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Abstract. We consider a curve in R3 and provide sufficient con-
ditions for the curve to be unbounded in terms of its curvature and
torsion.


We also present sufficient conditions on the curvatures for the
curve to be bounded in R4.


1. Introduction


In this short note we concern a smooth curve γ in the standard
three dimensional Euclidean space R3. It is well known that the curve
is uniquely defined (up to translations and rotations of R3) by its cur-
vature κ(s) and its torsion τ(s), the argument s is the arc-length pa-
rameter. The pair (κ(s), τ(s)) is called the intrinsic equation of the
curve.


In the sequel we assume that κ, τ ∈ C[0,+∞).
To obtain the radius-vector of the curve γ one must solve the system


of Frenet-Serret equations:


v′(s) = κ(s)n(s),


n′(s) = −κ(s)v(s) + τ(s)b(s), (1.1)


b′(s) = −τ(s)n(s).
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The vectors v(s),n(s), b(s) stand for the Frenet-Serret frame at the
curve’s point with parameter s. Then the radius-vector of the curve is
computed as follows r(s) =


∫ s


0
v(ξ)dξ + r(0).


If the curve γ is flat (γ ∈ R2 ⇐⇒ τ(s) = 0) then the system (1.1) is
integrated explicitly. In three dimensional case nobody can integrate
this system with arbitrary sooth functions τ, κ.


So we obtain a very natural and pretty problem: to restore the
properties of the curve γ having the curvature κ(s) and the torsion
τ(s).


For example, under which conditions on the functions κ, τ the curve
γ is closed? This is a hard open problem. There may by another
question: Which are sufficient conditions for the whole curve to be
contained in a sphere? This question is much simpler. Such a type
questions have been discussed in [4], [3], [5].


There is a sufficient condition for the curve to be unbounded [1]. In
this article the condition is formulated in terms of curvature only and
this condition is valid in a big class of spaces, including Hilbert spaces
and Riemannian manifolds of non-positive curvature.


In general case, (1.1) is a linear system of ninth order with matrix
depending on s. To describe the properties of γ one must study this
system.


In this note we formulate and prove some sufficient conditions for
unboundedness of the curve γ.


We also present sufficient conditions for the curve to be bounded in
the four dimensional Euclidean space.


It is interesting that in Rm of odd m the curves are in generic case
unbounded but for the even m they are generically bounded. Some
justification of this very informal observation is given below.


2. Main Theorem


We shall say that γ is unbounded if sups≥0 |r(s)| = ∞.


Theorem 2.1. Suppose there exists a function λ(s) such that functions


k(s) = λ(s)κ(s), t(s) = λ(s)τ(s)


are monotone1 and belong to C[0,∞).
Introduce a function T (s) =


∫ s


0
t(ξ)dξ.


1i.e. one of these functions, for example k(s) is monotonically increased:
s′ < s′′ ⇒ k(s′) ≤ k(s′′), s′, s′′ ∈ [0,∞) while another one t(s) is monotoni-
cally decreased: s′ < s′′ ⇒ t(s′) ≥ t(s′′), s′, s′′ ∈ [0,∞). The inverse situation is
also allowed, or the both functions can be increased or decreased simultaneously .
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Suppose also that the following equalities hold


lim
s→∞


T (s) = ∞, lim
s→∞


k(s)


T (s)
= lim


s→∞


t(s)


T (s)
= 0. (2.1)


Then the curve γ is unbounded.


The proof of this theorem is contained in Section 4.1.
Putting in this Theorem λ = 1/τ , we deduce the following corollary.


Corollary 1. Suppose that a function κ(s)/τ(s) is monotone and


lim
s→∞


κ(s)


s · τ(s)
= 0. (2.2)


Then the curve γ is unbounded.


Note that the geodesic curvature of the tantrix2 κT (s) is equal to
τ(s)/κ(s) [3]. So that formula (2.2) can be rewritten as follows


lim
s→∞


κT (s)s = ∞.


Theorem 2.1 is not reduced to Corollary 1. Consider an example.
Let the curve γ be given by


κ(s) = 1, τ(s) =
1


1 + s
.


Since τ(s) → 0 as s → ∞ it may seem that this curve is about a circle
with κ(s) = 1. Nevertheless applying Theorem 2.1 with λ = 1 we see
that the curve γ is unbounded.


Consider a system which consists of (1.1) together with the equation
r′(s) = v(s). From viewpoint of stability theory, Theorem 2.1 states
that under certain conditions this system is unstable.


Since |r(s)| = O(s) as s → ∞, this instability is too mild to study
it by standard methods such as the Lyapunov exponents method.


3. Supplementary Remarks: Bounded Curves in R4


Actually the above developed technique can be generalized to the
curves in any multidimensional Euclidean space Rm. For the case of
the odd m we can prove a theorem similar to Theorem 2.1. But for the
case when m is even our method allows to obtain sufficient conditions
for the curve to be bounded.


In this section we illustrate such an effect. To avoid of big formulas
we consider only the case m = 4.


2The tangential spherical image of the curve γ is the curve on the unit sphere.
This curve has the radius-vector r′(s).
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So let a curve γ ⊂ R4 be given by its curvatures


κi(s) ∈ C[0,∞), i = 1, 2, 3.


And let vj(s), j = 1, 2, 3, 4 be the Frenet-Serret frame.
Then the Frenet-Serret equations are


d


ds



v1


v2


v3


v4


 (s) = A(s)



v1


v2


v3


v4


 (s),


A(s) =



0 κ1(s) 0 0


−κ1(s) 0 κ2(s) 0
0 −κ2(s) 0 κ3(s)
0 0 −κ3(s) 0



Theorem 3.1. Suppose that the function κ1(s)κ3(s) does not take the
zero value. The functions


f1(s) =
1


κ1(s)
, f2(s) =


κ2(s)


κ1(s)κ3(s)


are monotone and


sup
s≥0


|fi(s)| < ∞, i = 1, 2.


Then the curve γ is bounded.


The proof of this theorem is contained in Section 4.2.


4. Proofs


4.1. Proof of Theorem 2.1. Let us expand the radius-vector by the
Frenet-Serret frame


r(s) = r1(s)v(s) + r2(s)n(s) + r3(s)b(s).


Differentiating this formula we obtain


v(s) = r′1(s)v(s) + r′2(s)n(s) + r′3(s)b(s)


+ r1(s)v
′(s) + r2(s)n


′(s) + r3(s)b
′(s).


Using the Frenet-Serret equations, one yields


r′(s) =


 0 κ(s) 0
−κ(s) 0 τ(s)


0 −τ(s) 0


 r(s) +


1
0
0


 , r =


r1
r2
r3


 . (4.1)


Let us multiply both sides of system (4.1) by the row-vector


λ(s)
(
τ(s), 0, κ(s)


)
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from the left:


t(s)r′1(s) + k(s)r′3(s) = t(s).


Then we integrate this equality:∫ s


0


t(a)r′1(a)da+


∫ s


0


k(a)r′3(a)da = T (s). (4.2)


From the Second Mean Value Theorem [2], we know that there is a
parameter ξ ∈ [0, s] such that∫ s


0


t(a)r′1(a)da = t(0)


∫ ξ


0


r′1(a)da+ t(s)


∫ s


ξ


r′1(a)da


= t(0)
(
r1(ξ)− r1(0)


)
+ t(s)


(
r1(s)− r1(ξ)


)
By the same argument for some η ∈ [0, s] we have∫ s


0


k(a)r′3(a)da = k(0)
(
r3(η)− r3(0)


)
+ k(s)


(
r3(s)− r3(η)


)
.


Thus formula (4.2) takes the form


t(0)
(
r1(ξ)− r1(0)


)
+ t(s)


(
r1(s)− r1(ξ)


)
+ k(0)


(
r3(η)− r3(0)


)
+ k(s)


(
r3(s)− r3(η)


)
= T (s). (4.3)


Since the Frenet-Serret frame is orthonormal we have


|r(s)|2 = r21(s) + r22(s) + r23(s) = |r(s)|2.


Assume the converse: the curve γ is bounded i.e. sups≥0 |r(s)| < ∞.
Then due to conditions (2.1) the left side of formula (4.3) is o(T (s)) as
s → ∞. This contradiction proves the theorem.


The Theorem is proved.


4.2. Proof of Theorem 3.1. Let r(s) be a radius-vector of the curve
γ. Then one can write


r(s) =
4∑


i=1


rivi(s), r′(s) = v1(s).


Similarly as in the previous section, due to the Frenet-Serret equations
this gives


r′(s) = A(s)r(s) +



1
0
0
0


 , r =



r1
r2
r3
r4


 .
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First we multiply this equation by r′T (s)A−1(s), (detA = (κ1κ3)
2):


r′T (s)A−1(s)r′(s) = r′T (s)r(s) + r′T (s)A−1(s)



1
0
0
0


 . (4.4)


Since A−1 is a skew-symmetric matrix we have r′T (s)A−1(s)r′(s) = 0,
and some calculation yields


r′T (s)A−1(s)



1
0
0
0


 = r′2(s)f1(s) + r′4(s)f2(s).


Then formula (4.4) takes the form


−1


2


(
|r(s)|2


)′
= r′2(s)f1(s) + r′4(s)f2(s).


Integrating this formula we obtain


−1


2


(
|r(s)|2 − |r(0)|2


)
=


∫ s


0


r′2(a)f1(a) + r′4(a)f2(a)da.


By the same argument which was employed to obtain formula (4.3), it
follows that


−1


2


(
|r(s)|2 − |r(0)|2


)
=


f1(0)
(
r2(ξ)− r2(0)


)
+ f1(s)


(
r2(s)− r2(ξ)


)
+


f2(0)
(
r4(η)− r4(0)


)
+ f2(s)


(
r4(s)− r4(η)


)
, (4.5)


here ξ, η ∈ [0, s].
To proceed with the proof assume the converse. Let the curve γ be


unbounded: sups≥0 |r(s)| = ∞. Take a sequence sk such that


|r(sk)| = max
s∈[0,k]


|r(s)|, k ∈ N, sk ∈ [0, k].


It is easy to see that


sk → ∞, |r(s)| ≤ |r(sk)|, s ∈ [0, sk]


and |r(sk)| → ∞ as k → ∞.
Substitute this sequence to formula (4.5):


−1


2


(
|r(sk)|2 − |r(0)|2


)
=


f1(0)
(
r2(ξk)− r2(0)


)
+ f1(sk)


(
r2(sk)− r2(ξk)


)
+


f2(0)
(
r4(ηk)− r4(0)


)
+ f2(sk)


(
r4(sk)− r4(ηk)


)
, (4.6)
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here ξk, ηk ∈ [0, sk] and thus |r2(ξk)| ≤ |r(sk)|, |r4(ηk)| ≤ |r(sk)| .
Due to conditions of the Theorem and the choice of the sequence sk


the right-hand side of formula (4.6) grows not faster than O(|r(sk)|)
as k → ∞. But the left-hand one is of order −|r(sk)|2/2. This gives a
contradiction.


The Theorem is proved.
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