e-mail: astraclara@embarqmail.com 
PACS: 03.30.+p;89.70.Cf;01.55.+b



Lorentz transformation, special relativity, information, Kullback-Liebler discrimination information, Fisher information





LORENTZ TRANSFORMATION FROM INFORMATION  


Derivation of Lorentz transformation from principles of statistical 
information theory 


Revised 2/28/2016   


 


 


Thomas E. Butler 
1 Woodruff Way, Columbia, New Jersey 07832 


e-mail address: astraclara@embarqmail.com 


The Lorentz transformation is derived from invariance of an information quantity related to statistical 


hypothesis testing on single particle system identification parameters. Invariance results from recognition 


of an equivalent observer as one who reaches the same conclusions as another when the same statistical 


methods are used.  System identity is maintained by parameter values which minimize discrimination 


information, given by a Kullback-Liebler divergence, under a constraint of known shift in observation time.  
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between an observed system under a constraint shift and the expected system that maintains identity under 


the same constraint.  System observation states are represented by parametric probability distributions of 


particle system measurement values. 
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I. INTRODUCTION 


The observation state of a free single particle system at a 


constant velocity is represented by a probability distribution 


of observation measurement values.  Change in the 


observation time results in a change of the observed system 


state to a state that retains the system identity of the initial 


system.  The system identity [1] [2] [3] is preserved by a 


final observation state that minimizes the number of bits of 


discrimination information given by the Kullback-Liebler 


discrimination information [4] under the constraint of an 


observation time shift. Excess discrimination information 


above the minimization value shows how close an observed 


system state is to a state which preserves system identity, 


and is an input to identity hypothesis testing methods.  


Different observers are expected to obtain the same system 


identity hypothesis conclusions when using the same 


statistical methods.  Then the state associated with a 


different observer must keep the excess discrimination 


invariant.  Invariance of the excess discrimination 


information for a free single particle system gives the 


Lorentz transformation, not of random variables which do 


not transform, but of the observed system state as 


represented by parameters of the probability distribution. 


  Derivations of the Lorentz transformation from within 


other areas of physics, for example quantum information 


and communication theory [5], make the transformation 


dependent on theories within those branches of physics.  


The derivation based on a discrimination invariant shares a 


similar dependence, but primarily on concepts of statistical 


information theory, independent of other branches of 


physics beyond representation of simple Galilean motion. 


Although the statistical discrimination derivation depends 


on specific probability models, the resultant transformation 


is the same for all similar probability models for small 


shifts in space and time parameters. The information based 


derivation also supports generalization of the Lorentz 


transformation to a concept of equivalence transformations 


of distributions of arbitrary quantities. 


  Another characteristic of the statistical information 


derivation of the Lorentz transformation is that there is no 


assumption of an invariant speed [6] [7].  Domain and 


range set properties of equivalence transformations imply 


existence of an upper bound on the magnitude of the 


velocity.   Then transformations that preserve excess 


discrimination invariance require all boundary velocities to 


map to the boundary. 


 


II. PARTICLE OBSERVATION STATE 


Observations of the motion of a particle in an experiment 


produce a set of times of observation and associated 


particle positions.  In a repeatable experiment, the 


information contained by an ensemble of sets of position-


time value pairs can be concisely represented by a 


probability distribution which normalizes over both 


observation time and position random variables, as shown 


in the random sample of Figure 1.  Each experiment is 


independent, so the probability distribution represents the 


expected distribution of a single experiment.  No special 
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interpretations are required beyond the probability 


distribution as a simple representation of measurement data, 


given that a measurement exists. The probability 


distribution is the observation state of the particle system. 


An observation time and position density that represents 


measurement data is applicable to many variants of a 


position versus time experiment.  A single experiment can 


consist of dynamic observations in which the particle time 


and position are recorded as the particle moves.  An 


alternative experiment might consist of a single time-


position measurement, with apparent motion from an 


ensemble of repeated experiments with different 


observation times. The same density represents 


measurements for both interpretations. 


A. Example probability density  


The observed particle state is a probability density in 


position and time random variables which provides a 


realistic summary of observation data from a controlled 


experiment.  This is made evident by a plot of data 


generated by a simulated random sample from a normal 


time and space probability density, shown in Figure 1. 


   The probability density of Figure 1, which is normalized 


over both observation time and position random variables, 


generates a random sample that appears to be an ordinary 


collection of observation data from a repeated constant 


velocity experiment of finite duration that might have come 


from a physics class lab.  The same result could also be 


produced by a single experiment with a large number of 


observations.  In either case the measurement position 


standard deviation of 16.667 is not an error, but primarily 


the width of the range of the main concentration of position 


observations.  Position error is given by the conditional 


position given time standard deviation of 0.745.  Similarly, 


the measurement time standard deviation of 2 is not an 


error but primarily the extent of the range of observed 


times.  Peak frequency of observations increases without 


limit for a dynamic interpretation of the model, as the 


number of observations rises, without any effect on the 


probability density.  In this respect the normal density 


exhibits a classical physics behavior of independence from 


arbitrarily small time intervals. 


 


 


 
             Figure 1 


B. A model of uniform motion 


The example probability density of Figure 1 is a two 


dimensional normal probability density in observation 


position x  and time t  random variables as a model of 


experimental data from non-quantum mechanical uniform 


particle motion.  Extension to a normal density in four 


dimensions models a three dimensional velocity.  The four 


dimensional normal density f  is  
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( )TX x y z=  with mean ( )TX x y z=  The 


density f is the product of the marginal probability density


g in the observation time random variable and the 


conditional probability density h   in observed position 


given observed time, which for (1) are defined by 
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with X V tε δ δ= − , X X Xδ = − , t t tδ = − and where 
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. Although the position standard deviation of (4) is the 


width of the range plus position error, and is not a position 


error, the diagonal components the position covariance 


matrix C are an indication of position error.  The four 


dimensional probability density with parameters 


and , ,V,
t


X t C σ  is selected as a model of single free 


particle motion. 


 


III.  PARAMETERS 


Parameters of the probability distribution are a 


representation of the particle observation state.  A theory 


provides the general form of the distribution as a collection 


of possible allowed distributions, with parameter values to 


select a particular distribution.  All inputs allowed by the 


applicable theory which select a particular ( ): ,f R R Σ  


from the set of all possible densities supported by the 


theory are parameters. Parameters are constructed such that 


there is a one to one relationship between a parameter value 


and a probability distribution.  Initial, boundary and 


environmental conditions of an experiment are parameters, 


as are numerical parameters.  Statistical methods are used 


to estimate parameter values from the output data of an 


experiment. 


Parameters of probability distributions are a necessary 


and common component of physics.  Pressure, temperature, 


entropy and density are thermodynamic parameters 


associated with probability distributions of the underlying 


statistical mechanics of very large degree of freedom 


composite systems.  Some parameters are designed to be 


controlled by an experiment, and others set free to vary in 


response to the controlled parameters.  Thermodynamics 


provides the similar example that for the same ideal gas 


equation of state an isentropic gas produces a different  


relation between pressure and density than that of an 


isothermal gas.  Parameters can be classified as either 


constraints, controlled by an experiment, or as 


unconstrained, left to be determined as parameters of a 


distribution of measurements after an experiment is 


performed. 


A. Parameter classification 


 


All parameter values are extracted from experimental 


data.  Prior to execution of an experiment the design of an 


experiment can select planned values of some parameters, 


based on prior theoretical considerations independent of the 


outputs of the experiment.  Mean and extent of the range of 


the observation time are two parameters which might be set 


by the design of an experiment, and confirmed by 


experimental data, since they can be regarded as under the 


control of the observer and independent of the object 


particle of the experiment.  Parameters are classified as 


constraint or responsive in a given experiment:   


 


1. Constraint Parameters 


 


Constraint parameters are parameters with planned 


values input to an experiment which exhibit high levels 


of repeatability and are independent of the subject of 


an experiment.   The value of a constraint associated 


with a constraint parameter value is given by a subset 


of the set of allowed parameters to which the 


constraint confines distribution selection.    


 


2. Responsive Parameters 
 


Responsive parameters have values which are not 


planned input but are outputs from the execution of an 


experiment and may depend on the subject of the 


experiment. 


 


Let ( )t
P X V t Cσ=  represent the parameters 


of the probability density so that (4) is condensed to  
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Some parameters or transformations of parameters might be 


selected to be either constraints or responsive, for different 


experiment designs.  Other parameters can have intrinsic 


properties that effectively classify the parameters as 


constraint or responsive parameters.  Time parameters have 


such intrinsic properties. 
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4. Constraint Sets 
 


Let { }P∀Q =  be the set of all probability distribution 


parameters allowed by a theory.  An experiment design 


defines constraints which restrict parameter values to a 


subset ⊂C Q . The value of a constraint is given by subset


C .  Denote the set of all valid constraint sets as ( )Λ Q , so


( )∈ ΛC Q .   


Define the set of constraint sets ( )ϒ C   relative to a set 


C to be the set of all subsets of C which are also valid 


constraint sets, so that ( ) ( ) ( )ϒ = Λ ∩ ΡC Q C  where ( )Ρ C


is the set of all subsets ofC .  All constraints associated 


with a particular type of parameter constraint are contained 


in an adjustable constraint relative to constraintD which is 


defined to be a set ( ),Α D  
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i
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for distinct elements 
i j
≠C C , and where the union of all 


elements satisfies 
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Properties (7) and (8) of an adjustable constraint imply that 


every element of D is contained within one and only one 


element of ( )Α D .  Then there exists a function 


( )( ):M P Α D   for each P ∈D which returns the 


constraint set element of ( )Α D  that containsP .  For 


example, if one of the co-ordinates of P is the mean 


observation time t parameter constraint, then index i t=
and ( )( ):


t
M P Α =D C .  If a type of constraint is defined 


by known values of parameter components denoted by ζ


then ζ can be used as the index and ( )( ):ζ ΑC D is the 


corresponding constraint set element of the adjustable 


constraint set. 


   Let ( )i c
∈ ΑC D  be an element of an adjustable constraint 


and ( )i b
∈ ΑB D be an element of a different adjustable 


constraint.  Then the elements of set 


( ) { }( , )b c i j i j
Α = ∩ ∀ ≠D B C B C satisfy (7) and (8) so that


( )( , )b c
Α D  is an adjustable constraint relative to D . 


B. Confirmation Sets 


Verification of a theory is rarely accomplished by a 


single type of experiment represented by the constraint 


choices in a one adjustable constraint set.  More typical is a 


variety of types of experiments to provide a stronger 


verification of a theory.  Each type of experiment 


corresponds to a different adjustable constraint set. Define a 


confirmation set of adjustable constraints to be the set of all 


adjustable constraints used in experiments to verify a 


theory. 


 DesignateAɶ  given by  


 ( ) ( ){ }1
, , ,


n
A = Α Αɶ … …D D   (9) 


 


as the confirmation set for the single particle theory. 


 


C. The Time Postulate 


 


In an experiment set up to measure the particle position 


about a specified time the mean observed time and the 


extent of the range of observed times give all parameters – 


mean and standard deviation -  of the normal marginal time 


density. Since all of the time measurements are under 


control of the observer, all of the marginal observation time 


density parameters are constraint parameters. 


Set up a different experiment in which a clock is triggered 


to measure the time the particle passes a detector at a 


known position.  This experiment can be used to measure 


mean velocity, and provides an example where the mean 


position is a constraint parameter and the mean time is not a 


constraint.   


A verifiable theory with a time and spatial components 


includes adjustable constraints corresponding to both types 


of experiments, which are elements of the confirmation set 


of the theory.  A prominent characteristic of observation 


time distributions is the tendency whenever possible to 


regard the time distribution parameters as experimental 


constraints.  This tendency is prevalent because time values 


are generally considered to be under the control of the 


observer to the maximum extent possible.  These 


consideration suggest the time postulate, which is 


 


 


1. Time Postulate 


 


Every parameter that selects a marginal distribution of 


an observation time independent of any other random 
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observation variables is a control parameter, and thus 


an experimental constraint, in at least one Adjustable 


Constraint set element of a Confirmation Set of a 


theory with time dependence, and it is this quality of 


the necessity of control that distinguishes time from all 


other quantities. 


 


 


To the extent that every mechanism is repeatable and 


controlled, all mechanisms are clocks.  Under the time 


postulate, parameters which describe a clock’s data must all 


be under the control of an observer in at least one 


verification experiment, and are therefore constraint 


parameters for that experiment. 


   Each confirmation set of a time dependent theory must 


contain at least one adjustable constraint in which all 


parameters of the marginal observation time density are 


constraint parameters.  The design of the experiment must 


select one of these time parameter adjustable constraints as 


a primary constraint, to serve as the focus of statistical 


decisions. Only the primary constraint is used to determine 


the excess discrimination invariant.   This is because only a 


constrained time parameter marginal density provides 


potential operator selection of all possible time 


measurement scenarios that are under control of the 


observer with certainty.  Parameters in other adjustable 


constraints in a confirmation Set are incomplete in that they 


do not provide certainty of access to all possible 


measurement times, for if they did the time postulate 


requires that they also be time, potentially as a parameter of 


a clock mechanism. 


 


IV. CHANGE OF OBSERVATION STATE 


A. Parameter Shifts 


   A single particle probability density in observation time 


and position random variables models data from an 


experiment of finite duration.  Motion can continue outside 


the range of data from an experiment, which presents the 


opportunity for observation data collected by additional 


experiments.  The density for each experiment is 


represented by different parameter values. 


   Particle observation state is given by the probability 


density which represents data from an experiment.  


Different densities represent different experiments, and 


different particle observation states.  Motion of a particle 


through different experiments occurs with a change of 


particle observation states. Transitions between observation 


states of the particle are represented as changes in 


parameters of the probability density. 


 


B. Discrimination Information 


A sequence of experiments which measure position and 


observation time of a single particle produces a sequence of 


observation data and a corresponding sequence of 


observation data probability density parameters.  Parameter 


values which are far from values expected for the uniform 


motion of a free particle are not representative of the 


uniform motion of the originally observed free particle. 


When trajectory information is the only available particle 


identity information then only parameters along an initial 


trajectory maintain the identity of the particle system. 


Let 
0


P  be the initial particle system observation state 


parameter, and 
1


P  the observation state of a subsequent 


experiment with new constraint parameter values.  The 


discrimination information available in the density in favor 


that analysis of data selects
1


P over 
0


P is  
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which evaluates to 
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where ∆  indicates a component of 
1 0


P P− and


0
X V tδΠ = ∆ − ∆ . 


   


C. Preservation of  identity  


 


An initial observation state parameter
0


P shifts to a 


parameter
1


P for a single particle system when controlled 


constraint parameters, such as the mean observation time 


component of
1


P , shift to planned values.  Adjustable 


constraint sets provide structures to constraints which can 


be used by all observers.  A particular adjustable constraint 


set defines possible constraint values for a particular type of 


constraint associated with an experiment.   
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Parameters 
1


R  which preserve identity of a system with 


observation state parameter 
0


P  under a shift in constraint 


value must minimize discrimination information and so 


must satisfy 
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where ( )( ) ( )( )1 1
: :M R
ζ ζ


ζ =Α ΑC Q Q . 


   The time postulate requires 
1
t  and 


1t
σ  be constraint 


parameters.  Position error in pre-quantum theory
1


C is 


under the control of the observer, so 
1


C  is also a constraint 


parameter.  With ( )1 1 1 1t
t Cζ σ=  as constraint 


parameter, only parameters
1


X and 
1


V  remain to be 


adjusted in (11) to satisfy (12).  The identity preservation 


parameters which solve (12) are 


 


 1 0 0
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X X V t
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  (13) 


   


with  
1
t  , 


1t
σ and 


1
C  as constraint parameters with known 


values.  Thus the parameters that preserve identity continue 


motion along a trajectory with the same initial velocity on 


the same line. 


 


V. EQUIVALENT OBSERVERS 


A. Experiment Verification 


Acceptance of the outcome of an experiment demands an 


independent method of verification. The demand can be 


met in traditional physics where there are implicit 


assumptions of independent, identifiable, characteristics of 


the physical system outside the scope of a theory.  One 


example is the Kepler-Newton theory of orbital motion of 


the planet Mars about the sun, where deviations from the 


orbit can be observed since the planet is identifiable by 


characteristics, such as surface features and diameter, 


outside the scope of the orbital theory.  When the theory 


contains all of the identity information of the physical 


system, verification cannot be based on system 


characteristics independent of the theory.  An example of 


such a theory is the bosonic theory of photons, which are 


indisitnguishable particles fully identified by symmetric 


wave functions, where no single photon experiment can be 


repeated using exactly the same photon [8].   


  Exclusion of verification based on independent system 


characteristics elevates the significance of verification 


restricted to statistical analysis of repeatability which 


underlies the probability densities of the theory. 


Repeatability can be verified by observers outside the scope 


of the theory.  Thus by keeping the theory incomplete in the 


sense that it does not bring all observers within the scope of 


the theories physical descriptions, the requirement of  


verification with  separate system identification moves to a 


requirement of independent observer verification, 


especially when the entire physical system description is 


contained within the theory.   Verification of a bosonic 


photon experimental result never involves preparation of 


the same photon by a different observer, but instead 


repetition of the same experimental conditions by an 


independent observer.  Any theory that fully contains the 


identity of a system cannot support validation based on 


independent characteristics of the system.   


 In the theory of special relativity independent 


observers are represented by Lorentz transformations of 


space time co-ordinates.  Lorentz transformations in one 


approach arise from quantum consideration [5].  In 


quantum theory the wave function becomes the object of 


the transformation through invariant wave equations,  


associated with corresponding transformations of 


observables.  An information theoretic approach to define 


the reference frame of equivalent observers has the 


opportunity to generalize the transformation to another 


observer to be a transformation of the probability 


distribution for any type of random variable and theory, 


without limitation to only space and time quantities.  Define 


an equivalence transformation to be a generalized 


transformation of the distribution, and therefore of the 


distribution parameters, to the frame of an equivalent 


observer.  An identity transformation of the probability 


distribution of a theory defines the local observer and is 


also an equivalence transformation.  A verification 


capability requires that at least one other observer exist that 


is not the local observer.  A complete and independently 


verifiable scientific theory has the property of: 


 


1. Independent Observer Scrutiny 


 
Every independently verifiable theory must support at least 


one independent observer other than the local observer, 


and must necessarily have at least one equivalence 


transformation that is not the identity transformation. 


 


B. Equivalence Transformations 


An equivalent observer must reach the same conclusions 


from data available to the observer as the local observer of 


an experiment reaches.   Each equivalent observer then has 


the same information to accept or reject the conclusion of 


identity preservation under a shift in constraints.  The 


design of the experiment makes the transformation of all 


initial parameters available to all observers, and execution 
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of the experiment results in estimates of final parameter 


values for all observers. An equivalence transformation E


transforms parameters P  in use by an observer into 


parametersP P′ = E used by an equivalent observer.   If 


E   is the equivalent observer transformation, the final 


discrimination information determined by the equivalent 


observer is   ( )1 0
,I P PE E , but the same observer would 


determine that discrimination as ( )1 0
,I R PE E if identity 


preservation parameters were observed as expected by the 


theory, where 
1


R  is given by (13).  The larger the 


magnitude of the difference between the two discrimination 


values the more likely is a rejection of the conclusion that 


identity is preserved by the tested theory, while a very 


small magnitude difference supports the conclusion.  The 


difference is proportional to the number of bits input into 


statistical decision methods and for the local observer is 


equal to 


 
( ) ( ) ( )
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1 0 1 0 1 0
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ζ


ζ


∈ Α


Α = −


= −
Q


 (14) 


 


where the 
1


R  constraint parameter values 


( )1 1 1 1t
t Cζ σ= are also component values in 


1
P . Since 


K is input to statistical methods which determine rejection 


or acceptance of identity preservation, K   is invariant: 


 


 ( ) ( )1 0 1 0
, : , :K P P K P P


ζ ζ
Α = ΑE E   (15) 


 


In the invariant equation (15) the same adjustable constraint 


ζ
Α  is used by all equivalent observers of the experiment.  


Equivalence transformations are dependent on the primary 


adjustable constraint. 


An equivalent observer transformation operates on all 


parametersP ∈D   in a subset ⊂P Q  of the set of 


parametersQ .  As every equivalent observer is also an 


equivalent observer to any other equivalent observer, the 


inverse 1P−
E exists for every P  in the range of E and is 


an equivalence transformation.  


An equivalence transformation defines observers in the 


context of a theory.  Equivalence transformations depend 


on properties of the Primary Constraint of a Confirmation 


Set.  In the Primary Constraint all parameters of the 


marginal time distribution are constraint parameters; and 


the equivalence transformations for that adjustable 


constraint define the transformations which must be 


associated with all remaining adjustable constraints in the 


Confirmation Set. 


Equivalence transformations are defined by properties, 


such as invariance, of each transformation.  Properties of 


collections of transformations, such as the verifiable theory 


property of independent observer scrutiny, also contribute 


to the definition of equivalence transformations.  


 


 


C. Equivalent Observer Collections 


 


Define an equivalent observer collection CCCC   as a set 


containing a set { }1
, , , ,


n
… …E EEEEE =  of equivalence 


transformations using primary adjustable constraint
ζ


Α


which is also a member of CCCC , a parameter domain ⊆D Q


and range ⊆R Q common to all transformations withinEEEE , 


{ }, , ,
ζ


= ΑD RC EC EC EC E . The properties required of an 


equivalent observer collectionCCCC   are: 


1. Containment Structure 


Every equivalence transformation E  is an element 


of a set EEEE  contained in some equivalent observer 


collectionCCCC , ∈ ∈E E CE CE CE C . A theory may produce 


more than one equivalent observer collection. 


2. Time Postulate Primary Constraint 


All equivalent observers of an experiment on a 


probability model of a physical system, with each 


observer represented by an element ∈ ∈E E CE CE CE C   


choose constraints from an adjustable constraint
ζ


Α


which must be the primary constraint of a 


confirmation set of adjustable constraints. The time 


postulate implies that all parameters of the model 


marginal probability distribution of observation time 


within 
ζ


Α  are constraint parameters. 


3. Invariant Excess Identity Discrimination  


Every ∈E EEEE preserves identity discrepancy


( )1 0
, :K P P


ζ
Α .  Let { }1


, , , ,
n


… …B BS =  be the 


set of all transformations which preserveK . Then


i
P∀ ∈D , ( ) ( )1 0 1 0


, : , :
i i


K P P K P P
ζ ζ


Α = ΑB B , 


and ⊆EEEE S . 


4. Independent Observer Scrutiny 


Every EEEE contains at least one E not the identity. 


 


 


5. Transitivity 
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If { }, , ,
ζ


′ ′= ΑD RC EC EC EC E  and  { }, , ,
ζ


= ΑR HC EC EC EC E   


are equivalent operator collections, then 


{ }, , ,
ζ


′′ ′′= ΑC EC EC EC E D H  must also be an equivalent 


operator collection with every equivalence 


transformation ′′ ′′∈EEEEE  equal to the composition 


′′ ′=E E E for some ∈EEEEE  and ′ ′∈E EEEE , where 


H  can be any domain or range in an equivalent 


operator collection.  This property implies there must 


always exist a collection for which the 


transformation domain equals the range.   


6. Inverse Existence 


Unique 1−
E  exists for all


{ }, , ,
ζ


∈ ∈ = ΑD RE C EE C EE C EE C EE , and each 1−
E  is a 


valid equivalence transformation and an element of 


an equivalent observer collection


{ }1 1, , ,
ζ


− −= ΑR DC EC EC EC E , where


{ }1 1 1
1
, , ,


n


− − −= … …E EEEEE  .  EveryE is a one to 


one map.   


7. Maximally Inclusive 


a. Maximal Transformation Set 


Every { }, , ,
ζ


∈ = ΑD RE C EE C EE C EE C E  contains all 


possible E that have properties 1 through 6 


and produce only valid probability models. 


b. Maximal Parameter Set 


Every { }, , ,
ζ


∈ = ΑD D RC EC EC EC E and ∈G CCCC   


contain all possible parameter values P  


that give valid probability models for all 


transformations which satisfy the Maximal 


Transformation Set property. 


 


These properties define an equivalent observer collection, 


and the equivalent transformations contained within the 


collection.  There can be more than one observer collection 


for each probability model. 


D. K Invariance 


Invariant K  is defined by (14), and for the norm density 


space and time observation model is equal to 


 
( ) ( )1


0 0 0


2 1
1 0


1


2
1


2


T


T


t


K X V t C X V t


V C Vσ


−


−


= ∆ − ∆ ∆ − ∆


+ ∆ ∆
  (16) 


 


The presence of 2 2 2
1 0t t t
σ σ σ= +∆  in the second term 


makes (16) a third order invariant in parameter shifts. 


The Equivalent observer collection property of Invariant 


Excess Identity Discrimination requires invariance of K  


and implies that if 0K =  then


( )1 0
, : 0K K P P


ζ
′ = Α =E E , so that identity 


preservation is invariant.  With parameter


( ), , , ,
t


P X V t Cσ=  set ( ), , , ,
t


P P X V t Cσ′ ′ ′ ′ ′ ′= =E  


Identity preservation equation (13) transforms to  


 1 0 0


1 0


X X V t


V V


′ ′ ′ ′= + ∆
′ ′=


  (17) 


Each component of P ′  potentially depends on components 


ofP .  Represent components of parameterP by the 


invertible transform 


 1
t


X Vt t V


C


µ τ υ


η σ ε −


= − = =


= =
  (18)  


so that the identity preservation equations (13) and (17) 


become  


 


* *
1 0 1 0
* *
1 0 1 0


µ µ µ µ


υ υ υ υ


′ ′= =


′ ′= =
  (19) 


with 
1 1 1
, ,τ η ε   as constraint parameters and *  to indicate 


identity preservation parameters. In the following analysis 


assume the transformations are continuous functions of 


parameters and continuous for all first through third 


derivatives with respect to components of
0


P .  Differentiate 


*
1
µ′ and *


1
υ ′  in (17) with respect to 


1 1
,τ η   and 


1
ε   , and use 


(19) to get 


( ) ( )


( ) ( )


( ) ( )


( ) ( )


( )


0 0 1 1 1 0 0 0 0 0
1 1


0 0 1 1 1 0 0 0 0 0
1 1


0 0 1 1 1 0 0 0 0 0
1 1


0 0 1 1 1 0 0 0 0 0
1 1


0 0 1 1 1
1 1


, , , , , , , , 0


, , , , , , , , 0


, , , , , , , , 0


, , , , , , , , 0


, , , ,


υ µ υ τ η ε υ µ υ τ η ε
τ τ


υ µ υ τ η ε υ µ υ τ η ε
η η


υ µ υ τ η ε υ µ υ τ η ε
ε ε


µ µ υ τ η ε µ µ υ τ η ε
τ τ


µ µ υ τ η ε µ µ
η η


∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′=
∂ ∂


( )


( ) ( )


0 0 0 0 0


0 0 1 1 1 0 0 0 0 0
1 1


, , , , 0


, , , , , , , , 0


υ τ η ε


µ µ υ τ η ε µ µ υ τ η ε
ε ε


=


∂ ∂′ ′= =
∂ ∂


  


which imply that µ′  and υ ′  can be written as 
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 ( ) ( ), ,υ υ µ υ µ µ µ υ′ ′ ′ ′= =   (20) 


  


In the ( ), , , ,P µ υ τ η ε=  representation of parameters the 


invariance equation K K ′=  becomes 


 
( ) ( )


( ) ( )


1
0 1 0 1


1
0 1 0 1


1


2 2
1


2 2


TT


TT


η
υ ε υ µ τ υ ε µ τ υ


η
υ ε υ µ τ υ ε µ τ υ


∆ ∆ + ∆ + ∆ ∆ + ∆ =


′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′∆ ∆ + ∆ + ∆ ∆ + ∆


 (21)  


Differentiate (21) with respect to 
0
η   to get  


 


( ) ( )


1 0


0


0
1 1


0


0
2


1


2


T


T


η ε
υ υ


η


ε
µ τ υ µ τ υ


η


′ ′∂
′ ′= ∆ ∆
∂


′∂
′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆


∂


  (22)    


Extraction of valid equivalence transformations E  begins 


with determination of transformations B  which keep K  


invariant, with initial assumption that the domain D and 


range R  are the set of all parameters.  Then D and R  are 


adjusted to satisfy the properties of equivalent observer 


collections.  


   Components of 
1


P ′   appear in (22) but not components of 


1
P , so the initial assumption that range and domain equal 


D implies 
1


P ′  can be any valid parameter in the D .  Then 


µ′∆ , υ′∆ and 
1
τ ′  can take on an infinity of values.   


   To establish a procedure that reveals the impact of the 


infinity of 
1


P ′  values that satisfy (22), define unit vectors 


( )1
ˆ 1 0 0Tj =  , ( )2


ˆ 0 1 0Tj = , ( )3
ˆ 0 0 1Tj = , 


( )1ˆ ˆ ˆ


2
ij i k


k j j= + and ( )1ˆ ˆ ˆ


2
ij i j
l j j= − .  If S  is any 


x3 3  symmetric matrix 


 


 ( )1 ˆ ˆ ˆ ˆ
2


T T


ij ij ij ij ik
k Sk l Sl S− =   (23) 


 


 If i k=  , (23) becomes ˆ ˆT


i i ii
j Sj S= .  In (22), set υ′∆ first 


to ˆ
ij


ak for some scalar a  and then to ˆ
ij


al and subtract the 


equations to replace a TSυ υ′ ′∆ ∆ term with 2
ik


a S  .   


  Select 
1
µ  such that 0µ′∆ =  in (22), and select any small 


scalar a .   Adjust 
1
υ ′  to apply the procedure to use (23) for 


each index pair ,i j  with indices 1 3… .  The result is 


( )
2


2 0
1 1


0


0
2


a ε
η τ


η


′∂
′ ′= +


∂
, so that 0


ε


η


′∂
=


∂
.   


   Next differentiate (21) with respect to 
0
τ  : 


   


 


( ) ( )


1 0


0


0
1 1


0


0
2


1


2


T


T


η ε
υ υ


τ


ε
µ τ υ µ τ υ


τ


′ ′∂
′ ′= ∆ ∆
∂


′∂
′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆


∂


  (24) 


    


Analysis similar to that for (22) results in 0
ε


τ


′∂
=


∂
. 


 Take the second derivative of (21) with respect to 
1
η : 


 


( )
2


2
1 1 02


1
2
1


02
1


1
0
2


T


T


η τ υ ε υ
η


τ
υ ε µ


η


∂ ′ ′ ′ ′ ′= + ∆ ∆
∂


′∂
′ ′ ′+ ∆ ∆


∂


  (25) 


   


.  Components of 
0


P ′   appear in (25) but not components of 


0
P , so 


0
P ′ can be any valid parameter.  Select 


0 1
µ µ′ ′=   to 


remove the second term.  Since 
0
ε′  is an inverse co-


variance matrix, 
0


Tυ ε υ′ ′ ′∆ ∆ is almost positive definite, 


and positive for some υ′∆ so that ( )
2


2


2
0η τ


η


∂ ′ ′+ =
∂


. 


Values of µ′∆ exist for which 
0


Tυ ε µ′ ′ ′∆ ∆ is not zero, 


with the result 
2 2


2 2
0


η τ


η η


′ ′∂ ∂
= =


∂ ∂
. 


  The third derivative of (21) with respect to 
1
τ  is: 


  


 


( )
3


2
1 1 03


1
3
1


03
1


1
0
2


T


T


η τ υ ε υ
τ


τ
υ ε µ


τ


∂ ′ ′ ′ ′ ′= + ∆ ∆
∂


′∂
′ ′ ′+ ∆ ∆


∂


  


so that by following a similar analysis to that used for  


derivatives with respect to η ,


( )
3 3 3


2


3 3 3
0


τ η
η τ


τ τ τ


′′∂ ∂ ∂′ ′+ = = =
∂ ∂ ∂


.  Presence of a non-


zero quadratic terms in the expression integrals violates the 


unique Inverse Existence property, so  
2 2


2 2
0.


τ η


τ τ


′′∂ ∂
= =


∂ ∂
 


The second derivative of (21) with respect to
1
τ  is then: 
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2


1
0 0


1


T Tτ
υ ε υ υ ε υ


τ


 ′∂   ′ ′ ′∆ ∆ = ∆ ∆  ∂ 
  (26)  


 


Integrate the η ′  equations to get a g b hη τ η τη′ = + + +  


where , , ,a b g h  do not depend on τ  or η .  Since  τ  is a 


mean time with potential unbounded values that can be 


negative or positive, non-zero a  and b  allow a negative 


variance η ′  and invalid probability model.  Thus 


0a b= =  and g hη η′ = + .  Integrate the τ ′ derivatives 


to obtain q p s rτ τ τη η′ = + + +  where , , ,q p s r  do not 


depend on τ or η .  Substitute this expression for τ ′  into 


(21) and isolate the 2
1
η  and 2 2


1 1
η τ  terms which appear 


only on the right transformed side of the equation.  The 


resultant equation requires that 0p s= =  and 


q rτ τ′ = + ,  with ,q r   independent of  τ or η . A first 


derivative of (21) by 
1
τ results in 


( ) ( )1
0 1 0 1


1


T Tτ
υ ε µ τ υ υ ε µ τ υ


τ


′∂
′ ′ ′ ′ ′∆ ∆ + ∆ = ∆ ∆ + ∆


∂
 and 


implies 0q
τ


τ


′∂
= ≠


∂
. 


  Using results obtained so far, apply 
2


2
1
µ


∂


∂
 to (21) and then 


let 
1


P  approach 
0


P , 
1 0


P P P→ =    to get 


 


T


T


υ υ
ε η ε


µ µ


µ υ µ υ
τ ε τ


µ µ µ µ


′ ′∂ ∂′ ′=
∂ ∂


   ′ ′ ′ ′∂ ∂ ∂ ∂  ′ ′ ′ + + +     ∂ ∂ ∂ ∂   


  (27) 


   Differentiate by τ twice to obtain 


 


 


2


0


T
τ υ υ


ε
τ µ µ


 ′ ′ ′∂ ∂ ∂ ′=    ∂ ∂ ∂ 
  


which shows that 0
υ


µ


′∂
=


∂
and, with (20) that υ ′  is a 


function of only υ , ( )vυ υ′ ′= .   


  The derivative of (21) with respect to 
1ij
ε  is 


 


( )


1
0


1


1
0 1


1


1
0
2


T


ij


T


ij


η
υ ε υ


ε


τ
υ ε µ τ υ


ε


′∂
′ ′ ′= ∆ ∆


∂
′∂


′ ′ ′ ′ ′+ ∆ ∆ + ∆
∂


  (28) 


 


Adjust 
0
µ′  so that 


1
µ τ υ′ ′ ′∆ = − ∆ and use the procedure 


that follows (23) to get 0.
ij


η


ε


′∂
=


∂
  Then select 0µ′∆ =  to 


get 0
ij


τ


ε


′∂
=


∂
.  Next differentiate (21) by 


1
η  to get 


 1
0 0


1


T Tη
υ ε υ υ ε υ


η


′∂
′ ′ ′∆ ∆ = ∆ ∆


∂
  (29) 


The derivative of (29) by 
0
µ  is 1 0


1 0


0 Tη ε
υ υ


η µ


′ ′∂ ∂
′ ′= ∆ ∆


∂ ∂
 


and implies 0
ε


µ


′∂
=


∂
.  Differentiation by 


1
µ  is 


2
1


0
1 1


0 Tη
υ ε υ


η µ


′∂
′ ′ ′= ∆ ∆


∂ ∂
. The 


2


0
η


η µ


′∂
=


∂ ∂
 result, 


combined with the prior 
2


2
0


η


η


′∂
=


∂
result integrates to 


( ) ( )g hη υ η υ′ = +  for some positive functions ,g h . 


   Differentiate (21) first by 
0ab
ε  and then by 


0kl
ε to get 


  


 


( ) ( )


0
1


0 0


0
1 1


0 0


0 T


ab kl


T


ab kl


ε
η υ υ


ε ε


ε
µ τ υ µ τ υ


ε ε


′∂
′ ′ ′= ∆ ∆ +


∂ ∂
′∂


′ ′ ′ ′ ′ ′∆ + ∆ ∆ + ∆
∂ ∂


  (30) 


  


With 0
0


0 0ab kl


Q
ε


ε ε


′∂
=
∂ ∂


, differentiation of (30) by 
1
η ′ as an 


independent variable yields 
0


0TQυ υ′ ′∆ ∆ = . Next select 


1
0τ ′ =  so that


0
0TQµ µ′ ′∆ ∆ = .  Then (30) becomes 


0
0TQµ υ′ ′∆ ∆ = .  Since 


1
µ ′  and 


1
υ ′ , and thus µ′∆ and 


υ′∆  can be arbitrarily and independently selected, only 


0
0Q = can satisfy the equation for all possible


1
P ′  


component values. Thus 0
ij


ab kl


ε


ε ε


′∂
=


∂ ∂
, each 


ij
ε′ depends 


linearly on the 
ab
ε components, and the inverse co-variance 


matrix has the form 


   


  


 ( ) ( )ij ijkl kl ij
T Dε υ ε υ′ = +   (31) 
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for some ,T D . Substitute (31) into (21) and let 


components of matrix 
0
ε  approach zero, 


0
0ε → , or 


equivalently isolate terms with no 
kl
ε  factors, to get 


 


 
( )


( ) ( )( )


1
0


1 0 1


0
2
1


2


T


T


D


D


η
υ υ υ


µ τ υ υ µ τ υ


′
′ ′= ∆ ∆


′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆
  (32) 


 


Variation of 
1
η ′ gives ( )0 0TDυ υ υ′ ′∆ ∆ = , selection of 


1
0τ ′ =  gives ( )0 0TDµ υ µ′ ′∆ ∆ = .  As 


1
µ′  does not 


depend on
1
τ ′ , then the only term that remains is 


( )0 0TDµ υ υ′ ′∆ ∆ = . µ′∆ and υ′∆ can be selected 


arbitrarily and independently, so ( )0 0D υ = and 


( )ij ijkl kl
Tε υ ε′ = . Any linear transformation of a 


covariance matrix can take the form TU Uε for some 


orthogonal matrix, so there exists matrix ( )U υ  such that 


 ( ) ( )T
U Uε υ ε υ′ =   (33) 


   Substitute the derived form for η ′ , ( ) ( )g hη υ η υ′ = + , 


into (21) , remove the 
1
η  factor terms, select 


0
µ ′  so that 


1
µ τ υ∆ =− ∆  to get 


 


( )


( ) ( )
0


1 0 1


2
1


0
2


T


T


h υ
υ ε υ


µ τ υ ε µ τ υ


′ ′ ′∆ ∆


′ ′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆ =
  (34) 


 


The almost positive definite property of 
0
ε′  in (34) implies 


( ) 0h υ ≤ .  Negative ( )h υ allows negative η ′ in an 


improper probability model so that ( ) 0h υ =  and 


( ) ( )2gη υ η φ υ η′ = = .  


   Multiply (29) by 
1
η  to get 


 ( )


1
1 0 0


1


2


1 0


1 0


1 1


2 2


1


2
1


2


T T


T


T


η
η υ ε υ υ ε υ


η


η φ υ υ ε υ


η υ ε υ


′∂
′ ′ ′∆ ∆ = ∆ ∆


∂


′ ′ ′= ∆ ∆


′ ′ ′ ′= ∆ ∆


  (35) 


Take the second derivatives of (35) by components of 
1
υ  


and let 
1 0


P P P→ = to get 


 ( )2
T
υ υ


ε φ υ ε
υ υ


′ ′∂ ∂′=
∂ ∂


  (36) 


 


Subtract (35) from (21) to get 


 
( ) ( )


( ) ( )
1 0 1


1 0 1


1


2
1


2


T


T


µ τ υ ε µ τ υ


µ τ υ ε µ τ υ


∆ + ∆ ∆ + ∆ =


′ ′ ′ ′ ′ ′ ′∆ + ∆ ∆ + ∆
  (37) 


 


  Let 
1


P  approach
0


P , 
1 0


P P P→ = in the second 


derivative of (37) with respect to components of µ  to get 


 


 ( ) ( )
T T


T
U U


µ µ µ µ
ε ε υ ε υ


µ µ µ µ


′ ′ ′ ′∂ ∂ ∂ ∂′= =
∂ ∂ ∂ ∂


  (38) 


Then  


 ( ) ( )
2


2
2 0


T
T


U U
µ µ


ε υ ε υ
µ µµ


′ ′∂ ∂ ∂
= =


∂ ∂∂
  


so that 
2


2
0


µ


µ


′∂
=


∂
, and µ′  is linear in µ ,


( ) ( ) ( ), S lµ µ υ υ µ υ′ = + for some matrix ( )S υ  and vector  


( )l υ . 


Apply 
2


2
1
µ


∂


∂
to (37) to get 


 


( )
2
1


0 0 12
1


1 1 1 1
0


1 1 1 1


T


T


τ
ε υ ε µ τ υ


µ


µ τ µ τ
υ ε υ


µ µ µ µ


′∂
′ ′ ′ ′ ′= ∆ ∆ + ∆


∂


   ′ ′ ′ ′∂ ∂ ∂ ∂   ′ ′ ′ + + ∆ + ∆      ∂ ∂ ∂ ∂   


  (39) 


Variation 
1
δµ′ gives 


2


2
0


τ


µ


′∂
=


∂
so that τ ′ depends linearly 


on µ .  


Since every co-variance inverse co-variance matrix is 


almost positive definite and symmetric, there exists matrix 


Ζ  such that Tε = Ζ Ζ , and (38) can be written 


 


 ( ) ( )1 11


T


U U
µ µ


υ υ
µ µ


− −
   ′ ′∂ ∂   = Ζ Ζ Ζ Ζ     ∂ ∂   


  (40) 


Then ( ) ( ) ( ) 1U O
µ


ε υ ε
µ


−′∂
Ζ Ζ =


∂
 for some orthogonal 


matrixO .   


Analysis performed to this point implies the equivalence 


transformation components show the following 


dependencies:  
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )


2
,


,


,


, ,


T


S d


U U


l b


η η η υ φ υ η


µ µ µ υ υ µ υ


ε ε ε υ υ ε υ


τ τ τ υ µ φ υ τ υ µ υ


υ υ υ


′ ′= =
′ ′= = +


′ ′= =
′ ′= = + +
′ ′=


  (41) 


with the sign of φ  chosen to make φ+ be the τ  co-


efficient of τ ′ .  
 Using (41), equations (38) , (36)  become, for some 


orthogonal matrices 
a


R ,
b


R . 


  


 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )


1


1


1


1


T


a a a


T


b b b


U S R R R


U R R R


ε υ υ ε


υ
φ υ ε υ ε


υ


−


−


Ζ Ζ = =
′∂


Ζ Ζ = =
∂


  (42) 


Using index notation with double index summation 


convention, the first of these equations can be written as 


 


 ( ) ( ) ( ) ( )il lm mj ail lj
U S Rε υ υ εΖ = Ζ   (43) 


    
Any non-singular matrix Ζ results in a non-singular almost 


positive definite matrix ε .  As there are no limitations on 


possible values of ε in the model beyond those required of 


an inverse covariance matrix, Ζ can be any non-singular 


3x3 matrix. Variation of 
ij
Ζ in (43) shows that  


 ( ) ( ) 1
a


U S R rυ υ = =   


is the product of scalar and the identity matrix.  Since


1T


a a
R R = , 1


a
r = ± .   Similar analysis of the second 


equation of (42) shows that 


 ( ) ( ) 1U
υ


φ υ υ
υ


′∂
= ±


∂
  


and thus 


 ( ) ( )S
υ


φ υ υ
υ


′∂
= ±


∂
  (44).  


   Differentiate (37) by
1
µ  and then by


0
µ  to get 


  


 1 1 0
0 0


1 1 0


T
µ τ µ


ε υ ε
µ µ µ


 ′ ′ ′∂ ∂ ∂ ′ ′= + ∆   ∂ ∂ ∂ 
  (45) 


  


so that  


 ( ) ( ) ( )1 1
1 1 1 0 1


1 1


T TT S l l
µ τ


υ υ υ υ υ υ
µ µ


′ ′∂ ∂
′ ′ ′+ ∆ = + −


∂ ∂
  


must not depend on any component of 
1


P .  This requires 


that l  be constant and that for some constant matrixL ,  


 


 


( )
( ) ( )
( ) ( )


T


T


T


S L l


L l d


l b


υ υ


µ υ µ υ


τ φ υ τ µ υ


′= −


′ ′= − +


′ = + +


  


 


Differentiate (37) by
1
µ  , then by


1
τ  and finally by 


1
υ and 


re-arrange terms  to get


( )
1


1 1 1 1
0 0 0 1 1 0


1 1 1


T T


T TL lv
υ φ φ


ε ε φ υ υ
υ υ υ


−
−


 ′ ∂ ∂ ∂  ′ ′ ′ ′− = + −   ∂ ∂ ∂  
 


The right side of this equation must not depend on 


components of 
1


P , which requires that there exist constant 


vectorκ and constant matrix Q   such that 


 
Tw w Q


φ υ
κ φ υ κ


υ υ


′∂ ∂ ′= − − =
∂ ∂


  


with solutions 


 ( ) ( ) ( )
1


1 1


T


T T


u j s
w v Q


w v w v


υ υ
φ κ υ


κ κ


+ −′= − = =
− −


  


  


with constant scalar w  and constant vector j Qs= −  .  


And since  


 ( ) ( ) ( )T TQ w S L l
υ


φ υ υ κ υ υ
υ


′∂ ′ ′= + = ± = ± −
∂


  


,Q L= ±  l wκ= ∓ .  


  In (37) set 
1 0


0µ µ= =  and 
1
0τ =  so that the equation 


becomes 


 ( ) ( )1 0 1


1
0
2


T
d b d bυ ε υ′ ′ ′= ∆ + ∆ ∆ + ∆   


which requires  


 ( ) ( ) ( ) ( ) ( ) ( )
1


1 1 1 0 1 0


0d b


d b d b


υ


υ υ υ υ υ υ υ υ


′∆ + ∆ =
′ ′+ = +


  


Since the right side cannot depend on
0


P , ( )b rυ = for 


some constant scalarr and ( ) ( )d u rυ υ υ′= − for some 


constant vector u .  


     With these results the 
1
τ  term of (37)  is 


 
( ) ( )( ) ( )( )


1 0


1 1 0 1


T


T TS l


τ υ ε µ


φ υ τ υ ε υ µ µ υ


∆ ∆ =


′ ′ ′∆ ∆ + ∆
  


The 
1
µ  derivative of the 


1
τ factors is 


 
( ) ( )( )
( ) ( )


0 1 0 1


1 0 0


T T T


T


S l


S


υ ε φ υ υ ε υ υ


φ υ υ ε υ


′ ′ ′∆ = ∆ +∆


′ ′= ∆
  


and a subsequent 
1
υ  derivative is 
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( )( ) ( )
( ) ( )


( )( ) ( ) ( ) ( )


1 1
0 0 0 1 0 0


1 1


1


0 0 1 0 0
1


T T


T


T


TT


S S


S S S


φ υ υ
ε υ ε υ φ υ ε υ


υ υ


φ υ
υ ε υ υ ε υ


υ


 ∂ ′ ∂ ′ ′ ′= ∆ +  ∂ ∂  
 ∂  ′ ′ ′= ∆ +±  ∂  


  


Let 
1


P  approach
0


P to get ( ) ( )T
S Sε υ ε υ′= ± .  Since ε  


and ε′  are positive definite, only the positive sign is valid 


and  ( ) ( )T
S Sε υ ε υ′= . 


  These results allow (41) to be written as 


 


 


( )
( )
( )


( )
( )


( ) ( )
( )


2
2


1 1


1


1


1
1


1


T


T


T


T


T
T T


T T


w v


s
Q


w v


s
Q u r


v


Q w Q w


w v w r


η κ η


υ
υ


κ


υ
µ κ µ υ


κ


ε υ κ ε υ κ


τ κ τ κ µ


− −


′ = −


−
′ =


−
  −  ′ ′= + + −   −  


′ ′ ′= + +


′ = − − +


  (46) 


Restoration of the original parameter representation makes 


the solution of the invariance equation be 


 


 


( )


( )
( )
( ) ( )


( )


22 2 2


2


t t


T
T T


T


w V


V s
V


V


X w X st u


C w V C V


t w t X r


σ θ σ


θ


κ κ


κ


′ =


−′ =


′ = − +


′ ′ ′= + +


′ = − +


P


P


P P


  (47) 


with P  defined by 
Q


w
=P  and ( ) 1 TV Vθ κ= −  .  The 


transformations given by selection of values of , , , ,w k s rP  


and u  in (47)  are transformations that keep K  invariant 


and satisfy the Invariant Excess Identity Discrimination 


property of equivalence transformations under stated 


assumptions of continuity of derivatives.  If w γ= , 


2k s cγ −=− , 1=P , 0r =  and 0u =  are selected, with 


( )
1


2 2 21 s cγ
−


−= −  , then the  X ′ and t ′ transformations of 


(47) correspond to a simple instance of the Lorentz 


transformation with moving frame velocity s .  The set of 


transformations defined by (47) contains but is larger than 


the Poincare group.  Invariance of  K  produces not only 


space and time parameter transformations, but also 


transformations of velocity, time variance and position 


given time co-variance from an invariant that is 


conceptually simpler than the Minkowski space-time 


separation.  To see this consider that for the case 
2
0
1,


c
C σ=  the invariant is 


 ( ) ( )2 22 2 2
0 0 1 0


1 1
.


2 2c t c
K X V t Vσ σ σ− −= ∆ − ∆ + ∆   


Analysis leading up to transformation  (47) shows that K is 


the sum of two invariant terms, namely 


 
( )


( )


22
0 0


22 2
1 0


1


2
1


2


X c


V t c


K X V t


K V


σ


σ σ


−


−


= ∆ − ∆


= ∆
  


  


A Lorentz transformation extended to include 


transformation of , ,
t c
σ σ and V  keeps these terms 


invariant, and so maintains an elliptic, rather than a 


hyperbolic invariant, although in a parameter space of up to 


21 dimensions. 


E. Transformation Selectors 


a. Transitivity, Inverse and Composition 


   ( ), , , , ,w s u rκ=S PPPP  is a transformation selector, which 


picks a single transformation from the set of all 


transformations defined by  (47), and acts as an index of 


transformations that preserve identity discrepancy.  


Remaining equivalence transformation properties determine 


the allowed selectors contained within equivalent observer 


collections, along with allowed domain and range 


parameter sets.  There is a one to one correspondence 


between selectors and invariant preserving transformations, 


so an equivalent observer collection set of transformations 


EEEE can be represented by a set of selectors SSSS .  This also 


implies that { }, , ,
ζ


= ΑD RC EC EC EC E  can be represented by 


{ }, , ,
ζ


= ΑD RC SC SC SC S .   


  Exclusion of invalid probability models is implicitly 


required by the Maximally Inclusive properties.  In (47), 


valid probability models require non-zero time variance and 


non-zero covariance matrix determinant, so that 


 


 ( )
0


1 0


1


T


T


w


V V


V


θ κ


κ


≠


= − ≠


≠


  (48) 


 and 
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( ) ( )
( )


( )


( )


det det det 0


det 0


1
det 1 0


1 1
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T
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T T
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V s
V
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V s V s s


V V V


s


κ κ
θ


κ
κ κ


θ κ κ


κ


  − ′ + = + ≠    
≠


  − − − + = + = ≠    − − 
≠


P P 1


P


1


 (49) 


 


  In the selector representation, the Transitivity property 


requires that if { }, , ,
ζ


= ΑD RC SC SC SC S  and 


{ }, , ,
ζ


′ ′= ΑR HC SC SC SC S  are equivalent observer collections, 


then { }, , ,
ζ


′′ ′′= ΑD HC SC SC SC S is an equivalent observer 


collection with selectors  formed from all compositions of 


′SSSS and SSSS .  This implies that given selector 


( ), , , , ,w s u rκ′ ′ ′ ′ ′ ′ ′=S PPPP  with associated invariant 


transformation ′E , and selector ( ), , , , ,w s u rκ=S PPPP  with 


E , the transformation P P′ ′′=E E E for P ∈D  must be 


of the form of (47) with selector 


( ), , , , ,w s u rκ′′ ′′ ′′ ′′ ′′ ′′ ′′=S PPPP . Define 
Tsε κ′= +P and 


1 T sλ κ′= + P . Work through the algebra to get 


 


 


( )


( )
( )
( )


1


1


1


T


T


w w w


s s s


u w u rs u


r r w r u


λ


κ λ κ κ


λ ε


ε


κ
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−


−


′′ ′=


′′ ′= +


′′ ′=


′′ ′= +
′′ ′ ′ ′ ′= − +


′′ ′ ′ ′= + −


P


P P


P


P


  (50) 


as the selector formed by the composition of equivalence 


transformations. 


    The    Inverse Existence Property of equivalent observer 


collections requires the inverse of an equivalence 


transformation to be an equivalence transformation within 


an associated inverse collection.  Then there must be a 


transformation selector for the inverse transformation.  Let


( ), , , , ,w s u rκ ɶɶ ɶ ɶ ɶ ɶ ɶS = P  represent an equivalence 


transformation E  from domain D to range R , and let 


( ), , , , ,w s u rκ′ ′ ′ ′ ′ ′ ′S = P  represent 
1−


E .  Using the form 


(47) for both transformations, and 
1− =E E 1 , work 


through the algebra to get 


 


 


( )


( )
( )


1 1


1


1


1 1


1 1 1


1


1


T


T


T


T


s


s


w w


s s


u w u r s


r w r u


ε κ


λ κ


λ


κ κ


λε


ε


λ κ


− −


−


−


− −


− − −


= −


= −


′ =


′ = −


′ =
′ = −


′ = − +


′ = − +


ɶɶ ɶɶ


ɶ ɶ ɶ


ɶ ɶ
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ɶɶ ɶ ɶ ɶ ɶ


ɶ ɶɶ ɶɶ ɶ


P


P


P


P


P


P


  (51) 


as the inverse transformation selector.  The existence of an 


inverse (51) requires existence of 
1−ɶP  so ( )det 0≠ɶP . 


  Next form the composition of a transformation E from 


→D R , represented by ( ), , , , ,w s u rκ=S PPPP , with the 


inverse of any transformation ɶE  from →D G , 
1−ɶE  from 


→R D .  The composition 
1−′′ = ɶE E E  is an equivalence 


transformation from →D D .  With ( ), , , , ,w s u rκ ɶɶ ɶ ɶ ɶ ɶ ɶS = P  to 


represent ɶE  and ( ), , , , ,w s u rκ′′ ′′ ′′ ′′ ′′ ′′ ′′=S PPPP  to represent 


′′E , use (51) to form the inverse selector and (50)  to form 


the composition selector with result  


 


 


( ) ( )


( )


( )
( )( )


( )( )


1 1


1


1 1


1
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1 1 1


ˆ1 1
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ˆ


ˆ
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T T
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s s
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= − = −
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′′ =
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′′ = − + −


′′ = − + −


ɶɶ ɶɶ ɶ


ɶ ɶ ɶɶ


ɶ ɶ


ɶ


ɶɶ


ɶ


ɶɶ ɶ ɶ ɶ ɶ


ɶ ɶɶ ɶɶ ɶ


P P


P


P


P


P


  (52) 


b. Range equals domain case 


  Consider the case R = D .  Then, given the same 


adjustable constraint so that all inputs into formation of the 


observer collection are identical, the Maximal 


Transformation Set property implies ɶS and S represent 


transformations in the same set.  Since =ɶS S is then 


possible, making (52) the identity transformation1 , the 


identity transformation is always an element of every 


equivalent observer collection for which range and domain 


are the same. 


  In (52) valid probability models require 
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( )


( )( )
( )( )


( ) ( )
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( )
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P


P P


PP


P
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 (53) 


Since the inverse of (52) must exist, (53) can be neither 


zero nor infinite.  Thus 0λ ≠ɶ   and ˆ 0λ ≠ , or 


 


 
1


1


T


T


s


s


κ


κ


≠


≠


ɶ ɶ


ɶ


  (54) 


 


So if D = R then κ and sɶ  can be independently chosen 


from the same set of transformations.  This implies that the 


second inequality in (54)  is true for any κ  and any s  in 


the transformation set, even if from different 


transformations and an interdependence exists.  


  The Maximal Transformation Set property implies that 


all possible κ  and s  be included in the selectors for the 


observer collection transformation set.  Since there is no 


imposition of a favored direction, there exist κ  and s  


vectors in all spatial directions in the set.  Assume that the 


magnitude κ  is unbounded in the set.  Given any κ  with 


magnitude at least 
1


s
−


,  since s can be in any direction, s  


can always be chosen close enough to perpendicular to κ
that  


 


 


( )


1
cos cos


1 cos 1
2


Ts s s s


s


κ κ θ δ κ θ


π
δ κ δθ


− = = +   
  = + + =   


  (55) 


which violates (54) .  Thus the magnitude of  κ  must be 


bounded in the transformation set.  Switch  κ  and s in the 


argument to show that s  must also be bounded in a 


transformation set.  Lack of any favored direction implies 


that the boundaries are spheres. Designate c  as the upper 


bound of  s  and a  as the upper bound of κ  in a 


transformation set.  Define 
s


s


c
β =  and 


aκ


κ
β = , with 


magnitudes less than 1.  Then (54) is written 


 


 1T T


s
s ac


κ
κ β β= ≠   (56) 


 


with upper bound of 1ac = .  Tsκ  can take any values 


with magnitude less than one,  including values very near 


one, and the largest value ac  must therefore equal 1: 


 


1


T T


s


a
c


s
κ


κ β β


=


=
  (57) 


 


   Reasoning similar to that used in (54) through (57) can be 


applied to (48), 1TVκ ≠ .  If the magnitude of V is  


V c> , and κ  of any magnitude 
1


c
κ <  , the angle 


formed by  κ  and V can be chosen close enough to 
2


π
 


radians to make the product equal 1.  Thus the magnitude of 


V is bounded by c : 


 V c<   (58) 


Different values of c  result in different parameter domain 


sets and therefore different equivalent observer collections. 


Transformations to a range not the same as the domain are 


to observers which use different values of c . The value of 


c acts as an index selector for equivalent observer 


collections, and is a meta selector, providing data about 


collections of transformations that primarily results from 


equivalence transformation properties other than 


invariance. 


c. Transformation of velocity bound 


  Assume R = D , so both V and V ′ are bounded by c . 


Define 
V


c
β =  and 


V


c
β


′
′ =  so 1β <  and 1β ′ < . The 


transformation of velocity in (47) is, in , ,
r


ς β β and c  


terms, 


 
1


s


T


κ


β β
β


β β


−
′ =


−
P   (59) 


   


  Let r  be the magnitude of 
s


β β− , and q̂  be the unit 


vector in the direction of
s


β β− , so  ˆ
s


rqβ β− =  with 


0r ≥ . Define the square magnitude of the transformed 


normalized velocity β ′  as a function ( ) Tβ β β′ ′Π =  so 


that ( ) 2 2r Rβ θ−Π =  with ˆ ˆT TR q q= P P  and 


ˆ1 1T T T


s
r q


κ κ κ
θ β β β β β= − = − − .    The minimum 


value of Π  is 0Π = , which occurs at 
s


β β= , a 


stationary point of Π .  Fix q̂  so that the derivative  
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( ) ( ) ( )
( )( )
( )( ) ( )( )


2 2 1 1 2


1 1 2


3 3


2


ˆ2


ˆ2 2 1


T


T T


s


d d d
r R r r R


dr dr dr


r r q R


r r q R r R


κ


κ κ


θ
β θ θ θ θ


θ θ θ β


θ θ β θ β β


− − − −


− − −


− −


  Π = = −   
= +


= + = −


Since 0R > , 0r > , 1T


sκ
β β < , and T


κ
β β , the 


derivative ( ) 0
d


dr
βΠ >  for all possible directions q̂ .  Thus 


there can be no other stationary points besides 
s


β β= .    


  Then the maximum value of Π , which must equal 1 if 


R = D , must occur for β   with velocity at the boundary of 


D , where also 1Tβ β =   is a maximum.   Therefore the 


boundary of  D    maps into the boundary of  R , which by 


assumptionR = D , is also the boundary of D , and (59) 


must map all magnitude one β  to magnitude one β ′ . 
   Every range R  can also be a domain, so if ≠R D , R  


and  D  are characterized by different values of the velocity 


bound (58).  Designate the bound for D  by c  and for R  


by c ′ .  Define 
c


c
ζ


′
= .  Then (59) becomes 


 
1


s


T


V V


c c
κ


β ββ


ζ ζ β β


−′ ′ ′
= = =


′ −
P   (60) 


The maximum value of the magnitude right side of (60) is 


the maximum value of Π , which equals 1,  so the 


maximum value of the magnitude of β ′ is ζ .  Since the 


maximum magnitude of Π  occurs at the boundary of D , 


the boundary of D maps into the boundary of R . 


 


F. Lorentz Transformation 


 


  Since the analysis of the domain structure shows that an 


equivalence transformation maps any velocity on the 


boundary of D ,V c= ϒ , with unit vector ϒ , to a velocity 


also  magnitude  c cζ′ =  on the boundary of R .   


 
1 1


V s c s
V c


V V
ζ


κ κΤ Τ


− ϒ−′ ′= = = ϒ
− −


P P   (61)  


   


for some unit vector ′ϒ . From this equation form the 


squared magnitude of the transformed velocity as


 ( )
( )


( ) 2 2


2


1


c s c s c


κ


ζ


β


ΤΤ


Τ
ϒ− ϒ− =


− ϒ


P P
  


which can be written as 


 ( ) ( ) ( )
2


1
s sκ


β β β
ΤΤ− ϒ = ϒ− ϒ−A   (62) 


with 
Τ=A S S , and 1ζ−=S P . Since (61) restricts only 


the velocity magnitude and not direction, equation (62) 


must be true for all directions of unit vectorϒ . Reverse the 


direction of the unit vector to obtain


( ) ( ) ( )
2


1
s sκ


β β β
ΤΤ+ ϒ = ϒ + ϒ +A .  These two 


equations imply that 
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1
s s


s
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κ
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Since these equations must be true for any unit vectorϒ , 
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( )( )
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s s


s s s s


κ κ


κ κ κ


β β β β


β β β β β β β


Τ Τ
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  (63) 


Re-arrange the second equation to get  


 
( ) ( )
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1 1


1


s s s


s s s


κ κ κ
β β β β β β


β β β


Τ Τ


Τ


− = −


= −


A


A
  (64) 


If the expressions in parenthesis in (63)  were to vanish, 


then 
κ κ
β β Τ=A for which ( )det 0=A  and therefore,


( )det 0=P , in violation of the Inverse Existence 


Property. Thus the terms in parenthesis do not vanish.  


Consequently (64) requires 
sκ


β β= , or 
2


s


c
κ = ,  and 


s
β  


is an eigenvector ofA .  The definition of A makes A a 


positive definite matrix, so it is possible to write 
Τ=A�M DM� for some diagonal matrix D  and some 


orthogonal matrixM , 1Τ Τ= =M M MM .  With A  


expressed in this manner the first line of (63) becomes 
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( )( ) ( )
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1
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s s s s


s s s s


β β β β


β β β β


Τ Τ Τ
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D M A M
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  (65) 


Define ( )
1


21
s s


γ β β
−


Τ= − .  Then the component 


equations of (65) are  


 ( ) ( ) 2
ii ij s s iji j
δ β β γ δ−= +D M M    


 which imply that only one of the three( )s i
βM  can be non-


zero.  Select the index of the non-zero component of 
s
βM  


as 1i = .  In the following use of either of the other two 


axis for the non-zero component yields the sameA .  Since 


the matrixM  is orthogonal, 
s s κ
β β β= =M , 


( ) 2
1s s s


β β βΤ=M  and 


 2 2
11 22 33


1
s s
β β γ γΤ − −= + = = =D D D   
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Selection of any other index as the non-zero component 


results in a corresponding permutation of the D  indices.  


Matrix M  rotates 
s
β  to align with a coordinate axis. The 


definition ofA  implies  


 ( ) ( )    
ΤΤ Τ= = = Λ ΛA S S�M DM M M  


with  


1


2
ij ij


Λ =
�
D . Consequently, = ΛɶS O M  for some 


orthogonal matrix ɶO , 1Τ =ɶ ɶO O� .  


  Define a position unit scale factor d  by reference to an 


axis perpendicular to 
s
β  as 


 ( ) 1
33


33
d w w wζ ζ ζγΤ Τ −= = Λ =ɶO SM   


Selector w  is then given by  


 γ
ζ
d


w
 


=  
 


  


  


  With d as position scale factor and ζ  as velocity scale 


factor, the equivalence transformation (47)  becomes  
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 (66) 


  


  


with
1


1


1 0 0


0 0


0 0


γ


γ


−


−


     =       


ɶS O M , and 


1


2


2
1


s s


c
γ


−
Τ  = −    


, for 


some orthogonal matrices ɶO  andM , such that matrix M  


rotates s  into a vector which lies on the x  axis


ˆs s x= +M .  Define = ɶO OM  so that 
T=ɶO�OM .  


Then 
1


1


1 0 0


0 0


0 0


T γ


γ


−


−


     = =      


S�OM M OW� with W  


defined by
1


1


1 0 0


0 0


0 0


T γ


γ


−


−


     =       


W M M . W  first rotates 


s  to lie along the x  axis, next multiplies the components 


of V perpendicular to s  by 
1γ−  and then returns s to the 


original orientation.  The matrixM� which rotates V  to  


the x axis is 
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Application of W  to the velocity transformation term 


results in the traditional relativistic velocity transformation.


W is the same no matter which axis the frame velocity is 


first rotated into, and the matrix can be expressed as 


 1 1)1 (1
T


T


ss


s s
γ γ− −= + −W�   


With these results the equivalence transformation (66) is 
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  (67) 
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 The first three equations of (67) are a combination 


of time and velocity units scaling transformations and 


Lorentz transformations in time and three spatial 


dimensions [9]. These are relativistic transformations which 


account for the possibility of different measurement scales. 


In addition to conventional relativistic Lorentz 


transformations, the equivalence transformation defines 


precisely the transformation of the observation time 


variance and the spatial covariance given time. 


 


G. Small Parameter Shift 


  Consider a general continuous probability model with 


continuous derivatives, vector R  of real scalar responsive 


parameters, and vector W of real scalar constraint 


parameters.  Designate P  as the vector of parameters with 


components from ,X V  and W .  Under sufficiently small 


1 0i i i
P P P∆ = −  the discrimination information [10]  is, to 


second order in P∆ , 


 ( )1 0


1
,


2


TI P P P P≈ ∆ ∆F   (68) 


where F is the Fisher information matrix defined by 


 ( ) ( ) ( )0 0


0
0 0


ln : ln :
:


ij R


i jR


f R P f R P
dv f R P


P P
∀


∂ ∂
=


∂ ∂∫F  


 


F  in block matrix form is 


 RR RW


WR WW


  =    


F F
F


F F
  


which makes (68)  become 
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2


T T


RR RW
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I P P R R R W


W W


≈ ∆ ∆ +∆ ∆


+ ∆ ∆


F F


F


  (69) 


The variational equation 


 ( )1 0
1


, 0I P P
R


∂
=


∂
  


defines the stationary point, and minimum, with solution 
*
1


R : 


 


 * * 1
1 0 RR RW


R R R W−∆ = − = − ∆F F   (70) 


 


Substitution into (69) with result 
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  (71) 


Now the excess discrimination invariant is  


 


( ) ( ) ( )
( )
( )


*
1 0 1 0 1 0


1


1


, , ,


1


2


T


RR RW RR


RR RW


K P P I P P I P P


R W


R W


−


−


= −


= ∆ + ∆


∆ + ∆


F F F


F F


  (72) 


 


In the simple constant velocity probability model of (10) 


the response, or un-constrained component vector R  is 


composed of components of X  and V , while W  is 


composed of components of , ,
t


t Cσ .  The second order 


excess discrimination (72) for the constant velocity model 


is  


 
( ) ( ) ( )1
1 0 0 0 0


2 1
0 0


1
,


2
1


2


T


T


t


K P P X V t C X V t


V C Vσ


−


−


= ∆ − ∆ ∆ − ∆


+ ∆ ∆
 (73) 


The correct value of K given by (16) differs from (73) by 


replacement of 
0t
σ  with 


1t
σ .  Since 


1 0
/


t t
σ σ  is not 


invariant under the equivalence transformation, the 


transformation does not exactly keep (73) invariant, but 


only to a second order approximation.  The discrepancy 


also implies that the transformation that preserves 


invariance of  (73) is only an approximation to the correct 


transformation.  Extension of (68) to third order terms 


recovers (16). Despite initial appearances (16) is actually a 


third order invariant since 2 2 2
1 0t t t
σ σ σ= +∆  . 


H. Equivalence Transformations Recap  


 


  Equivalence transformations are defined on 


parameters of a probability model by properties which 


include invariance of information in a deviation from 


parameter values expected after a controlled parameter 


component shift.  The invariant information can be 


used to determine if parameter estimates confirm to 


expected system behavior, so equivalence 


transformations keep invariant related statistical 


decision processes.   


   Remaining properties of equivalence transformations 


define relations between the transformations and 


structures of transformation domain and range needed 


to generate valid probability models for all elements of 


the domain.  Some of the significant concepts, 


properties and mathematical tools developed to support 


them are 
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1. The property of independent observer 


scrutiny requires that collections of 


equivalence transformations contain 


transformations other than identity. 


Independent observers are needed to 


confirm a theory that does not support 


identification of the observed system 


independent of the applied model. 


 


2. Adjustable parameter constraints allow 


parameter shifts to be defined in an 


indexed set theory context.  A parameter 


value acts as index to an adjustable 


constraint set element, which is a 


constraint set and the value of a 


constraint.  


 


3. The time postulate requires that 


observation time parameters be 


constraints in an equivalent observer 


collection.  Under the postulate time as 


control is the essential characteristic 


which distinguishes time from other 


quantities.   


 


   Statistical samples on a high correlation coefficient 


probability model show that a multi-variate normal 


density in observed position and time random variables 


is a reasonable representation of uniform motion.  


Application of the properties of equivalence 


transformations to this probability model results in 


equivalence transformations which are  Lorentz 


transformations of mean observed position and time, 


Lorentz transformation of velocity, and specific 


transformations of the co-variance matrix and standard 


deviation of observation times. The elliptic information 


invariant is conceptually simpler than the Minkowski 


space-time interval, though in higher dimension than 


four since there are more parameter components.  


Structural properties on parameter domain and range 


require that velocity magnitude be bounded, without 


introduction of any external  light speed concept.    
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