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Abstract. We study the existence of quasi–periodic solutions x
of the equation


εẍ+ ẋ+ εg(x) = εf(ωt) ,


where x : R → R is the unknown and we are given g : R → R,
f : Td → R, ω ∈ Rd. We assume that there is a c0 ∈ R such that


g(c0) = f̂0 (where f̂0 denotes the average of f) and g′(c0) 6= 0.
Special cases of this equation, for example when g(x) = x2, are
called the “varactor problem” in the literature.


We show that if f , g are analytic, and ω satisfies some very
mild irrationality conditions, there are families of quasi–periodic
solutions with frequency ω. These families depend analytically on
ε, when ε ranges over a complex domain that includes cones or
parabolic domains based at the origin.


The irrationality conditions required in this paper are very weak.
They allow that the small denominators |ω · k| grow exponentially
with k. In the case that f is a trigonometric polynomial, we only
need that ω · k is not zero for |k| ≤ K0, where K0 is a multiple
of the degree of the polynomial. This answers a delicate question
raised in [8].


We also consider the periodic case, when ω is just a number (d =
1). We obtain that there are solutions that depend analytically
in a domain which is a disk removing countably many disjoint
disks. This shows that in this case there is no Stokes phenomenon
(different resummations on different sectors) for the asymptotic
series.


The approach we use is to reduce the problem to a fixed point
theorem. This approach also yields results in the case that g is
a finitely differentiable function; it provides also very effective nu-
merical algorithms and we discuss how they can be implemented.
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1. Introduction


The goal of this paper is to study a differential equation describing
a strongly dissipative dynamical system with a forcing function:


ẍ+
1


ε
ẋ+ g(x) = f(ωt) , (1.1)


where ε > 0 is a small parameter, g : R → R, f : Td ≡ [0, 1)d → R
and ω ∈ Rd are given. Note that we allow d = 1, which corresponds
to the case of a periodic forcing. We will refer to all functions of the
form of f as quasi–periodic, so that for us periodic is a particular case
of quasi–periodic.


We will mainly use the equivalent form of (1.1)


εẍ+ ẋ+ εg(x) = εf(ωt) . (1.2)


Using the terminology of electronic engineering, equation (1.2) with
g(x) = xa and a ∈ [1.5, 2.5] is called the varactor equation and it
has been considered several times in the literature ([10], [11], [8], [9]).
Notice that from the mathematical point of view, (1.2) is a singular
perturbation problem because the small parameter affects the term
with derivatives of the largest order.


In this paper we establish existence and local uniqueness of quasi–
periodic solutions of frequency ω for all ε in a range around zero.


Under appropriate non–degeneracy assumptions on g and (rather
weak) non–resonance conditions on ω, we prove the existence and
uniqueness of families of quasi–periodic solutions with frequency ω,
depending analytically on ε, when ε ranges over complex domains accu-
mulating at the origin and including the physical values corresponding
to ε real and positive. Since the argument covers already the physically
relevant values of ε, we have not optimized the analyticity domain.


We stress that the non–degeneracy and Diophantine conditions re-
quired by our approach are very mild. For example, it suffices to as-
sume that g′(c0) 6= 0 for c0 such that g(c0) equals the average of f . The
non–resonance conditions we assume allow that |ω ·k|−1 ≈ α exp(β|k|),
k ∈ Zd \ {0}, for some constants α, β, and even that ω · k vanishes in
some case (see Theorem 3 for precise statements). Note that the non–
resonance condition above – which is not the most general condition
we can deal with – is more general than Diophantine and even than
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the so–called Brjuno condition 1; this solves some questions raised in
[8], [9]. In the case that d = 1 – the periodic case – we also obtain
that the solution can be defined for complex values of ε in a disk with
a countable number of smaller disjoint disks removed. In this domain
we can also prove local uniqueness. Note that this domain is simply
connected and it includes loops that enclose the origin in any arbitrar-
ily small ball centered at ε = 0. This shows that the resummations of
expansions of solutions do not present the Stokes phenomenon, namely
one cannot obtain different resummations in different sectors.


We also note that the method is constructive and it leads to easy
and fast numerical algorithms (see Section 8.1). The main theorems
in this paper are in an a–posteriori format (that is, given a function
that solves the equation approximately, we conclude that there is a
true solution nearby), which allows us to be sure that the numerically
computed solutions are close to true solutions (see Section 8.1). The
method we present also yields results in the case that f and g are only
finitely differentiable (see Section 8.2).


The method of proof in this paper consists first in constructing an
approximate solution to finite order in ε and, then, in transforming
(1.2) into a fixed point equation, which we can solve thanks to the fact
that the strong dissipation leads to very few small divisors. Therefore,
the leading assumption of the main theorem (see Theorem 3) is that
there exists a perturbative solution to a finite order. This assumption
on the existence of solutions to finite order is the only source of small
divisor equations. The approximate solution is used only as a starting
point of an iterative method that does not involve any small divisors.


In this paper we have decided to use only the elementary fixed point
contraction theorem and not to use techniques based on quadratically
convergent methods that also seem promising.


Remark 1. The equation (1.2) is conformally symplectic; the paper
[3] develops a Newton’s method for maximal dimensional conformally
symplectic systems. The theory of [3] would produce solutions in which
the frequency of the forcing is supplemented by a natural frequency of


1A frequency ω is said to satisfy the Brjuno condition, if the Brjuno function
B(ω) is finite, where


B(ω) =


∞∑
n=0


1


2n
log


1


αn(ω)
, αn(ω) = inf{|2πω · k| : k ∈ Z such that 0 < |k| ≤ 2n}.
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the system. A Newton’s method that applies to periodically forced sys-
tems and which does not depend on geometric considerations can be
found in [14].


1.0.1. Relation with the literature. The method used in the present
paper is very different from that used in [8], [10], [11], which is based
on the construction of the full perturbative series and on showing that
these series can be summed using Borel transforms. The construction
of the perturbative expansions is affected by small divisors, because
the expansions are computed from ε = 0, which is precisely the value
that makes the equation singular. Furthermore, the Borel summability
involves obtaining estimates in complex domains of ε, which are larger
than the physical domain ε ∈ R. These two effects lead to assumptions
in the small denominators, which are not present in the method used in
this paper. We also point out that since the equations are non–linear,
it is not clear that the Borel summation of a solution in the sense of
formal power series is a solution in the standard sense of differential
equations.


The method presented here goes in the opposite order than the meth-
ods based on resummation. It first produces an analytic function that
solves the desired equation in the standard sense of differential equa-
tions. For us, the investigation of whether this function is obtainable
from the asymptotic expansion is an afterthought that is only consid-
ered once the function is constructed and it has been shown to satisfy
the differential equation.


We provide examples (see Example 12) in which the perturbative
series does not exist, but we can produce solutions through the fixed
point methods.


To provide some possible contact with the summability methods, we
have shown that our solutions are defined in a domain which includes
circles tangent to the imaginary axis at the origin. This is one of the hy-
potheses of a celebrated theorem on summability (see [17]). The main
theorem of [17] shows that the analytic functions defined in domains
containing circles tangent to the imaginary axis and whose asymptotic
expansion satisfies factorial bounds are Borel summable (that is, they
are determined by their asymptotic expansion and they can be recon-
structed from their asymptotic expansion by the Borel transform).


In the same vein of providing contact with summability methods,
in Theorem 6 and in Section 7 we have studied the periodic case and
showed that the solutions of (1.2) can be defined and are locally unique
for ε lying in a disk centered at the origin from which one removes a se-
quence of disjoint disks centered at the imaginary axis. In the periodic







RESPONSE FUNCTIONS IN STRONGLY DISSIPATIVE SYSTEMS 5


case, it was shown in [10] that the factorial bounds in the coefficients
hold; hence, we can conclude that the solution is recovered from the
Borel transform. Notice also that, since the domain we establish con-
tains loops that enclose the origin within any small disk, we obtain
that Stokes phenomena (the resummation in two sectors disagree) do
not happen because the analytic function constructed here allows to
perform an analytic continuation from one sector to the other.


1.0.2. Organization of the paper. This paper is organized as follows. In
Section 2 we formulate the problem and we state the main result. Some
preliminaries, such as the definition of function spaces and norms, are
provided in Section 3. The construction of an approximate solution is
given in Section 4. The proof of Theorem 3 is presented in Section 5
with the existence part given in Section 6. In Section 7 we provide
the proof of Theorem 6 which considers the periodic case d = 1 and
establishes a large domain. In Section 8.1 we describe how to turn
the present proof into effective numerical algorithms. In Section 8 we
present some results that follow from the same circle of ideas, such as
results for finitely differentiable problems.


2. Formulation of the problem and statement of the main
result


We proceed to set up the notation, formulate the problem and per-
form some manipulations transforming it into an equivalent form. In
this section, we will not indicate the spaces where the problems are de-
fined; this will be done later in Section 3, but it will be trivial to show
that the elementary manipulations done here apply to these spaces
(and indeed in almost any reasonable space).


2.1. Quasi–periodic solutions of equation (1.2). For the functions
f and g defining the problem (1.2), we will assume that:


• H1 there exists c0 ∈ R such that g(c0) = f̂0, g′(c0) 6= 0, where


f̂0 denotes the average of f ;
• H2 f , g are analytic functions.


The first part of H1 holds if g has a range which covers all the reals.
The second part is the nontrivial content of the assumption, that at
the point c0 the derivative of g is not zero. Note that hypothesis H1
is satisfied by g(x) = xs +O(xs+1) when f̂0 6= 0.


Our aim is to find the so–called response solution, namely a solution
xε(t) of (1.2) of the form


xε(t) = c0 +Xε(ωt)
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for a suitable function Xε : Td → R, indexed by the small parameter
ε, and c0 ∈ R.


Note that, of course, what we are seeking is a quasi–periodic solution,
namely a function Xε : Td → R. We have just found notationally
convenient to segregate the average c0 because, as we will see later, the
average needs to be dealt with in a different way. We are particularly
interested in showing that the function ε → Xε is analytic, when ε
ranges over a domain.


We emphasize that we are not assuming that ω is rationally inde-
pendent. In particular, for us, periodic solutions are a special case of
quasi–periodic solutions.


In terms of the hull function Xε = Xε(θ) parameterized by θ ∈ Td,
the equation (1.2) reads as


ε(ω · ∇θ)
2Xε(θ) + (ω · ∇θ)Xε(θ) + εg(c0 +Xε(θ)) = εf(θ) . (2.1)


Note that the hull function Xε, being a function from the torus, is a
periodic function in the variable θ. On the other hand, the response
solution xε(t) = c0 +Xε(ωt) is a quasi–periodic solution.


We will introduce the notation


Mε = ε(ω · ∇θ)
2 + (ω · ∇θ) + εg′(c0) . (2.2)


Note that Mε is an operator acting on periodic functions of θ ∈ Td. For
convenience, we also introduce the notation G(x) = g(c0 +x)−g′(c0)x.
Note that G(0) = g(c0), G′(0) = 0, so that G(x) − G(0) = O(x2),
G′(x) = O(x). With the notations above, (2.1) can be rewritten as:


Mε(Xε(θ)) = εf(θ)− εG(Xε(θ)) . (2.3)


As we will see later, under appropriate hypotheses on ω, Mε will be
invertible, so that (2.3) can be transformed into a fixed point problem.


Xε(θ) = M−1
ε [εf(θ)− εG(Xε(θ))] . (2.4)


We will show that M−1
ε is defined in a suitable complex domain


accumulating at ε = 0, but its norm will grow when ε approaches 0.
Nevertheless, if we start with an approximate enough solution, we will
be able to transform the problem further (as in the implicit function
theorem), so that we obtain a solution of (2.4) and we will show that it
is analytic in ε in a large complex domain that accumulates to ε = 0.
This method also works for finite differentiable functions, even if in this
case the conclusions are only that the solution is defined for a range of
real ε accumulating at ε = 0 and that it depends on ε in a differentiable
way.
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2.2. Approximate formal solutions. We define an approximate for-
mal solution as follows.


Definition 2. We say that X≤Nε (θ) =
∑N


j=1 ε
jXj(θ), where all the Xj


are analytic functions, is an approximate solution of (2.1) to order N ,
whenever it is


Mε(X
≤N
ε (θ))− εf(θ) + εG(X≤Nε (θ)) = O(εN+1) . (2.5)


The existence of solutions to arbitrarily high orders is discussed ex-
tensively in [8]. We will revisit some of these results in Section 4.
As mentioned in the introduction, we will not need to study conver-
gence or re–summation of these series expansions. For our method,
just the existence of a finite number of terms is enough. Hence, the
non-resonance assumptions we will need are much weaker than the as-
sumptions adopted in [8].


2.3. Formulation of the main result. The main result of this pa-
per is the following Theorem that shows that the existence of formal
solutions to a low order implies the existence of a solution analytic in
a domain.


Theorem 3. Assume H1, H2. Assume furthermore that


• H3 for some N ≥ 2 there exists an approximate solution to
order N of (2.1).


Then, there exists B0 ∈ R+ such that for all B > B0 and for all
sufficiently small ρ, σ > 0, there exists a function Xε(θ), jointly analytic
in ε ∈ Ωσ,B, θ ∈ Tdρ, where Ωσ,B and Tdρ are defined as


Ωσ,B = {ε ∈ C : Re(ε) ≥ B Im(ε)2 , σ ≤ |ε| ≤ 2σ} ,
Tdρ = {θ ∈ (C/Z)d : Re(θj) ∈ T , | Im(θj)| ≤ ρ , j = 1, ..., d} ,


which provides an exact solution of (2.1).
The solution Xε is locally unique and it is asymptotic to X≤Nε in the


sense that for ε ∈ Ωσ,B we have:


||Xε −X≤Nε ||ρ,m ≤ C|ε|N+1 ,


for some positive constant C, where m > d and || · ||ρ,m is a norm on
spaces of analytic functions that will be introduced in Section 3.


In Section 3 we will be more precise on the domains of analyticity,
namely on the definition of the norm ‖ · ‖ρ,m (see Definition 9) and on
the relations between B, σ, ρ, but this will require to introduce more
notations and in particular to formulate the results in terms of some
well defined spaces (see Section 3).
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Note that the statement of Theorem 3 does not need to assume
any Diophantine property on ω. Therefore, in particular, Theorem 3
works for any frequency, including ω rational. Of course, to apply the
result to concrete systems, we need to show that there exist asymptotic
solutions to a finite order bigger than 1 and this entails some (very
mild) small divisor conditions. We can also take advantage of the fact
that the perturbation has a special structure (e.g., it is a trigonometric
polynomial).


Remark 4. We define conical domains Υδ,σ as


Υδ,σ = {ε ∈ C : | Im(ε)|/|ε| ≤ δ, σ ≤ |ε| ≤ 2σ} . (2.6)


Note that the domain of analyticity in ε, θ includes sets of the form
Υδ,σ × Tdρ for 0 < δ, σ, ρ� 1.


In the case of the conical domains, we can give a proof that pro-
vides more information on the rates of convergence of the iterative pro-
cess used in the proof of the theorem and as a basis of the algorithms.
Furthermore, to obtain the existence and uniqueness, we need only to
assume that there is an approximate solution to order N ≥ 1 (see Sec-
tion 6.2), instead than requiring that N ≥ 2 as in the parabolic domain.
Hence, we have included Section 6.1 with a proof of these results. We
hope that this will illustrate also the fact that the method presented here
is very flexible and admits many variants.


Remark 5. We note that the domain Ωσ,B includes disks tangent to
the imaginary axis. This is one of the hypotheses of the main theorem
in [17].


The result in [17] shows that if a function Xε defined for ε ∈ Ωσ,B


admits a formal expansion, Xε =
∑N


k=0 Xkε
k+RN+1, N ≥ 0, satisfying


factorial bounds


||RN+1||ρ,m ≤ CγN+1(N + 1)! |ε|N+1


for some positive constants C, γ, then the function Xε can be obtained
by Borel summation from the expansion.


Notice that the domain Ωσ,B does not include the imaginary axis, but
that it is tangent to it.


For sectors that include the imaginary axis, there is a much better
known result provided by Watson theorem ([19], [12]). The width π
of the sectors is crucial because of the well known examples exp(−ε2),
which have identical expansions in sectors of width close to π.


2.4. Results in the periodic case, d = 1. In the periodic case d = 1,
we can prove the existence and analyticity of the response solution in
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a domain which is obtained removing a sequence of disjoint disks from
a small disk centered at the origin.


Theorem 6. Let d = 1, ω ∈ R. Let BR(ε0) denote the ball of radius R
around ε0 in the complex plane. Assume that we can find an approxi-
mate solution X≤Nε to order N , N ≥ 1, of (2.1). For R > 0 consider
the domain


DR ≡ BR(ε = 0)− ∪k∈Z\{0}Brk(εk) , (2.7)


where εk = −iωk/[−(ωk)2 + g′(c0)], rk = |k|−3, where R is chosen
sufficiently small


Then, we can find a solution Xε of (2.1) defined for ε ∈ DR. For
a fixed ε, then X≤Nε (·) ∈ Aρ (ρ > 0 independent of ε) and it depends
analytically on ε. The solution Xε is asymptotic to X≤Nε and it is
locally unique in a neighborhood of the asymptotic solution.


Note that the domain DR in (2.7) is connected and it includes loops
enclosing the origin, so that when we have a function defined on it,
it cannot present the Stokes phenomena (different resummations in
different sectors).


Remark 7. Note that, there are at most two k for which (ωk)2 = g′(c0).
For most values of ω, there will be no such k. In such a cases, εk is
not defined or is infinity. Theorem 6 remains valid if in the resonant
case, we set εk =∞ and therefore Brk(εk) ∩ BR(0) = ∅.


To avoid complicating the statement of the Theorem 6 we adopt the
convention εk =∞, when k is resonant, which makes the argument go
through.


Note also that, for any ω we have that Brk(εk) ∩ BR(0) = ∅, when
|k| ≤ k∗(R) and that k∗(R)→∞ as R→ 0+.


2.4.1. Some indications on the proofs. The construction of the asymp-
totic expansions in the assumption H3 of Theorem 3 will be undertaken
in Section 4. This will require several hypotheses of Diophantine prop-
erties of ω and of non–degeneracy of the problem.


We will show also that the formal power series expansion is uniquely
determined by the fact that it satisfies the equation (1.2) in the sense
of power series expansions. Hence, the final result of this paper will be
that the hypotheses discussed in Section 4 which imply H3, also imply
the existence of an analytic function in a domain. The reason why we
have formulated the main result in this way is because there are several
sets of hypotheses that lead to H3. Another reason to split the results
in two steps is that the proof of Theorem 3 is based on very different
techniques, than the verification that the other hypotheses imply H3.
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As we will see later, the Diophantine assumptions we make are much
weaker than the so called Brjuno conditions. Thus, we settle a question
raised in [8] on whether it is possible to obtain solutions when the
frequency has Diophantine properties weaker than Brjuno.


Since, for some technical purposes, it seems desirable to establish
larger domains of analyticity in ε, we start by giving the proof in con-
ical sectors (see Section 6.1); then we extend it to parabolic domains
requiring slightly stronger hypotheses, but obtaining a larger analytic-
ity domain (see Section 6.2). The results presented are far from opti-
mal, but we hope to convey that the method presented here is flexible.
One motivation to obtain larger analyticity domains is to study the
summability properties of the expansions.


We will also state some results for finitely differentiable functions.
In such a case, we will only conclude that the response functions can
be constructed for ε ∈ (0, ε0] for some 0 < ε0 � 1 and that they are
finitely differentiable (see Section 8.2).


The methods also work in cases that the x is higher dimensional. We
discuss this very briefly in Section 8.3.


We note that Theorem 3 will be proved by a contraction mapping
argument, so that if we give an approximate solution (e.g. a formal
power series or a numerical computation) that solves the invariance
equation approximately, then there is a true solution close to the ap-
proximate one. This is often called an “a-posteriori” formulation of
KAM theory, which can be used to validate approximately computed
solutions.


3. Some spaces of analytic functions


To implement the program outlined above, we need to make precise
the spaces in which we are considering the problem. Note that the
discussion in Section 5.1 just requires that the space is characterized
by Fourier coefficients – so that indeed Mε is invertible – and that the
composition operator X → G ◦ X is smooth, when X is given the
appropriate topology. With a bit of foresight for further applications,
we would also like that the spaces can be easily adapted to higher
dimensions or to the case that G is only finitely differentiable.


Given a function f : Td → R, we denote its Fourier expansion as


f(θ) =
∑
k∈Zd


f̂k e
2πik·θ .


If the function f is analytic, it satisfies the Cauchy bounds


|f̂k| ≤ Ce−2πρ|k| , (3.1)







RESPONSE FUNCTIONS IN STRONGLY DISSIPATIVE SYSTEMS 11


for some positive constant C, where ρ > 0 is a lower bound on the
radius of analyticity around any point and |k| = |k1|+ · · ·+ |kd|.


Definition 8. A function f is a trigonometric polynomial of order K,
if the Fourier expansion of f contains just Fourier coefficients f̂k with
|k| ≤ K, namely


f(θ) =
∑


k∈Zd, |k|≤K


f̂k e
2πik·θ .


Definition 9. Given ρ > 0,m ∈ N, we define for a function X : Td →
C:


||X||2ρ,m =
∑
k∈Zd
|X̂k|2(1 + |k|2)me4πρ|k| . (3.2)


We denote by Aρ,m the Banach space of functions X, such that ||X||ρ,m
is finite endowed with this norm.


Remark 10. Note that for a multi–index, we use |k| to denote the `1


norm of k (the sum of the coefficients). The choice of a norm of k is
important for the exponential term in the norm and different equivalent
norms for k lead to different spaces of analytic functions. In contrast,
for ρ = 0, any choice of the norm of k leads to an equivalent norm in
the space of functions.


The spaces Aρ,m are very used in analysis; an important property
is that the norm can be expressed as an integral. In fact, by Parseval
identity, we have that ||X||2ρ,m is comparable to integrals up to a positive
constant, say C:


C−1||X||2ρ,m ≤
∫
Tdρ
|X(z)|2 +


∫
Tdρ
|DmX|2 ≤ C||X||2ρ,m , (3.3)


where the integral is understood with respect to the 2d–dimensional
Lebesgue integral in Tdρ.


Note that for ρ > 0 the functions in Aρ,m are analytic in the interior
of Tdρ and extend to Sobolev functions on the boundary of Tdρ. In
particular, when m > d they extend to continuous functions on the
boundary of Tdρ and the Aρ,m–norm is stronger than the C0(Tdρ)–norm.


For our purposes, it will be enough to remark that when m > d it is
very easy to see that the space Aρ,m can be identified with the closed
space of Hm(Tdρ) – the standard Sobolev space – consisting of analytic
functions (notice that the Sobolev embedding theorem shows that the
limit in Hm is also a limit in C0 and it is very elementary that the
uniform limit of analytic functions is analytic. Variants of this are also
true in lower regularities, but we will only need the elementary results.)
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When ρ = 0 we recover the standard Sobolev spaces, since A0,m =
Hm(Td). Therefore, by Sobolev embedding theorem, we have that
A0,m embeds into the space of continuous functions for m > d (note
that we are using 2d–dimensional integrals, [18]). However, for ρ = 0
the integrals we are considering in (3.3) are d–dimensional Lebesgue
integrals, rather than the 2d–dimensional Lebesgue integrals that we
were considering when ρ > 0. This is a rather substantial change in
the notation, which causes that the m index needed for the Banach
algebra changes by a factor of 2.


4. Construction of the approximate solution


In this section we show how to construct approximate solutions and
to obtain some preliminary bounds. This is, of course, the realm of
the standard formal perturbative theory. We note that there is a com-
promise between the complication of the non–linearity and the small
divisor conditions that are needed. We present several results in this
direction. We note that the conditions needed are very mild. In partic-
ular, they are milder than the Brjuno condition, for example Lemma 11
allows for rational frequencies. Of course, Theorem 3 shows that once
we have these approximate solutions, we have a true solution.


4.1. Trigonometric polynomials.


Lemma 11. Assume that


• H3.a f is a trigonometric polynomial of order K and ω is non–
resonant up to the order NK, i.e. ω · k 6= 0 for all k ∈ Zd\{0}
with |k| ≤ NK, where N is the order of the approximate solu-
tion.


Then, there exists an approximate solution to order N ≥ 1 of (2.1)
(compare with H3).


Proof. Let us expand Xε(θ) in Fourier–Taylor series as


Xε(θ) =
N∑
j=1


εjXj =
N∑
j=1


εj
∑
k∈Zd


X̂jke
2πik·θ ; (4.1)


we show that we can define an approximate solution X≤Nε (θ) of (2.1)
as a finite truncation of (4.1) up to the order N . Taking into account
(2.1), we obtain


∞∑
j=1


εj
∑
k∈Zd


[−ε(2πω·k)2+2πiω·k]X̂jke
2πik·θ+εg(c0+


∞∑
j=1


εjXj) = ε
∑


k∈Zd,|k|≤K


f̂ke
2πik·θ .
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To first order in ε we obtain:∑
k∈Zd


(2πiω · k)X̂1k e
2πik·θ + g(c0) =


∑
k∈Zd,|k|≤K


f̂k e
2πik·θ ;


for k = 0 we have g(c0) = f̂0 providing


c0 = g−1(f̂0) ,


while X̂10 is unknown and it will be determined at next order. For
k 6= 0, |k| ≤ NK, we obtain


2πiω · k X̂1k = f̂k ,


namely


X̂1k =
f̂k


2πiω · k
, k 6= 0 , (4.2)


so that X1 is well defined, due to the non–resonance condition up to the
order NK. One can proceed recursively up to the order N by defining
X̂Nk as the solution of∑


k∈Zd
[(2πiω · k)X̂Nk] e


2πik·θ = SN(c0, X1, ..., XN−1) , (4.3)


for a suitable function SN depending on c0, Xj at orders strictly less
than N . Matching the k = 0 case in (4.3) we obtain


〈SN(c0, X1, ..., XN−1)〉 = 0 , (4.4)


which is an equation for X̂N−1,0, since all the other terms are known.
The equation (4.4) can be solved because we note that (4.4) has the
form


X̂N−1,0 g
′(c0) + 〈S̃N(c0, X1, ..., XN−2)〉 = 0 ,


for some known function S̃N ; such equation can be solved, since we
assumed g′(c0) 6= 0. For the other coefficients, we need to find a solution
of


2πi ω · k X̂N,k = (̂SN)k ; (4.5)


the equation (4.5) can be solved provided that ω · k 6= 0 for all the k


for which (̂SN)k 6= 0. Finally, it is well known (see e.g. [6]) and easy to
see (using recursion relations for the expansions of trigonometric func-
tions of the composition) that the assumption that f is a trigonometric
polynomial of order K implies that SN is a trigonometric polynomial
of order NK. Hence, under the assumption H3.a, we can perform the
step N − 1 times and obtain a solution to order N . �
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Note that, the way that we obtain X̂N,k in (4.5) is to divide by ω · k.
Hence, the size of these small divisors is crucial. In the periodic case
(d = 1), we have |ωk| ≥ |ω| > 0 when k 6= 0; hence, in the periodic
case, the divisors are not small. When d ≥ 2, one sees that ω · k might
become arbitrarily small for large enough k. Indeed, the results are
stronger in the periodic case (see Theorem 6 and Section 7).


4.2. Some examples of analytic solutions without asymptotic
expansions. The construction of Lemma 11 leads to the following
example that shows that there are situations where we can apply The-
orem 3 to construct solutions in the physical domain ε > 0, but never-
theless the formal series expansions cannot be defined beyond a finite
order.


Example 12. Given g satisfying g′(c0) 6= 0 (c0 as before) and given
integers N0 > 1, K > 0, consider a frequency ω such that ω · k 6= 0
for all |k| < N0K, but such that ω · k = 0 for some |k| = N0K. Then,
we can find trigonometric polynomials f of degree K, such that it is
possible to find approximate solutions up to order N0 − 1, but there is
no approximate solution up to order N0.


Clearly, for the trigonometric polynomials in Example 12 we cannot
find any approximate solution to order N0 – a fortiori, we cannot find
an asymptotic expansion to all orders. Nevertheless, Theorem 3 shows
that we can obtain an analytic solution defined in a large set (e.g. a
parabolic domain).


In fact, we recall that, due to the non–resonance condition of Exam-
ple 12, Lemma 11 allows to find solutions up to the order N0 − 1, no
matter what the trigonometric polynomial is.


Hence, to verify the claim in Example 12, we just need to verify
that it is possible to construct polynomials in such a way that it is
impossible to find the coefficient XN0 . This follows easily because of
the fact that when we look at the equations of order N0 we have to
solve the equations (4.5).


The key observation is that, if there is a k with |k| = NK0, the


coefficient (̂SN0)k will be an algebraic expression of the coefficients of
f which are not identically zero. This can be easily seen because if we


take for example k = (N0K, 0, . . . , 0) in the expression of (̂SN0)k, there
is one term of the form A(f(K,0,...,0))


N0 where A is a non–zero factor.


Remark 13. Note that the above argument shows that if we fix a reso-
nance of order N , the only requirement on the trigonometric polynomial
to exhibit the phenomenon described in Example 12 is that the coeffi-
cient in the expansion at order N corresponding to the resonance does
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not vanish. Since the coefficient of the perturbative expansion is a poly-
nomial in the coefficients of f , and we have shown that the polynomial
is not trivial, the set of zeros will be a codimension 1 variety in the
space of coefficients.


Therefore, given a resonant frequency as in the assumptions of Ex-
ample 12, if we consider the space of coefficients of the trigonometric
polynomial, there will not be a perturbative expansion to all orders,
except if the coefficients lie on a codimension 1 variety.


4.3. Approximate solutions for general analytic forcing func-
tions. Eliminating the assumption that f is a trigonometric function,
we obtain the following result. Note that the Diophantine conditions
that we assume are much weaker than the Brjuno condition.


Lemma 14. Assume that


• H3b.1 f is analytic and therefore it satisfies (3.1) for some
ρ > 0.
• H3b.2 For some α > 0, 0 < η < ρ, N > 0, the frequency ω


satisfies
|ω · k|−1 ≤ α exp(2πη|k|/N) ,


where ρ > 0 is a lower bound on the radius of analyticity.


Then, there exists a formal expansion to order N ≥ 1 of (2.1) (compare
with H3).


With some stronger assumptions on the Diophantine properties of
the mapping, we obtain the existence of solutions to all orders. The
assumptions are still weaker than the Diophantine conditions.


Lemma 15. Assume as before H3b.1 and (in place of H3b.2)


• H3b.3 limK→∞
1
K


log max|k|≤K |ω · k|−1 = 0 ;


then, we have the existence of solutions to all orders of (2.1).


4.3.1. Proof of Lemmas 14 and 15. The key of the proof of Lemmas 14
and 15 is the following Proposition.


Proposition 16. Let f ∈ Aρ,m with zero average. Assume that, for
some 0 < η < ρ, α > 0, we have |ω · k|−1 ≤ α exp(2πη|k|). Then, there
is a unique solution u of


ω · ∂θu = f , (4.6)


with u having zero average. Furthermore, we have that


||u||ρ−η,m ≤ Cα||f ||ρ,m
for some constant C > 0.







16 R. CALLEJA, A. CELLETTI, AND R. DE LA LLAVE


Proof. Due to the definition of the norm in (3.2), we obtain:


||u||2ρ−η,m =
∑
k∈Zd
|ûk|2(1 + |k|2)me4π(ρ−η)|k|


=
∑
k∈Zd


(2π)−2|f̂k|2|ω · k|−2(1 + |k|2)me4π(ρ−η)|k|


≤
∑
k∈Zd


(2π)−2|f̂k|2α2e4πη|k|(1 + |k|2)me4π(ρ−η)|k|


≤ C2α2||f ||2ρ,m
for some constant C > 0. �


The following result is also proved by the same method, but it is
very standard. We recall that we say that ω is Diophantine when


|ω · k|−1 ≤ ν|k|τ , k ∈ Zd \ {0} (4.7)


for some ν ≥ 1, τ ≥ 1.


Proposition 17. Let f ∈ Aρ,m (where ρ ≥ 0) with zero average. As-
sume that ω satisfies (4.7). Then, there is a unique solution u of (4.6)
with u having zero average. Furthermore, we have that


||u||ρ,m−τ ≤ Cν||f ||ρ,m
for some constant C > 0.


Note that Proposition 17 remains valid in the case ρ = 0.


4.4. Proof of Lemma 14. To prove Lemma 14 we argue that, as in
Lemma 11, X1 is given by (4.2) as


X1(θ) =
∑
k∈Zd


f̂k
2πiω · k


e2πik·θ .


In a similar way, we can proceed as in Lemma 11 to define the solution
up to the order N , which is given as the solution of the equation∑


k∈Zd
(2πiω · k)X̂Nke


2πik·θ =
∑
k∈Zd


[(2πω · k)2X̂N−1,k + T̂Nk]e
2πik·θ (4.8)


for a suitable function TN(θ) =
∑


k∈Zd T̂Nke
2πik·θ defined in terms of


c0, X1, ..., XN−1 and such that the right hand side of (4.8) has zero


average, thanks to the choice of X̂N−1,0. Then, we have:


X̂Nk =
(2πω · k)2X̂N−1,k + T̂Nk


2πiω · k
.
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The hypothesis H3b.2 guarantees that we can apply Proposition 16
to get estimates of the solutions Xj, j = 1, ..., N , on domains of size
ρ− jη/N , so that at each step we can take a domain loss equal to any
number bigger than η/N .


The result of Lemma 15 is very similar to those stated in [8], [10],
[11], except that the Diophantine conditions considered here, namely
H3b.2, are weaker than the Brjuno conditions considered in [11] and a
fortiori than the Diophantine conditions considered in [10]. The ques-
tion of whether it is possible to weaken the Diophantine conditions was
raised in [8, Section 6].


In Section 8.2 we will present a result very similar to Theorem 3 –
as well as analogues of Lemmas 11 and 14 – for finitely differentiable
problems.


5. Proof of Theorem 3: estimates on M−1
ε


We will prove Theorem 3 by formulating the problem as a fixed
point theorem in Banach spaces. Of course, we will have to specify
the Banach spaces, which will make Theorem 3 more quantitative than
hitherto stated.


5.1. Preliminaries and formal considerations. The key observa-
tion is that for ε 6= 0, the operator Mε defined in (2.2) is boundedly
invertible from some spaces of analytic functions to themselves. Note
that in Fourier coefficients the operator Mε is diagonal:


(̂Mεf)k = mε(2πω · k)f̂k ,


where


mε(t) = −εt2 + εg′(c0) + ıt .


Therefore, we can obtain estimates on the operator M−1
ε (in many


Banach spaces of functions, whose norm is determined by the Fourier
coefficients) by estimating


Γ(ε) ≡ sup
t∈R
|mε(t)|−1 ≥ sup


k∈Zd\{0}
|mε(2πω · k)|−1 . (5.1)


Of course, the estimates for Γ will be singular as ε tends to zero, but
it will be apparent that if ε converges to zero away from the imaginary
axis, one can obtain estimates (see Section 5.3). Moreover, we note
that if we consider a Banach space which is also a Banach algebra, the
operator X → G ◦X will be Lipschitz and, given that G is quadratic,
we have that the Lipschitz constant will be small in a ball of small
radius. Hence, if we consider X in a space of functions which is at the
same time determined by the Fourier coefficients and a Banach algebra
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under multiplication, we will show that the fixed point problem has a
solution for ε in a suitable domain, which we will make explicit.


Note also that in the periodic case we can obtain much better esti-
mates for Mε. In the periodic case we have that ω · k is bounded away
from zero, so that it suffices to study


Γper(ε) ≡ sup
k∈Z\{0}


|mε(2πωk)|−1 .


As we will see, in the periodic case taking the sup over 2πωk will be
much smaller than taking the sup over the whole real line. Of course,
when ω is higher dimensional, since ω · k is dense on the real line, it
is the same to take the sup over ω · k or over the whole real line. In
Sections 5.2, 5.3 we will present the estimates that allow to apply the
contraction argument and to obtain response solutions of (1.2).


5.2. Estimates on multiplication and composition operators.
We have the following well known result (see, e.g., [18]).


Proposition 18. When m > d, ρ > 0 or m > d/2, ρ = 0, Aρ,m is a
Banach algebra under multiplication.


Proof. Proposition 18 is an immediate consequence of (3.3) and the
fact that Sobolev functions are a Banach algebra under multiplication
for m > d, ρ > 0 (recall we are integrating over a manifold of real
dimension 2d. ([18]). �


Corollary 19. Under the conditions of Proposition 18, if G : C→ C is
analytic in a ball around x0 and B ⊆ Aρ,m is a ball around the constant
function taking values in x0, then the mapping ΛG : B → Aρ,m defined
as


ΛG(X) = G ◦X
is analytic as a mapping from Aρ,m to itself.


If the mapping X = Xε depends analytically on the parameter ε, then
ΛG depends analytically on the parameter ε. Furthermore, we have


DΛG(X)η = G′(X)η .


We note that, because G is analytic, we have that G(t) =
∑


nGnt
n


and that we have for some η > 0 the estimate |Gn| ≤ Cηn.
We see that, by the Banach algebra property of the norm, one has
||GnX


n|| ≤ Cηn||X||n. Hence, when ||X|| is sufficiently small, the
series


∑
nGnX


n converges uniformly.
Corollary 19 can be proved by a reorganization of the power series


(see, e.g., [5], Section 2.5.5., p. 31).
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5.3. Estimates on the operator Mε. We start with some elemen-
tary considerations on the computation of the supremum involved in
the definition of Γ(ε) in (5.1). Note that we just need to estimate the
minimum of the modulus of a quadratic complex polynomial in t. This
can be readily transformed into computing the minimum of a quartic
real polynomial, which is a rather straightforward albeit tedious prob-
lem. We want to pay, of course, special attention to the case when ε is
small.


We note that, once we obtain estimates on the infimum of the multi-
plier Γ, we obtain estimates for M−1


ε in all the spaces whose norms are
obtained from sizes of the Fourier coefficients. This includes, of course,
the spaces Aρ,m for all values of ρ ≥ 0, m ∈ N and also the Sobolev
spaces with ρ = 0, which we will use for the results on finite regularity
in Section 8.2.


5.3.1. Estimates on the physical region ε > 0. We note that, when
ε ∈ R+, we have


S(ε, t) ≡ | − εt2 + εg′(c0) + ıt|2 = (−εt2 + εg′(c0))2 + t2 .


This is a quartic polynomial in t, whose derivative is just −4εt(−εt2 +
εg′(c0)))+2t. Clearly, the derivative has real zeros only for t = 0 and for
the two critical points t±, which are the solutions of t2 = g′(c0)− 1


2
ε−2.


If we evaluate S at t = 0 we obtain S(ε, t = 0) = ε2g′(c0)2. On the
other two critical points t±, we obtain S(ε, t±) = g′(c0)− 1


4ε2
. Therefore,


we conclude that the minimum of S(ε, t) is reached for t = 0 and, hence,
Γ(ε) = |εA|−1 with A = g′(c0).


Whenever | Im (ε)| ≤ α|ε|, α� 1, we can use first order perturbation
theory for the value of the minimum and conclude that


Γ(ε) ≤ C|εA|−1


on a conical sector that includes the real axis.


5.3.2. Estimates on the imaginary axis. Note that, when ε = is,


S(is, t) = | − it2s+ it+ isg′(c0)|2 .
For fixed s, the equation S(is, t) = 0 is a quadratic equation in t so
that its discriminant is 1 − 4(−s)sg′(c0). When g′(c0) ≥ 0, for any s
we can find real roots for t. When g′(c0) < 0, real roots exist for small
enough s.


Therefore, when ε = is, the operator Mε is unbounded and the
elementary fixed point argument used in this paper does not apply
(of course, more sophisticated methods such as KAM theory ([3]) may
work under stronger resonance assumptions).
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5.3.3. Estimates in a parabolic domain. To study the analytic proper-
ties of the function Xε (in particular, whether it can be reconstructed
by Borel summation of its asymptotic expansion), it will be interesting
to study its properties in domains which are tangent to the imaginary
axis. We fix


ε = Br2 + ir (5.2)


with r ∈ R and B > 0 large enough, say B > B0 for some B0 ∈ R+.
We aim to prove the following result.


Proposition 20. When ε is on the the parabola (5.2), we have:


Γ(Br2 + ir) ≤ B−1r−2C , (5.3)


for a suitable positive constant C.


Because of the maximum principle, if we bound the function Γ(ε)
in the parabola (5.2), it will also be bounded in the domain {Re(ε) ≥
B Im (ε)2, 0 ≤ Re(ε) ≤ 10−3}.


To prove (5.3), we start by writing S as


S(t) = (Br2)2(−t2 + A)2 + (−rt2 + t+ rA)2 .


The first term vanishes at t = ±
√
A. We can define three regions in t,


namely


I+ = [
√
A−10−3


√
A,
√
A+10−3


√
A] , I− = [−


√
A−10−3


√
A,−
√
A+10−3


√
A]


and the complement of I+ ∪ I−. If t belongs to the complement, we
have the estimate


S(t) ≥ (Br2)2(−t2 + A) ≥ (Br2)2Cs ,


for as suitable positive constant Cs. Then we have√
S(t) ≥ CsBr


2 ,


which implies


Γ(ε) ≤ CB−1r−2 . (5.4)


In the intervals I− and I+, we can bound the first term in S(t) from
below by zero and we have


S(t) ≥ (−rt2 + t+ rA)2 ≥ ((1− 10−3)
√
A)2 +O(r) ≥ C(Br2)2 .


Taking the infimum we have that Γ(ε) satisfies the bound (5.4) for any
t.
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6. Proof of Theorem 3: the existence part


The proof of the existence of the solution in Theorem 3 relies on a
fixed point theorem on Banach spaces. We recall that we proved in
Lemma 11 and Lemma 14 the existence of an approximate solution
X≤Nε as in (2.5). We can write (2.4) as


Xε(θ) = εM−1
ε f(θ)− εM−1


ε G(Xε(θ)) . (6.1)


We define the operator Tε, acting on functions analytic in ε and taking
values in Aρ,m, as


Tε(Xε(θ)) ≡ εM−1
ε f(θ)− εM−1


ε G(Xε(θ)) . (6.2)


The equation (6.1), equivalent to (1.2), is a fixed point equation for
Tε. To study this equation, we need to find the domain of Tε. Then,
we will show that the operator Tε maps the domain into itself and that
it has a Lipschitz constant smaller than 1.


We will present two versions of the arguments. One in cones in-
cluding the physical sector and another argument including parabolic
domains. Of course, the parabolic domain is more general, but we will
present both, because they involve different considerations and in the
cone case we will obtain faster convergence. The cone case will also
generalize better to finite differentiable functions.


6.1. Proof of Theorem 3 in conical sectors. In this section we
provide a proof of a slight modification of Theorem 3, since we will
consider domains which are just sectors. We will need to assume that
the approximate solution is a solution at least to order 1 and we will
obtain explicit estimates on the convergence.


We will consider Tε defined in the space Aρ,m,δ,σ consisting of the
analytic functions of ε taking values on Aρ,m and with ε ranging on the
domain ε ∈ Υδ,σ. We endow Aρ,m,δ,σ with the norm


||Xε||ρ,m,δ,σ = sup
ε∈Υδ,σ


||Xε(·)||ρ,m ,


which makes Aρ,m,δ,σ a Banach space (it is standard that the analytic
functions taking values into a Banach space are closed under the supre-
mum norm).


For the subsequent estimates, it will be important for us that the
domain Υδ,σ (see its definition in (2.6)) does not include the origin.
Hence, we can bound from above the singular factors by σ−1, since σ
is the minimum distance to the origin in the domain. Also, we see that
the maximum distance to the origin can be bounded from above by a
constant times σ. As we will see later, this will allow us to show that
the bad factors are dominated by the good factors. It will be quite
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important that in the domain we consider, the distance is bounded
away from zero and that the maximum and the minimum distances are
comparable.


Remark 21. Note that, once we consider the operator Tε acting on
spaces of analytic functions in ε, we will obtain automatically that the
solution depends analytically on parameters. On the other hand, we
note that the way that we prove the contraction in the sup–norm is to
prove estimates for a fixed ε and take the supremum. Therefore, the
argument we present also contains as a particular case the convergence
for each fixed value of ε. In the numerical considerations (or when we
consider only the real values), it is advantageous to consider just fixed
values of ε and to obtain only pointwise convergence. This will also
play a role in establishing uniqueness and analytic continuation (see
Corollary 22).


Due to the Banach algebra property of Aρ,m and to the fact that
G′(0) = 0, we have that for Xε, Yε in a ball of radius α (α < α0)
centered at the origin of Aρ,m,δ,σ, the operator Tε is Lipschitz with
constant K1α, namely


‖Tε(Xε)− Tε(Yε)‖ρ,m ≤ K1α‖Xε − Yε‖ρ,m
for some constant K1 > 0. The reason is that, as we have shown, we
can bound ||M−1


ε || by a constant and that the Lipschitz constant of the
composition with G on the right is bounded by a constant times α.


Assume that we are given an approximate solution X≤Nε of (6.1)
such that ‖X≤Nε ‖ρ,m ≤ K2σ for some K2 > 0.


Consider a ball of radius β around X≤Nε ; then, we have that Tε is
contractive, if


K1(K2σ + β) < 1 ,


provided
K2σ + β ≤ α .


Moreover, we know that the approximate solution satisfies


‖Tε(X≤Nε )−X≤Nε ‖ρ,m ≤ K3σ .


This is because we know that Xε solves the equation (2.1) up to O(ε2)
and we obtain the fixed point equation just by multiplying by M−1


ε ,
whose norm is bounded by |ε|−1.


The ball of radius β in Aρ,m centered around Xε gets mapped into
itself if


K3σ +K1(K2σ + β)β ≤ β .


To conclude the argument it suffices to show that given K1, K2, K3,
the properties of the operator and the approximate solution, for all
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0 < σ ≤ 1 (the size of the annulus in ε–space), we can choose α as
the radius of a ball centered at zero in function space in which we are
doing the a-priori estimates, β as the radius of a ball centered around
the approximate solution, in such a way that we can fulfill the following
conditions:


K1(K2σ + β) < 1


K2σ + β ≤ α


K3σ +K1(K2σ + β)β ≤ β .


(6.3)


The second condition in (6.3) implies that the ball Bβ(Xε) = {Yε ∈
Aρ,m : ‖Xε − Yε‖ρ,m ≤ β} and Tε(Bβ(Xε)) are contained in the ball in
which we have a–priori estimates for the Lipschitz constant in the ball
Bα(0); the third condition implies that Tε(Bβ(Xε)) ⊂ Bβ(Xε) and the
first one that Tε is a contraction on Bα(0), a fortiori in Bβ(Xε).


Now we verify that indeed, for all σ > 0, we can find the desired
α, β. To simplify the computations, we can take β = 2K3σ, so that
(6.3) becomes


K1(K2 + 2K3) ≤ 1


2σ


K2 + 2K3 ≤
α


σ
,


which can be fulfilled by a proper choice of the constants. This implies
that the operator Tε admits a fixed point, which is the solution of the
equation (1.2) in the domain Υδ,σ.


Notice that one of the conclusions of the theorem is that we get local
uniqueness for all the solutions. In particular, we obtain the following
result.


Corollary 22. If we fix ε and denote by X≤Nε an approximate solution,
then for any θ ∈ Td


lim
n→∞


T nε X≤Nε (θ) = Xε(θ) .


Furthermore, we observe that since the contraction result is true for
all σ sufficiently small, we can obtain the existence and local uniqueness
for σ and 0.9σ. The pointwise uniqueness in Corollary 22 shows that
the two functions produced in Υδ,σ and Υδ,0.9σ have to agree in the
intersection of the two domains. Hence, they are analytic continuation
of each other. Therefore, we can obtain a solution of (2.1) defined for


ε ∈ ∪0<σ<RΥδ,σ
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for some R > 0. This solution is locally unique because it can be
obtained as the pointwise limit of the repeated iteration of Tε starting
with the approximate solution.


Notice also that, if we started with an approximate solution satis-
fying the equation to a higher order, the true solution would differ by
the same order.


6.2. Proof of Theorem 3 in parabolic domains. The proof is very
similar to the proof of Theorem 3 in Section 6.1, but the argument is
quantitatively different.


We will consider Tε defined in the space Aρ,m,B,σ consisting of the
analytic functions of ε taking values on Aρ,m and with ε ranging on the
domain Ωσ,B.


Following the argument before, but taking into account that, for
ε ∈ Ωσ,B, we have ||M−1


ε || ≤ B−1σ−2, on Bα(0) in Aρ,m,B,σ we have
that


Lip(Tε) ≤ K1ασB
−1σ−2 .


Again, we have that the approximate solution X≤Nε satisfies


||Tε(X≤Nε )−X≤Nε ||ρ,m ≤ K2σ
3B−1σ−2 .


In the ball Bβ(X≤Nε ) the map Tε will be a contraction, if the upper
bound on the Lipschitz constant is smaller than 1, namely


K1(K2σ + β)B−1σ−1 < 1 . (6.4)


Provided, of course, that


K2σ + β ≤ α0 , (6.5)


for some α0 > 0, the ball Bβ(X≤Nε ) is mapped into itself if


K1(K2σ + β)B−1σ−1β +K2σ ≤ β . (6.6)


As before, we want to show that, given K1, K2, α0, for all B > B0, σ <
σ0, it is possible to find β > 0 such that (6.4), (6.5), (6.6) are satisfied.
We note that if we take β = Aσ for some A > 0, the conditions (6.4),
(6.5),(6.6) become


K1(K2 + A)B−1 ≤ 1


(K2 + A)σ ≤ α0


K1(K2 + A)B−1A+K2 ≤ A .


(6.7)


For example, by choosing A ≥ 10K2, the first and third conditions
in (6.7) are satisfied by taking B sufficiently large, while the second
condition is fulfilled by taking σ small enough. The rest of the proof
does not need any change from the proof in the sectorial domains.







RESPONSE FUNCTIONS IN STRONGLY DISSIPATIVE SYSTEMS 25


7. Proof of Theorem 6


7.1. Some auxiliary estimates. To prove that (6.1) is a contraction,
we will find it convenient to estimate


Ψ(|ε|) = |ε|2Γper(ε) = |ε|2 sup
k∈Z\{0}


|mε(2πωk)|−1 , (7.1)


where
mε(2πωk) = ε [−(2πωk)2 + g′(c0)] + i 2πωk .


A motivation for the study of this function is that ||M−1
ε || ≤ Γper(ε)


and that the Lipschitz constant of Tε, defined in (6.2) in a neighborhood
of the approximate solution, is approximately |ε|2||M−1


ε || (see the end
of the argument in Section 7.1.1).


We consider k fixed and we study each of the functions |ε|2|mε(2πωk)|−1;
the desired estimates (7.1) follow by taking the supremum over k. The
goal is to show that if we fix a certain level η ∈ R+, we have the bounds
|ε|2|mε(2πωk)|−1 ≤ η except in a small ball centered at a point in the
imaginary axis or outside of a large ball.


To simplify the typography, we write


mε(2πωk) = εBk + Ak


with Bk = −(2πωk)2 + g′(c0), Ak = i 2πωk. We have:∣∣∣∣ ε2


εBk + Ak


∣∣∣∣ ≤ ∣∣∣∣ |ε|2


|ε||Bk| − |Ak|


∣∣∣∣ ≡ ϕk(|ε|) .


The function ϕk(t) has a singularity at t = |Ak|/|Bk|; having fixed a
level set η, the solutions of ϕk(t) = η are determined by solving the
pair of quadratic equations:


t2


t|Bk| − |Ak|
= η


t2


t|Bk| − |Ak|
= −η .


(7.2)


Each of the above equations admit two roots t±, one close to the sin-
gularity, say t−, and the other one far away, say t+. In particular, the
first equation in (7.2) has the roots


t± =
|Bk|η


2


(
1±


√
1− 4|Ak|


η|Bk|2
)
,


where t− can be expanded as


t− =
|Ak|
|Bk|


+
|Ak|2


|Bk|3η
+ ... ,
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where the last term denotes the displacement from the singularity and
it is of order k−4. An identical analysis, changing the sign of η yields
the result for the second equation.


In conclusion we have that, for some constant C > 0 and for |ε| ≤ 1,
we have ϕk(|ε|) ≤ η except in the annulus:∣∣∣∣|ε| − |Ak||Bk|


∣∣∣∣ ≤ C|k|−4 . (7.3)


Now, we proceed to study the function |ε|2|mε(2πωk)|−1 more carefully
in the annulus (7.3). We denote εk = Ak/Bk and we note that, for large
k, εk ≈ ik−1ω−1. We just observe that∣∣∣∣ ε2


εBk + Ak


∣∣∣∣ ≤ |ε|2|Bk|
1


|ε− εk|
.


Then, if |ε − εk| ≥ |k|−3 and ε is contained in the annulus (7.3), we
have: ∣∣∣∣ ε2


εBk + Ak


∣∣∣∣ ≤ C|k|−1 .


Therefore, for any given η > 0, we can ensure that for large |k| the
function |ε|2|mε(2πωk)|−1 ≤ η for all |ε| ≤ 1 except for those in a small
disk. For any η > 0, we choose R > 0 sufficiently small in order to
obtain


|ε|2|Γper(ε)| ≤ η (7.4)


for all ε such that |ε| ≤ R, |ε− Ak/Bk| ≥ |k|−3.
We note that the domain in which we obtain the bound (7.4) is a


disk from which we have removed a countable collection of disjoint sets.


7.1.1. The contraction argument in the periodic case. We note that in
the annulus Uσ ≡ {σ ≤ |ε| ≤ 2σ}, since the values of |ε| are compara-
ble to σ, we have that σ2||M−1


ε || is comparable to the function Ψ we
estimated in Section 7.1.


Given any η, we have shown that for σ small enough, on the set
Ũσ ≡ Uσ \ B|k|−3(Ak/Bk) we have that Ψ(ε) ≤ η. As before, we will
consider Tε defined on spaces of analytic functions of ε, θ, with ε ranging
over Ũσ and we endow them with the norm of the sup in ε of the Aρ,m–
norm of the function of θ obtained fixing ε.


As before, we note that starting with an approximate solution X≤Nε
restricted to Ũσ, we have that ||X≤Nε ||ρ,m ≤ K2σ for some K2 > 0.


Therefore, using that in Ũσ, |ε| can be bounded from above and below
by σ times a constant, we obtain that the Lipschitz constant of Tε in
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a ball of radius β = Aσ around the approximate solution is bounded
from above by σ|(K2σ+β)K1| ||M−1


ε || for some K1 > 0, provided that


K2σ + Aσ ≤ α0 . (7.5)


We will therefore obtain that Tε is a contraction in the ball when,


K1(K2 + A)Ψ(2σ) ≤ K1(K2 + A)η < 1 , (7.6)


because the left hand side of (7.6) is an obvious upper bound on the
bound of the Lipschitz constant of Tε. Using that X≤Nε satisfies the
equation at least to order 1, we obtain that ||Tε(X≤Nε ) − X≤Nε ||ρ,m ≤
K3σ. Therefore, we can ensure that the ball Bβ(X≤Nε ) is mapped into
itself if


K1(K2 + A)η Aσ +K3σ ≤ Aσ . (7.7)


Now, we can choose A, η, σ in such a way as to have the three conditions
(7.5), (7.6), (7.7) are satisfied. This shows that, for σ small enough
we obtain a solution which is again unique. Therefore, arguing as
before, we obtain an analytic function defined for ε ∈ ∪0<σ<RŨσ, which
coincides with DR in (2.7).


8. Some further results


8.1. The numerical implementation. The treatment of the prob-
lem we have presented is very well suited for the numerical calculation
of the invariant objects. One possibility is to break the calculation in
two stages following the rigorous treatment presented below.


A) In a first stage, one computes a few terms of the perturbation
expansion as in the proofs of Lemma 11 and Lemma 14.


We note that the operations required are very similar to the standard
calculation of the Lindstedt series in celestial mechanics, which have
been performed in computers since the early 60’s ([2], [15]). One just
needs to develop a toolkit to manipulate Fourier–Taylor series (arith-
metic operations plus composition with some elementary functions).
Some modern surveys with accessible code can be found in [13], [7].


B) In a second stage, for a fixed value of ε, it is convenient to revert
to the fixed point method presented in (6.1). As shown in Section 6,
iterating the right hand side of (6.1) will yield a contraction for small
enough ε. The results in Section 6 also show that if we take as initial
points the evaluation of the polynomial approximations obtained in
part A), the iterations converge.


The implementation of (6.1) entails just composing with G and ap-
plying the operator M−1


ε . The composition is fast if we discretize Xε


in a grid of points. On the other hand, the application of the operator
M−1


ε is diagonal in Fourier space. Of course, one can pass from the
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representation in discrete points to the Fourier representation using
FFT, which is a fast algorithm which has optimized implementations
in practically every computer. Hence, it is very easy to implement a
contraction algorithm for small ε.


Note also that the implementation of the iterations for different val-
ues of ε starting from the same polynomial guess is very easy to paral-
lelize.


Note that the above algorithm is very well suited for the case when
ε is very small. This is the regime when the equations are very stiff
and conventional numerical integrators (e.g. Runge–Kutta, Adam–
Bashforth, etc.) have difficulties in producing results.


One problem we have not considered is how to obtain numerical
results in the optimal domain; on the other hand, we note that for
the values of ε such that our operator is not a contraction, standard
numerical integrators will work very well.


8.2. The finite differentiable case. The same strategy presented
here applies also to the case that g and f are finitely differentiable (but
with sufficiently high derivatives). In this case, of course, we consider
only that ε ∈ R.


As in the analytic case, we proceed to study first the existence of
finite order approximations, then we reduce to a fixed point problem.


One important technical lemma is the following result.


Proposition 23. Let m > d/2; assume that g ∈ Cm+2. Then, the
composition operator Cg : A0,m → A0,m defined by Cg(X) = g ◦X is C2


and we have:
g ◦ (u+ v) = g ◦ u+ g′ ◦ u v + E


with ||E||A0,m ≤ C||g′′ ◦ ξv2||A0,m with ξ = u+ βv for some β ∈ (0, 1).
Similarly, if we have g ∈ Cm+`+1, we obtain that there are expansions


in the composition to order ` with a remainder of order `+ 1.


Proposition 23 is a well known result. A concise proof can be found
in [4] (see also [18]).


There is a very extensive literature on this problem leading to many
variations (sometimes Cg is called a Nemitskii operator [1], [16]). �


In analogy with the analytic case, we have the following result.


Theorem 24. With the same notations as in Theorem 3, assume that
m > d/2. Assume furthermore that there exists an approximate solu-
tion to order N ≥ 2 and that g ∈ CNτ+m+2. Then, for all |ε| sufficiently
small there exists a solution Xε ∈ Aρ,m of (6.1) (and hence of (2.1)).
Furthermore, the mapping sending ε to Xε is CNτ+m+2, when Xε is
given the A0,m topology.
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The proof of Theorem 24 goes along the lines of that of Theorem 3
and we sketch here the main steps.


8.2.1. Existence of finite order approximations. The existence of ap-
proximate solutions can be obtained by following the formal power
series solutions. There are, as before, trade–offs between the assump-
tions on small divisors and the assumptions needed on the regularity
of f .


As in Lemma 11, we point out that if f is a trigonometric polynomial
of order K and g ∈ CN+1, we can compute the expansion to order N
in A0,m provided that ω · k 6= 0 for 0 < |k| ≤ NK.


Also, in the case that ω satisfies (4.7) and that g ∈ CNτ+m+2, we can
find solutions to order N . To verify the latter statement, we just note
that we can perform the expansions to order N and that, to match the
solutions, we can use use Proposition 17.


8.2.2. The fixed point argument. As in the analytic case, we argue that
the operator at the right hand side of (6.1) is a contraction in A0,m


for sufficiently small ε and that it maps a ball around the approximate
solution into itself. The fixed point theorem provides a solution of (6.1)
as claimed in Theorem 24.


8.3. Higher dimensional results. The method of proof adapts very
easily to the case that x is multidimensional x : R→ R` and, of course,
f is also a function taking values in R` and g : R` → R`.


It suffices to assume that there exists a c0 such that g(c0) = 〈f〉 and
that Dg(c0) is invertible and, for convenience, diagonalizable. Notice
that after a linear change of variables, we can, of course, assume that
Dg(c0) is diagonal.


Therefore, the linear part of the problem becomes just ` uncoupled
copies of the problem we have studied, so that the same estimates we
have obtained for M−1


ε apply also to the multi–dimensional case. The
estimates on the nonlinear part G remain the same. Hence, the fixed
point argument remains identical.


The existence of formal approximate solutions is again ` copies of the
argument before, so that the results remain true only with a change of
notation.
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