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Abstract: We analyze spectral properties of the operator H = ∂2


∂x2 −
∂2


∂y2 +


ω2y2 − λy2V(xy) in L2(R2), where ω , 0 and V ≥ 0 is a compactly supported
and sufficiently regular potential. It is known that the spectrum of H depends
on the one-dimensional Schrödinger operator L = − d2


dx2 + ω2 − λV(x) and it
changes substantially as inf σ(L) switches sign. We prove that in the critical
case, inf σ(L) = 0, the spectrum of H is purely essential and covers the inter-
val [0,∞). In the subcritical case, inf σ(L) > 0, the essential spectrum starts
from ω and there is a non-void discrete spectrum in the interval [0, ω). We
also derive a bound on the corresponding eigenvalue moments.


1. Introduction


In the paper [Sm04] Uzy Smilansky introduced a simple example of quantum dynamics
which behaves in two substantially different ways depending on the value of the coupling
constant; the original motivation was to demonstrate that some commonly accepted assump-
tion in describing irreversible dynamics via coupling to a heat bath can be avoided. In PDE
terms the model is described by the Hamiltonian


HSm = −
∂2


∂x2 +
1
2


(
−
∂2


∂y2 + y2
)


+ λyδ(x) (1.1)


in L2(R2) and the two dynamics types can be expressed in spectra terms: for λ ≤
√


2 the
operator (1.1) is bounded from below, while for λ >


√
2 its spectrum fills the real line [So04];


note that the model has a mirror symmetry which allows us to consider λ ≥ 0 only.
The model was subsequently generalized in various way, in particular, to situations when


more than one singular ‘escape channel’ is open [ES05, NS06]. Other modifications con-
cerned replacing the oscillator by a potential well of a different shape [So06b] or by replacing
the line by a more general graph [So06a]. It is also possible to have the motion in the x di-
rection restricted to an interval with periodic boundary conditions [Gu11, RS07]. In the first
named of these papers time evolution of wave packets was investigated to confirm the idea
that the spectral change in the supercritical case corresponds to the possibility of an ‘escape
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to infinity’; the model was then in [Gu11] interpreted as a caricature description of a quantum
measurement.


Another question inspired by this work was whether Smilansky model has an analogue in
which the δ-interaction with y-dependent strength is replaced by a smooth potential channel
U of increasing depth. One way to do it is to approximate the δ-interaction in (1.1) by a family
of shrinking potentials in the usual way [AGHH05, Sec. I.3.2]. Since the mechanism behind
the abrupt spectral transition is the competition between the δ-potential eigenvalue −1


4λ
2y2


and the oscillator potential, we have to match the integral of the approximating potential
with the δ coupling constant,


∫
U(x, y) dx ∼ y, which can be achieved, e.g., by choosing


U(x, y) = λy2V(xy) for a fixed function V . This suggests the partial differential operator on
L2(R2) acting as


H = −
∂2


∂x2 −
∂2


∂y2 + ω2y2 − λy2V(xy) (1.2)


as a suitable candidate for such a regular counterpart to the operator (1.1). Here ω, λ are
positive constants and the potential V with supp V ⊂ [−a, a], a > 0, is a nonnegative function
with bounded first derivative; under these assumptions the operator (1.2) is by Faris-Lavine
theorem [RS, Thms. X.28 and X.38] essentially self-adjoint on C∞0 (R2). Hence it has a unique
self-adjoint extension, namely its closure, which we will for simplicity also denote by H.


In [BE14] we investigated such a model and demonstrated that it also exhibits an abrupt
spectral transition when the coupling parameter exceeds a critical value. To describe it we
need to introduce a one-dimensional comparison operator,


L = −
d2


dx2 + ω2 − λV(x) (1.3)


on L2(R) with the domain H2(R). This allowed us to characterize different spectral regimes:
the operator H is bounded from below provided that L is non-negative, while if the spectral
threshold of L is negative the spectrum of H fills the whole real line. For the sake of brevity
we shall refer to these cases as to (sub)critical and supercritical, respectively.


To be exact, in [BE14] the last term on the right-hand side of (1.2) was modified by a
cut-off factor introduced from technical reasons which had no influence on the described
behavior. The aim of the present paper is to extend and deepen the analysis of this operator
class in several directions:


• to analyze the critical case, inf σ(H) = 0, in particular, to show that σ(H) = [0,∞)
holds in this case
• in the subcritical case, to show that σess(H) = [ω,∞) and the discrete spectrum is


nonempty
• also in the subcritical case, to derive a bound to eigenvalue momenta


These three topics will be subsequently dealt with in Sections 2–4 below. Before proceeding
to that, let us mention that there are other systems with narrowing potential channels which
exhibit similar spectral transitions. To our knowledge, the effect was first noted by M. Znojil
[Zn98]. Another recent example concerns the operator −∆ + |xy|p − λ(x2 + y2)p/(p+2) in L2(R2)
with a fixed p ≥ 1 discussed recently in [BEKT16], where the spectrum changes from purely
discrete to the whole real line at the critical value of λ equal to the principal eigenvalue of the
corresponding one-dimensional anharmonic oscillator.
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2. The critical regime


2.1. Essential spectrum. In the free case, λ = 0, the spectrum is purely essential and equal
to [ω,∞). We show first that no part of it is lost when the critical perturbation is switched on,
and on the contrary, the essential spectrum now includes the whole non-negative half-line.


Theorem 2.1. Under the stated assumptions, the essential spectrum of operator H given by
(1.2) contains the half-line [0,∞) if inf σ(L) = 0.


Proof. To prove that any non-negative number µ belongs to the essential spectrum of H we
are going to employ Weyl’s criterion [RS, Thm. VII.12]: we have to find a sequence {ψn}


∞
n=1 ⊂


D(H) of unit vectors, ‖ψn‖ = 1, which converges weakly to zero and


‖Hψn − µψn‖ → 0 as n→ ∞


holds. We are going to use the fact that for any non-negative potential V which is not identi-
cally zero the operator


L̃ = −
d2


dx2 − λV


on L2(R2) has at least one negative eigenvalue [Si76], hence the spectral threshold of L is an
isolated eigenvalue; we denote the corresponding normalized eigenfunction by h.


Given a smooth function χ with supp χ ⊂ [1, 2] and satisfying
∫ 2


1
χ2(z) dz = 1, we define


ψn(x, y) := h(xy) ei
√
µyχ


(y
n


)
, (2.4)


where n ∈ N is a positive integer to be chosen later. For the moment we just note that choosing
n large enough one can achieve that ‖ψn‖L2(R2) ≥


1
√


2
as the following estimates show,∫


R2


∣∣∣∣∣h(xy) ei
√
µy χ


(y
n


)∣∣∣∣∣2 dx dy =


∫ 2n


n


∫
R


∣∣∣∣∣h(xy) χ
(y
n


)∣∣∣∣∣2 dx dy


=


∫ 2n


n


∫
R


1
y


∣∣∣∣∣h(t) χ
(y
n


)∣∣∣∣∣2 dt dy =


∫
R


|h(t)|2 dt
∫ 2n


n


1
y


∣∣∣∣∣χ (y
n


)∣∣∣∣∣2 dy


=


∫ 2n


n


1
y


∣∣∣∣∣χ (y
n


)∣∣∣∣∣2 dy =


∫ 2


1


1
z
|χ(z)|2 dz ≥


1
2
. (2.5)


Our next aim is to show that ‖Hψn − µψn‖
2
L2(R2) < ε holds for a suitably chosen n = n(ε). By


a straightforward calculation one finds


∂2ψn


∂x2 = y2h′′(xy) ei
√
µyχ


(y
n


)
and


∂2ψn


∂y2 = x2h′′(xy) ei
√
µyχ


(y
n


)
+ 2ix


√
µ h′(xy) ei


√
µyχ


(y
n


)
+


2x
n


h′(xy) ei
√
µyχ′


(y
n


)
−µh(xy) ei


√
µyχ


(y
n


)
+ 2


i
√
µ


n
h(xy) ei


√
µyχ′


(y
n


)
+


1
n2 h(xy) ei


√
µyχ′′


(y
n


)
. (2.6)
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We need to show that choosing n sufficiently large one can make the terms on the right-hand
side of (2.6) as small as we wish. Changing the integration variables, we get the following
estimate,∫
R2


∣∣∣∣∣x2 h′′(xy) ei
√
µyχ


(y
n


)∣∣∣∣∣2 dx dy =


∫ 2n


n


∫
R


∣∣∣∣∣x2 h′′(xy) χ
(y
n


)∣∣∣∣∣2 dx dy


=


∫ 2n


n


1
y5


∣∣∣∣∣χ (y
n


)∣∣∣∣∣2 dy
∫
R


t4|h′′(t)|2 dt ≤
1
n4


∫ 2


1
|χ(z)|2dz


∫
R


t4|h′′(t)|2 dt ;


note that since the potential V has by assumption a compact support, the ground state eigen-
function h decays exponentially as |x| → ∞, hence the second integral in the last expression
converges. In the same way we establish the remaining inequalities we need,∫
R2


∣∣∣∣∣xh′(xy) ei
√
µyχ


(y
n


)∣∣∣∣∣2 dx dy =


∫ 2n


n


∫
R


1
y3


∣∣∣∣∣th(t) χ
(y
n


)∣∣∣∣∣2 dt dy


≤
1
n2


∫ 2


1
|χ(z)|2dz


∫
R


t2|h(t)|2 dt ,


∫
R2


∣∣∣∣∣ xn h′(xy) ei
√
µyχ′


(y
n


)∣∣∣∣∣2 dx dy =


∫ 2n


n


∫
R


1
y


∣∣∣∣∣ t
ny


h′(t) χ′
(y
n


)∣∣∣∣∣2 dt dy


≤
1
n4


∫ 2


1
|χ′(z)|2dz


∫
R


t2|h′(t)|2 dt ,


∫
R2


∣∣∣∣∣1n h(xy) ei
√
µyχ′


(y
n


)∣∣∣∣∣2 dx dy =
1
n2


∫ 2n


n


∫
R


1
y


∣∣∣∣∣h(t) χ′
(y
n


)∣∣∣∣∣2 dt dy


≤
1
n2


∫ 2


1


|χ′(z)|2


z
dz


∫
R


|h(t)|2 dt ,


∫
R2


∣∣∣∣∣ 1
n2 h(xy) ei


√
µyχ′′


(y
n


)∣∣∣∣∣2 dx dy =
1
n4


∫ 2n


n


∫
R


1
y


∣∣∣∣∣h(t) χ′′
(y
n


)∣∣∣∣∣2 dt dy


≤
1
n4


∫ 2


1
|χ′′(z)|2dz


∫
R


|h(t)|2 dt ,


which show that the corresponding terms are either O(n−2) or O(n−4) as n→ ∞, hence choos-
ing n large enough we can achieve that the sum of all the integrals at the left-hand sides of
the above inequalities is less than ε. This allows us to estimate the expression in question,∫
R2
|Hψn − µψn|


2(x, y) dx dy =


∫
R2


∣∣∣∣∣∣−∂2ψn


∂x2 −
∂2ψn


∂y2 + ω2y2ψn − λy2V(xy)ψn − µψn


∣∣∣∣∣∣2 dx dy


≤


∫ 2n


n


∫
R


∣∣∣∣∣y2h′′(xy)χ
(y
n


)
− ω2 y2h(xy)χ


(y
n


)
+ λy2 V(xy)h(xy)χ


(y
n


)∣∣∣∣∣2 dx dy + ε


=


∫ 2n


n


∫
R


∣∣∣∣∣y2
(
h′′(xy) − ω2h(xy) + λV(xy)h(xy)


)
χ
(y
n


)
dx dy + ε ,
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and using the fact that Lh = 0 holds by assumption, the last inequality implies∫
R2
|Hψn − µψn|


2(x, y) dx dy < ε . (2.7)


To complete the proof we fix a sequence {ε j}
∞
j=1 such that ε j ↘ 0 holds as j→ ∞, and to any


j we construct a function ψn(ε j) according to (2.4) with the parameters chosen in such a way
that n(ε j) > 2n(ε j−1). The norms of Hψn(ε j) satisfy inequality (2.7) with ε j on the right-hand
side, and since the supports of ψn(ε j), j = 1, 2, . . . , do not intersect each other by construction,
the sequence of these functions converges weakly to zero. The same is true for the sequence
of unit vectors ψ̃n(ε j) :=


ψn(ε j)


‖ψn(ε j)‖
and the norms of Hψ̃n(ε j) satisfy an inequality similar to (2.7),


this time with 2ε j on the right-hand side; this yields the sought claim. �


2.2. Non-negativeness. Now we are going to show that under our assumptions the operator
H has no negative spectrum in the critical regime.


Theorem 2.2. Let inf σ(L) = 0, then H is non-negative.


Proof. For any u ∈ dom(QH), the quadratic form associated with H, we have


QH[u] =


∫
R2


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 dx dy +


∫
R2


∣∣∣∣∣∂u
∂y


∣∣∣∣∣2 dx dy + ω2
∫
R2


y2|u|2 dx dy − λ
∫
R2


y2V(xy)|u|2 dx dy .


Neglecting the first term on the right-hand side, we can estimate the form value as


QH[u] ≥
∫
R


(∫
R


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 dx + ω2
∫
R


y2|u|2 dx − λ
∫
R


y2V(xy)|u|2 dx
)


dy . (2.1)


For any fixed y , 0 we change variables in the inner integral on the right-hand side and denote
w(t, y) = u


(
t
y , y


)
. Using the fact that L ≥ 0 one finds∫


R


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 (x, y) dy + ω2 y2
∫
R


|u|2(x, y) dx − λy2
∫
R


V(xy)|u|(x, y)2 dx


=
1
|y|


(
y2


∫
R


∣∣∣∣∣∂w
∂t


∣∣∣∣∣2 (t, y) dt + ω2 y2
∫
R


|w|2(t, y) dt − λy2
∫
R


V(t)|w|2(t, y) dt
)


= |y|
(∫
R


∣∣∣∣∣∂w
∂t


∣∣∣∣∣2 (t, y) dt + ω2
∫
R


|w|2(t, y) dt − λ
∫
R


V(t)|w|2(t, y) dt
)
≥ 0 ,


which in combination with the inequality (2.1) establishes our claim. �


Corollary 2.3. In the critical case we have σ(H) = σess(H) = [0,∞).


3. Subcritical regime


3.1. Essential spectrum. In contrast to the critical case, one can now guarantee only that
the the perturbation does not make the essential spectrum to shrink.


Theorem 3.1. Let inf σ(L) > 0 then σess(H) ⊃ [ω,∞).
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Proof. As before we are going to construct a Weyl sequence for any number µ ≥ ω. This
time we employ the functions


ϕk(x, y) =
1
√


k
g(y) ei


√
µ−ωx η


( x
k


)
, (3.1)


where g is the normalized eigenfunction associated with the principal eigenvalue of the har-
monic oscillator, hosc = − d2


dy2 +ω2y2 on L2(R), the function η ∈ C∞0 (1, 2) is supposed to satisfy
the following condition, ∫ 2


1
η2(z) dz = 1 ,


and k ∈ N is a positive integer to be chosen later. Let us note that ‖ϕk‖L2(R2) = 1 because∫
R2
|ϕk(x, y)|2 dx dy =


1
k


∫
R


|g(y)|2 dy
∫ 2k


k


∣∣∣∣∣η ( x
k


)∣∣∣∣∣2 dx =


∫
R


|g2(y) dy
∫ 2


1
η2(z) dz = 1 . (3.2)


Our aim is to show that ‖Hϕk − µϕk‖
2
L2(R2) < ε with holds for an appropriate k = k(ε). By a


straightforward calculation one gets


∂2ϕk


∂x2 =


(
−


(µ − ω)
√


k
η
( x
k


)
+


2i
√
µ − ω


k
√


k
η′


( x
k


)
+


1


k2
√


k
η′′


( x
k


))
g(y) ei


√
µ−ωx (3.3)


and
∂2ϕk


∂y2 =
1
√


k
g′′(y) ei


√
µ−ωxη


( x
k


)
.


We want to show that choosing k sufficiently large one can make a part of the terms at the
right-hand side of (3.3) as small as one wishes. Changing the integration variables, we get
the following estimates∫
R2


∣∣∣∣∣∣ 1


k
√


k
g(y) ei


√
µ−ωxη′


( x
k


)∣∣∣∣∣∣2 dx dy =
1
k3


∫ 2k


k


∫
R


∣∣∣∣∣g(y) η′
( x
k


)∣∣∣∣∣2 dx dy


≤
1
k3


∫ 2k


k


∣∣∣∣∣η′ ( x
k


)∣∣∣∣∣2 dx
∫
R


|g(y)|2 dy ≤
1
k2


∫ 2


1
|η′(z)|2dz


∫
R


|g(y)|2 dy ,


and in the same way we establish the remaining inequality needed to demonstrate our claim,∫
R2


∣∣∣∣∣∣ 1


k2
√


k
g(y) ei


√
µ−ωxη′′


( x
k


)∣∣∣∣∣∣2 dx dy =
1
k5


∫ 2k


k


∫
R


∣∣∣∣∣g(y) η′′
( x
k


)∣∣∣∣∣2 dx dy


≤
1
k4


∫
R


|g(y)|2 dy
∫ 2


1
|η′′(z)|2dz .


Consequently, choosing k large enough one can achieve that integrals on the left-hand sides
of the above inequalities will be less than ε, which implies∫
R2
|Hϕk − µϕk|


2(x, y) dx dy =


∫
R2


∣∣∣∣∣∣−∂2ϕk


∂x2 −
∂2ϕk


∂y2 + ω2y2ϕk − λy2V(xy)ϕk − µϕk


∣∣∣∣∣∣2 dx dy


≤
1
k


∫ 2k


k


∫
R


∣∣∣∣∣−g′′(y) + (µ − ω)g(y) + ω2y2g(y) − λy2V(xy)g(y) − µg(y)
∣∣∣∣∣2 η ( x


k


)
dx dy + ε .
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Using now the fact that g is the ground-state eigenfunction of hosc and that the potential V is
compactly supported, the above result implies∫
R2
|Hϕk − µϕk|


2(x, y) dx dy ≤
λ2


k


∫ 2k


k


∫
R


y4V2(xy) g2(y) η2
( x
k


)
dx dy + ε


≤
λ2


k


∫ 2k


k


∫ a
k


− a
k


y4V2(xy) g2(y) η2
( x
k


)
dx dy + ε


≤
a4λ2‖V‖2∞


k5


∫ a
k


− a
k


g2(y) dy
∫ 2k


k
η2


( x
k


)
dx + ε


≤
a4λ2‖V‖2∞


k4


∫
R


g2(y) dy
∫ 2


1
η2(z) dz + ε ,


and consequently, for a large enough k we have∫
R2
|Hϕk − µϕk|


2(x, y) dx dy < 2ε . (3.4)


To complete the proof we proceed as in Theorem 2.1 choosing a sequence {ε j}
∞
j=1 such that


ε j ↘ 0 holds as j→ ∞ and to any j we construct a function ϕk(ε j) with the parameters chosen
in such a way that k(ε j) > 2k(ε j−1). The norms of Hϕk(ε j) satisfy the inequality (3.4) with 2ε j


on the right-hand side, and the sequence converges by construction weakly to zero; this time
the elements of the sequence are already normalized. �


3.2. Discrete spectrum. Next we are going to show that a subcritical perturbation cannot
inflate the essential spectrum.


Theorem 3.2. Let inf σ(L) > 0, then the spectrum of operator H below ω is discrete.


Proof. We employ a Neumann bracketing and the minimax principle [RS, Secs. XIII.1 and
XIII.15]. Let us fix a natural number k, later to be chose large, and let h(±)


n,k and hk be the
Neumann restrictions of operator H to the regions


G(±)
n,k = {x : |x| ≤ k} × {y : 1 + ln n < ±y ≤ 1 + ln(n + 1)}


and
Gk = {|x| > k} × R , G(0) = [−k, k] × [−1, 1] .


We have the inequality


H ≥
∞⊕


n=1


(
h(+)


n,k ⊕ h(−)
n,k


)
⊕ hk ⊕ h(0) . (3.1)


Since the spectrum of h(0) is obviously discrete, to prove our claim we first demonstrate that
the spectral thresholds of h(±)


n,k tend for large enough k to infinity as n → ∞, and secondly,
that for any Λ < ω one can choose k in such a way that the spectrum of hk below Λ is empty.
Since the function V has a bounded derivative and is compactly supported we have


V(xy) − V(x(1 + ln n)) = O


(
1


n ln n


)
, y2 − (1 + ln n)2 = O


(
ln n
n


)







8


for any (x, y) ∈ G(+)
n,k and similar relation for G(−)


n,k . This yields


y2V(xy) − (1 + ln n)2 V(±x(1 + ln n)) = O


(
ln n
n


)
for any (x, y) ∈ G(±)


n,k , which further implies the asymptotic inequalities


inf σ(h(±)
n,k ) ≥ inf σ(l(±)


n,k ) + O


(
ln n
n


)
, (3.2)


in which the Neumann operators l(±)
n,k := − ∂2


∂x2 −
∂2


∂y2 +ω2(1+ ln n)2−λ(1+ ln n)2 V(±x(1+ ln n))


on G(±)
n,k have separated variables. Since the principal eigenvalue of − d2


dy2 on an interval with
Neumann boundary conditions is zero, we have


inf σ
(
l(±)
n,k


)
= inf σ


(̃
ln,k


)
, (3.3)


where


l̃n,k := −
d2


dx2 + ω2 (1 + ln n)2 − λ(1 + ln n)2 V(x(1 + ln n))


acts on L2(−k, k). To proceed with the proof one needs the following lemma:


Lemma 3.1. Let lk = − d2


dx2 + ω2 − λV(x) be the Neumann restriction of operator L given by
(1.3) to the interval [−k, k], k > 0, then we have


inf σ (lk) ≥ γ0 + o(1) as k → ∞ , (3.4)


where γ0 := inf σ(L).


Proof. We follow the method used in [BEKT16, Lemma 3.1]. The relation (3.4) would be
certainly valid if inf σ (lk) ≥ γ0 holds for all k from some number on. We employ reductio ad
absurdum and assume that one can find infinitely many numbers k such that inf σ (lk) < γ0.
Let ψk be the normalized ground-state eigenfunction of lk. We fix a positive δ and check that


max
{∫ −k+1


−k


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)


dx,
∫ k


k−1


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)


dx
}
< δ . (3.5)


Indeed, in the opposite case we would have∫ k−1


−k+1


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)


dx < γ0 − δ . (3.6)


Since ψk is supposed to be the ground-state eigenfunction of lk, we have


inf σ(lk) =


∫ k


−k


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)


dx ≤ inf σ
(
−


d2


dx2 + ω2
)
,


where the operator on the right-hand side of the inequality acts on the interval [−k, k] with
Neumann conditions at the endpoints, which further implies the bound∫ k


−k


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)
≤ ω2,
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uniform in k. Moreover, it is easy to check that


±ω2
∫ ±k∓1


±k/2
|ψk|


2 dx ≤ λ‖V‖∞ +


∫ k


−k


(
|ψ′k|


2 + (ω2 − λV)|ψk|
2
)


dx ,


which means that there must be points x(1)
k ∈ (−k + 1,−1


2k) and x(2)
k ∈ ( 1


2k, k − 1) such that


ψk


(
x(1)


k


)
= O(k−1/2) and ψk


(
x(2)


k


)
= O(k−1/2) as k → ∞ .


Next we pick a function ϕk on semi-infinite intervals (−∞, x(1)
k ) and (x(2)


k ,∞) in such a way
that


gk(x) := ψk(x)χ(x(1)
k ,x(2)


k )(x) + ϕk(x)χ(−∞,x(1)
k )∪(x(2)


k ,∞)(x) ∈ H1(R)


and∫ x(1)
k


−∞


(
|ϕ′k|


2 + ω2|ϕk|
2
)


dx +


∫ ∞


x(2)
k


(
|ϕ′k|


2 + ω2|ϕk|
2
)


dx = O(k−1) ; (3.7)


as an example one can consider the function decreasing linearly from the values ψk


(
x( j)


k


)
, j =


1, 2, to zero with a slope independent of k. By virtue of (3.6) and (3.7) we have∫
R


(
|gk|


2 + (ω2 − λV)|gk|
2
)


dx < γ0 − δ + O(k−1) < γ0


for all k large enough. Using the fact that γ0 is the ground-state eigenvalue of L we arrive at
a contradiction; this proves the validity of (3.5).


Having established the validity of inequalities (3.5) and using the fact that the potential V
is compactly supported we infer that there are points y(1)


k ∈ (−k,−k + 1) and y(2)
k ∈ (k − 1, k)


such that
ψk(y


( j)
k ) = O(


√
δ) , j = 1, 2 .


Now we repeat the above argument and construct a function ϕ̃k on the semi-infinite intervals
(−∞, y(1)


k ) and (y(2)
k ,∞) in such a way that


g̃k(x) := ψk(x)χ(y(1)
k ,y(2)


k )(x) + ϕ̃(x)χ(−∞,y(1)
k )∪(y(2)


k ,∞)(x) ∈ H1(R)


and ∫ y(1)
k


−∞


(
|ϕ̃′k|


2 + ω2|ϕ̃k|
2
)


dx +


∫ ∞


y(2)
k


(
|ϕ̃′k|


2 + ω2|ϕ̃k|
2
)


dx = O(δ) ;


using the last relation one then finds that∫
R


|g̃′k|
2 dx +


∫
R


(
ω2 − λV


)
|g̃k|


2 dx < inf σ (lk) + O(δ) .


On the other hand, γ0 is the ground-state eigenvalue of L which means that∫
R


|g̃′k|
2 dx +


∫
R


(
ω2 − λV


)
|g̃k|


2 dx ≥ γ0 ,


and in combination with the above inequality it implies


inf σ (lk) > γ0 − O(δ)


as k → ∞, and establishes thus the claim of the lemma. �
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Let us now return to the proof of the theorem. By the change of the variable x = t
1+ln n


the operator l̃n,k is unitarily equivalent to (1 + ln n)2 Ln,k, where Ln,k = − ∂2


∂x2 + ω2 − λV in
L2(−k(1 + ln n), k(1 + ln n)) with Neumann conditions at the endpoints of the interval. Then
in view of the inequalities (3.2)-(3.3), the relation inf σ(̃ln,k) = (1 + ln n)2 inf σ(Ln,k), and
Lemma 3.1 we conclude the proof of the discreteness of


⊕∞


n=1


(
h(+)


n,k ⊕ h(−)
n,k


)
.


It remains to inspect the spectrum of hk. Since V is compactly supported then V(xy) = 0 if
|x| > k and |y| > a


k , hence in view of (1.2) we have hk = −∆ + ω2y2 + O(k−2), and therefore


inf σ(hk) = inf σ(−∆ + ω2y2) + O(k−2) (3.8)


by an elementary perturbation argument [Ka95]. Since the operator −∆ + ω2y2 allows for
separation of variables, which shows that its spectrum is [ω,∞), in combination (3.8) we
arrive at


inf σ(hk) = ω + O(k−2) , (3.9)


which concludes the proof of Theorem 3.2. �


Remark 3.3. Let us denote now the operator (1.2) as Hλ. Since the potential V is non-
negative it is easy to see that the relations dom(QHλ


) ⊂ dom(QHµ
) and QHµ


≤ QHλ
hold


provided λ ≤ µ, in other words, that we have operator inequality Hµ ≤ Hλ. This allows us to
localize better the discrete spectrum.


Corollary 3.4. The discrete spectrum of a subcritical operator (1.2) is contained in [0, ω).


Proof. By the previous remark we have Hλ ≥ Hλcrit which yields the claim in combination
with Theorem 2.2 and the minimax principle. �


3.3. Existence of the discrete spectrum. The above results, on the other hand, tell us noth-
ing about the existence of the discrete spectrum. This is the question we are going to address
now.


Theorem 3.5. Let inf σ(L) > 0, then the discrete spectrum of operator H is non-empty.


Proof. In view of Theorem 3.2 it is sufficient to construct a normalized trial function φ such
that the corresponding value of the quadratic form QH is less than ω. This time we use the
letter h to denote the normalized ground-state eigenfunction of the one-dimensional harmonic
oscillator governed by hosc = − d2


dy2 + ω2y2 on L2(R) and set


φ(x, y) :=
1
√


k
h(y)χ


( x
k


)
,


where χ(z) is a real-valued smooth function with supp(χ) = [−1, 1] such that∫ 1


−1
χ2(z) dz = 1 , min


|z|≤1/2
χ(z) =: α > 0 ,
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and k is a natural number to be chosen later. A straightforward computation yields


QH[φ] =


∫
R2


∣∣∣∣∣∂φ∂x


∣∣∣∣∣2 dx dy +


∫
R2


∣∣∣∣∣∂φ∂y


∣∣∣∣∣2 dx dy +


∫
R2
ω2y2 |φ|2 dx dy


−λ


∫
R2


y2V(xy) |φ2| dx dy


=
1
k3


∫
R2


h2(y) (χ′)2
( x
k


)
dx dy +


1
k


∫
R2


(
h′


)2 (y) χ2
( x
k


)
dx dy


+
1
k


∫
R2
ω2y2 h2(y) χ2


( x
k


)
dx dy −


λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy


= O


(
1
k2


)
+


1
k


∫
R2


((
h′


)2 (y) + ω2y2 h2(y)
)
χ2


( x
k


)
dx dy


−
λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy


= O


(
1
k2


)
+
ω


k


∫
R2


h2(y) χ2
( x
k


)
dx dy −


λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy


= O


(
1
k2


)
+ ω −


λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy . (3.1)


We need to estimate the last term on the right-hand side of (3.1). One has


λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy =


λ


k


∫ k


−k


∫
R


y2V(xy) h2(y) χ2
( x
k


)
dx dy


≥
λ


k


∫ k/2


−k/2


∫ ∞


0
y2V(xy) h2(y) χ2


( x
k


)
dx dy ≥


α2λ


k


∫ k/2


−k/2


∫ ∞


0
y2V(xy) h2(y) dx dy


=
α2λ


k


∫ ∞


0


∫ ky/2


−ky/2
y V(t) h2(y) dt dy ≥


α2λ


k


∫ ∞


1


∫ k/2


−k/2
yV(t) h2(y) dt dy


≥
α2λ


k


∫ ∞


1
yh2(y) dy


∫ k/2


−k/2
V(t) dt .


If k is large enough then the above estimate implies


λ


k


∫
R2


y2V(xy) h2(y) χ2
( x
k


)
dx dy ≥


α2λ


k


∫ ∞


1
yh2(y) dy


∫ a


−a
V(t) dt ,


hence in combination with (3.1) we infer that


QH[φ] ≤ O
(


1
k2


)
+ ω −


α2λ


k


∫ ∞


1
yh2(y) dy


∫ a


−a
V(t) dt < ω ,


which is what we set out to demonstrate. �
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4. Eigenvalue estimates


Since the spectrum of H in [0, ω) is non-empty and consists of the discrete eigenvalues
of finite multiplicity one can think about the eigenvalue momentum estimates in the spirit of
Lieb and Thirring [LT76]. To state our result we need the following definition:


Let inf σ(L) = γ0 > 0 and let lk be the Neumann restriction of L to the interval [−k, k], k > 0.
We denote


κ := min {k : inf σ(lk) ≥ γ0/2} . (4.1)


observing that Lemma 3.1 guarantees the existence of such a number.


Then we can make the following claim:


Theorem 4.1. Let inf σ(L) = γ0 > 0, then for any σ ≥ 0 the inequality


tr(ω − H)σ+


≤ 2λ2σ‖V‖2σ∞ a4σ
∞∑


n=1


1


α2σ
1


(√
λ‖V‖∞a + (n − 1)π


)2σ +



2α1


√
ω + λα2


1‖V‖∞


π
+ 1



2


ωσ


holds, where


α1 := max
{
√
κ,


2ω
γ0
,


√
λ‖V‖∞a
√


2ω


}
(4.2)


with κ defined by (4.1).


Proof. We are going to employ a bracketing argument similar to that used in Subsection 3.2
imposing additional Neumann conditions at the boundaries of the regions


G(±)
n = {−α1 < x < α1} × {αn < ±y < αn+1} ,


Q(±)
n = {αn < ±x < αn+1} × R ,


and


G0 = (−α1, α1)2 ,


where {αn}
∞
n=1 is a monotonically increasing sequence such that αn → ∞. Let h(±)


n , h̃(±)
n , and


h0 be the Neumann restrictions of operator H to the regions G(±)
n ,Q(±)


n and G0, respectively.
Then we have the inequality


H ≥
∞⊕


n=1


(
h(+)


n ⊕ h(−)
n


)
⊕


∞⊕
n=1


(̃
h(+)


n ⊕ h̃(−)
n


)
⊕ h0 , (4.3)


and consequently, tr(ω − H)σ+ can be estimated from above by the sum of the corresponding
traces of three components of the right-hand side of (4.3), or their lower bounds. We begin
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with h(+)
n , where the corresponding quadratic form Qh(+)


n
can be estimated


Qh(+)
n


[u] =


∫ α1


−α1


∫ αn+1


αn


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 dx dy +


∫ α1


−α1


∫ αn+1


αn


∣∣∣∣∣∂u
∂y


∣∣∣∣∣2 dx dy + ω2
∫ α1


−α1


∫ αn+1


αn


y2|u|2 dx dy


−λ


∫ α1


−α1


∫ αn+1


αn


y2V(xy)|u|2 dx dy


=


∫ αn+1


αn


(∫ α1


−α1


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 dx + ω2
∫ α1


−α1


y2|u|2 dx − λ
∫ α1


−α1


y2V(xy)|u|2 dx
)


dy (4.4)


for any u from its domain by neglecting the second term in the first expression. For any fixed
y , 0 we change of the variables in the inner integral on the right-hand side of (4.4) and
denote by w(t, y) = u


(
t
y , y


)
. By choosing α1 =


√
κ, where κ is given by (4.1) we arrive at the


relation∫ α1


−α1


∣∣∣∣∣∂u
∂x


∣∣∣∣∣2 (x, y) dy + ω2 y2
∫ α1


−α1


|u|2(x, y) dx − λy2
∫ α1


−α1


V(xy)|u|(x, y)2 dx


=
1
y


(
y2


∫ yα1


−yα1


∣∣∣∣∣∂w
∂t


∣∣∣∣∣2 (t, y) dt + ω2 y2
∫ yα1


−yα1


|w|2(t, y) dt − λy2
∫ yα1


−yα1


V(t)|w|2(t, y) dt
)
≥


yγ0


2
.


This inequality together with (4.4) imply that if


α1 = max
{


2ω
γ0


,
√
κ


}
,


the operators h(+)
n , n = 1, 2, . . ., have an empty spectrum below ω, and the same is mutatis


mutandis true for h(−)
n , n = 1, 2, . . ..


Let us next pass to the operators h̃(±)
n , n = 1, 2, . . .. Since the potential V is compactly


supported by assumption we have the estimate


h̃(+)
n ≥ −∆ + ω2y2 −


λ‖V‖∞a2


α2
n


. (4.5)


Since the right-hand side of (4.5) allows for separation of variables, the spectrum of h(+)
n is the


“sum” of the spectra of the one-dimensional Neumann operator − d2


dx2 on the interval (αn, αn+1)
and the operator − d2


dy2 +ω2y2−
λ‖V‖∞a2


α2
n


on L2(R). Consider first the latter. Under the assumption


λ‖V‖∞a2


α2
1


≤ 2ω (4.6)


this operator has no more than one eigenvalue below ω and∣∣∣ω − λn
1


∣∣∣ ≤ λ‖V‖∞a2


α2
n


(4.7)


holds, where λn
1 is the indicated eigenvalue.
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The spectrum of the one-dimensional Dirichlet Laplacian on interval (αn, αn+1) consists of
simple eigenvalues,


{
π2 j2


(αn+1−αn)2


}∞
j=0


, and by choosing


αn+1 − αn ≤
πα1


√
λ‖V‖∞a


(4.8)


one can achieve that all the eigenvalues except the one with j = 0 are not less than ω. Hence
we obtain in view of (4.7) the following estimates,


tr
(
ω − h̃(+)


n


)σ
+
≤
λσ‖V‖σ∞a2σ


α2σ
n


, n = 1, 2, . . . ,


and


tr


ω − ∞⊕
n=1


h̃(+)
n


σ
+


≤ λσ‖V‖σ∞a2σ
∞∑


n=1


1
α2σ


n


for any σ ≥ 0. Next we are going to minimize the right-hand side of the last inequality. In
view of assumptions (4.6) and (4.8) we may choose αn+1 = αn + πα1√


λ‖V‖∞a
= α1 + nπα1√


λ‖V‖∞a


starting from some α1 ≥
√
λ‖V‖∞a
√


2ω
which means that


tr


ω − ∞⊕
n=1


h̃(+)
n


σ
+


≤ λ2σ‖V‖2σ∞ a4σ
∞∑


n=1


1


α2σ
1


(√
λ‖V‖∞a + (n − 1)π


)2σ . (4.9)


In the same way one can establish the estimate for operators h̃(−)
n , n = 1, 2, . . .,


tr


ω − ∞⊕
n=1


h̃(−)
n


σ
+


≤ λ2σ‖V‖2σ∞ a4σ
∞∑


n=1


1


α2σ
1


(√
λ‖V‖∞a + (n − 1)π


)2σ . (4.10)


Finally, the operator h0 can be estimated from below by the Neumann operator


h̃0 = −∆ − λα2
1‖V‖∞ on (−α1, α1)2


the spectrum of which is simple and given by
{
π2( j2+q2)


4α2
1
− λα2


1‖V‖∞
}∞


j,q=0
. Consequently,


tr(ω − h0)σ+ ≤ tr
(
ω − h̃0


)σ
+
≤ ωσ



2α1


√
ω + λα2


1‖V‖∞


π
+ 1



2


, σ ≥ 0 . (4.11)


Choosing now α1 according to (4.2) and using the estimates (4.9)-(4.11) in combination with
the fact that the operators h(±)


n have empty spectrum below ω, we conclude the proof of the
theorem. �
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