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1 Introduction


Consider the structure of these two families of problems, both fundamental
to extremal combinatorics [1]:


1. Determine those simple graphs with a given density of subgraphs A
(say triangles) and with the highest possible density of subgraphs B
(say edges)


2. Determine those permutations with a given density of patterns A (say
123) and with the highest possible density of patterns B (say 321)


For subgraphs, density refers to the fraction of them in a graph compared to
the number in the complete graph, while for a permutation in Sn a pattern is
an element in Sk, k ≤ n, and the density of the pattern in the permutation is
the fraction of them compared to


(


n
k


)


. We are only interested in asymptotic
behavior, as n → ∞, where for instance n is the number of nodes, for graphs,
or the number of objects {1, 2, · · · , n} being permuted, for permutations. For
each such extremum problem we define the phase space Γ ⊆ [0, 1]2 as the
closure of the set of simultaneously achievable pairs (dA, dB) of densities
of A and B, asymptotically in n. See Figure 1 for an example of Γ for
graphs, and Figure 2 for an example for permutations. (These and some
other figures are exaggerated to emphasize features.) In this notation the
above extremum problems 1 and 2 consist of determining those graphs or
permutations with density pairs on the boundary of Γ. For some history of
extremal graphs see [5]; for pattern avoidance in permutations see [19]. In
contrast to these extremum problems, in this report we will be concerned
with the interior of Γ, rather than its boundary, and not with determining
those graphs or permutations with such density constraints, a hopeless and
uninteresting problem, but with determining what a typical one is like for
each achievable set of constraints. (This is made precise in Section 2.1.)
The phenomenon on which we focus is that well-defined phases emerge in
Γ as n → ∞, regions in Γ in which typical behavior varies smoothly with
constraint values, separated however by sharp regional boundaries where
smoothness is lost (phase transitions), as indicated by dashed curves in Figure
3.


Analysis of such phases is greatly simplified by an asymptotic formalism,
associated with the term graphons for graphs (see [20] for a comprehen-
sive introduction) and permutons for permutations (developed in [13, 14]),
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Figure 1: Phase space for subgraph constraints edges and triangles
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and by large deviation theorems in those asymptotic settings, as discussed
in Section 3. The study of phases is more advanced for graphs than per-
mutations so this status report will mostly be about graphs. There are very
interesting extremum results in other parts of combinatorics too, for instance
partially ordered sets, but we do not know of work on emergent phases in
those fields (see however [24] and references therein).
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III


Figure 3: Three phases for edge/triangle constraints


2 Introduction to phases in large contrained


graphs


2.1 Background


Before we wade in, here is some background. The formalism of phases which
we discuss in Section 3 mirrors that used in statistical mechanics models, in
which one analyzes configurations of n particles in Euclidean space, with a
specified potential energy function whose gradient gives the interaction forces
defining the model. (For background in statistical mechanics see [35]; there
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is a short outline in [28].) There is a long history studying configurations
of particles minimizing the energy density for given mass density (energy
ground states) [25], or maximizing the mass density for given energy density
(densest packing) [11, 4]. Solid and fluid phases emerge when the achievable
(energy density, mass density) pairs move away from the phase space bound-
ary studied in these extremum problems, and this is the phenomenon we
are mirroring in combinatorial systems. The physics models are much more
complicated than the combinatorial ones due to the geometric dependence
of the potential energy function, and indeed it is still an important open
problem [7, 40, 36] to prove the existence of a fluid/solid phase transition in
any reasonably satisfactory model (see however [6]). As we will see, progress
has been quicker in the simpler combinatorial settings.


Our goal is to analyze ‘typical’ large combinatorial systems with variable
constraints, for instance a typical large graph with edge/triangle densities
(ǫ, τ) in the phase space of Figure 1. Our densities are real numbers, lim-
its of densities which are attainable in large finite systems, so we begin by
softening the constraints, considering graphs with n >> 1 nodes and with
edge/triangle densities (ǫ′, τ ′) satisfying ǫ−δ < ǫ′ < ǫ+δ and τ−δ < τ ′ < τ+δ
for some small δ (which will eventually disappear.) It is easy to show that
the number of such constrained graphs is of the form exp(sn2), for some
s = s(ǫ, τ, δ) > 0 and by a typical graph we mean one chosen from the
uniform distribution on the constrained set.


Goal. We wish to analyze such families of constrained, uniform distribu-
tions of large combinatorial systems, in particular their dependence on the
constraints.


2.2 Main results for graphs


Specializing to graphs, we present here the main qualitative results on the
asymptotics of constrained systems. Proofs are scattered throughout [29,
30, 31, 17, 18], under various hypotheses. The phenomena have also been
verified to hold under weaker restrictions by careful simulations, and we
postpone describing these issues of the range of validity until Section 4.


1. For fixed constraint values, and asymptotically in n, the nodes fall into
a finite number of equivalence classes. More specifically, in a typical
large constrained graph the set of nodes can be partitioned into a finite
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(usually small) number of subsets, with well-defined fractions of edges
connecting nodes within, and between, such subsets. Thus there are
a small number of parameters describing our target distributions, and
they are functions of the constraints. For instance using edge and
triangle constraints, ǫ and τ , for most values of (ǫ, τ) and asymptotically
in n, the uniform distribution has four parameters a, b, c, d: the node
set is partitioned into two subsets of relative size c, with edges between
a fraction a of node pairs in one set, b for the other set, and fraction d
of node pairs split between the sets, and these are functions of (ǫ, τ).


2. The phase space Γ of achievable constraint values can be partitioned
into regions called phases, within which the parameters of the distri-
bution are unique and smooth functions of the constraints, separated
by lower dimensional boundaries on which parameter values may or
may not be unique, but at which they lose their smoothness (phase
transitions). Figure 3 exhibits three of the phases in the system with
edge/triangle constraints. Phase II exhibits an unusual level of sym-
metry, between classes of nodes, rather than merely within classes.


Together these show how the phase structure is exhibited by typical graphs,
through the development of levels of equivalence among nodes.


3 The basic tools: entropy and graphons


3.1 Graphons


The mathematics of asymptotically large graphs uses graphons, which we now
review [20]. The set of graphs, on n nodes labelled {1, . . . , n}, will be denoted
Gn. (Graphs are assumed simple, i.e. undirected and without multiple edges
or loops.) Given G in Gn we use its adjacency matrix to represent G by the
function q


G
on the unit square [0, 1]2 with constant value 0 or 1 in each of the


subsquares of area 1/n2 centered at the points ([j−1/2]/n, [k−1/2]/n). More
generally, a graphon q ∈ G is an arbitrary symmetric measurable function
[0, 1]2 with values in [0, 1]. Informally, q(x, y) is the probability of an edge
between nodes x and y, and so two graphons are called equivalent if they agree
up to a ‘node rearrangement’ (see [20] for details). Taking representatives,
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we define the cut metric on the quotient space G̃ of ‘reduced graphons’ by


d(f, g) ≡ sup
S,T⊆[0,1]


∣


∣


∣


∫


S×T


[f(x, y)− g(x, y)] dxdy
∣


∣


∣
. (1)


G̃ is compact in this topology [20]. (We will define an equivalent metric on
G̃ in (5).)


We now consider ‘blowing up’ a graph G by replacing each node with
a cluster of K nodes, for some fixed K = 2, 3, . . ., with edges inherited as
follows: there is an edge between a node in cluster V (which replaced the
node v of G) and a node in cluster W (which replaced node w of G) if
and only if there is an edge between v and w in G. (The resultant graph
is multipartite.) Note that the blowups of a graph are all represented by
the same reduced graphon, and q


G
can therefore be considered a graph on


arbitrarily many – even infinitely many – nodes, which we exploit next.
The features of a graph G on which we have focused are the densities


with which various subgraphs H sit in G. Assume for instance that H is
a quadrilateral. We could represent the density of H in G in terms of the
adjacency matrix AG by


1
(


n
4


)


∑


w,x,y,z


AG(w, x)AG(x, y)AG(y, z)AG(z, w), (2)


where the sum is over distinct nodes {w, x, y, z} of G. For large n this can
approximated, within O(1/n), as:


∫


[0,1]4
q
G
(w, x)q


G
(x, y)q


G
(y, z)q


G
(z, w) dw dx dy dz. (3)


It is therefore useful to define the density tH(q) of this H in a graphon q by


∫


[0,1]4
q(w, x)q(x, y)q(y, z)q(z, w) dwdx dy dz, (4)


and use such densities for this H , and analogs for other subgraphs, in analyz-
ing constrained distributions. We note that tH(q) is a continuous function of
q if we use the cut metric on reduced graphons. This set of functions is also
separating: any two reduced graphons with the same values for all densities
tH are the same [20].


Next we give a different view of graphons. Let M be the set of multipodal
graphons, i.e. those for which there is a partition of [0, 1] into finitely many
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subsets Fj and the graphon is constant on each product Fj ×Fk, and let M′


be the subset of those functions of the form q
G
for some graph G. Consider


the metric d̄ on reduced graphons defined by


d̄(f, g) =
∑


j≥1


|tHj
(f)− tHj


(g)|/2j, (5)


where {Hj} is any ordering of the countable set of finite simple connected
graphs. This metric is equivalent on G̃ to the cut metric defined earlier
[20]. We can thus realize G̃ in an obvious way as a space of sequences, with
coordinates in [0, 1], and metric d̄, and note that the image G̃ ′ of M′ is dense
in G̃ [20].


3.2 Entropy and the variational principle for graphs


Getting back to our goal of analyzing constrained uniform distributions, a
related step is to determine the cardinality of the set of graphs on n vertices
subject to constraints. Our constraints are expressed in terms of a vector α of
values of a set C of densities, and a softening agent δ. Denoting the cardinal-
ity by Zn(α, δ), it was proven in [29, 30] that limδ→0 limn→∞(1/n2) ln[Zn(α, δ)]
exists; it is called the constrained entropy sα. From thermodynamics it is
known that much can be learned simply from knowing this function of the
values α of the constraints. In statistical mechanics one focuses differently,
using probabilistic notions to analyze the asymptotic constrained uniform
distributions, again as a function of the constraint values, and this is what
we discuss for these combinatorial settings in this report.


There are 2(
n
2
) ≈ ekn


2


graphs in Gn. There are at most n! ≈ expnln−n


graphs equivalent to any particular element of Gn, which for large n is neg-
ligible compared to ekn


2


and this fact will be relevant below.
Suppose we are interested in analyzing those G ∈ Gn with edge density


approximately e0 ∈ (0, 0.5] and the largest possible triangle density, which is
(e0)


3/2 [20]. To attain this one must use m nodes to form a clique (all possible


edges), where m is determined by 2(
m
2 ) = 2(


n
3)e


3/2
0 , and leave the remaining


nodes as spectators (no connections). There are many ways to do this, but
they are all represented by the same reduced graphon in G̃ ′.


Alternatively, suppose we wanted theG’s to have edge density e0 ∈ (0, 0.5]
but with minimal possible triangle density, which is 0. To achieve this one can
select two subsets A,B of the nodes, and choose ne0 edges but only between
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nodes in different sets. There are many inequivalent bipartite graphs of this
type (except for e0 = 0.5), so a more productive goal might be to get a useful
handle on the distribution of solutions G.


Finally, there is an enormous number of ways to attain edge density
e0 ∈ (0.5] and triangle density fixed between the maximum and minimum
just discussed. For these intermediate cases we change the problem as sug-
gested in the previous paragraph; we no longer try to identify the appropriate
graphs, but it turns out we can often identify what a typical such graph is
like, i.e. determine the (uniform) distribution on such constrained graphs.
For instance for triangle density τ ∈ [0, e30] the constrained distribution is ob-
tained by partitioning the node set into two equal sets A and B, and choosing
edges between node pairs independently by the following two rules: for any
two nodes in the same set the probability of an edge is [e0 − (e30− τ)1/3], and
for any two nodes in different sets the probability is [e0 + (e30 − t)1/3]. For
τ = e30 this reduces to the situation in which each pair of nodes is connected
with probability e0, while for τ = 0 it reduces to the extreme case discussed
above.


This is the point where the mathematics changes flavor. This is not due
merely to our focus on asymptotics; as noted in Section 1, the extremal com-
binatorics associated with the boundary of the phase space already involves
asymptotics, and for instance led to the beautiful flag algebra formalism of
Razborov [32]. The difference here is that at points in the interior of Γ, where
we want to understand not individual graphs but the constrained uniform
distribution on graphs, our problem is naturally reformulated within the cal-
culus of variations, since a key tool is the constrained entropy sα which can
be represented as follows.


Theorem 1. (The variational principle for constrained graphs [29, 30]) For
any vector H̄ of subgraphs Hj and vector α of numbers ᾱj,


sα = max
tH (q)=α


S(q), (6)


where S is the Shannon entropy of graphons:


S(q) = −


∫


[0,1]2


1


2
{q(x, y) ln[q(x, y)] + [1− q(x, y)] ln[1− q(x, y)]} dxdy. (7)


Our goal is to understand families of constrained uniform distributions
on graphs in Gn, n large. It can be tricky to ‘compare’ distributions for
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different n; we overcome this using graph blowup as in Section 3.1 to work
with graphons, giving us a uniform framework independent of n. Then we
get our approximations to the distributions, using the optimal graphons in
Theorem 1, through a relatively standard general procedure to determine
probability measures on the space of graphs by the Daniell method, using
those optimal graphons to define elementary integrals. (Once done we will
in practice compute probabilities in a simpler manner!)


Consider the set L of all real valued continuous functions F on G̃ with
the following property: there is a finite set S(F ) of graphs H such that for
any pair f, g ∈ G̃, if tH(f) = tH(g) for all H ∈ S(F ) then F (f) = F (g).
(That is, functions in L ‘depend on’ only finitely many density coordinates
tH of reduced graphons.) L is a vector lattice [38], containing the constant
function 1, and separates points in G̃ and therefore in G̃ ′. Using the values of
the densities of any particular g̃ ∈ G̃ defines an elementary integral Jg̃ on L
which, by Daniell integration [38], determines a unique probability measure
on G̃ ′. Thus we can approximate the constrained uniform distributions on
Gn by probability measures on ‘infinite graphs’, i.e. on G̃ ′. As noted above,
now that we have defined our measures this way we compute with them in a
more straightforward manner.


Variational principles such as Theorem 1 are well known in statistical
mechanics [33, 34, 35], and for their simpler (discrete) models can be obtained
from general large deviations results [10]. This was also the case for Theorem
1, for which the proof used the large deviation theory from [9]. One aspect
of the applicability of such variational principles in this context is not well
understood. In all known graph examples the optimizers in the variational
principle are unique in G̃ except occasionally on a lower dimensional set of
constraints where there is a phase transition. But we do not yet have a
theoretical understanding of this fundamental issue, sometimes called the
Gibbs phase rule in physics; see [34, 15] for weak versions in physics. Given
such uniqueness however, the rest of the path is clear: the optimizer for
(6) gives us the limiting constrained uniform distribution which we want to
analyze! (Without uniqueness it is harder to obtain useful information.)


4 Examples of constrained graphs systems


We now give some details, including references, concerning the qualitative
results claimed in Section 2.2. As noted there, our understanding of the
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range of validity of what is proven in our theorems is significantly enhanced by
careful simulations, in a range of examples (models). To preserve continuity
of argument we will clarify some statements with references to the Notes at
the end of the text.


4.1 Edge/triangle model


Consider first the edge/triangle model, using edge/triangle densities (ǫ, τ) as
constraints, studied in [29, 30, 31, 17, 18]. The entropy optimizer is unique(1)


in G̃ for every pair (ǫ, τ). Also, the optimizer is multipodal, i.e. there is a
partition of [0, 1] into finitely many subsets Fj and the graphon is constant
on each product Fj×Fk. This gives a distribution with finitely many param-
eters, which vary smoothly with (ǫ, τ) except on certain curves, separating
phases(2). Specifically, for over 95% of the area of Γ, corresponding to con-
straints in the phases I, II and III in Figure 3, it is bipodal – the partition
of the nodes is into just two subsets – so there are only four parameters in the
asymptotic distribution, each a function of the constraints. In particular, in
phase II there is a very interesting symmetry: the two sets of nodes are in all
ways interchangeable. This means, in terms of the parameters defined ear-
lier, that a = b and c = 1, so there are only two independent variables, a and
d, in this phase. One can then solve for a and b in terms of the constraints ǫ
and τ , getting the graphon in Figure 4 (using convenient node labelling).


It is natural to study the boundaries of phases, to see how the system
changes there. Consider the approach to the phase boundary τ = ǫ3, from
each side. Fixing ǫ ≤ 0.5 and increasing τ from 0, we see from Figure 4 that
the large typical graph starts as perfectly symmetric bipartite, and steadily
loses the distinction between the two sets(3). At τ = ǫ3 the nodes are all
equivalent; these are the Erdős-Rényi graphs, with iid edges, and since the
constrained entropy peaks at the curve τ = ǫ3 when varying either ǫ or τ
separately, these graphs are important in part because of their overwhelming
number. They also play the same intuitive role for us as the ideal gas in
statistical mechanics.


The approach to the Erdős-Rényi curve from phase I is quite different.
Except at ǫ = 0.5 (the maximum of the unconstrained entropy), as one
increases τ from ǫ3 the optimal graphon immediately becomes bipodal but
now by the emergence of an infinitesmal set of nodes: c = O(τ − ǫ3). The
asymptotic form of a, b and d are proven in [18]. The behavior of phase
I near its upper boundary, τ = ǫ3/2 has not been analyzed. But on the
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Figure 4: The (piecewise constant) edge/triangle graphon in phase II
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Figure 5: The phase space for the 2-star model
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Figure 6: The critical point in the 2-star model


upper boundary itself the optimal graphon consists of spectator nodes, fully
unconnected, and a cluster of fully interconnected nodes (a clique), of size
needed to produce edge density ǫ. It is not yet understood how these graphs
connect to the ones emerging from the lower boundary of phase I, though
extensive simulation data has been gathered [31]. And finally, perturbation
about the boundary between phases III and II is particularly interesting
because of the breaking of symmetry. New features appear in other models,
which we now discuss.


4.2 k-star graph models


A k-star is a graph with k edges with a node in common, and the k-star model
is the one in which the constraints are the density ǫ of edges and the density
τk of k-stars. The phase space Γ of the 2-star model is typical of them, and
shown in Figure 5 [17](4). For any k-star model the lower boundary of Γ is
the curve, τk = ǫk, represented by Erdős-Rényi (constant) graphons, and the
upper boundary is the upper envelop of two intersecting smooth curves(4).
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There is a unique bipodal graphon representing all but one point on the upper
boundary, the intersection point just noted, where the two one-sided graphon
limits differ(4). We know for k-star models that in the interior of Γ there is
a unique entropy-optimizing bipodal graphon everywhere except on a curve
emanating from the intersection point on the boundary; this curve ends at a
‘critical point’ in the interior of Γ, so there is only one phase in each of these
models(5). See Figure 6. The behavior of k-star models just above the Erdős-
Rényi curve is common to many other models, including the edge/triangle
model [18]. However this universality does not extend further from the Erdős-
Rényi curve; in particular there is no transition in the edge/triangle model
analogous to that in the k-star models(6). (There is some confusion on this
point coming from exponential random graph models(7).)


4.3 Half-blip model


Finally we consider the half-blip model, where the constraints are a pair of
signed densities, the signed 2-star density t1 and signed square density t2,
defined for graphons by:


t1(q) =


∫


q(x, y)[1− q(y, z)]dx dy dz; (8)


t2(q) =


∫


q(w, x)[1− q(x, y)]q(y, z)[1− q(z, w)]dw dx dy dz. (9)


The phase space for this model is not fully known, but there is a lower edge
corresponding to t2 = 0, namely {(t1, 0) | 0 ≤ t1 ≤ 1/6}, with the following
feature: as t1 increases from 0 the unique representing graphon is m-podal
but with m → ∞ as t1 → 1/6. This feature is not so special, as it is
shared with the edge/triangle model along its lower (scalloped) boundary as
ǫ → 1. However in the half-blip model the unique graphon associated with
(t1, t2) = (1/6, 0) is not multipodal – it is the graphon, with values 0 and 1,
shown in Figure 7 – and this unusual circumstance is quite intriguing.


There is much to learn about this model, both on the boundary and the
interior of Γ. The model is an analog of statistical mechanics models of
quasicrystals [26], which raises the question whether, in the half-blip model,
there is a phase in the interior of Γ near (1/6, 0) without multipodal entropy
optimizers. Indeed the analogous question has not yet been solved in statis-
tical mechanics [3], but might well be easier to solve in this combinatorial
setting.
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Figure 7: The half-blip graphon at (t1, t2) = (1/6, 0)


We have discussed several models of large graphs, but all had two con-
straints. We do not know of new phenomena which become available with
more constraints, though we note one model studied with three constraints,
the taco model [17]. In the other direction, a model with only one con-
straining density reduces to the Erdős-Rényi family, which is very important
but does not exhibit phases, or transitions, in the senses we have used the
terms. There has been much work in adjusting the Erdős-Rényi models,
for instance to exhibit percolation. This is of course important, but seems
to be exploring phenomena essentially different, say, from the emergence of
the symmetric phase II in large graphs with edge/triangle constraints, as
described in Section 4.1.


5 Phases in large constrained permutations


5.1 Permutons and entropy


Next we review some results in which the above style of analysis of phases is
applied to large constrained permutations. We begin with a quick review of
the asymptotic permuton formalism, introduced in [13, 14]. Given a labelled
set of n objects, which we take to be {1, 2, . . . , n}, a permutation π in Sn


is an invertible function from {1, 2, . . . , n} to itself, represented by its values
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(π1, π2, . . . , πn). It is commonly displayed as a square 0− 1 matrix Aj,k with
value 1 when πj = k. This can be rescaled and reinterpreted as a function
on [0, 1]2 which has values 0 or 1 on each square [(j − 1)/n, j/n] × [(k −
1)/n, k/n], j, k = 1, 2, . . . , n, with value 1 when πj = k. Since such functions
are nonnegative and have integral 1, they can be reinterpreted as the densities
of probability measures γπ on [0, 1]2, with the property of uniform marginals:


γπ([a, b]× [0, 1]) = b− a = γπ([0, 1]× [a, b]), for all 0 ≤ a ≤ b ≤ 1. (10)


Permutons are then defined more generally to be probability measures on
[0, 1]2 with uniform marginals. We put the usual weak topology of measure
theory (or weak∗ topology from functional analysis) on the compact space M
of permutons, and note that the set ∪n{γπ | π ∈ Sn} is dense in M [13, 14,
12, 16].


We will be considering asymptotic conditional distributions on Sn, asymp-
totic as n → ∞, and we choose the conditioning to mesh with the (extremal)
study of pattern avoidance as indicated in the beginning of this report. This
choice is a more serious decision in the study of permutations than condition-
ing by subgraph densities for graphs, because it emphasizes a linear ordering
of the objects being permuted, which is quite restrictive; with another choice
one might for instance use the permutations to model the mixing of objects
in space. In any case, as we did with graphs we define the density ρτ (γ)
of a pattern τ ∈ Sk in a permuton γ as an asymptotic form of its natural
meaning for permutations, namely by the probability that when k points
are selected independently from γ and their x-coordinates are ordered, the
permutation induced by their y-coordinates is τ . For example, for γ with
probability density g(x, y) dxdy, the density of pattern 12 ∈ S2 in γ is


ρ12(γ) = 2


∫


x1<x2∈[0,1]


∫


y1<y2∈[0,1]


g(x1, y1)g(x2, y2) dx1dy1dx2dy2. (11)


It follows that if γπj
converges to γ then the density of τ in πj converges


to ρτ (γ), and that two permutons are equal if they have the same pattern
densities for all patterns. See [12] for background on permutons.


We now use pattern densities to condition permutations. Let γ be a
permuton with probability density g. We define the Shannon entropy H(γ)
of γ by:


H(γ) =


∫


[0,1]2
−g(x, y) ln g(x, y) dxdy, (12)
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where 0 ln 0 is taken as 0. Then H is finite whenever g is bounded (and
sometimes when it is not). In particular for any π ∈ Sk, we have H(γπ) =
−k(k ln k/k2) = − ln k and therefore H(γπ) → −∞ for any sequence of
increasingly large permutations even though H(lim γπ) may be finite. Note
that H is 0 on the uniform permuton (where g(x, y) ≡ 1) and negative
(sometimes −∞) on all other permutons, since the function −z ln z is concave
downward. If γ has no probability density we define H(γ) = −∞.


Fix some finite set {τ1, . . . , τk} of patterns and let α = (α1, . . . , αk) be a
vector of their target densities. We then define two sets of permutons:


Λα,δ = {γ ∈ M | |ρτj(γ)− αj | < δ for each 1 ≤ j ≤ k}, (13)


Λα = {γ ∈ M | ρπj
(γ) = αj for each 1 ≤ j ≤ k}. (14)


With that notation, and the understanding that Λα,δ
n = Λα,δ ∩ γ(Sn), where


γ(π) = γπ, we have:


Theorem 2. (The variational principle for constrained permutations [16])


lim
δ→0


lim
n→∞


1


n
ln


|Λα,δ
n |


n!
= max


γ∈Λα
H(γ). (15)


Constrained sets of permutations in Sn have cardinality of order e
n lnn+(c−n)


where c ∈ [−∞, 0] is our target [16]. The function of α, max
γ∈Λα


H(γ), which


is guaranteed by the theorem to exist but may be −∞, is the constrained
entropy and denoted by s(α). Theorem 2 was proven in [16] using the large
deviations theorem from [39].


5.2 Examples ofconstrained large permutations


The general framework for the asymptotics of constrained permutations is
thus analogous to that of constrained graphs. In detail the mathematics is
quite different, but in terms of results about phase structure the main differ-
ence is in the depth of progress on examples, even on the boundary of their
phase spaces, i.e. the extremal theory. The main examples in which relevant
progress has been made concerning phases in constrained permutations are:
the 12/123 model, star models, and the 123/321 model.


For the 12/123 model it has been shown [16] that the phase space is
the same scalloped triangle which is the phase space for the edge/triangle
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of graphs Figure 1. For graphs the vertices of the scalloped triangle were
shown to give rise to interesting phases and phase transitions, as indicated
in Figure 3. However there is no evidence yet of an analogous phenomenon
for the 12/123 model of permutations.


Star models of permutations use constraints of slightly different character
than considered so far. Instead of a single pattern τ ∈ Sk say, one replaces
two or more of the symbols in τ by a ∗, which is a place holder which can
be filled by any unused symbols. For instance the constraint ∗2∗ fixes the
density of the union of all consistent patterns in S3, namely 123 and 321.
For a class of models with a finite number of such constraints it is proven
that constrained entropy is an analytic function of the constraint values, and
that it has a unique optimal permuton at each point in its phase space [16].


Finally, for the 123/321 model there is proven [16] to be a phase tran-
sition on a curve emanating from the singularity at (0.278 . . . , 0.278 . . .) on
its phase boundary (see Figure 2), of similar character to the one proven for
the edge/2-star graph model (see Figure 5).


We conclude our discussion of the permutation theory by noting two
topics in the asymptotics of constrained permutations which were omitted
due to a lack of results on phase structure. One is the useful tool of insertion
measures; see [16]. And finally, we have ignored work done with a single
constraint because, as was noted in Section 4.3 for graphs, it does not seem
to bear on the deeper issues of phases and phase transitions; however see [37]
and references therein.


6 Open problems


Two open problems for constrained graphs go to the heart of our understand-
ing of phase emergence. The first is to understand why, in all models we have
studied, there is a unique optimizer for the constrained entropy except off a
set of constraints of lower dimension. As noted in Section 3.2, without this
feature our method would not produce useful results. There is some analysis
of this phenomenon in statistical mechanics, but the only results are unique-
ness off a set of constraint values of category one, or of measure zero [34, 15],
and while intuitively suggestive this is not of practical use.


Another basic problem is the origin of the multipodal structure of entropy
optimizers. We have never found a nonmultipodal entropy optimizer in the
interior of a phase space, i.e. in a phase, but there is no general proof that they
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cannot exist. (There are proofs in some regions of some models [17, 18], but
they do not give any insight into the general situation.) An obvious candidate
for exploring this is the half-blip model of Section 4.3, a model which had
already been used to study the analogous phenomenon in extremal graph
theory [21].


Multipodality can be understood in terms of a symmetry between nodes,
as discussed in Section 2.2. Another, and related, open problem concerns
phase II in the edge/triangle model. The symmetry of this phase, discussed
in Section 4.1, is between the equivalence classes that define multipodal struc-
ture. What is the significance of this higher level of symmetry? Multipodal
graphons are piecewise constant as functions on [0, 1]2, and it is plausible
that such uniformity originates from maximizing entropy, as was actually
demonstrated in [17] for k-star models. But the higher level of symmetry
of phase II in the edge/triangle model is in a different category. One pos-
sible path to understanding this links the problem to an old open problem
in statistical physics, to understand why there is not a critical point in the
transition between solid and fluid phases of matter as there is between liquid
and gas; see Figure 8.


Gas


Liquid


Fluid


Solid 2


Solid 1


Temperature T


Pressure P


Figure 8: The phase diagram of a simple material


Consider the traditional symmetry argument from physics [2]:
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“It was Landau (Landau and Lifshitz, 1958) who, long ago, first pointed
out the vital importance of symmetry in phase transitions. This, the First
Theorem of solid-state physics, can be stated very simply: it is impossible
to change symmetry gradually. A given symmetry element is either there
or it is not; there is no way for it to grow imperceptibly. This means, for
instance, that there can be no critical point for the melting curve as there
is for the boiling point: it will never be possible to go continuously through
some high-pressure phase from liquid to solid.”


This argument is not completely convincing [23], but the role of symmetry
in the study of solids is pervasive and has been highly productive both in
science and mathematics. And in support for linking the problems we note
there is no critical point in the transition between phases II and III in Figure
3 where the graphons for phase II but not III have the higher symmetry,
while there is a critical point in Figure 6, where the graphons do not exhibit
the higher level symmetry.


Concerning permutations we note that the permuton machinery seems
to apply well to pattern constraints. But this leaves out a major aspect of
permutations, their cycle structure, which makes use of permutation mul-
tiplication and avoids the linear structure used in patterns. Incorporating
cycle structure should be a major source of development.
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Notes


1. This has been proven in a thin region above the Erdős-Rényi curve [18]
and on the line {(ǫ, τ) | ǫ = 0.5, 0 ≤ τ ≤ 1/8} [29], and seen in all the
extensive simulations of the model noted in [31].


2. Bipodality is proven in a thin region above the Erdős-Rényi curve [18]
and on the line segment {(ǫ, τ) | ǫ = 0.5, 0 ≤ τ ≤ 1/8} [29]. Bipodality
and tripodality has been seen in all other regions simulated in [31].
There are expected to be regions of m-podality with increasing m near
the corners of the scallops along the boundary of the phase space [29,
30]. The rest of the claims about entropy optimizers in this paragraph
are only known from the simulations referenced.


3. The bipodal graphon in Figure 4 is only proven along the line segment
{(ǫ, τ) | ǫ = 0.5, 0 ≤ τ ≤ 1/8} [29], but has been thoroughly investi-
gated by simulation [31] in the region described as phase II.


4. The phase diagrams for k-star models are derived, but only for k ≤ 30,
in [17].


5. The one phase is smooth except on the curve. Nonsmoothness on the
curve has been proven for k = 2, and seen in simulation in k = 3, in
[17].


6. This is only known from simulation, but would not be expected because
of the behavior of the edge/triangle model on the upper boundary of
its phase space.


7. Exponential random graph models are widely used, especially in the
social sciences, to model graphs on a fixed, small number of nodes [22].
These models are sometimes considered Legendre transforms of the
models being discussed in this report [29]. However, as was pointed
out in [8], as the number of nodes gets large the parameters in the
model become redundant, and this confuses any interpretation of phase
transitions in such models. One way to understand the difficulty is that
the constrained entropy in these models is not convex or concave, and
the Legendre transform is not invertible [29].
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