nonlinear solvers, bisection, roots, dimension

An improved bisection method in two dimensions

Christopher Martina,1,∗, Victoria Rayskinb,1

The Pennsylvania State University, Penn State Altoona

aDivision of Business and Engineering
bDivision of Mathematics and Natural Sciences

Abstract

An algorithm and supporting analysis are presented here for finding roots of
systems of continuous equations in two dimensions by bisection iteration. In
each iteration, an initial domain in R2 is split into equally sized sub-domains.
Investigating a candidate domain’s bounding path for encirclements of the
origin provides the test for containment of a solution, and the domains not
guaranteed to contain a solution are discarded. Attention is paid to the
potential for accidental convergence to a false solution, and sampling criteria
for resolving the boundary are provided with particular emphasis on robust
convergence.

Keywords: nonlinear solvers, bisection, roots, dimension

1. Introduction

For the formidable problem of estimating the roots of systems of nonlinear
equations, approaches must balance between the competing interests of com-
putational efficiency and robust convergence. At one extreme, brute-force
exploration of a domain is extremely stable but horribly inefficient. At the
other extreme, classical favorites (like Newton-Rhapson) strive to be efficient,
but often require substantial effort to obtain reliable convergence in “badly
behaved” functions. Especially given the broad commercial availability of
CPUs with parallel processing, there is renewed purpose for algorithms that
make some compromises for the sake of convergence if they can be readily
parallelized.

∗crm28@psu.edu

Preprint submitted to Elsevier January 12, 2016

Harvey and Stenger proposed an extension of bisection iteration to two
dimensions in 1976 (see [8]), and extensions to higher dimensions have since
been proposed[11, 5]. Higher dimensional bisection implementations are usu-
ally inhibited by the difficulty of establishing a reliable test for a domain’s
containment of a solution. Stenger et. al. addressed the problem by apply-
ing the Kronecker Theorem[9] to establish a test based on the topological
degree[12] of a domain’s boundary with respect to the origin. If the topolog-
ical degree is non-zero, the domain is guaranteed to contain a solution.

As we address these ideas in more detail, it should become apparent
that implementation has motivated us to consider a boundary’s “angle of
encirclement” around a solution, but the result is fundamentally the same
as topological degree. Readers may also recognize these as derivative of the
Cauchy Residue Theorem[2].

The value in the present approach is found in breaking from the method
of counting axis crossings for determining topological degree. Harvey and
Stenger utilized the approximation of topological degree with the help of the
formula, introduced in [12]:

d(f, P,0) ≈
N∑
i=1

1

8

∣∣∣∣ ui vi
ui+1 vi+1

∣∣∣∣. (1)

In this formula, given functions f0(x), f1(x) of x ∈ R2, ui and vi are defined
by

ui = signf0(xi),

vi = signf1(xi).

The series {xi}Ni=1 (with xN+1 := x1) constitutes the vertices of a closed
polygonal path, and the segment xi,xi+1 is allowed to have at most one sign
change. In this way, the formula uses the number of sign changes to count
the encirclements of the origin, but it will fail if multiple sign changes occur
over a single segment xi,xi+1.

In practice, unless f0 and f1 have a high degree of regularity, it is easy
to include multiple sign changes as the algorithm progresses, so the com-
putational complexity of algorithm carefully verifying this condition can be
high. Furthermore, the algorithm becomes quite concerned with the path in
proximity to axes which may have been arbitrarily chosen.

In the present work, we tolerate the mild computational cost of calculat-
ing the topological degree explicitly; by summing up the angles formed by

2

polygonal segments and the origin. In our approach, resolution is added to
the path based solely on its proximity to the origin, and attention is paid
to the impact this has as the domain is refined. As a result, the method is
insensitive to coordinate rotations and enjoys fewer constraints on the func-
tions’ behavior. By example, we demonstrate the algorithm’s capability to
avoid accidental convergence to “ghost” solutions, which is a problem against
which previous authors have warned.

1.1. Bisection in One Dimension

Two-dimensional bisection is probably best developed in the context of
its one-dimensional predecessor. For some function, f(x), about which very
little may be known, this algorithm seeks a value, x, such that f(x) = 0.

To facilitate extension into higher dimensions, we adopt this realization
of the algorithm: Given a function, f : R→ R, that is continuous over some
connected domain, Ω ⊂ R, we define the domain Ωf = {f(x) ∀ x ∈ Ω}. For
convenience we adopt the notation that Ωf = f(Ω). If the boundary of Ω is
formed by the points a and b, then we also define the set Ω′f = [f(a), f(b)].
In many cases, Ωf and Ω′f will be identical, but as Figure 2 illustrates, in
general Ω′f ⊆ Ωf .

Because of the continuity of f , we may say that Ω definitely contains a
solution if Ω′f contains the origin. Therefore, bisection proceeds as follows:

1. Define an initial domain: In a single dimension, this is accomplished
by establishing a and b. The true extent of Ωf will not be known, but
we establish Ω′f by calculating f(a) and f(b).

2. Test the initial domain for a solution: If Ω′f contains the ori-
gin, then Ω definitely contains a solution. This test can have three
outcomes.

(a) If f(a) or f(b) is zero (or numerically small), the corresponding
value can be immediately returned.

(b) If Ω′f does not contain the origin, then the algorithm cannot pro-
ceed. Halt with an error.

(c) If Ω′f does contain the origin, move on.

3. Bisect the domain: Add a point, m, at the midpoint of Ω. Redefine
Ω to be either of the new sub-domains, and establish the new Ω′f by
calculating f(m).

4. Test the new Ω for a solution: Just as in step 2, this can have three
outcomes.

3

a

bc x

f (x)

Figure 1: Bisection in one dimension.

(a) If f(m) is zero or numerically small, return m as the solution.
(b) If the new Ω′f contains the origin, continue to step 5.
(c) If Ω′f does not contain the origin, the domain we disregarded in

step 3 must contain a solution. Redefine Ω and Ω′f accordingly
and continue.

5. Repeat: If the region, Ω, is smaller than the tolerable error in the
answer, then return its midpoint as the solution. Otherwise, return to
step 3.

In one dimension, the run time of this algorithm (if the origin is contained
in Ω′f) is mainly determined by the number of bisections of the domain. For
a given ε error, the number bisections, N , is bounded by

N ≤ log2

(
size(Ω)

ε

)
. (2)

However, in higher dimensions, step 4 is difficult to perform reliably. In this
work, we suggest an algorithm which addresses certain critical details for
robust convergence.

Figure 1 illustrates a problem suffered by the bisection method. Domains
in which the function crosses the x-axis twice (such as [c, b]) do not appear

4

a b

x

f (x)

f’

f

Figure 2: The map between Ω and Ωf in one dimension.

to contain a solution because the function’s sign at the domain’s boundary is
the same. As a result those solutions will not be identified by the algorithm.

1.2. The problem statement

In two dimensions, we represent a system of nonlinear equations with
a two dimensional map, f = (f0(x), f1(x)) of vectors of two dimensions,
x = (x0, x1). For a given map, f(x), continuous over a simply connected
domain Ω ⊂ R2, we seek x ∈ Ω such that

f(x) = 0. (3)

For an extension of the bisection method to two dimensions to be suc-
cessful, we must have means for implementing the steps identified in section
1.1.

2. Defining a domain

In higher dimensions, there is a rich variety of methods to define a simply
connected domain. We adopt the 2-simplex, comprised of three vertices,

5

x0

x1

f0

f1

x
f

f’
Pf

Px

Figure 3: The mapping between Ω and Ωf .

xa,xb,xc, and three corresponding line segments forming a path, P , bounding
a triangle, Ω. Due to its simplicity, it is impossible not to form a simply
connected domain, and the peculiar case where the simplex collapses to a
line, as we later discuss, can be avoided.

To the interested reader it will become apparent that this approach can
be extended with some difficulty to more complicated regions. However,
the simplex may prove sufficiently general, since algorithms employing it
lend themselves to any shape that can be constructed from a collection of
simplexes.

3. Testing for containment

For an initial simply connected region, Ω ⊂ R2, bounded by a closed
path, P , there is a corresponding region, Ωf = f(Ω), and a corresponding
path, Pf = f(P). Since f is continuous, Ω′f is a simply connected domain
in f -space, bounded by the closed path Pf . Furthermore, if Pf encircles the
origin, Ω contains a solution. This mapping is depicted in Figure 3.

Just as was the case in one dimension, it is important to recall that Ωf

6

is not necessarily equivalent to Ω′f (as depicted in Figure 3). Consider

f =

{
x0

2

x1

}
. (4)

We may select a region, Ω, with the point x = (0, 0) in its interior, so that
(0, 0) will clearly be in Ωf . However, the origin will not belong to Ω′f because
all values of f0 on Pf will be positive. This is analogous to the problem
experienced by the test for containment in one dimension. Therefore, we
cannot make the stronger assertion that Ω contains a solution if and only if
Ω′f contains the origin.

Equation 4 represents a particularly degenerate case, since it is even quite
possible to define a substantial Ω (int(Ω) 6= {∅}) that maps to an Ω′f with an
empty interior. Consider the case when Ω is the unit circle. We tolerate this
vulnerability, since one-dimensional bisection suffers from the same problem.

3.1. Calculating encirclement

We test whether Ω′f contains the origin by calculating the total angle
traversed by a ray extending from the origin to Pf . Consider a point f and
a neighboring point, f + df ∈ Pf . The angle formed between rays extending
from the origin to each of these two points is given by

sin dθ =
f × (f + df)

‖f‖‖f + df‖

dθ =
f × df

‖f‖2
(5)

Note that for convenience, we interpret the cross product in two dimensions
as a scalar,

a× b = a0b1 − a1b0. (6)

Therefore, the angle traversed by the ray over one loop around the path
is given by

θ =

∮
Pf

f × df

‖f‖2
(7)

where, because the path is closed, θ must be some integer multiple of 2π. If
θ is 0, then the origin is not contained. If θ is any other value, positive or
negative, then the origin is encircled by Pf , and Ω must contain a solution.

7

In two dimensions, θ is a 2π multiple of the topological degree introduced
by Poincaré and Bohl[4],

θ = 2π d(f , P,0). (8)

Furthermore, when z = f0 + if1, the encirclement is simply related to the
residue of the complex function,

Res0

(
1

z

)
=

∮
Pf

dz

z

=

∮
Pf

z∗dz

|z|2

= i

∮
Pf

f × df

‖f‖2
+

∮
Pf

f · df

‖f‖2

= iθ (9)

3.2. Discretization

Equation 7 implies a potentially costly quadrature for each iteration, so
we turn our attention to streamlining its evaluation. Any practical algorithm
will, at its core, be a sum of small angles, so we consider the angle calculated
over a segment of Pf between two points, fa and fb.

tan(θab) =
fa × fb
fa · fb

(10)

As illustrated in Figure 4, all approximating paths that can be continuously
moved to the actual path without passing through the origin will give the
same result. There is no need to more finely resolve the quadrature, provided
we can be assured that a linear approximation of the path falls on the same
side of the origin as does the actual path.

Now the problem is cast in a new light: how sparsely can we discretize
the path along Pf , while still being confident that a linear approximation
between points passes on the same side of the origin as the actual path?

Consider the deviation of a path from the approximating linear segment.
Let δ be a dimensionless scalar between 0 and 1, indicating the location along
the path between points a and b. The actual path can be approximated by

8

fa

fb

ab

eab

Figure 4: Evaluation of the encirclement between two points fa and fb. The heavy solid line
represents the actual path, while the light solid line represents the linear approximation.

9

the Taylor expansion,

y(δ) =f(xa)

+ δ(xb − xa) · ∇f(xa)

+
1

2
δ2(xb − xa) · (∇∇f(xa)) · (xb − xa)

+ . . . (11)

while the linear approximation is given by

ŷ(δ) =f(xb)δ + f(xa)(1− δ). (12)

After several substitutions, the error over the path between fa and fb (repre-
sented by the vector in Figure 4) can be approximated by

eab(δ) =y − ŷ

=δ(δ − 1)
1

2
(xb − xa) · (∇∇f(xa)) · (xb − xa)

+ . . . (13)

As we discuss in the next section, dominant higher order terms can in-
validate this analysis, but assuming that second order terms dominate, the
maximum error will occur at the midpoint, δ = 0.5, and will have a magni-
tude

∆ab = max ‖eab‖

≈1

8
‖(xb − xa) · (∇∇f(xa)) · (xb − xa)‖ (14)

This provides us with an important result; that approximation error declines
like the square of the distance between points. Higher order terms may alter
the location of the maximum error, but those behaviors will vanish even more
quickly.

Given a pair of points, xa,xb ∈ P , and the corresponding values, fa =
f(xa) and fb = f(xb), the segment between them should be populated accord-
ing to the following recursive algorithm:

1. Bisect the segment: Create two new segments by adding a new point

xc =
xa + xb

2
fc = f(xc)

10

2. Calculate midpoint error:

∆ab ≈
∥∥∥∥fc − fa + fb

2

∥∥∥∥ . (15)

3. Test segments: If the distance to the origin from the segment between
fa and fb is less than some multiple of the midpoint error (we use a
factor of 2), recursively submit the two new segments (a-to-c and c-to-b)
to step 1 of this algorithm.

The recursion will repeat until the midpoint error converges to some ac-
ceptable fraction of the segment’s distance to the origin. In Section 3.4, we
discuss certain safeguards to prevent infinite recursion in degenerate cases.

3.3. Rejecting Higher Order Error

When the domain is large, it is entirely possible that maps with higher
order characteristics will fool the discretization algorithm in the previous
section. Consider the particularly uncooperative cubic case, where

eab(δ) ∝ 2δ3 − 3δ2 + δ, (16)

and our midpoint approximation for ∆ab would actually be zero.
When cubic or higher-order terms are important, the algorithm might

incorrectly determine that a linear approximation for Pf is quite good. In-
correctly estimating the path can cause the bisection algorithm to wander
off into a sub-domain where a solution does not, in fact, exist. The returned
value will be a “ghost” solution that may or may not lie anywhere near the
actual root. This seems like a substantial problem for our goal to tolerate
highly irregular maps.

An effective solution to the problem is to require that the midpoint error
test be passed by more than one recursion in a row. Quadratic behavior
is detected by the first midpoint test, third- and fourth-order behaviors are
detected by an additional recursion, and up to eighth-order behaviors are
detected by two additional recursions. Of course, this robustness comes at
the cost of additional function evaluations.

3.4. Detecting a Solution on the Boundary

The discretization algorithm we describe in Section 3.2 populates a seg-
ment with points by comparing an approximation for path error with the

11

ϵ

f(x)

x

Figure 5: One dimensional problem likely to fool the small error test for convergence.

corresponding segment’s distance to the origin. The resulting recursion will
converge only when the distance to the origin does not also vanish. This case
may seem like a liability, but (when detected) it represents a happy accident;
a root lies directly on (or very near to) Pf .

A configurable threshold for a “small” distance from the origin can allow
the algorithm to detect this case and return with a solution earlier than
expected. One possible test is to define some acceptable error, ε, such that if
‖f(x)‖ < ε, the algorithm will simply return x. Preferably, to support maps
of drastically disparate scales, separate values, ε0 and ε1 should be defined
such that when both |f0(x)| < ε0 and |f1(x)| < ε1 the algorithm will return
x as a solution.

In general, these cases are rare, and when the authors have observed them
in testing, the algorithm still converged to the correct solution unless the
solution was deliberately placed precisely on Pf . As a result, we recommend
that this option be disabled by default by specifying ε = 0. The perils of
defining a default error threshold are probably best illustrated by the simple
one-dimensional case presented in Figure 5.

12

fa

fb fb-fa
fa

fb

fb-fa

DN

DN

Figure 6: Calculating the distance of a segment from the origin. The projected distance
is indicated by a dashed line.

3.5. Calculating Path Distance

The algorithm above relies on calculating a segment’s distance from the
origin in f -space. For this purpose, we define a segment’s distance from the
origin as the length of the shortest path between the origin and any point on
the segment.

The distance from the origin to an infinite line containing two points, fa,
and fb, is given by

DN =
‖fa × (fb − fa)‖
‖fb − fa‖

=
‖fa × fb‖
‖fb − fa‖

(17)

However, as shown in Figure 6, Equation 17 underestimates the distance
when the closest point does not lie between fa and fb.

This can be addressed by a piecewise function, dependent on the sign of

13

the projection of the fa and fb vectors onto the segment between them.

D =

‖fa‖ fa · (fb − fa) ≥ 0
‖fb‖ fb · (fb − fa) ≤ 0

‖fa×fb‖
‖fa−fb‖

otherwise.
(18)

4. Bisection

Two smaller simplexes of identical area are created when a new edge is
extended from one of the points to the midpoint of the edge opposite. With-
out due caution, this can result in long skinny simplexes. Adler[1] showed
that if the longest edge is selected at each iteration, the longest edge of the
simplex will asymptotically converge like (1/

√
2)k after k iterations. Now

called longest-edge (LE) bisection, the same method is commonly used in
minimization algorithms and to refine finite element grids[3, 10]. The advan-
tage of this approach is made particularly clear in the next section, when we
turn our attention to the error of a converged solution.

The final iteration will result in a small simplex wherein somewhere, a
solution must lie. As we shall see, the shape of that simplex in x-space is
important to minimizing the error of our final estimate. At this juncture, we
might make one of two convenient presumptions in order to establish a single
point with which to approximate a solution; that all points in the region are
equally probable to be a solution; or that the simplex is sufficiently small that
we have a reasonable assurance that f will behave linearly over the domain.

4.1. Uniform Probability Distribution

If we know absolutely nothing about the disposition of the map inside the
region, we are forced to presume that there is an equal probability that the
solution lies at any given point in the region, i.e., the probability distribution
of solutions is uniform. If that is the case, the point that minimizes the
expected error is, by definition, the simplex’s centroid.

x =

∫∫
Ω

x dx0dx1∫∫
Ω

dx0dx1

(19)

=
xa + xb + xc

3
. (20)

14

L/2 L/2

/3, h/3)

, h)

Figure 7: Centroid of a simplex of base, L, height h, and asymmetry δ.

The expected error can be determined by the formula

∆x
2 =

∫∫
Ω

(x− x)2dx0dx1∫∫
Ω

dx0dx1

, (21)

the numerator of which is simply the area moment of inertia. Figure 7 shows
a simplex with an asymmetry indicated by the vertex’s distance from the
center axis. Since the area moment of inertia is independent of translation
and rotation, any simplex can be transformed to this problem. It can be
shown that Equation 21 results in

∆x
2 =

h2 + 3
4
L2 + δ2

18
. (22)

Note that for a given area, the minimum expected error occurs when δ is
zero.

Recall that after every iteration, the area of the simplex will be halved.
The goal, then, is to minimize expected error for a given amount of com-
putational effort. In general, ∆x

2 will scale proportionally with area, but
Equation 22 indicates that ∆x

2 is also strongly influenced by the simplex’s

15

shape. Therefore, we want the shape that provides the smallest ∆x possible
for a given Lh/2. It can be shown that this is accomplished by an equilateral
triangle, where h = L

√
3/2 and δ = 0.

4.2. Linear Region

When iteration is complete, if the simplex is smaller than the scales of
curvature in the map, then they will behave quite linearly over the region.
When we allow ourselves to make this assumption about the behavior of f in
our domain, we may interpolate to find the point in the domain most likely
to be the solution. The error expected from this approach will depend very
much on how well the map complies with our assumption that it is linear
over the domain.

Consider a non-orthogonal coordinate system depicted in Figure 8, de-
fined such that

x = xa + (xb − xa)σ + (xc − xa)γ (23)

f ≈ fa + (fb − fa)σ + (fc − fa)γ (24)

It follows, that the approximate solution will be

x =xa −XF−1fa (25)

where F and X are 2× 2 matrices with columns constructed from the vector
differences of Equations 23 and 24,

X =
[
(xb − xa) (xc − xa)

]
(26)

F =
[
(fb − fa) (fc − fa)

]
. (27)

It may appear that this approach is immune to the dependency on shape
suffered by the previous section, but the appearance of F−1 creates a vul-
nerability to singular matrices. This will occur when (fb − fa) ∝ (fc − fa).
While this can occur regardless of the shape, in a map that behaves linearly,
it is guaranteed to occur when (xb − xa) ∝ (xc − xa), or when the simplex
collapses (or nearly collapses) onto a line.

The conclusion we draw is that the linear approach has the potential to
provide greater accuracy in the final estimate, but it exposes the algorithm
to vulnerabilities to division by zero without relief from the problems we
see with the uniform-probability-distribution approximation. In general, we

16

a

b

c

Figure 8: Coordinate system for interpolating in a simplex.

do not recommend using linear interpolation for the solution. If greater
accuracy at lower computation cost is required, it may prove more prudent
to use bisection to produce an estimate quite close to a solution and use
Newton-Raphson iteration to “polish” the root to the desired precision.

5. Application

The performance and limitations of the algorithm are, perhaps, best il-
lustrated through example. In this final section, we illustrate the one of the
algorithm’s vulnerabilities and its solution, and we propose future work for
its extension.

5.1. Vulnerability to high-order

Here, we demonstrate the inversion of an example mapping exhibiting
traits deliberately intended to be problematic.

f0 =x0 + x1 exp(x0) (28)

f1 =x1
3 (29)

Of course, the root is obviously at x = (0, 0).

17

Figure 9: Paths in x-space converging to a ghost solution. The gray curves indicate 0-level
paths for f0 and f1, so their intersection is the correct solution.

We execute the algorithm we have described here with initial verticies
at (1,0), (-.5,1), and (-.9,-.1). These conditions actually violate assumption
II on page 360 of Harvey and Stenger’s original paper[8]. Figure 9 shows a
portion of the progression in x-space. It is immediately apparent that the
algorithm has incorrectly calculated an encirclement and has converged to a
ghost solution. Figure 10 tells us why; the cubic behavior has rendered the
single-recursion midpoint error test inadequate.

Figures 11 and 12 show the results of the same problem executed while
requiring one additional recursive midpoint test (as described in Section 3.3).
Note that the cubic character of f1 is much more clearly resolved in the
vicinity of the origin and that the algorithm now converges correctly.

5.2. Complex Eigenvalues

Bisection is already popular for identifying strictly real eigenvalues[7, 6].
In these cases, of course, the iteration is strictly one-dimensional, and there
are already good means for bracketing roots. Consider, for example, the
present algorithm were applied to identify eigenvalues of the form

x0 + ix1 = λ (30)

f0 + if1 = det(A− λB), (31)

18

Figure 10: Paths in f-space converging to a ghost solution.

Figure 11: Paths in x-space converging to the correct solution.

19

Figure 12: Function evaluations corresponding to the points found in Figure 11.

This represents a complexification of a typical generalization of the sparse-
matrix eigenvalue problem common to solid mechanics problems.

5.3. Extension to Higher Dimensions

Extension of this modified algorithm to higher dimensions can be achieved
by substituting a solid angle formula for Equation 7. Challenges arise in
establishing functional sampling criterion on the domain’s boundary. Intu-
itively, a midpoint sampling method similar to the one we use may prove
functional, but there are certain questions of geometric implementation that
need to be addressed. For example, in the algorithm we present here, by
interrogating the domain’s boundary at segments’ midpoints, the boundary
has already been sub-divided in a manner that lends itself to the domain’s
eventual bisection. Caution must be used if the same helpful property is to
be retained in higher dimensions.

[1] Andrew Adler. On the bisection method for triangles. Mathematics of
Computation, 40(162):571–574, 1983.

[2] Lars Ahlfors. Complex Analysis: Theory of Analytic Functions of One
Complex Variable. McGraw Hill, New York, 1979.

20

[3] Guillermo Aparicio, Leocadio Casado, Eligimus Hendrix, Inmaculada
Garciá, and Boglárka Tóth. On computational aspects of a regular n-
simplex bisection. In Eighth International Conference on P2P, Parallel,
Grid, Cloud, and Internet Computing, pages 513–518, 1983.

[4] P. Bohl. über die bewegung eines mechanischen systems in der nähe einer
gleichgewichtslage. Journal fur die reine und angewandte Mathematik,
127:179–276, 1904.

[5] A. Eiger, K. Sikorski, and F. Stenger. A bisection method for systems
of nonlinear equations. ACM Transactions on Mathematical Software,
10(4):367–377, 1984.

[6] D.J. Evans and J. Shanehchi. Implementation of an improved bisec-
tion algorithm in buckling problems. Numerical methods in engineering,
19(7):1047–1052, 1983.

[7] D.J. Evans, J. Shanehchi, and C.C. Rick. A modified bisection algorithm
for the determination of the eigenvalues of a symmetric tridiagonal ma-
trix. Numerische Mathematik, 38:417–419, 1982.

[8] CH. Harvey and Frank Stenger. A two dimensional analogue to the
methods of bisections for solving nonlinear equations. Quarterly of Ap-
plied Mathematics, 33:351–368, 1976.

[9] J. M. Ortega and W. C. Rheinboldt. Iterative solutions of nonlinear
equations in several variables. Academic Press, New York, 1970.

[10] Marcia-Cecilia Rivara. Lepp-bisection algorithms, applications and
mathematical properties. Applied Numerical Mathematics, 59:2218–
2235, 2009.

[11] Krzysztof Sikorski. A three-dimensional analogue to the method of bi-
sections for solving nonlinear equations. Mathematics of Computation,
33(146):722–738, 1979.

[12] Frank Stenger. Computing the topological degree of a mapping in n-
space. Numerical Mathematics, 25:23–38, 1975.

21

