a0) and consider the
function fs,t : (0, L)→ R+,


fs,t(σ) =
∣∣Φ(s, t)− Φ(σ, 0)


∣∣2 ≡ ∣∣Γ(s)− Γ(σ) + tn(s)
∣∣2.
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Using (11), (12), (13) and denoting κ0 := κ(0), τ0 = τ(0), n0 := n(0) we
have


Γ(s) = Γ(0) + sτ0 + s2ρ1(s, 0),


Γ(σ) = Γ(0) + στ0 + σ2ρ1(σ, 0),


n(s) = n0 − sκ0τ0 + s2ρ2(s, 0),


τ(σ) = τ0 + σk0n0 + σ2ρ3(σ, 0),


which gives


f ′s,t(σ) = −2τ(σ) ·
(
Γ(s)− Γ(σ) + tn(s)


)
= −2


(
τ0 + σk0n0 + σ2ρ3(σ)


)
·
(
(1− tκ0)s− σ


)
τ0 + tn0 + s2ρ1(s, 0)− σ2ρ1(σ, 0) + ts2ρ2(s, 0)


)
.


Using the orthogonality of τ0 and n0, this can be rewritten in the form


f ′s,t(σ) = 2(1− tk0)(σ − s) + s2A(s, t, σ) + σ2B(s, t, σ),


where A and B are certain bounded functions. Hence one can choose a1 ∈
(0, a0) such that for all (s, t) ∈ (−a1, 0) × (−a1, a1) and all σ ∈ (0, a1) one
has f ′s,t(σ) > 0, and consequently


fs,t(0) = inf
σ∈(0,a1)


fs,t(σ).


Next one can find a2 ∈ (0, a1) such that


B
(
Φ(0, 0), a2


)
∩ γ = B


(
Φ(0, 0), a2


)
∩ Γ
(
(0, a1)


)
,


and finally we take α ∈ (0, a2) such that


Φ
(
(−α, 0)× (−α, α)


)
⊂ B


(
Φ(0, 0),


a2


2


)
.


For any (s, t) ∈ (−α, 0) × (−α, α) we infer now, using the monotonicity of
the associated function fs,t, that


d
(
Φ(s, t), γ


)
= inf


x∈γ


∣∣Φ(s, t)− x
∣∣


= inf
x∈B(Φ(0,0),α)∩Γ((0,a1))


∣∣Φ(s, t)− x
∣∣


= inf
σ∈(0,a1):


Γ(σ)∈B(Φ(0,0),α)


∣∣Φ(s, t)− Φ(σ, 0)
∣∣


= inf
σ∈(0,a1)


∣∣Φ(s, t)− Φ(σ, 0)
∣∣ =


∣∣Φ(s, t)− Φ(0, 0)
∣∣.
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Lemma 7. For s < 0 we have in the limit (s, t)→ 0 the relation


d
(
Φ(s, t), γ


)
=
√
s2 + t2 +O(s2 + t2). (19)


Similarly, for s > L and (s, t)→ (L, 0) we have


d
(
Φ(s, t), γ


)
=
√


(s− L)2 + t2 +O
(
(s− L)2 + t2


)
.


Proof. We again limit ourselves to checking the first relation; the proof of
the second one is analogous. By Lemma 6, for (s, t) close to (0, 0) with s < 0
one has


d
(
Φ(s, t), γ


)2 =
∣∣Γ(s)− Γ(0) + tn(s)


∣∣2
=
∣∣sτ0 + s2ρ1(s, 0) + tn0 − tsκ0τ0 + ts2ρ2(s, 0)


∣∣2
= s2 + t2 + ts2A(s, t) + s3B(s, t)


with some bounded functions A and B, where we have again employed the
orthogonality of τ0 and n0. Hence we have


d
(
Φ(s, t), γ


)2 = (s2 + t2)
(


1 +O
(√


s2 + t2
))
,


which yields the relation (19).


Applying Lemmata 5 and 7 to the boundary of Π(a) we obtain


Corollary 8. There are α0 ∈ (0, a0) and C > 0 such that


d(x, γ) ≥ α− Cα2


holds for all α ∈ (0, α0) and x ∈ ∂Π(α).


For a fixed b > 0 we introduce the set


W (b) = {x : d(x, γ) < b}.


and derive an integral estimate on the complement of such a neighborhood:


Lemma 9. Let k, c > 0. In the limit β → +∞ we have∫∫
R2\W


(
k log β−c


β


) e−(β−log β)d(x,γ) dx = O
( 1
βk+1


)
.


Proof. During the demonstration we denote by Cj various fixed positive


numbers. Pick p ∈ (0, 1) with p >


√
k − 1
k


. Then by Lemmata 5 and 7 one


can find α > 0 such that
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• d
(
Φ(s, t), γ


)
= |t| holds for all s ∈ (0, L) and t ∈ (−α, α),


• p
√
s2 + t2 ≤ d


(
Φ(s, t), γ


)
≤ p−1


√
s2 + t2 holds for all s ∈ (−α, 0) and


t ∈ (−α, α), and similarly,


• p
√


(s− L)2 + t2 ≤ d
(
Φ(s, t), γ


)
≤ p−1


√
(s− L)2 + t2 holds for all s ∈


(L,L+ α) and t ∈ (−α, α).


One can represent the integration domain as follows:


R2 \W
(k log β − c


β


)
=
[
W (α) \W


(k log β − c
β


)]
∪
[
W (2L) \W (α)


]
∪
[
R2 \W (2L)


]
.


Let us estimate the contribution to the integral from each of these three
components. Using the diffeomorphism Φ one easily reduces the integration
on W (α)\W


(k log β
β


)
to the integration on two rectangles and two half-discs:


this yields the estimate∫∫
W (α)\W


(
k log β−c


β


) e−(β−log β)d(x,γ) dx


≤ C1


∫∫
p k log β−c


β
≤|x|≤p−1α


e−p(β−log β)|x| dx+ C2


L∫
0


α∫
k log β−c


β


e−(β−log β)t dt ds


≤ C3


p−1α∫
p k log β−c


β


re−p(β−log β)r dr + C4


α∫
k log β−c


β


e−(β−log β)t dt.


We have


α∫
k log β−c


β


e−(β−log β)t dt =
β−ke


c+ k log2 β
β
−c log β


β − e−α(β−log β)


β − log β
= O


( 1
βk+1


)


and similarly,


p−1α∫
p k log β−c


β


re−p(β−log β)r dr = O
( log2 β


βp2k+2


)
= O


( 1
βk+1


)
.
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Putting these estimates together we find∫∫
W (α)\W


(
k log β−c


β


) e−(β−log β)d(x,γ) dx = O
( 1
βk+1


)
.


Furthermore, the measure of the second component, W (2L)\W (α), certainly
does not exceed 9πL2, while for all x in this domain the integrated function
is majorized by e−(β−log β)d(x,γ) ≤ βαe−αβ, which gives∫∫


W (2L)\W (α)


e−(β−log β)d(x,γ)dx ≤ 9πL2βαe−αβ = O(e−αβ/2).


Finally, to estimate the integral over the the complement of W (2L) let us
pick a point x0 ∈ γ and consider x /∈W (2L). One has


d(x, γ) ≥ |x− x0| − L ≥ |x− x0| −
|x− x0|


2
=
|x− x0|


2
.


Hence we have∫∫
R2\W (2L)


e−(β−lnβ)d(x,γ) dx ≤
∫∫


|x−x0|>2L


e−(β−lnβ)|x−x0|/2 dx


= 2π


∞∫
2L


re−(β−lnβ)r/2 dr = 2π
( 4L
β − log β


+
4


(β − log β)2


)
βLe−Lβ


= O(e−Lβ/2),


and summing up the three terms one obtains the sought result.


5 Eigenfunctions estimates


Let us give first a rough a priori estimate for the eigenvalues Ej(β).


Lemma 10. For any j ∈ N one has


β − lnβ
2


≤
√
−Ej(β) ≤ β + lnβ


2


as the coupling parameter β → +∞.


Proof. The upper bound follows from (9) and Proposition 2. To prove
the other inequality, note that one can construct a C4 loop γ̃ such that
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γ ⊂ γ̃. Denote by Nβ the self-adjoint operator in L2(R2) associated with
the sesquilinear form


nβ(f, f) =
∫
R2


|∇f |2 dx− β
∫
γ̃


|f |2 dS


and denote by Ẽj(β) its eigenvalues arranged in the ascending order with
their multiplicities taken into account. By the max-min principle, we have
Ẽj(β) ≤ Ej(β) where the left-hand side behaves by [6] asymptotically as


Ẽj(β) = −β
2


4
+ κj +O


( log β
β


)
,


κ̃j being the eigenvalues of the Schrödinger operator with the curvature-
induced potential on γ̃. This gives


√
−Ej(β) ≥ β


2


(
1 + O(β−2)


)
, and thus


the sought result.


Let uj,β be now an L2-normalized eigenfunction of Hβ corresponding to the
eigenvalue Ej(β), j ∈ N. By [3, 10] one can represent it as


uj,β(x) =
∫
γ


G0(x, y;E)Fj,β(y) dSy, (20)


where Fj,β ∈ L2(γ) is an appropriate solution to the integral equation∫
γ


G0


(
x, y;Ej(β)


)
Fj,β(y)dSy =


1
β
Fj,β(x), x ∈ γ, (21)


coming from the corresponding Krein’s formula, and G0 is the Green func-
tion of the two-dimensional free Laplacian given explicitly by


G0(x, y; z) =
1


2π
K0(
√
−z|x− y|);


here and in the following Kν denotes the modified Bessel function of order
ν, see [1, Section 9.6].
The following estimate will be of crucial importance for our result.


Lemma 11. ‖Fj,β‖L2(γ) = O(β2
√


log β) holds as β → +∞.


Proof. Throughout the proof again Cj will denote various positive con-
stants. To avoid using cumbersome notation we identify the function Fj,β(·)
with Fj,β


(
Φ(·, 0)


)
≡ Fj,β


(
Γ(·)


)
and write simply E instead of Ej(β).


We will employ the following well-know relation [1, Eqs. 9.7.2 and 9.6.27]:


Kν(w) =
√


π


2w
e−w


(
1 + o(1)


)
, w → +∞, ν = 0, 1, (22)


K ′0 = −K1. (23)
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According to (20) and (21), one has


uj,β
∣∣
γ


=
1
β
Fj,β, (24)


and moreover, using (20) and (23) we can write


∇uj,β(x) =
1


2π


∫
γ


√
−E(y − x)
|x− y|


K1


(√
−E|x− y|


)
Fj,β(y) dSy.


Another property to use [1, Eqs. 9.6.10 and 9.6.11] is the representation


K1(t) =
1
t


+M(t), M(t) = tg1(t) log t+ g2(t), (25)


where g1 and g2 are analytic functions. It yields


∇uj,β(x) =
1


2π


∫
γ


(y − x)
|x− y|2


Fj,β(y) dSy


+
1


2π


∫
γ


√
−E(y − x)
|x− y|


M
(√
−E|y − x|


)
Fj,β(y) dSy. (26)


Let us estimate the expression n(s)·∇uj,β
(
Φ(s, t)


)
. In view of the representa-


tion (25) and the asymptotics (22) we have a uniform bound
∣∣M(w)


∣∣ ≤ 2πC1


for all w > 0, and therefore∣∣∣n(s) · ∇uj,β
(
Φ(s, t)


)∣∣∣
≤
∣∣∣ 1
2π


L∫
0


n(s) ·
(
Φ(σ, 0)− Φ(s, t)


)
|Φ(σ, 0)− Φ(s, t)|2


Fj,β(σ) dσ
∣∣∣+ C1


√
−E‖Fj,β‖L1(γ). (27)


Furthermore, for large enough β Lemma 4 implies the estimate


1
2π|Φ(σ, 0)− Φ(s, t)|2


≤ C4


(s− σ)2 + t2
.


for all s, σ ∈ (0, L) and t ∈ (−a, a), recall the assumption (5). Next note
that Φ(σ, 0)− Φ(s, t) = −tn(s) + Γ(σ)− Γ(s), hence using (11) we get


n(s) ·
(
Φ(σ, 0)− Φ(s, t)


)
= −t+ (σ − s)2ρ(σ, s),


where ρ(σ, s) = n(s) · ρ1(σ, s) is uniformly bounded on [0, L] × [0, L]. Con-
sequently, there are C5, C6 > 0 such that∣∣∣n(s) ·


(
Φ(σ, 0)− Φ(s, t)


)
|Φ(σ, 0)− Φ(s, t)|2


∣∣∣ ≤ C5
|t|+ C6(s− σ)2


(s− σ)2 + t2
≤ C5


|t|
(s− σ)2 + t2


+ C5C6
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and∣∣∣∣ 1
2π


L∫
0


n(s) ·
(
Φ(σ, 0)− Φ(s, t)


)
|Φ(σ, 0)− Φ(s, t)|2


Fj,β(σ) dσ
∣∣∣∣


≤ C5


L∫
0


|t|
(s− σ)2 + t2


|Fj,β(σ)|dσ + C5C6‖Fj,β‖L1(γ).


Using the Cauchy-Schwarz inequality we obtain


L∫
0


|t|
(s− σ)2 + t2


|Fj,β(σ)| dσ ≤
( L∫


0


|t|2(
(s− σ)2 + t2


)2 dσ)1/2


‖Fj,β‖L2(γ)


≤
(∫


R


|t|2(
(s− σ)2 + t2


)2 dσ)1/2


‖Fj,β‖L2(γ)


= |t|
(∫


R


dσ


(σ2 + t2)2


)1/2


‖Fj,β‖L2(γ)


= |t|−1/2


(∫
R


dξ


(ξ2 + 1)2


)1/2


‖Fj,β‖L2(γ) = C7|t|−1/2‖Fj,β‖L2(γ). (28)


Putting everything together and using a rough estimate E = O(β) from
Lemma 10, we get a bound∣∣∣n(s) · ∇uj,β


(
Φ(s, t)


)∣∣∣ ≤ C8


(
|t|−1/2 + β


)
‖Fj,β‖L2(γ) (29)


with some constant C8 > 0. Next we denote


δ :=
1


β2 log β


and for β large enough we construct a new function v on Ω(δ) by


vj,β
(
Φ(s, t)


)
:= uj,β


(
Φ(s, 0)


)
, (s, t) ∈ (0, L)× (−δ, δ),


for which the triangle inequality yields


‖u‖L2(Ω(δ)) ≥ ‖vj,β‖L2(Ω(δ)) − ‖uj,β − vj,β‖L2(Ω(δ)). (30)


Using (24), one can write now the following estimates:


‖vj,β‖2L2(Ω(δ)) ≥ C9


δ∫
−δ


L∫
0


∣∣uj,β(Φ(s, 0)
)∣∣2 ds dt


=
C9


β2


δ∫
−δ


L∫
0


∣∣Fj,β(s)
∣∣2 ds dt =


C2
10δ


β2
‖Fj,β‖2L2(γ) =


C2
10


β4 log β
‖Fj,β‖2L2(γ). (31)
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On the other hand, the second term on the right-hand side of (30) satisfies


‖uj,β − vj,β‖2L2(Ω(δ)) ≤ C11


L∫
0


δ∫
−δ


∣∣∣uj,β(Φ(s, t)
)
− uj,β


(
Φ(s, 0)


)∣∣∣2 dt ds. (32)


To estimate the integrated function, we employ the relation


d


dt
uj,β


(
Φ(s, t)


)
= n(s) · ∇uj,β


(
Φ(s, t)


)
,


which yields, through (29), the bound∣∣∣uj,β(Φ(s, t)
)
− uj,β


(
Φ(s, 0)


)∣∣∣
=
∣∣∣ t∫


0


n(s) · ∇uj,β
(
Φ(s, ξ)


)
dξ
∣∣∣ ≤ |t|∫


0


∣∣∣n(s) · ∇uj,β
(
Φ(s, ξ)


)∣∣∣ dξ
≤ C8


|t|∫
0


(
|ξ|−1/2 + β


)
dξ ‖Fj,β‖L2(γ) = C8


(
2|t|1/2 + |t|β


)
· ‖Fj,β‖L2(γ),


and consequently,


‖uj,β − vj,β‖2
L2
(


Ω(δ)
) ≤ 8C8C11


L∫
0


δ∫
−δ


(
|t|+ β2t2


)
dt ds ‖Fj,β‖2L2(γ)


≤ C12(δ2 + δ3β2) ‖Fj,β‖2L2(γ) ≤
C2


13


β4 log2 β
‖Fj,β‖2L2(γ). (33)


Substituting finally (31) and (33) into (30) we obtain


1 = ‖uj,β‖L2(R2) ≥ ‖uj,β‖L2
(


Ω(δ)
)


≥
( C10


β2
√


log β
− C13


β2 log β


)
‖Fj,β‖L2(γ) ≥


C14


β2
√


log β
‖Fj,β‖L2(γ),


which gives the sought result.


Lemma 12. For any k, c > 0 one can find a D > 0 such that∣∣uj,β(x)
∣∣ ≤ Dβ2 exp


(
− (β − log β)d(x, γ)


2


)
, (34)∣∣∇uj,β(x)


∣∣ ≤ Dβ3 exp
(
− (β − log β)d(x, γ)


2


)
(35)


holds whenever x /∈W
(k log β − c


β


)
.
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Proof. Recall that we have the integral representation (20) for the eigne-
function uj,β, hence using Lemma 11 and Cauchy-Schwarz inequality we
infer that


|uj,β(x)| ≤ sup
y∈γ


∣∣∣K0


(√
−Ej(β)|x− y|


)∣∣∣ · ‖Fj,β‖L1(γ)


≤ C1β
2
√


log β sup
y∈γ


∣∣∣K0


(√
−Ej(β)|x− y|


)∣∣∣. (36)


For x /∈W
(k log β − c


β


)
and y ∈ γ we have, using Lemma 10,


√
−Ej(β)|x− y| ≥


√
−Ej(β) d(x, γ)


≥ β − log β
2


k log β − c
β


=
k log β


2
+O(1)


as β → +∞. For fixed x, y the asymptotics (22) and Lemma 10 imply∣∣∣K0


(√
−Ej(β)|x− y|


)∣∣∣
≤ C3


(√
−Ej(β)|x− y|


)−1/2
exp


(
− (β − log β)|x− y|


2


)
≤ C3


(√
−Ej(β)d(x, γ)


)−1/2
exp


(
− (β − log β)d(x, γ)


2


)
≤ C4√


log β
exp


(
− (β − log β)d(x, γ)


2


)
.


Combining this inequality with (36) we obtain the bound (34). To estimate
∇uj,β we use (23) and write


∇uj,β(x) = −
√
−Ej(β)


∫
γ


∇x|x− y|K1


(√
−Ej(β) |x− y|


)
Fj,β(y)dSy.


It is now enough note that
∣∣∇x|x − y|


∣∣ ≤ 1 and that Ej(β) = O(β) by
Lemma 10, hence estimating the integral again with the help of (22) we
arrive at the bound (35).


6 Cut-off functions


In this section we introduce a family of cut-off functions that will be used in
the following when we will apply the max-min principle in the last step of
the argument. An inspiration for this type of constructions came from the
paper [9].
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We choose a mollifying function C∞ function ψ : R→ [0,+∞) such that


ψ(s) = 1 for s ≥ 0 and ψ(s) = 0 for s ≤ −1.


Next we consider the function ρa : P (a)→ R,


ρa(s, t) = min
{
|a− t|, |a+ t|, L+ a− s, s+ a


}
,


in other words, ρa(s, t) is the distance between the point (s, t) ∈ P (a) and
the boundary of the rectangle P (a). We use it to introduce the function
Rβ : Π(a)→ R by


Rβ(x) = ρa
(
Φ(−1)(x)


)
.


where Φ(−1)(x) means the pre-image of the point x ∈ Π(a) with respect to
the map (4) and the parameters are related by (5). Finally, for sufficiently
large β and we introduce the function gβ : R2 → R by


gβ(x) =


ψ
(


logRβ(x) + log β
log log β


)
, x ∈ Π(a),


0, otherwise.


(37)


Note that gβ belongs to H1(R2) and has a compact support since g(x) = 0
for all x /∈ Π(a). In addition, we have g(x) = 0 for those x ∈ Π(a) that can


be represented as x = Φ(s, t) with ρa(s, t) ≤
1


β log β
. On the other hand,


g(x) = 1 holds for x ∈ Π(a) with Rβ(x) ≥ 1
β


. In particular,


supp∇gβ ⊂ Θ(β) :=
{


Φ(s, t) : (s, t) ∈ P (a),
1


β log β
≤ ρa(s, t) ≤


1
β


}
,


supp(1−g) ⊂ V (β) :=
{


Φ(s, t) : (s, t) ∈ P (a), ρa(s, t) ≤
1
β


}
.


Lemma 13. In the limit β → +∞ one has∫∫
Θ(β)


∣∣∇gβ(x)
∣∣ dx = O(1),


∫∫
Θ(β)


∣∣∇gβ(x)
∣∣2 dx = O(β log β).


Proof. Let Ds,tΦ denote the Jacobian matrix value of the map Φ at (s, t).
We have


∇gβ
(
Φ(s, t)


)
= ψ′


(
logRβ


(
Φ(s, t)


)
+ log β


log log β


)
∇Rβ


(
Φ(s, t)


)
Rβ
(
Φ(s, t)


)
log log β


= ψ′


(
log ρa(s, t) + log β


log log β


)
1


ρa(s, t) log log β
∇ρa(s, t)(Ds,tΦ)−1.
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We have
∣∣∇ρa(s, t)∣∣ ≤ 1 and


∥∥(Ds,tΦ)−1
∥∥ ≤ M for some M > 0 and all


(s, t) ∈ P (a) if β is sufficiently large. Hence it holds∣∣∣∇gβ(Φ(s, t)
)∣∣∣ ≤ C1


ρa(s, t) log log β
.


with some C1 > 0, and∫∫
Θ(β)


∣∣∇gβ(x)
∣∣ν dx ≤ Cν1C2


(log log β)ν


∫∫
(s,t)∈P (a),


1
β log β


≤ρa(s,t)≤ 1
β


ds dt


ρa(s, t)ν
, ν = 1, 2. (38)


Since the integration variables run through the set


1
β log β


≤ ρa(s, t) ≤
1
β
,


the integral on the right-hand side is the sum of contributions from integra-
tion over four rectangles and eight triangles. Using the obvious symmetries,
we can rewrite it as


Iν(β) :=
∫∫


(s,t)∈P (a)
1


β log β
<ρa(s,t)< 1


β


ds dt


ρa(s, t)ν
= 2


L+a− 1
β∫


−a+ 1
β


1
β∫


1
β log β


1
tν
dt ds


+ 2


1
β∫


1
β log β


a− 1
β∫


−a+ 1
β


1
sν
dt ds+ 8


1
β∫


1
β log β


s∫
1


β log β


1
tν
dt ds ≤ C3


1
β∫


1
β log β


dt


tν
.


for ν = 1, 2 and some C3 > 0. Hence


I1(β) ≤ C3


1
β∫


1
β log β


dt


t
= C3 log log β.


and


I2(ν) = C3


1
β∫


1
β log β


dt


t2
= C3(β log β − β).


Finally, by (38) we infer that∫∫
Θ(β)


∣∣∇gβ(x)
∣∣dx =


C1C2I1(β)
log log β


≤ C1C2C3 log log β
log log β


= O(1)


18







and∫∫
Θ(β)


∣∣∇gβ(x)
∣∣2dx =


C2
1C2I2(β)


(log log β)2
≤ C2


1C2C3(β log β − β)
(log log β)2


= O(β log β).


holds as β → +∞ which we have set out to prove.


Lemma 14. For sufficiently large β there is a constant D > 0 such that∣∣uj,β(x)
∣∣ ≤ D


β
, (39)∣∣∇uj,β(x)


∣∣ ≤ D (40)


holds for all x ∈ V (β).


Proof. By Corollary 8 there exists a C1 > 0 such that


d(x, γ) ≥ a− C1a
2 for all x ∈ ∂Π(a),


holds provided β is sufficiently large. On the other hand, for any x =
Φ(s, t) ∈ V (β) one can find (s′, t′) ∈ ∂P (a) with


ρa
(
s, t
)


=
√


(s− s′)2 + (t− t′)2 ≤ 1
β
.


As ∂Π(a) = Φ
(
∂Π(a)


)
, it follows from Lemma 4 that for all x ∈ V (β)


d
(
x, ∂Π(a)


)
≤
∣∣Φ(s, t)− Φ(s′, t′)


∣∣ ≤ C2


√
(s− s′)2 + (t− t′)2 ≤ C2


β


holds with some C2 > 0. Consequently, for sufficiently large β we have


V (β) ⊂ R2 \W
(
a− 2C2


β


)
= R2 \W


(6 log β − 2C2


β


)
,


and Lemma 12 is applicable. For x ∈ V (β) and large β we can estimate√
−Ej(β)d(x, γ) ≥ β − log β


2


(6 log β
β


− 2C2


β


)
= 3 log β +O(1),


by Lemma 10, hence applying (34) and (35) we get the sought bounds.


7 Using the max-min principle


Let us fix now an integer N ≥ 1. Consider the first N eigenvalues Ej(β)
and the associated orthonormal eigenfunctions uj,β of Hβ and denote


ϕj,β := gβuj,β,


where gβ is the function (37). As supp gβ ⊂ Π(a), one has ϕj,β ∈ H1
0


(
Π(a)


)
.


Following the usual convention, we denote here and in the following by δjl
the Kronecker delta symbol.


19







Lemma 15. In the limit β → +∞ one has


〈ϕj,β, ϕl,β〉L2(Π(a)) = δjl +O(β−2). (41)


Proof. Denote for brevity Sβ := W
(5 log β


β


)
. In a way similar to the proof


of Lemma 14 one can show that for all sufficiently large β we have Sβ ⊂ Π(a)
and gβ


∣∣
Sβ


= 1. Moreover, for x /∈ Sβ one can estimate uj,β(x) with the help
of Lemma 12. Hence using first the boundedness of the function gβ and
applying subsequently Lemma 9, we get∣∣∣〈uj,β, ul,β〉L2(R2) − 〈ϕj,β, ϕl,β〉L2(Π(a))


∣∣∣
=
∣∣∣〈uj,β, ul,β〉L2(R2) − 〈ϕj,β, ϕl,β〉L2(R2)


∣∣∣
=
∣∣∣∣ ∫∫


R2


(
1− gβ(x)2


)
uj,β(x)ul,β(x) dx


∣∣∣∣ =
∣∣∣∣ ∫∫
R2\Sβ


(
1− gβ(x)2


)
uj,β(x)ul,β(x) dx


∣∣∣∣
≤ C1


∫∫
R2\Sβ


|uj,β(x)ul,β(x)| dx ≤ C2β
4


∫∫
R2\Sβ


e−(β−log β)d(x,γ) dx = O
(
β−2


)
with some constants C1, C2 > 0. As {uj,β} is an orthonormal system by
assumption, we arrive at the relation (41).


Lemma 16. In the limit β → +∞ one has


〈∇uj,β,∇ul,β〉L2(Π(a)) − β
∫
γ


uj,β(s)ul,β(s) dS = Ej(β)δjl +O
(
β−1


)
.


Proof. Note first that the relations


〈∇uj,β,∇ul,β〉L2(R2) − β
∫
γ


uj,β(s)ul,β(s)dS = Ej(β)δjl


hold by assumption and that a certain neighborhood of γ is included into
Π(a), hence it is sufficient to check the estimate


〈∇uj,β,∇ul,β〉L2(R2\Π(a)) = O(β−1).


As in the proof of Lemma 14 we can check that the inclusion


W


(
6 log β − C1


β


)
⊂ Π(a).


20







holds for some C1 > 0 and all sufficiently large β. Using then the estimate
(35) and subsequently Lemma 9, we get∣∣∣〈∇uj,β,∇ul,β〉L2(R2\Π(a))


∣∣∣ ≤ ∫∫
R2\W


(
6 log β−C1


β


) |∇uj,β(x)| · |∇ul,β(x)| dx


≤ C2β
6


∫∫
R2\W


(
6 log β−C1


β


) e−(β−log β)d(x,γ) dx ≤ C3
β6


β7
= O


( 1
β


)
.


Our principal estimate concerns the question what happens if uj,β in the
above formula is replaced by the moliffied function; our aim is to show that
this makes the error term worse but only by a logarithmic factor.


Lemma 17. In the limit β → +∞ one has


〈∇ϕj,β,∇ϕl,β〉L2(Π(a)) − β
∫
γ


ϕj,β(s)ϕl,β(s) dS = Ej(β)δjl +O
( log β


β


)
.


Proof. Using ϕj,β
∣∣
γ


= uj,β
∣∣
γ


let us write the expression in question as


〈∇ϕj,β,∇ϕl,β〉L2
(


Π(a)
) − β ∫


γ


ϕj,β(s)ϕl,β(s) dS


= 〈∇uj,β,∇ul,β〉L2
(


Π(a)
) − β ∫


γ


uj,β(s)ul,β(s) dS


+
∫∫
Π(a)


(
gβ(x)2 − 1


)
∇uj,β(x) · ∇ul,β(x) dx


+
∫∫
Π(a)


|∇gβ(x)|2 uj,β(x)ul,β(x) dx


+
∫∫
Π(a)


gβ(x)uj,β(x)∇gβ(x) · ∇ul,β(x) dx


+
∫∫
Π(a)


gβ(x)ul,β(x)∇uj,β(x) · ∇gβ(x) dx.


The sum of the first two terms on the right-hand side has been already
estimated in Lemma 16, hence we just need to show that the sum of the last
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four terms on the right-hand side is of order O(β−1 log β). By definition of
the function gβ and Lemma 14 there are constants C1, C2 > 0 such that


I1 :=
∣∣∣∣ ∫∫
Π(a)


(
gβ(x)2 − 1


)
∇uj,β(x)∇ul,β(x)dx


∣∣∣∣
=
∣∣∣∣ ∫∫
V (β)


(
gβ(x)2 − 1


)
∇uj,β(x)∇ul,β(x)dx


∣∣∣∣
≤ C1


∫∫
V (β)


∣∣∣∇uj,β(x)∇ul,β(x)
∣∣∣dx ≤ C2


∣∣V (β)
∣∣.


Furthermore, by definition of V (β) we have


V (β) = Φ(U), U =
{


(s, t) ∈ P (a) : ρa(s, t) ≤
1
β


}
,


and since the measure
∣∣U ∣∣ is of order O(β−1), we get also


∣∣V (β)
∣∣ = O(β−1),


which in turn gives I1 = O(β−1).
Using next the inclusion supp∇gβ ⊂ Θ(β) ⊂ V (β), Lemma 14 and after
that Lemma 13, we have


I2 :=
∣∣∣∣ ∫∫
Π(a)


|∇gβ(x)|2 uj,β(x)ul,β(x) dx
∣∣∣∣


=
∣∣∣∣ ∫∫
Θ(β)


|∇gβ(x)|2 uj,β(x)ul,β(x) dx
∣∣∣∣


≤ C3


β2


∫∫
Θ(β)


∣∣∣∇gβ(x)
∣∣∣2 dx = O


( log β
β


)
.


Using the same reasoning we infer that


Ij,l :=
∣∣∣∣ ∫∫
Π(a)


gβ(x)uj,β(x)∇gβ(x)∇ul,β(x) dx
∣∣∣∣


=
∣∣∣∣ ∫∫
Θ(β)


gβ(x)uj,β(x)∇gβ(x)∇ul,β(x) dx
∣∣∣∣


≤ C4


β


∫∫
Θ(β)


∣∣∣∇gβ(x)
∣∣∣ dx = O


( 1
β


)
.


Putting the estimates together we find


I1 + I2 + Ij,l + Il,j = O
( log β


β


)
,


which concludes the proof.
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Now we are in position to complete the proof of our main result.


Proof of Proposition 3. Fix an integer N ≥ 1. By the max-min principle
one has


ΛN (β) = max
G∈SN


min
06=f∈G


∫∫
Π(a)


|∇f |2 dx− β
∫
γ


|f |2 dS


‖f‖2
L2
(


Π(a)
) ,


where SN stands for the family of the subspaces of H1
0


(
Π(a)


)
the codimen-


sion of which in L2
(
Π(a)


)
equals N −1. In view of Lemma 15, the functions


ϕj,β, j = 1, . . . , N , are linearly independent in L2
(
Π(a)


)
for all sufficiently


large β, hence each subspace G ∈ SN contains at least one linear combina-
tion ϕ of the form


ϕ =
N∑
j=1


bjϕj,β, b = (b1, . . . , bN ) ∈ CN , ‖b‖CN = 1.


Using once more Lemma 15, we find that


‖ϕ‖2
L2
(


Π(a)
) ≥ 1− C1


β2
.


holds for large β with a constant C1 > 0. On the other hand, Lemma 17
yields∫∫


Π(a)


|∇ϕ|2 dx− β
∫
γ


|ϕ|2 dS


=
N∑


j,l=1


bjbl


(
〈∇ϕj,β,∇ϕl,β〉L2(Π(a)) − β


∫
γ


ϕj,β(s)ϕl,β(s)dS
)


=
N∑


j,l=1


bjbl


(
Ej(β)δjl +O


( log β
β


))
=


N∑
j=1


Ej(β)|bj |2 +O
( log β


β


)
≤ EN (β) +O


( log β
β


)
. (42)


Using the above estimates, we conclude that there are C2, C3 > 0 such that


min
06=f∈G


∫∫
Π(a)


|∇f |2 dx− β
∫
γ


|f |2 dS


‖f‖2
L2
(


Π(a)
) ≤


∫∫
Π(a)


|∇ϕ|2 dx− β
∫
γ


|ϕ|2 dS


‖ϕ‖2
L2
(


Π(a)
)


≤
EN (β) + C2


log β
β


1− C1β−2
≤ EN (β) + C3


log β
β


.
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What is important is that the constant C3 can be chosen independent of the
vector b and hence independent of G ∈ SN , then we have automatically


ΛN (β) ≤ EN (β) + C3
log β
β


.


Combining this with (9) we obtain ΛN (β)− EN (β) = O
(
β−1 log β


)
.
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