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On the Global Dynamis of an Eletroenephalographi MeanField Model of the NeoortexFarshad Shirani∗ Wassim M. Haddad† Rafael de la Llave‡Otober 11, 2016AbstratThis paper investigates the global dynamis of a mean �eld model of the eletroenephalo-gram developed by Liley et al., 2002. The model is presented as a system of oupled ordinaryand partial di�erential equations with periodi boundary onditions. Existene, uniqueness,and regularity of weak and strong solutions of the model are established in appropriate funtionspaes, and the assoiated initial-boundary value problems are proved to be well-posed. Suf-�ient onditions are developed for the phase spaes of the model to ensure nonnegativity ofertain quantities in the model, as required by their biophysial interpretation. It is shown thatthe semigroups of weak and strong solution operators possess bounded absorbing sets for the en-tire range of biophysial values of the parameters of the model. Challenges towards establishinga global attrator for the model are disussed and it is shown that there exist parameter valuesfor whih the onstruted semidynamial systems do not posses a ompat global attrator, dueto the lak of assymptoti ompatness property. Finally, instrutive insights provided by thetheoretial results of the paper on the omputational analysis of the model are disussed.1. IntrodutionInspired by the seminal work of Alan Hodgkin and Andrew Huxley on modeling the �ow of ioni ur-rents through the membrane of a giant nerve �ber, numerous biophysial and mathematial modelshave been developed towards understanding the neurophysiology of the entral nervous system andthe underlying mehanism of the various phenomena that emerge during its vital operation in thebody; many of whih still remain mysterious to researhers [16, 24, 39, 51℄. In partiular, exploringthe ore omponent of the entral nervous system�the brain�substantial e�ort has been devoted todevelop models at di�erent levels of sope; from themoleular and interellular level dealing with theenzymati kinetis of neurotransmitter-reeptor binding at ion hannels and transportation of ions;to the single ell and intraellural level dealing with reation and transmission of ation potential;to the population and neuronal network level dealing with the average behavior and synhronizedativity of neuronal ensembles; to the system level dealing with systemati operation and interationbetween ortial and subortial omponents of the brain; and �nally to the behavioral and ognitivelevel dealing with integrated mental ativity and reation of the mind [1, 14, 21, 27, 28, 43, 45, 52℄.
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As an e�etive methodology to develop models at the population and network level, mean �eldtheory has been applied to onstrut approximate models for interonneted populations of neuronsby averaging the e�et of all other neurons on a given individual neuron inside the population. Theresulting averaged neuron an be used to analyze the overall temproal behavior of a single populationof neurons, leading to a neural mass model. Alternatively, the averaged neuron an be onsideredas a loally averaged omponent of a ontinuum of neural populations, leading to a spatio-temporalmean �eld model. These models are partiularly useful in analyzing the eletrophysiologial ativityof neuronal ensembles using loal �eld potentials and eletroenephalograms [9, 37, 40, 42℄.The evolution equations that desribe a mean �eld model of neural ativity in the ortex are inthe form of a system of partial di�erential equations, or a system of oupled ordinary and partialdi�erential equations. The theory of in�nite-dimensional dynamial systems is hene used to analyzethe global dynamis and long-term behavior of these systems. The lassial approah to this problemfollows several steps. First, existene, uniqueness, and regularity of solutions are established for allpositive times in appropriately hosen problem-dependent funtion spaes, and the well-posednessof the problem is on�rmed. Seond, a semidynamial framework is onstruted over a positivelyinvariant omplete normed spae�the phase spae for the evolution of solutions�and is shown toposesses bounded absorbing sets. Asymptoti ompatness of the semigroup of solution operatorsis then ensured to guarantee existene of a global attrator, whih is a ompat stritly invariantattrating set, and hene, ontains all the information regarding the asymptoti behavior of themodel. Third, the Hausdor� or fratal dimension of the global attrator is estimated to show thatthe attrator is �nite dimensional, so that the asymptoti dynamis of the system is determined bya �nite number of degrees of freedom. Fourth, the existene of an inertial manifold is established,whih is a smooth �nite dimensional inaviant manifold onatinig the global attrator. Consequently,the dynamis on the attrator an be presented by a �nite set of ordinary di�erential equations andfurther haraterized to give the overall piture of long-term behavior of the system [7, 23, 41, 48℄.In this paper, we investigate the mean �eld model proposed in [33℄ for understanding the ele-trial ativity in the neoortex as observed in the eletroenephalogram (EEG). This model, whihis omprised of a system of oupled ordinary and partial di�erential equations in a two-dimensionalspae, has been widely used in the literature to study the alpha- and gamma-band rhythmi a-tivity in the ortex [3, 4℄, phase transition and burst suppression in ortial neurons during generalanesthesia [6,34,46℄, the e�et of anestheti drugs on the EEG [2,18℄, and epilepti seizures [29�32℄.Open-soure tools for numerial implementation of the model and omputation of equilibria andtime-periodi solutions are developed in [22℄. Complexity of the dynamis of the model, inludingperiodi and pseudo-periodi solutions, haoti behavior, multistability, and bifuration are studiedin [10�12, 19, 20, 49, 50℄.The above results, however, are mainly omputational or involve approximate versions of themodel. A rigorous analysis of the dynamis of the model in the in�nite-dimensional dynamialsystem framework as outlined above is not available in the literature. In partiular, the basiproblems of well-posedness of the initial-boundary value problem assoiated to the model and theregularity of solutions remain uninvestigated. It is not known under what onditions, if any, thesolutions of the model evolve partially nonnegatively for all time, whih is required for ertainphysial quantities in the model. Solutions that take negative values for suh quantities�even fora small interval of time in distant future�annot depit a biophysially plausible dynamis of theeletrial ativity in the neoortex.The aim of this paper is to study the global dynamis of the mean �eld model disussed above,ensure its biophysial plausibility, and to provide the basi analytial results required for hara-2







terization of the long-term dynamis of the model. Spei�ally, we follow the �rst two steps of theaforementioned lassial analysis approah to investigate the problem of existene or nonexisteneof a global attrator.This paper is organized as follows. In Setion 2, we introdue notation and reall key de�ni-tions neessary for developing the results in the paper. In Setion 3, we present the mathematialstruture of the model as a system of oupled ordinary-partial di�erential equations with initialvalues and periodi boundary onditions, preeded with a desription of the anatomial struture ofthe neoortex and the physiologial interations that underly the onstrution of the model. Then,following the �rst step of the lassial analysis approah, in Setion 4 we prove existene and unique-ness of weak and strong solutions for the proposed initial value problem and analyze the regularityof these solutions.As in the seond step of the lassial analysis, in Setion 5 we de�ne semigroups of solution op-erators and show their ontinuity properties. Moreover, we establish onditions on the phase spaesto ensure biophysial plausibility of the evolution of the solution under the assoiated semidynam-ial systems. In Setion 6, we show that the semigroups of solution operators possess boundedabsorbing sets for all possible values of the biophysial parameters of the model. In Setion 7, wedisuss hallenges towards establishing a global attrator for the model, and in partiular, we showthat there exist sets of values for the biophysial parameters of the model suh that the assoiatedsemigroups of solution operators do not possess a ompat global attrator. We onlude the paperin Setion 8 with a disussion on the results developed in the paper and their appliation to theomputational analysis of the model.2. Notation and PreliminariesThe notation used in this paper is fairly standard. Spei�ally, R
n denotes the n-dimensional realEulidean spae and R


m×n denotes the spae of real m × n matries. A point x ∈ R
n is presentedby the n-tuple x = (x1, . . . , xn) or, when it appears in matrix operations, by the olumn vetor x =


[


x1 · · · xn


]T, where (·)T denotes transpose. The nonnegative one {


x ∈ R
n : xj ≥ 0 for j =


1, . . . , n
} is denoted by R


n
+. A sequene of points in R


n is denoted by {


x(l)
}∞


l=1
, with the jthomponent of x(l) denoted by x


(l)
j . Moreover, the trae of a square matrix A ∈ R


n×n is denoted by
tr A and a blok-diagonal matrix D with k bloks D1, . . . ,Dk is denoted by diag(D1, . . . ,Dk). For
x, y ∈ R


n, we write x ≥ y to denote omponent-wise inequality, that is, xj ≥ yj, j = 1, . . . , n. For
A,B ∈ R


n×n we write A ≥ B to denote A − B is positive semide�nite. Finally, we denote by 0n×nand In×n the zero and identity matries in R
n×n, respetively. We write I for the identity operatorin other vetor spaes.For an inner produt spae U , we denote the assoiated inner produt by (


·, ·
)


U and the normgenerated by the inner produt by ∥


∥ ·
∥


∥


U . For a Hilbert spae U we denote the standard pairing of
U with its dual spae U∗ by 〈


·, ·
〉


U . In partiular, for U = R
n we write (


·, ·
)


Rn and ∥


∥ ·
∥


∥


Rn for thestandard inner produt and the Eulidean norm, respetively. Similarly, for U = R
m×n we write


(


A,B
)


Rm×n for the standard inner produt and ∥


∥A
∥


∥


Rm×n for the assoiated inner produt norm.Moreover, we denote the 1-norm in R
n by ∥


∥·
∥


∥


1
and the ∞-norm in R


n by ∥


∥·
∥


∥


∞. The indued matrix1-, 2-, and ∞-norms in R
m×n indued, respetively, by the vetor norms ∥


∥ ·
∥


∥


1
, ∥


∥ ·
∥


∥


2
:=


∥


∥ ·
∥


∥


Rn , and
∥


∥ ·
∥


∥


∞ in R
n, are denoted by ∥


∥ ·
∥


∥


1
, ∥


∥ ·
∥


∥


2
and ∥


∥ ·
∥


∥


∞.Let Ω be an open subset of R
n denoting the spae domain of a given dynamial system, with


x ∈ Ω denoting a spatial point in Ω. The time domain of the model is given by the losed interval3







[0, T ] ⊂ R, T > 0, with the temporal point t. For a funtion u : [0, T ] → R, the kth-order totalderivative with respet to t at t0 is denoted by dk
t u(t0). For k = 1, we write dtu(t0). For a funtion


u(x, t) : Ω × [0, T ] → R, the kth-order partial derivative with respet to t at (x0, t0) is denotedby ∂k
t u(x0, t0) and the kth-order partial derivative with respet to xj at (x0, t0) is denoted by


∂k
xj


u(x0, t0), j = 1, . . . , n. For k = 1, we write ∂tu(x0, t0) and ∂xj
u(x0, t0). The gradient of u in Ω isdenoted by ∂xu and is given by ∂xu := (∂x1


u, . . . , ∂xnu) ∈ R
n. The Laplaian of u in Ω is denoted by


∆u and is given by ∆u := (∂2
x1


+· · ·+∂2
xn


) ∈ R. For a vetor-valued funtion u(x, t) : Ω×[0, T ] → R
mwe interpret u(x, t) as the m-tuple u(x, t) = (u1(x, t), . . . , um(x, t)), where eah omponent uj(x, t),


j = 1, . . . ,m, is a salar-valued funtion on Ω× [0, T ]. In this ase, ∂xu(x, t) ∈ R
m×n is the gradientof u and the vetor Laplaian ∆u ∈ R


m is given by ∆u := (∆u1, . . . ,∆um), assuming Cartesianoordinates in R
m.For every integer k ≥ 0, the spae of k-times ontinuously di�erentiable real-valued funtionson Ω is denoted by Ck(Ω). The spae Ck(Ω) onsists of all funtions in Ck(Ω) that, together withall of their partial derivatives up to the order k, are uniformly ontinuous in bounded subsets of Ω.Moreover, for 0 < λ ≤ 1, the Hölder spae Ck,λ(Ω) is a subspae of Ck(Ω) onsisting of funtionswhose partial derivatives of order k are Hölder ontinuous with exponent λ; see [8, Se. 1.18℄ fordetails. We use C∞


c (Ω) to denote the spae of in�nitely di�erentiable real-valued funtions withompat support in Ω. Moreover, we denote by L1
loc(Ω) the spae of loally integrable real-valuedfuntions on Ω. Then, for every funtion u ∈ L1


loc(Ω) and any multi index α with |α| ≥ 1, the weakpartial derivative of u in L1
loc(Ω), of order |α|, is de�ned by the distribution uα that stis�es


∫


Ω
uαφdx = (−1)|α|


∫


Ω
u∂αφdx for all φ ∈ C∞


c (Ω),where dx = dx1 · · · dxn is the Lebesgue measure on R
n; see [8, Se. 6.3℄ for details. With a minorabuse of notation, we use ∂k


t and ∂k
x to denote the kth-order weak, as well as lassial partialderivatives with respet to t and x, respetively. The distintion will be lear from ontext, or willotherwise be expliitly spei�ed.The Hilbert spae of vetor-valued Lebesgue measurable funtions u : Ω → R


m with �nite
L2-norm is denoted by L2(Ω; Rm), with assoiated inner produt and norm given by


(


u, v
)


L2(Ω;Rm) =


∫


Ω


(


u(x), v(x)
)


Rmdx,
∥


∥u
∥


∥


L2(Ω;Rm)
=


[
∫


Ω


∥


∥u(x)
∥


∥


2


Rmdx


]
1
2


.The Banah spae of vetor-valued Lebesgue measurable funtions u : Ω → R
m with �nite L∞-normis denoted by L∞(Ω; Rm), with norm given by


∥


∥u
∥


∥


L∞(Ω;Rm)
= ess sup


x∈Ω


∥


∥u(x)
∥


∥


∞.The Sobolev spae of vetor-valued funtions u ∈ Lp(Ω; Rm) whose all lth-order weak derivatives
∂l


xu, l ≤ k, exist and belong to Lp(Ω; Rm×nl
) is denoted by W k,p(Ω; Rm). When p = 2, theSobolev spaes W k,2(Ω; Rm) are Hilbert spaes for all k ∈ [0,∞), and are denoted by Hk(Ω; Rm) :=


W k,2(Ω; Rm). Spei�ally, H0(Ω; Rm) = L2(Ω; Rm), and H1(Ω; Rm) is a Hilbert spae with theinner produt
(


u, v
)


H1(Ω;Rm) =
(


u, v
)


L2(Ω;Rm) +
(


∂xu, ∂xv
)


L2(Ω;Rm×n).4







Moreover, H2(Ω; Rm) is a Hilbert spae with the inner produt
(


u, v
)


H2(Ω;Rm) =
(


u, v
)


L2(Ω;Rm) +
(


∂xu, ∂xv
)


L2(Ω;Rm×n) +
(


∂2
xu, ∂2


xv
)


L2(Ω;Rm×n2 )
.Let Ω = (0, ω1) × · · · × (0, ωn), where ωj > 0, j = 1, . . . , n, be an open retangle in R


n. Afuntion u : R
n → R is alled Ω-periodi if it is periodi in eah diretion, that is,


u(x + ωjej) = u(x), j = 1, . . . , n, x ∈ R
n,where ej is the unit vetor in the jth diretion. De�ne the spae C∞


per(Ω) as the restrition to Ω ofthe spae of in�nitely di�erentiable Ω-periodi funtions. Then, the Sobolev spae Hk
per(Ω), k ≥ 0,is de�ned by the ompletion of C∞


per(Ω) in Hk(Ω); see [41, De�nition 5.37℄. A vetor-valued funtion
u : R


n → R
m is Ω-periodi if eah of its omponents uj : R


n → R, j = 1, . . . ,m, is Ω-periodi. Thespaes C∞
per(Ω; Rm) and Hk


per(Ω; Rm) are then de�ned aordingly. It follows from Green's formulaand the de�nition of norms in these spaes that
(


− ∆u, v
)


L2
per(Ω;Rm) =


(


∂xu, ∂xv
)


L2
per(Ω;Rm×n),(2.1)


(


(−∆ + I)u, v
)


L2
per(Ω;Rm) =


(


u, v
)


H1
per(Ω;Rm),


(


− ∆u, (−∆ + I)u
)


L2
per(Ω;Rm) =


∥


∥u
∥


∥


2


H2
per(Ω;Rm)


−
∥


∥u
∥


∥


2


L2
per(Ω;Rm)


,


∥


∥(−∆ + I)u
∥


∥


2


L2
per(Ω;Rm)


=
∥


∥u
∥


∥


2


H2
per(Ω;Rm)


+
∥


∥∂xu
∥


∥


2


L2
per(Ω;Rm×n)


=
∥


∥u
∥


∥


2


H1
per(Ω;Rm)


+
∥


∥∂xu
∥


∥


2


H1
per(Ω;Rm×n)


.In this paper, we interhangeably view the funtion u(x, t), x ∈ Ω, t ∈ [0, T ], as a ompositefuntion of x and t, as well as a mapping u of t into a funtion of x, de�ned as
[u(t)](x) := u(x, t), x ∈ Ω, t ∈ [0, T ].With a minor abuse of notation, the same symbol is used to denote both the original form of thefuntion and the mapping. The distintion beomes evident in the way we de�ne the spae of suhmappings or, equivalently, Banah spae-valued funtions; see for example [15, Appx. E.5℄. For aBanah spae U , the spae L2(0, T ;U) is omposed of all strongly measurable Banah spae-valuedfuntions u : [0, T ] → U with the �nite L2-norm de�ned by


∥


∥u
∥


∥


L2(0,T ;U)
:=


[
∫ T


0


∥


∥u(t)
∥


∥


2


Udt


]


1
2


.The spae C0([0, T ];U) is omposed of all ontinuous Banah spae-valued funtions u : [0, T ] → Uwith the �nite uniform norm de�ned by
∥


∥u
∥


∥


C0([0,T ];U)
:= max


t∈[0,T ]


∥


∥u(t)
∥


∥


U .Aordingly, the spaes Ck([0, T ];U) and Ck,λ([0, T ];U), k ≥ 0, 0 < λ ≤ 1, are de�ned as thespae of k-times ontinuously di�erentiable Banah spae-valued funtions and its Hölder ontinuoussubspae. The Sobolev spaes Hk(0, T ;U), k ≥ 0, are omposed of all funtions u ∈ L2(0, T ;U)5







whose lth-order weak derivatives dl
tu exist for l ≤ k and belong to L2(0, T ;U). In partiular, for


k = 1 we have
∥


∥u
∥


∥


H1(0,T ;U)
:=


[
∫ T


0


(


∥


∥u(t)
∥


∥


2


U +
∥


∥dtu(t)
∥


∥


2


U


)


dt


]


1
2


.For further details on these spaes; see [15, Se. 5.9.2℄ and [41, Se. 7.1℄.When P : U → Y is a mapping between the Banah spaes U and Y, we denote the kth orderFréhet derivative of P at u0 by duP (u0). The spae Ck(U ;Y) is then omposed of all k-timesontinuously di�erentiable mappings from U into Y. For a mapping P : U1 × · · · × Um → Y, where
Y and Uj , j = 1, . . . m, are Banah spaes, ∂uj


P (u0) is the jth partial Fréhet derivative of P at
u0 = (u01, . . . , u0m). The gradient of P at u0 is then written as ∂uP (u0); see [8, Se. 7.1℄ for details.Finally, we denote the symmetri di�erene of two sets X and Y by X △ Y . In a topologialspae X , we denote the losure of a set X ⊂ X by X , its interior by X ◦, and its boundary by ∂X .The harateristi funtion of X is denoted by χ(X ). When X is a measure spae, |X | denotesthe measure of the set X ⊂ X . When X is a metri spae and the topology on X is indued by thegiven metri, B(x,R) denotes the open ball entered at x ∈ X with radius R > 0, whih is a basiselement for the topology. For every bounded measurable set in X and, in partiular for B(x,R),we denote by −


∫


B(x,R) the averaging operator over B(x,R), that is, −
∫


B(x,R) := 1
|B(x,R)|


∫


B(x,R).3. Model DesriptionThe neoortex has a layered olumnar struture onsisting mostly of six distintive layers. Neu-rons in the neoortex are organized in vertial olumns, usually referred to as ortial olumns ormaroolumns, whih are a fration of a millimeter wide and traverse all the layers of the neoortexfrom the white matter to the pial surfae [25, 26, 38℄. Depending on their type of ation, neuronsare mainly lassi�ed as exitatory or inhibitory, wherein this distintion depends on whether theyinrease the �ring rate in the destination neurons they are ommuniating with, or they essentiallysuppress them. Inhibitory neurons are loated within all layers and usually have axons that remainwithin the same area were their ell body resides, and hene, they have a loal range of ation.Layers III, V, and VI ontain pyramidal exitatory neurons whose axons an provide long-rangeommuniation (projetion) throughout the neoortex. Layer IV ontains primarily star-shaped ex-itatory interneurons that reeive sensory inputs from the thalamus. Figure 1 shows a shemati ofthe struture of the neoortex, inluding the intraortial and ortioortial neuronal onnetions;see [26, Ch. 15℄ for further details.On a loal sale, within a ortial olumn, neurons are densely interonneted and involve alltypes of feedforward and feedbak intraortial onnetions. Suh a dense and relatively homoge-neous loal struture of the neoortex suggests modeling a loal population of funtionally similarneurons by a single spae-averaged neuron, whih preserves enough physiologial information tounderstand the temporal patterns observed in spatially smoothed (averaged) EEG signals, withoutreating exessive theoretial ompliaies in the mathematial analysis of the model. On a globalsale, in the exlusively exitatory ortioortial ommuniation throughout the neortex, two ma-jors patterns of onnetivity are observed. Namely, a homogeneous, symmetrial, and translationinvariant pattern of onnetions, versus a heterogeneous, pathy, and asymmetrial distribution ofonnetions. For modeling simpliity and due to unavailability of detailed anatomial data, in themodel that we investigate in this paper the ortioortial onnetivity is assumed to be isotropi,homogenous, symmetri, and translation invariant [33℄.6
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Figure 1: Shemati of the struture of the neoortex with intraortial and ortioortial onne-tions.
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 Figure 2: Cortial inputs to two loal networks loated at points x and y as modeled by (3.1).To establish the mathematial framework of the model, let Ω = (0, ω)×(0, ω), ω > 0, be an openretangle in R
2 that de�nes the domain of the neoortex. Eah point x = (x1, x2) ∈ Ω indiates theloation of a loal network�possibly representing a ortial olumn�modeled by a spae-averagedexitatory neuron and a spae-averaged inhibitory neuron. Let E denote a population of exitatoryneurons and I denote a population of inhibitory neurons. For x ∈ Ω, t ∈ [0, T ], T > 0, and


X,Y ∈ {E, I}, we denote by vX(x, t), measured in mV, the spatially mean soma membrane potentialof a population of type X entered at x. Moreover, we denote by iXY(x, t), measured in mV, thespatially mean post synapti ativation of synapses of a population of type X entered at x, on apopulation of type Y entered at the same point x. In addition, we denote by wEX(x, t), measuredin s−1, the mean rate of ortioortial exitatory input pulses from the entire domain of neoortexto a population of type X entered at x. Finally, we denote by gXY(x, t), measured in s−1, the meanrate of subortial input pulses of type X to a population of type Y entered at x. Note that, byde�nition, iXY(x, t), wEX(x, t), and gXY(x, t) are nonnegative quantities.Then, as developed in [33℄, the system of partial di�erential equations
(τE∂t + 1)vE(x, t) =


VEE − vE(x, t)


|VEE|
iEE(x, t) +


VIE − vE(x, t)


|VIE|
iIE(x, t),(3.1)


(τI∂t + 1)vI(x, t) =
VEI − vI(x, t)


|VEI|
iEI(x, t) +


VII − vI(x, t)


|VII|
iII(x, t),


(∂t + γEE)2iEE(x, t) = eΥEEγEE


[


NEEfE


(


vE(x, t)
)


+ wEE(x, t) + gEE(x, t)
]


,


(∂t + γEI)
2iEI(x, t) = eΥEIγEI


[


NEIfE


(


vE(x, t)
)


+ wEI(x, t) + gEI(x, t)
]


,


(∂t + γIE)2iIE(x, t) = eΥIEγIE


[


NIEfI


(


vI(x, t)
)


+ gIE(x, t)
]


,


(∂t + γII)
2iII(x, t) = eΥIIγII


[


NIIfI


(


vI(x, t)
)


+ gII(x, t)
]


,
[


(∂t + νΛEE)2 − 3
2ν2∆


]


wEE(x, t) = ν2Λ2
EEMEEfE


(


vE(x, t)
)


,
[


(∂t + νΛEI)
2 − 3


2ν2∆
]


wEI(x, t) = ν2Λ2
EIMEIfE


(


vE(x, t)
)


, (x, t) ∈ Ω × (0, T ],8







Table 1: De�nition and range of values for the biophysial parameters of the mean �eld model(3.1). All eletri potentials are given with respet to the mean resting soma membrane potential
vrest = −70 mV [5℄.Parameter De�nition Range Unit


τE Passive exitatory membrane deay time onstant [0.005, 0.15] s
τI Passive inhibitory membrane deay time onstant [0.005, 0.15] s
VEE, VEI Mean exitatory Nernst potentials [50, 80] mV
VIE, VII Mean inhibitory Nernst potentials [−20,−5] mV
γEE, γEI Exitatory post synapti potential rate onstants [100, 1000] s−1


γIE, γII Inhibitory post synapti potential rate onstants [10, 500] s−1


ΥEE, ΥEI Amplitude of exitatory post synapti potentials [0.1, 2.0] mV
ΥIE, ΥII Amplitude of inhibitory post synapti potentials [0.1, 2.0] mV
NEE, NEI Number of intraortial exitatory onnetions [2000, 5000] �
NIE, NII Number of intraortial inhibitory onnetions [100, 1000] �
ν Cortioortial ondution veloity [100, 1000] m/s
ΛEE, ΛEI Deay sale of ortioortial exitatory onnetivities [0.1, 1.0] m−1


MEE, MEI Number of ortioortial exitatory onnetions [2000, 5000] �
FE Maximum mean exitatory �ring rate [50, 500] s−1


FI Maximum mean inhibitory �ring rate [50, 500] s−1


µE Exitatory �ring threshold potential [15, 30] mV
µI Inhibitory �ring threshold potential [15, 30] mV
σE Standard deviation of exitatory �ring threshold potential [2, 7] mV
σI Standard deviation of inhibitory �ring threshold potential [2, 7] mVwith periodi boundary value ondition provides a mean �eld model of eletroortial ativity in theneoortex. Here, e is the Napier onstant and fX(·) is the mean �ring rate funtion of a populationof type X and is given by(3.2) fX


(


vX(x, t)
)


:=
FX


1 + exp


(


−
√


2
vX(x, t) − µX


σX


) , X ∈ {E, I}.The de�nition of the biophysial parameters of the model and the ranges of the values they may takeare given in Table 1. For the range of values given in Table 1 we have |VEE| = VEE, |VEI| = VEI,
|VIE| = −VIE , and |VII| = −VII, whih we use to simplify (3.1). Note that other than notationalhanges to the original equations given in [33℄, we have hanged the referene of eletrial potentialto the resting potential to avoid the onstant terms that would otherwise appear in (3.1). Figure2 shows a shemati of intraortial, ortioortial, and subortial inputs to two loal networksloated at points x and y together with their ontribution to the global ortioortial ativation asmodeled by (3.1).The �rst six equations given in (3.1) model the dynamis of the spae-averaged exitatory andinhibitory neurons loated at x, inluding the �rst-order apaitive dynamis of the membrane, the9







Nernst (reversal) potential e�et, and the seond-order dynamis related to the passive dendritiable delays and neurotransmitter kinetis. The last two equations in (3.1) model the dynamis ofthe spatial distribution of exitatory ortioortial ativity over the domain of the neoortex.Now, let
v(x, t) :=


(


vE(x, t), vI(x, t)
)


∈ R
2,


i(x, t) :=
(


iEE(x, t), iEI(x, t), iIE(x, t), iII(x, t)
)


∈ R
4,


w(x, t) :=
(


wEE(x, t), wEI(x, t)
)


∈ R
2,


g(x, t) :=
(


gEE(x, t), gEI(x, t), gIE(x, t), gII(x, t)
)


∈ R
4,and note that (3.1) an be represented in vetor form in Ω × (0, T ] as


Φ∂tv + v − J1i + J2viTΨJ4 + J3viTΨJ5 = 0,(3.3)
∂2


t i + 2Γ∂ti + Γ2i − eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg,(3.4)
∂2


t w + 2νΛ∂tw − 3
2ν2∆w + ν2Λ2w − ν2Λ2MJ8f


(


v
)


= 0,(3.5)where v, i, and w are Ω-periodi vetor-valued funtions with the initial values(3.6) v
∣


∣


t=0
= v0, i


∣


∣


t=0
= i0, (∂ti)


∣


∣


t=0
= i′0, w


∣


∣


t=0
= w0, (∂tw)


∣


∣


t=0
= w′


0,and
Φ = diag


(


τE, τI


)


, Ψ = diag
(


1
|VEE| ,


1
|VEI| ,


1
|VIE| ,


1
|VII|


)


,(3.7)
Γ = diag(γEE, γEI, γIE, γII), Υ = diag(ΥEE,ΥEI,ΥIE,ΥII),


N = diag(NEE,NEI,NIE,NII), M = diag(MEE,MEI),


Λ = diag(ΛEE,ΛEI), J1 =
[


I2×2 −I2×2


]


,


J2 = diag(1, 0), J3 = diag(0, 1),


J4 =
[


1 0 1 0
]T


, J5 =
[


0 1 0 1
]T


,


J6 =


[


1 0 0 0
0 1 0 0


]T


, J7 =


[


1 1 0 0
0 0 1 1


]T


,


J8 =


[


1 0
1 0


]


, f(v) =


[


fE


( [


1 0
]


v
)


fI


( [


0 1
]


v
)


]


.For simpliity of exposition, the dependene of the funtions v, i, w, and g on the arguments (x, t)is not expliitly shown in (3.3)�(3.5). Note that (3.3) and (3.4), whih model the loal dynamisof the neoortex, are essentially systems of ordinary di�erential equations. These equations do notpossess any spatial smoothing omponent, and hene, their dynamis is expeted to evolve in lessregular funtion spaes [36, 44℄. The system of partial di�erential equations (3.5) onsists of twodamped wave equations or, more spei�ally, two telegraph equations oupled indiretly through(3.3) and (3.4).4. Existene and Uniqueness of SolutionsIn this setion, we investigate the problem of existene, uniqueness, and regularity of solutionsfor (3.3)�(3.5) with the initial values (3.6) and periodi boundary onditions. We set appropriate10







spaes of Ω-periodi funtions as the funtional framework of the problem by whih we inludethe boundary onditions in the solution spaes. We view v(x, t), i(x, t), and w(x, t) as Banahspae-valued funtions and follow the standard tehnique of Galerkin approximations [15,41,48℄ toonstrut weak and strong solutions.First, de�ne the funtion spaes
L2


v := L2
per(Ω; R2), L2


i := L2
per(Ω; R4), L2


w := L2
per(Ω; R2),(4.1)


L∞
v := L∞


per(Ω; R2), L∞
i := L∞


per(Ω; R4), L∞
w := L∞


per(Ω; R2),


H1
w := H1


per(Ω; R2), H2
w := H2


per(Ω; R2),


L2
∂w := L2


per(Ω; R2×2), H1
∂w := H1


per(Ω; R2×2),


W1,∞
w := W 1,∞


per (Ω; R2),and denote by L2
v
∗, L2


i
∗, and H1


w
∗ the dual spaes of L2


v, L2
i , and H1


w, respetively. Note that L2
vand L2


i are, respetively, isometrially isomorphi to L2
v
∗ and L2


i
∗ [17, Th. 6.15℄, whih we denoteby L2


v
∗


= L2
v and L2


i
∗


= L2
i . By the Rellih-Kondrahov ompat embedding theorems we have


H1
w ⋐ L2


w ⊂ H1
w
∗; see, for example [8, Th. 6.6-3℄ and [41, Th. A.4℄. Moreover, there exists a dualorthogonal basis of H1


w and L2
w given by the following lemma.Lemma 4.1 (Dual orthogonal basis) There exists an orthonormal basis of L2


w that is an orthog-onal basis of H1
w, and an be onstruted by the eigenfuntions of the linear operator A := (−∆+I) :


H1
w → H1


w
∗.Proof. Consider the linear operator A : H1


w → H1
w
∗ de�ned by


〈


Aw,h
〉


H1
w


:=
(


(−∆ + I)w, h
)


L2
w
for all h ∈ H1


w and every �xed w ∈ H1
w.First, we show that A is an isometri isomorphism. For every h ∈ H1


w suh that ∥


∥h
∥


∥


H1
w


= 1, itfollows from (2.1) and the Cauhy-Shwarz inequality that
∣


∣


(


Aw,h
)


L2
w


∣


∣ =
∣


∣


(


w, h
)


H1
w


∣


∣ ≤
∥


∥w
∥


∥


H1
w


∥


∥h
∥


∥


H1
w


=
∥


∥w
∥


∥


H1
w
,and hene, ∥


∥Aw
∥


∥


H1
w
∗ ≤


∥


∥w
∥


∥


H1
w
. For every w 6= 0 ∈ H1


w set h =
∥


∥w
∥


∥


−1


H1
w
w and note that


∣


∣


(


Aw,
∥


∥w
∥


∥


−1


H1
w
w


)


L2
w


∣


∣ =
∥


∥w
∥


∥


H1
w
, whih implies ∥


∥Aw
∥


∥


H1
w
∗ ≥


∥


∥w
∥


∥


H1
w
. Therefore, A is an isometry.Now, it su�es to show A is surjetive. This follows immediately from the Riesz representationtheorem [8, Th. 4.6-1℄. Indeed, for every linear funtional q ∈ H1


w
∗ there exists a unique wq ∈ H1


wsuh that
〈


q, h
〉


H1
w


=
(


wq, h
)


H1
w


=
(


Awq, h
)


L2
w


=
〈


Awq, h
〉


H1
w
.Next, we show that A has a ompat inverse on L2


w. Sine A is an isomorphism and L2
w ⊂ H1


w
∗,the restrition of A−1 to L2


w is a bounded map from L2
w to H1


w. Sine H1
w ⋐ L2


w, it follows that
A−1 : L2


w → L2
w is ompat. Therefore, by the spetral theory of ompat self-adjoint linear operators[8, Th. 4.11-3℄, there exists an orthonormal Hilbert basis Bw =


{


h
(l)
w


}∞
l=1


of L2
w onsisting of theeigenfuntions of A−1.Now, note that Bw ⊂ H1


w sine for every h
(l)
w ∈ Bw,


∥


∥h(l)
w


∥


∥


H1
w


=
∥


∥λ−1
l A−1h(l)


w


∥


∥


H1
w


= λ
− 1


2


l


∥


∥h(l)
w


∥


∥


L2
w


< ∞,11







where λl > 0 is the eigenvalue orresponding to h
(l)
w . Moreover, Bw is omplete in H1


w sine for
h ∈ H1


w satisfying (


h
(l)
w , h


)


H1
w


= 0 for all h
(l)
w ∈ Bw we have


0 =
(


h(l)
w , h


)


H1
w


=
(


λ−1
l A−1h(l)


w , h
)


H1
w


= λ−1
l


(


h(l)
w , h


)


L2
w
,whih implies h = 0 due to ompleteness of Bw in L2


w. Orthogonality of Bw in H1
w is proved bysimilar omputation, whih ompletes the proof that Bw is also an orthogonal Hilbert basis of H1


wonsisting of the eigenfuntions of the operator A : H1
w → H1


w
∗.Before proeeding to the main results of this setion, we de�ne the notions of weak and strongsolutions of (3.3)�(3.6) as used in this paper.De�nition 4.2 (Weak solution) A solution (v, i, w) is alled an Ω-periodi weak solution of theinitial value problem (3.3)�(3.6) if it solves the weak version of the problem wherein the partialdi�erential equations are understood as equalities in the spae of duals L2(0, T ;L2


v
∗ × L2


i
∗ × H1


w
∗
).That is, the funtions


v ∈ L2(0, T ;L2
v), i ∈ L2(0, T ;L2


i ), w ∈ L2(0, T ;H1
w),with


dtv ∈ L2(0, T ;L2
v
∗
), dti ∈ L2(0, T ;L2


i ), d2
t i ∈ L2(0, T ;L2


i
∗
),


dtw ∈ L2(0, T ;L2
w), d2


t w ∈ L2(0, T ;H1
w
∗
),onstrut an Ω-periodi weak solution for (3.3)�(3.6) if for every ℓv ∈ L2


v, ℓi ∈ L2
i , hw ∈ H1


w, andalmost every t ∈ [0, T ], T > 0,
〈


Φdtv, ℓv


〉


L2
v


+
(


v, ℓv


)


L2
v
−


(


J1i, ℓv


)


L2
v


+
(


J2viTΨJ4 + J3viTΨJ5, ℓv


)


L2
v


= 0,(4.2)
〈


d2
t i, ℓi


〉


L2
i
+ 2


(


Γdti, ℓi


)


L2
i
+


(


Γ2i, ℓi


)


L2
i
− e


(


ΥΓJ6w, ℓi


)


L2
i


(4.3)
−e


(


ΥΓNJ7f(v), ℓi


)


L2
i


= e
(


ΥΓg, ℓi


)


L2
i
,


〈


d2
t w, hw


〉


H1
w


+ 2ν
(


Λdtw, hw


)


L2
w
− 3


2ν2
(


∆w, hw


)


L2
w


+ ν2
(


Λ2w, hw


)


L2
w


(4.4)
−ν2


(


Λ2MJ8f(v), hw


)


L2
w


= 0,with the initial values(4.5) v(0) = v0, i(0) = i0, dti(0) = i′0, w(0) = w0, dtw(0) = w′
0.De�nition 4.3 (Strong solution) A solution (v, i, w) is alled an Ω-periodi strong solution ofthe initial value problem (3.3)�(3.6) if it solves the strong version of the problem wherein the partialdi�erential equations are understood as equalities in L2(0, T ;L2


v ×L2
i ×L2


w). That is, the funtions
v ∈ H1(0, T ;L2


v), i ∈ H2(0, T ;L2
i ), w ∈ L2(0, T ;H2


w),with
dtv ∈ L2(0, T ;L2


v), dti ∈ H1(0, T ;L2
i ), d2


t i ∈ L2(0, T ;L2
i ),


dtw ∈ L2(0, T ;H1
w), d2


t w ∈ L2(0, T ;L2
w),onstrut an Ω-periodi strong solution for (3.3)�(3.6) where they solve the equations for almostevery x ∈ Ω and almost every t ∈ [0, T ]. 12







Now, let Bv =
{


ℓ
(l)
v


}∞
l=1


be a basis of L2
v suh that {


Φ
1
2 ℓ


(l)
v


}∞
l=1


is orthonormal in L2
v. Notethat (3.7), with the range of values given in Table 1, implies that Φ is a positive-de�nite diagonalmatrix, and hene, suh a basis exists. Moreover, let Bi =


{


ℓ
(l)
i


}∞
l=1


be an orthonormal basis of L2
iand Bw =


{


h
(l)
w


}∞
l=1


be an orthogonal basis of H1
w that is orthonormal in L2


w; see Lemma 4.1 for theexistene and struture of Bw. Finally, onstrut the set B =
{


b(k)
}∞


k=1
⊂ L2


v × L2
i ×H1


w as
B := Bv × Bi × Bw =


{


b(k) = (ℓ(k)
v , ℓ


(k)
i , h(k)


w ) : ℓ(k)
v ∈ Bv, ℓ


(k)
i ∈ Bi, h


(k)
w ∈ Bw


}∞


k=1
.(4.6)For eah positive integer m, we seek approximations v(m) : [0, T ] → L2


v, i(m) : [0, T ] → L2
i , and


w(m) : [0, T ] → H1
w of the form


v(m)(t) =
∑m


k=1
c(m)
vk


(t)ℓ(k)
v ,(4.7)


i(m)(t) =
∑m


k=1
c
(m)
ik


(t)ℓ
(k)
i ,(4.8)


w(m)(t) =
∑m


k=1
c(m)
wk


(t)h(k)
w ,(4.9)with su�iently smooth funtions c


(m)
vk


, c
(m)
ik


, and c
(m)
wk


on [0, T ], suh that, for all t ∈ [0, T ], and
k = 1, . . . ,m, these approximations satisfy the system of di�erential equations


(


Φdtv
(m), ℓ(k)


v


)


L2
v


+
(


v(m), ℓ(k)
v


)


L2
v
−


(


J1i
(m), ℓ(k)


v


)


L2
v


(4.10)
+


(


J2v
(m)i(m)TΨJ4 + J3v


(m)i(m)TΨJ5, ℓ
(k)
v


)


L2
v


= 0,
(


d2
t i


(m), ℓ
(k)
i


)


L2
i
+ 2


(


Γdti
(m), ℓ


(k)
i


)


L2
i
+


(


Γ2i(m), ℓ
(k)
i


)


L2
i


(4.11)
−e


(


ΥΓJ6w
(m), ℓ


(k)
i


)


L2
i
− e


(


ΥΓNJ7f(v(m)), ℓ
(k)
i


)


L2
i


= e
(


ΥΓg, ℓ
(k)
i


)


L2
i
,


(


d2
t w


(m), h(k)
w


)


L2
w


+ 2ν
(


Λdtw
(m), h(k)


w


)


L2
w
− 3


2ν2
(


∆w(m), h(k)
w


)


L2
w


(4.12)
+ν2


(


Λ2w(m), h(k)
w


)


L2
w
− ν2


(


Λ2MJ8f(v(m)), h(k)
w


)


L2
w


= 0,subjet to the initial onditions
c(m)
vk


(0) =
(


v0, ℓ
(k)
v


)


L2
v
, c


(m)
ik


(0) =
(


i0, ℓ
(k)
i


)


L2
i
, dtc


(m)
ik


(0) =
(


i′0, ℓ
(k)
i


)


L2
i
,(4.13)


c(m)
wk


(0) =
(


w0, h
(k)
w


)


L2
w
, dtc


(m)
wk


(0) =
(


w′
0, h


(k)
w


)


L2
w
,on the oe�ients c


(m)
k (t) = (c


(m)
vk


(t), c
(m)
ik


(t), c
(m)
wk


(t)) ∈ R
3.Equations (4.10)�(4.13) are equivalent to a system of nonlinear 3m-dimensional ordinary di�er-ential equations on oe�ients c(m)(t) = (c


(m)
1 (t), . . . , c


(m)
m (t)) ∈ R


3m. Therefore, by the standardtheory of ordinary di�erential equations [47, Th. 2.1℄, there exists a unique funtion c(m)(t) thatsolves (4.10)�(4.13) for t ∈ [0, Tm), Tm > 0, with the approximations (4.7)�(4.9). Moreover, Tm = Tfor all positive integers m, whih follows from Proposition 4.4.Proposition 4.4 (Energy estimates) Suppose g ∈ L2(0, T ;L2
i ) and for every positive integer mlet v(m), i(m), and w(m) be funtions of the form (4.7)�(4.9), respetively, satisfying (4.10)�(4.12)with the initial onditions (4.13). Then there exist positive onstants αv, βv, αi, and αw, dependent13







only on the parameters of the model, suh that for every positive integer m,
sup


t∈[0,T ]


(


∥


∥v(m)(t)
∥


∥


2


L2
v


)


+
∥


∥dtv
(m)


∥


∥


2


L2(0,T ;L2
v
∗)


≤ κv,(4.14)
sup


t∈[0,T ]


(


∥


∥dti
(m)(t)


∥


∥


2


L2
i


+
∥


∥i(m)(t)
∥


∥


2


L2
i


)


+
∥


∥d2
t i


(m)
∥


∥


2


L2(0,T ;L2
i
∗
)
≤ κi,(4.15)


sup
t∈[0,T ]


(


∥


∥dtw
(m)(t)


∥


∥


2


L2
w


+
∥


∥w(m)(t)
∥


∥


2


H1
w


)


+
∥


∥d2
t w


(m)
∥


∥


2


L2(0,T ;H1
w
∗)


≤ κw,(4.16)where κv, κi, and κw are positive onstants given, independently of m, by
κv := αv


(


(


1 + (1 +
√


κi)
2T


)


exp (βv


√
κiT )


[


∥


∥v0


∥


∥


2


L2
v


+ κiT
]


+ κiT
)


,(4.17)
κi := αi


(


(1 + T )
[


∥


∥i′0
∥


∥


2


L2
i


+
∥


∥i0
∥


∥


2


L2
i


]


+ (2 + T )
[


T
(


κw + |Ω|(F2
E + F2


I )
)(4.18)


+
∥


∥g
∥


∥


2


L2(0,T ;L2
i
)


])


,


κw := αw


(


(1 + T )
[


∥


∥w′
0


∥


∥


2


L2
w


+
∥


∥w0


∥


∥


2


H1
w


]


+ (2 + T )T |Ω|F2
E


)


.(4.19)Proof. Multiplying (4.12) by dtc
(m)
wk


and summing over k = 1, . . . ,m yields
(


d2
t w


(m),dtw
(m)


)


L2
w


+ 2ν
(


Λdtw
(m),dtw


(m)
)


L2
w
− 3


2ν2
(


∆w(m),dtw
(m)


)


L2
w


+ ν2
(


Λ2w(m),dtw
(m)


)


L2
w
− ν2


(


Λ2MJ8f(v(m)),dtw
(m)


)


L2
w


= 0,or, equivalently, using (2.1) in the third term in the above equation,
1
2dt


[


∥


∥dtw
(m)


∥


∥


2


L2
w


+ 3
2ν2


∥


∥∂xw(m)
∥


∥


2


L2
∂w


+ ν2
∥


∥Λw(m)
∥


∥


2


L2
w


]


+ 2ν
∥


∥Λ
1
2 dtw


(m)
∥


∥


2


L2
w


− ν2
(


Λ2MJ8f(v(m)),dtw
(m)


)


L2
w


= 0.Now, Young's inequality implies that for every ε1 > 0,
ν2


(


Λ2MJ8f(v(m)),dtw
(m)


)


L2
w
≤ ε1ν


2
∥


∥dtw
(m)


∥


∥


2


L2
w


+
ν2


4ε1


∥


∥Λ2MJ8f(v(m))
∥


∥


2


L2
w


= ε1ν
2
∥


∥dtw
(m)


∥


∥


2


L2
w


+
ν2


4ε1
tr(Λ4M2)


∫


Ω


∣


∣fE(v
(m)
E )


∣


∣


2
dx


≤ ε1ν
2
∥


∥dtw
(m)


∥


∥


2


L2
w


+
ν2


4ε1
|Ω|F2


E tr(Λ4M2).Therefore,
dt


[


∥


∥dtw
(m)


∥


∥


2


L2
w


+ 3
2ν2


∥


∥∂xw(m)
∥


∥


2


L2
∂w


+ ν2
∥


∥Λw(m)
∥


∥


2


L2
w


]


+ 2ν(2Λmin − ε1ν)
∥


∥dtw
(m)


∥


∥


2


L2
w


≤ ν2


2ε1
|Ω|F2


E tr(Λ4M2),where Λmin := min{ΛEE,ΛEI} is the smallest eigenvalue of Λ.14







Next, setting ε1 = 2
ν
Λmin and integrating with respet to time over [0, t] yields


∥


∥dtw
(m)(t)


∥


∥


2


L2
w


+ 3
2ν2


∥


∥∂xw(m)(t)
∥


∥


2


L2
∂w


+ ν2
∥


∥Λw(m)(t)
∥


∥


2


L2
w


≤
(


∥


∥dtw
(m)


∥


∥


2


L2
w


+ 3
2ν2


∥


∥∂xw(m)
∥


∥


2


L2
∂w


+ ν2
∥


∥Λw(m)
∥


∥


2


L2
w


)∣


∣


∣


t=0
+ 1


4


ν3


Λmin
|Ω|F2


E tr(Λ4M2)t,whih, using (4.13), implies
∥


∥dtw
(m)(t)


∥


∥


2


L2
w


+
∥


∥w(m)(t)
∥


∥


2


H1
w
≤ α̂w


(


∥


∥w′
0


∥


∥


2


L2
w


+
∥


∥w0


∥


∥


2


H1
w


+ 1
4


ν3


Λmin
|Ω|F2


E tr(Λ4M2)t


)for all t ∈ [0, T ] and some α̂w > 0. Sine this inequality holds for all t ∈ [0, T ], it follows that
sup


t∈[0,T ]


(


∥


∥dtw
(m)(t)


∥


∥


2


L2
w


+
∥


∥w(m)(t)
∥


∥


2


H1
w


)


≤ κ̂w,(4.20)where
κ̂w := α̂w


(


∥


∥w′
0


∥


∥


2


L2
w


+
∥


∥w0


∥


∥


2


H1
w


+ 1
4


ν3


Λmin
|Ω|F2


E tr(Λ4M2)T


)


.Now, �x h̄ ∈ H1
w suh that ∥


∥h̄
∥


∥


H1
w
≤ 1 and deompose h̄ as h̄ = h+h⊥, where h ∈ span


{


h
(k)
w


}m


k=1and (


h
(k)
w , h⊥)


L2
w


= 0, k = 1, . . . ,m. Sine the basis Bw used to onstrut B in (4.6) is orthonormalin L2
w, it follows from (4.9) that


〈


d2
t w


(m), h̄
〉


H1
w


=
(


d2
t w


(m), h̄
)


L2
w


=
(


d2
t w


(m), h
)


L2
w
,where the �rst equality holds sine d2


t w
(m) ∈ H1


w; see the proof of [15, Th. 5.9-1℄. Therefore, (4.12)gives
〈


d2
t w


(m), h̄
〉


H1
w


=


− 2ν
(


Λdtw
(m), h


)


L2
w


+ 3
2ν2


(


∆w(m), h
)


L2
w
− ν2


(


Λ2w(m), h
)


L2
w


+ ν2
(


Λ2MJ8f(v(m)), h
)


L2
w
.Sine Bw is orthogonal in H1


w we have ∥


∥h
∥


∥


H1
w


≤
∥


∥h̄
∥


∥


H1
w


≤ 1, and hene, the Cauhy-Shwarzinequality gives
∣


∣


〈


d2
t w


(m), h̄
〉


H1
w


∣


∣


≤ 2ν
∥


∥dtw
(m)


∥


∥


L2
w
+ 3


2ν2
∥


∥∂xw(m)
∥


∥


L2
∂w


+ ν2
∥


∥Λ2w(m)
∥


∥


L2
w
+ ν2


∥


∥Λ2MJ8f(v(m))
∥


∥


L2
w


≤ α1


(


∥


∥dtw
(m)


∥


∥


L2
w


+
∥


∥w(m)
∥


∥


H1
w


+ ν2
(


|Ω|F2
E tr(Λ4M2)


)
1
2


)for some α1 > 0. Therefore, there exists α2 > 0 suh that
∫ T


0


∥


∥d2
t w


(m)
∥


∥


2


H1
w
∗dt ≤ α2


∫ T


0


(


∥


∥dtw
(m)


∥


∥


2


L2
w


+
∥


∥w(m)
∥


∥


2


H1
w


+ ν4|Ω|F2
E tr(Λ4M2)


)


dt,whih, using (4.20), yields
∥


∥d2
t w


(m)
∥


∥


2


L2(0,T ;H1
w
∗)


≤ α2


(


κ̂w + ν4|Ω|F2
E tr(Λ4M2)


)


T.15







This inequality, together with (4.20), establishes the bound (4.16) with (4.19) for some αw > 0.Next, multiplying (4.11) by dtc
(m)
ik


and summing over k = 1, . . . ,m yields(4.21) (


d2
t i


(m),dti
(m)


)


L2
i
+ 2


(


Γdti
(m),dti


(m)
)


L2
i
+


(


Γ2i(m),dti
(m)


)


L2
i


− e
(


ΥΓJ6w
(m),dti


(m)
)


L2
i
− e


(


ΥΓNJ7f(v(m)),dti
(m)


)


L2
i


= e
(


ΥΓg,dti
(m)


)


L2
i
.For the seond term we have


(


Γdti
(m),dti


(m)
)


L2
i
≥ γmin


∥


∥dti
(m)


∥


∥


2


L2
i


,where γmin := min{γEE, γEI, γIE, γII} is the smallest eigenvalue of Γ. Now, using Young's inequalityand realling (4.16) we obtain, for every ε2, . . . , ε4 > 0,
e
(


ΥΓJ6w
(m),dti


(m)
)


L2
i
≤ ε2


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε2


∥


∥ΥΓJ6w
(m)


∥


∥


2


L2
i


≤ ε2


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε2


∥


∥ΥΓJ6


∥


∥


2


2


∥


∥w(m)
∥


∥


2


L2
w


≤ ε2


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2κw


4ε2


∥


∥ΥΓJ6


∥


∥


2


2
,


e
(


ΥΓNJ7f(v(m)),dti
(m)


)


L2
i
≤ ε3


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε3


∥


∥ΥΓNJ7f(v(m))
∥


∥


2


L2
i


≤ ε3


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε3


∥


∥ΥΓNJ7


∥


∥


2


2


∥


∥f(v(m))
∥


∥


2


L2
v


≤ ε3


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2|Ω|
4ε3


(F2
E + F2


I )
∥


∥ΥΓNJ7


∥


∥


2


2
,


e
(


ΥΓg,dti
(m)


)


L2
i
≤ ε4


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε4


∥


∥ΥΓg
∥


∥


2


L2
i


≤ ε4


∥


∥dti
(m)


∥


∥


2


L2
i


+
e2


4ε4


∥


∥ΥΓ
∥


∥


2


2


∥


∥g
∥


∥


2


L2
i


.Hene, with the above inequalities, (4.21) implies
dt


[


∥


∥dti
(m)


∥


∥


2


L2
i


+
∥


∥Γi(m)
∥


∥


2


L2
i


]


+ 2(2γmin − ε2 − ε3 − ε4)
∥


∥dti
(m)


∥


∥


2


L2
i


≤ e2κw


2ε2


∥


∥ΥΓJ6


∥


∥


2


2
+


e2|Ω|
2ε3


(F2
E + F2


I )
∥


∥ΥΓNJ7


∥


∥


2


2
+


e2


2ε4


∥


∥ΥΓ
∥


∥


2


2


∥


∥g
∥


∥


2


L2
i


.Now, setting ε2 = ε3 = 1
2γmin and ε4 = γmin, integrating with respet to time over [0, t], andtaking the supremum over t ∈ [0, T ] we have
sup


t∈[0,T ]


(


∥


∥dti
(m)(t)


∥


∥


2


L2
i


+
∥


∥i(m)(t)
∥


∥


2


L2
i


)


≤ κ̂i,(4.22)where, for some α̂i > 0,
κ̂i = α̂i


(


∥


∥i′0
∥


∥


2


L2
i


+
∥


∥i0
∥


∥


2


L2
i


+


[


e2κw


γmin


∥


∥ΥΓJ6


∥


∥


2


2
+


e2|Ω|
γmin


(F2
E + F2


I )
∥


∥ΥΓNJ7


∥


∥


2


2


]


T


+
e2


2γmin


∥


∥ΥΓ
∥


∥


2


2


∥


∥g
∥


∥


2


L2(0,T ;L2
i )


)


.16







Fix ℓ̄ ∈ L2
i suh that ∥


∥ℓ̄
∥


∥


L2
i


≤ 1 and deompose ℓ̄ as ℓ̄ = ℓ + ℓ⊥, where ℓ ∈ span
{


ℓ
(k)
i


}m


k=1
and


(


ℓ
(k)
i , ℓ⊥


)


L2
i


= 0, k = 1, . . . ,m. Using (4.8) and (4.11) we obtain
〈


d2
t i


(m), ℓ̄
〉


L2
i


=
(


d2
t i


(m), ℓ̄
)


L2
i


=
(


d2
t i


(m), ℓ
)


L2
i


= −2
(


Γdti
(m), ℓ


)


L2
i
−


(


Γ2i(m), ℓ
)


L2
i
+ e


(


ΥΓJ6w
(m), ℓ


)


L2
i
+ e


(


ΥΓNJ7f(v(m)), ℓ
)


L2
i


+ e
(


ΥΓg, ℓ
)


L2
i
.The orthogonality of the basis Bi in (4.6) implies ∥


∥ℓ
∥


∥


L2
i


≤ 1, and hene,
∣


∣


〈


d2
t i


(m), ℓ̄
〉


L2
i


∣


∣ ≤ 2
∥


∥Γ
∥


∥


2


∥


∥dti
(m)


∥


∥


L2
i


+
∥


∥Γ2
∥


∥


2


∥


∥i(m)
∥


∥


L2
i


+ e
∥


∥ΥΓJ6w
(m)


∥


∥


L2
i


+ e
∥


∥ΥΓNJ7f(v(m))
∥


∥


L2
i


+ e
∥


∥ΥΓg
∥


∥


L2
i


.Therefore, it follows from the same inequalities used to derive (4.22) that, for some α3 > 0,
∥


∥d2
t i


(m)
∥


∥


2


L2(0,T ;L2
i
∗
)
≤ α3


([


κ̂i + e2κw


∥


∥ΥΓJ6


∥


∥


2


2
+ e2|Ω|(F2


E + F2
I )


∥


∥ΥΓNJ7


∥


∥


2


2


]


T


+e2
∥


∥ΥΓ
∥


∥


2


2


∥


∥g
∥


∥


2


L2(0,T ;L2
i )


)


.This, together with (4.22), establishes the bound (4.15) with (4.18) for some αi > 0.Finally, multiplying (4.10) by c
(m)
vk


and summing over k = 1, . . . ,m yields(4.23) (


Φdtv
(m), v(m)


)


L2
v


+
(


v(m), v(m)
)


L2
v
−


(


J1i
(m), v(m)


)


L2
v


+
(


J2v
(m)i(m)TΨJ4 + J3v


(m)i(m)TΨJ5, v
(m)


)


L2
v


= 0.Now, using Young's inequality and realling (4.15) we obtain, for every ε5 > 0,
(


J1i
(m), v(m)


)


L2
v
≤ ε5


∥


∥v(m)
∥


∥


2


L2
v


+
1


4ε5


∥


∥J1i
(m)


∥


∥


2


L2
v


≤ ε5


∥


∥v(m)
∥


∥


2


L2
v


+
1


2ε5


∥


∥i(m)
∥


∥


2


L2
v


≤ ε5


∥


∥v(m)
∥


∥


2


L2
v


+
κi


2ε5
.Moreover, using Hölder's inequality in R


2 and the Cauhy-Shwarz inequality in R
4 we obtain


−
(


J2v
(m)i(m)TΨJ4 + J3v


(m)i(m)TΨJ5, v
(m)


)


L2
v


= −
∫


Ω


(


(v
(m)
1 )2i(m)TΨJ4 + (v


(m)
2 )2i(m)TΨJ5


)


dx


≤
∫


Ω


∥


∥v(m)
∥


∥


2


R2 max
{


|i(m)TΨJ4|, |i(m)TΨJ5|
}


dx


≤
∫


Ω


∥


∥v(m)
∥


∥


2


R2


∥


∥i(m)
∥


∥


R4 max
{
∥


∥ΨJ4


∥


∥


R4 ,
∥


∥ΨJ5


∥


∥


R4


}


dx


≤
√


2κi


∥


∥Ψ
∥


∥


2


∥


∥v(m)
∥


∥


2


L2
v
.17







Therefore, (4.23) implies
dt


∥


∥Φ
1
2 v(m)


∥


∥


2


L2
v


+ 2
(


1 − ε5 −
√


2κi


∥


∥Ψ
∥


∥


2


)
∥


∥v(m)
∥


∥


2


L2
v
≤ κi


ε5
.Next, setting ε5 = 1 and using Grönwall's inequality [48, Se. III.1.1.3.℄ yields


sup
t∈[0,T ]


(


∥


∥v(m)(t)
∥


∥


2


L2
v


)


≤ κ̂v,(4.24)where, for some α̂v > 0 and β̂v > 0,
κ̂v = α̂v exp


(


β̂v


√
2κi


∥


∥Ψ
∥


∥


2
T


)(


∥


∥v0


∥


∥


2


L2
v


+ κiT
)


.Now, �x ℓ̄ ∈ L2
v suh that ∥


∥ℓ̄
∥


∥


L2
v
≤ 1 and deompose ℓ̄ as ℓ̄ = ℓ+ℓ⊥, where ℓ ∈ span


{


ℓ
(k)
v


}m


k=1
and


(


Φℓ
(k)
v , ℓ⊥


)


L2
v


= 0, k = 1, . . . ,m. Note that this deomposition exists due to the way we onstrut thebasis Bv in (4.6), wherein the elements, weighted by Φ
1
2 , are orthonormal in L2


v. Then, it followsfrom (4.7) and (4.10) that
〈


Φdtv
(m), ℓ̄


〉


L2
v


=
(


Φdtv
(m), ℓ̄


)


L2
v


=
(


Φdtv
(m), ℓ


)


L2
v


= −
(


v(m), ℓ
)


L2
v


+
(


J1i
(m), ℓ


)


L2
v
−


(


J2v
(m)i(m)TΨJ4 + J3v


(m)i(m)TΨJ5, ℓ
)


L2
v
.Sine Bv is a Φ


1
2 -weighted orthonormal set in L2


v, it follows that
∥


∥ℓ
∥


∥


L2
v
≤


∥


∥Φ− 1
2


∥


∥


2


∥


∥Φ
1
2 ℓ


∥


∥


L2
v
≤


∥


∥Φ− 1
2


∥


∥


2


∥


∥Φ
1
2 ℓ̄


∥


∥


L2
v
≤


∥


∥Φ− 1
2


∥


∥


2


∥


∥Φ
1
2


∥


∥


2


∥


∥ℓ̄
∥


∥


L2
v
≤


∥


∥Φ− 1
2


∥


∥


2


∥


∥Φ
1
2


∥


∥


2and hene, letting α4 :=
∥


∥Φ− 1
2


∥


∥


2


∥


∥Φ
1
2


∥


∥


2
and using Cauhy-Shwarz inequality we have


∣


∣


〈


Φdtv
(m), ℓ̄


〉


L2
v


∣


∣ ≤ α4


(


∥


∥v(m)
∥


∥


L2
v


+
∥


∥J1i
(m)


∥


∥


L2
v


+
∥


∥J2v
(m)i(m)TΨJ4 + J3v


(m)i(m)TΨJ5


∥


∥


L2
v


)


≤ α4


(


∥


∥v(m)
∥


∥


L2
v


+
√


2
∥


∥i(m)
∥


∥


L2
v


+ 2
√


2
∥


∥v(m)
∥


∥


L2
v


∥


∥i(m)
∥


∥


L2
v


∥


∥Ψ
∥


∥


2


)


≤ α4


(


(


1 + 2
√


2κi


∥


∥Ψ
∥


∥


2


)
∥


∥v(m)
∥


∥


L2
v


+
√


2κi


)


,whih, along with (4.24) implies that, for some α5 > 0,
∥


∥dtv
(m)


∥


∥


2


L2(0,T ;L2
v
∗)


≤ α5


(


(


1 + 2
√


2κi


∥


∥Ψ
∥


∥


2


)2
κ̂v + 2κi


)


T.This, together with (4.24), establishes the bound (4.14) with (4.17) for some αv > 0. Note thatonstants α1, . . . , α5, α̂v, β̂v, α̂i, and α̂w depend only on the parameters of the model, whih furtherimplies that the onstants αv, βv, αi, and αw also depend only on the parameters of the model andompletes the proof.Theorem 4.5 (Existene and uniqueness of weak solutions) Suppose that g ∈ L2(0, T ;L2
i ),


v0 ∈ L2
v, i0 ∈ L2


i , i′0 ∈ L2
i , w0 ∈ H1


w, and w′
0 ∈ L2


w. Then there exists a unique Ω-periodi weaksolution (v, i, w) of the initial value problem (3.3)�(3.6).18







Proof. The energy estimate (4.14) implies that the sequene {


v(m)
}∞


m=1
is bounded in L2(0, T ;L2


v)and the sequene {


dtv
(m)


}∞
m=1


is bounded in L2(0, T ;L2
v
∗
). Sine L2


v
∗


= L2
v, it follows that {


v(m)
}∞


m=1is bounded in H1(0, T ;L2
v) and {


dtv
(m)


}∞
m=1


is bounded in L2(0, T ;L2
v). Similarly, sine L2


i
∗


= L2
i ,the energy estimate (4.15) implies that the sequene {


i(m)
}∞


m=1
is bounded in H2(0, T ;L2


i ), thesequene {


dti
(m)


}∞
m=1


is bounded in H1(0, T ;L2
i ), and the sequene {


d2
t i


(m)
}∞


m=1
is bounded in


L2(0, T ;L2
i ). Finally, the energy estimate (4.16) implies that the sequene {


w(m)
}∞


m=1
is bounded in


L2(0, T ;H1
w), the sequene {


dtw
(m)


}∞
m=1


is bounded in L2(0, T ;L2
w), and the sequene {


d2
t w


(m)
}∞


m=1is bounded in L2(0, T ;H1
w
∗
). Now, it follows from the Rellih-Kondrahov ompat embedding the-orems [8, Th. 6.6-3℄ that H1(0, T ;L2


v) ⋐ L2(0, T ;L2
v) and H1(0, T ;L2


i ) ⋐ L2(0, T ;L2
i ). Therefore,by [8, Th. 2.10-1b℄, there exist subsequenes {


v(mk)
}∞


k=1
, {


i(mk)
}∞


k=1
, and {


dti
(mk)


}∞
k=1


suh that
v(mk) → v strongly in L2(0, T ;L2


v),(4.25)
i(mk) → i strongly in L2(0, T ;L2


i ),


dti
(mk) → i′ strongly in L2(0, T ;L2


i ).Moreover, by the Banah-Eberlein-�mulian theorem [8, Th. 5.14-4℄, there exist subsequenes
{


dtv
(mk)


}∞
k=1


, d2
t


{


i(mk)
}∞


k=1
, {


w(mk)
}∞


k=1
, {


dtw
(mk)


}∞
k=1


, and {


d2
t w


(mk)
}∞


k=1
suh that


dtv
(mk) ⇀ v′ weakly in L2(0, T ;L2


v),(4.26)
d2


t i
(mk) ⇀ i′′ weakly in L2(0, T ;L2


i ),


w(mk) ⇀ w weakly in L2(0, T ;H1
w),


dtw
(mk) ⇀ w′ weakly in L2(0, T ;L2


w),


d2
t w


(mk) ⇀ w′′ weakly in L2(0, T ;H1
w
∗
),where the time derivatives in the above analysis are derivatives in the weak sense.Next, we show that


v′ = dtv, i′ = dti, i′′ = d2
t i, w′ = dtw, w′′ = d2


t w.Sine L2(0, T ;H1
w) is re�exive, the weak and weak* onvergene oinide. Realling the de�nitionof weak* onvergene and weak derivatives, it follows that for every h ∈ H1


w and φ ∈ C∞
c ([0, T ]),


〈


∫ T


0
w′′φdt, h


〉


H1
w


=


∫ T


0


〈


w′′φ, h
〉


H1
w
dt = lim


k→∞


∫ T


0


〈


d2
t w


(mk)φ, h
〉


H1
w
dt


= lim
k→∞


〈


∫ T


0
d2


t w
(mk)φdt, h


〉


H1
w


= lim
k→∞


〈


(−1)2
∫ T


0
w(mk)d2


t φdt, h
〉


H1
w


= lim
k→∞


(−1)2
∫ T


0


〈


w(mk)d2
t φ, h


〉


H1
w
dt = (−1)2


∫ T


0


〈


wd2
t φ, h


〉


H1
w
dt


=
〈


(−1)2
∫ T


0
wd2


t φdt, h
〉


H1
w
,whih implies w′′ = d2


t w in the weak sense. The other identities are proved similarly.Now, reall (3.2) and (3.7) and note that the nonlinear map f : R
2 → R


2 is bounded andsmooth, and in partiular, is Lipshitz ontinuous. Therefore, it follows from the strong onvergene19







of {


v(mk)
}∞


k=1
in (4.25) that(4.27) f(v(mk)) → f(v) strongly in L2(0, T ;L2


v).For the bilinear term J2viTΨJ4, use (4.14) and (4.15) to write
∥


∥J2


(


viT − v(mk)i(mk)T
)


ΨJ4


∥


∥


L2(0,T ;L2
v)


≤
∥


∥J2(v − v(mk))iTΨJ4


∥


∥


L2(0,T ;L2
v)


+
∥


∥J2v
(mk)(i − i(mk))TΨJ4


∥


∥


L2(0,T ;L2
v)


≤
√


2
∥


∥Ψ
∥


∥


2


[


∥


∥v − v(mk)
∥


∥


L2(0,T ;L2
v)


∥


∥i
∥


∥


L2(0,T ;L2
i )


+
∥


∥v(mk)
∥


∥


L2(0,T ;L2
v)


∥


∥i − i(mk)
∥


∥


L2(0,T ;L2
i )


]


≤
√


2
∥


∥Ψ
∥


∥


2


[√
κi


∥


∥v − v(mk)
∥


∥


L2(0,T ;L2
v)


+
√


κv


∥


∥i − i(mk)
∥


∥


L2(0,T ;L2
i )


]


.The same inequality holds for the bilinear term J3viTΨJ5 as well. Therefore, (4.25) gives
J2v


(mk)i(mk)TΨJ4 → J2viTΨJ4 strongly in L2(0, T ;L2
v),(4.28)


J3v
(mk)i(mk)TΨJ5 → J3viTΨJ5 strongly in L2(0, T ;L2


v).Next, �x a positive integer K and hoose the funtions
v̂ =


∑K


k=1
cvk


(t)ℓ(k)
v ∈ C1([0, T ];L2


v),


î =
∑K


k=1
cik(t)ℓ


(k)
i ∈ C1([0, T ];L2


i ),


ŵ =
∑K


k=1
cwk


(t)h(k)
w ∈ C1([0, T ];H1


w),where, for every k ∈ {1, . . . ,K}, the salar-valued funtions cvk
, cik , cwk


are su�iently smoothon [0, T ] and (ℓ
(k)
v , ℓ


(k)
i , h


(k)
w ) ∈ B, where B is given by (4.6). Set m = mk in (4.10)�(4.12) andhoose mk ≥ K. Then, multiplying (4.10)�(4.12) by cvk


, cik , and cwk
, respetively, summing over


k = 1, . . . ,K, and integrating over t ∈ [0, T ] yields
∫ T


0


[


〈


Φdtv
(mk), v̂


〉


L2
v


+
(


v(mk), v̂
)


L2
v
−


(


J1i
(mk), v̂


)


L2
v


(4.29)
+


(


J2v
(mk)i(mk)TΨJ4 + J3v


(mk)i(mk)TΨJ5, v̂
)


L2
v


]


dt = 0,
∫ T


0


[


〈


d2
t i


(mk), î
〉


L2
i
+ 2


(


Γdti
(mk), î


)


L2
i
+


(


Γ2i(mk), î
)


L2
i


−e
(


ΥΓJ6w
(mk), î


)


L2
i
− e


(


ΥΓNJ7f(v(mk)), î
)


L2
i


]


dt =


∫ T


0
e
(


ΥΓg, î
)


L2
i
dt,


∫ T


0


[


〈


d2
t w


(mk), ŵ
〉


L2
w


+ 2ν
(


Λdtw
(mk), ŵ


)


L2
w
− 3


2ν2
(


∆w(mk), ŵ
)


L2
w


+ν2
(


Λ2w(mk), ŵ
)


L2
w
− ν2


(


Λ2MJ8f(v(m)), ŵ
)


L2
w


]


dt = 0.Note that the families of funtions v̂, î, and ŵ hosen above are dense in the spaes L2(0, T ;L2
v),


L2(0, T ;L2
i ), and L2(0, T ;H1


w), respetively. Therefore, (4.29) holds for all funtions v̂ ∈ L2(0, T ;L2
v),20







î ∈ L2(0, T ;L2
i ), and ŵ ∈ L2(0, T ;H1


w). Now, use (4.25)�(4.28) to pass to the limits in (4.29), whihimplies that (4.2)�(4.4) hold for all ℓv ∈ L2
v, ℓi ∈ L2


i , hw ∈ H1
w, and almost every t ∈ [0, T ].It remains to verify the initial onditions (4.5). Choose the funtions


v̂ ∈ C1([0, T ];L2
v), î ∈ C2([0, T ];L2


i ), ŵ ∈ C2([0, T ];H1
w),suh that these funtions vanish at the end point t = T . Integrating by parts in (4.29) yields


∫ T


0


[


−
(


Φv(mk),dtv̂
)


L2
v
+ · · ·


]


dt =
(


Φv(mk)(0), v̂(0)
)


L2
v
,(4.30)


∫ T


0


[


(


i(mk),d2
t î


)


L2
i
+ · · ·


]


dt = · · · +
(


dti
(mk)(0), î(0)


)


L2
i
−


(


i(mk)(0),dtî(0)
)


L2
i
,


∫ T


0


[


(


w(mk),d2
t ŵ


)


H1
w


+ · · ·
]


dt =
(


dtw
(mk)(0), ŵ(0)


)


L2
w
−


(


w(mk)(0),dtŵ(0)
)


L2
w
,where �· · · � denotes terms that are not pertinent to the analysis. Similarly, integrating by parts inthe limit of (4.29) yields


∫ T


0


[


−
(


Φv,dtv̂
)


L2
v


+ · · ·
]


dt =
(


Φv(0), v̂(0)
)


L2
v
,(4.31)


∫ T


0


[


(


i,d2
t î


)


L2
i
+ · · ·


]


dt = · · · +
(


dti(0), î(0)
)


L2
i
−


(


i(0),dt î(0)
)


L2
i
,


∫ T


0


[(


w,d2
t ŵ


)


H1
w


+ · · ·
]


dt =
(


dtw(0), ŵ(0)
)


L2
w
−


(


w(0),dtŵ(0)
)


L2
w
.Now, onsider the initial onditions (4.13), pass to the limits in (4.30) through (4.25)�(4.28), andompare the results with (4.31). Sine v̂, î, and ŵ are arbitrary the initial ondition (4.5) holds andthis ompletes the proof of existene.To prove uniqueness, assume, by ontradition, that there exist two weak solutions (ṽ, ĩ, w̃) and


(v̂, î, ŵ) for (3.1), initiating from the same initial values, suh that (ṽ, ĩ, w̃) 6= (v̂, î, ŵ). Then,
(v, i, w) := (ṽ, ĩ, w̃) − (v̂, î, ŵ) is a weak solution initiating from the zero initial ondition (v0, i0, i


′
0,


w0, w
′
0) = 0. Now, �x s ∈ [0, T ] and de�ne, for 0 ≤ t ≤ T , the funtions(4.32) p(t) :=


∫ t


0
w(r)dr, q(t) :=


{


∫ s


t
w(r)dr, if 0 ≤ t ≤ s,


0, if s < t ≤ T.Note that p(t) ∈ H1
w and q(t) ∈ H1


w for all t ∈ [0, T ], and hene, p and q are regular enough to beused as the test funtion hw in (4.4). Moreover, q(s) = 0, q(0) = p(s), and p(0) = 0. Let ũ and ûsatisfy (4.2)�(4.4) with the same test funtions ℓv = v(t), ℓi = dti(t), and hw = q(t). Subtrating
21







the two sets of equations and integrating over t ∈ [0, s] yields
∫ s


0


[


〈


Φdtv, v
〉


L2
v


+
(


v, v
)


L2
v
−


(


J1i, v
)


L2
v


(4.33)
+


(


J2(ṽĩT − v̂îT)ΨJ4 + J3(ṽĩT − v̂îT)ΨJ5, v
)


L2
v


]


dt = 0,
∫ s


0


[


〈


d2
t i,dti


〉


L2
i
+ 2


(


Γdti,dti
)


L2
i
+


(


Γ2i,dti
)


L2
i
− e


(


ΥΓJ6w,dti
)


L2
i


(4.34)
−e


(


ΥΓNJ7(f(ṽ) − f(v̂)),dti
)


L2
i


]


dt = 0,
∫ s


0


[


〈


d2
tw, q


〉


H1
w


+ 2ν
(


Λdtw, q
)


L2
w
− 3


2ν2
(


∆w, q
)


L2
w


+ ν2
(


Λ2w, q
)


L2
w


(4.35)
−ν2


(


Λ2MJ8(f(ṽ) − f(v̂)), q
)


L2
w


]


dt = 0.Next, integrating by parts in the �rst and seond terms in (4.35) yields
∫ s


0


[


−
(


dtw,dtq
)


L2
w
− 2ν


(


Λw,dtq
)


L2
w
− 3


2ν2
(


∆w, q
)


L2
w


+ ν2
(


Λ2w, q
)


L2
w


]


dt


=


∫ s


0
ν2


(


Λ2MJ8(f(ṽ) − f(v̂)), q
)


L2
w
dt.Note that 〈


dtw,dtq
〉


H1
w


=
(


dtw,dtq
)


L2
w
sine dtw ∈ L2


w for almost every t ∈ [0, T ]; see the proofof [15, Th. 5.9-1℄. Now, it follows from the de�nition of q(t) that dtq = −w for all t ∈ [0, s].Therefore,(4.36) ∫ s


0


[


1
2dt


(


∥


∥w
∥


∥


2


L2
w
− 3


2ν2
∥


∥∂xq
∥


∥


2


L2
∂w


)


+ 2ν
∥


∥Λ
1
2 w


∥


∥


2


L2
w


+ ν2
(


Λ2w, q
)


L2
w


]


dt


=


∫ s


0
ν2


(


Λ2MJ8(f(ṽ) − f(v̂)), q
)


L2
w
dt.Using Young's inequality,


ν2
(


Λ2MJ8(f(ṽ) − f(v̂)), q
)


L2
w
≤ 1


4ν2
∥


∥q
∥


∥


2


L2
w


+ ν2 tr(Λ4M2)


[


sup
vE(x,t)∈R


|∂vE
fE(vE)|


]2
∥


∥v
∥


∥


2


L2
v


≤ 1
4ν2


∥


∥q
∥


∥


2


L2
w


+ 1
8ν2 F2


E


σ2
E


tr(Λ4M2)
∥


∥v
∥


∥


2


L2
v
,


−ν2
(


Λ2w, q
)


L2
w
≤ 1


4ν2
∥


∥q
∥


∥


2


L2
w


+ ν2
∥


∥Λ
∥


∥


4


2


∥


∥w
∥


∥


2


L2
w
,where the seond inequality follows, for X = E, from di�erentiating (3.2) as(4.37) ∂vX


fX(vX) =


√
2


σX
FX exp


(


−
√


2
vX − µX


σX


)[


1 + exp


(


−
√


2
vX − µX


σX


)]−2


, X ∈ {E, I},whih implies supvX(x,t)∈R |∂vX
fX(vX)| ≤ FX


2
√


2σX
.Now, (4.36) implies


1
2


∥


∥w(s)
∥


∥


2


L2
w


+ 3
4ν2


∥


∥q(0)
∥


∥


2


H1
w
≤


∫ s


0


[(


− 2ν
∥


∥Λ
∥


∥


2
+ ν2


∥


∥Λ
∥


∥


4


2


)


∥


∥w
∥


∥


2


L2
w


+ 1
2ν2


∥


∥q
∥


∥


2


L2
w


+1
8ν2 F2


E


σ2
E


tr(Λ4M2)
∥


∥v
∥


∥


2


L2
v


]


dt + 3
4ν2


∥


∥q(0)
∥


∥


2


L2
w
.22







Noting from (4.32) that q(t) = p(s) − p(t) for all t ∈ [0, s], it follows that the above inequality anbe written as
1
2


∥


∥w(s)
∥


∥


2


L2
w


+ 3
4ν2


∥


∥p(s)
∥


∥


2


H1
w
≤


∫ s


0


[(


− 2ν
∥


∥Λ
∥


∥


2
+ ν2


∥


∥Λ
∥


∥


4


2


)


∥


∥w(t)
∥


∥


2


L2
w


+ 1
2ν2


∥


∥p(s) − p(t)
∥


∥


2


L2
w


+1
8ν2 F2


E


σ2
E


tr(Λ4M2)
∥


∥v(t)
∥


∥


2


L2
v


]


dt + 3
4ν2


∥


∥p(s)
∥


∥


2


L2
w
.Moreover, ∥


∥p(s)− p(t)
∥


∥


2


L2
w
≤ 2


∥


∥p(s)
∥


∥


2


L2
w


+2
∥


∥p(t)
∥


∥


2


L2
w
≤ 2


∥


∥p(s)
∥


∥


2


H1
w


+2
∥


∥p(t)
∥


∥


2


H1
w
, and it follows fromthe de�nition of p(t) that ∥


∥p(s)
∥


∥


2


L2
w
≤


∫ s


0


∥


∥w(t)
∥


∥


2


L2
w
dt. Therefore,


1
2


∥


∥w(s)
∥


∥


2


L2
w


+ ν2(3
4 − s)


∥


∥p(s)
∥


∥


2


H1
w
≤


∫ s


0


[(


− 2ν
∥


∥Λ
∥


∥


2
+ ν2


∥


∥Λ
∥


∥


4


2
+ 3


4ν2
)


∥


∥w(t)
∥


∥


2


L2
w


(4.38)
+ν2


∥


∥p(t)
∥


∥


2


H1
w


+ 1
8ν2 F2


E


σ2
E


tr(Λ4M2)
∥


∥v(t)
∥


∥


2


L2
v


]


dt.Next, realling (4.14) and (4.15) and using the Cauhy-Shwarz and Young inequalities, it followsthat the fourth term in (4.33) satis�es, for every ε1 > 0,
(


J2(ṽĩT − v̂îT)ΨJ4, v
)


L2
v


=
(


J2vĩTΨJ4, v
)


L2
v


+
(


J2v̂iTΨJ4, v
)


L2
v


≥ −
√


2κĩ


∥


∥Ψ
∥


∥


2


∥


∥v
∥


∥


2


L2
v
− ε1


∥


∥v
∥


∥


2


L2
v
− 2κv̂


4ε1


∥


∥Ψ
∥


∥


2


2


∥


∥i
∥


∥


2


L2
i


,where κv̂ and κĩ are in the form of (4.17) and (4.18), respetively. The same inequality holds for
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,for every ε2 > 0. Moreover, for every ε3 > 0 and ε4 > 0,
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.Substituting the above inequalities into (4.33) and (4.34), and adding the resulting inequalitiesto (4.38) yields, for some α > 0,
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dt.Now, setting T1 = 3
4 , it follows from the integral form of Grönwall's inequality [15, Appx. B.2℄that (v(s), i(s), w(s)) = 0 for all s ∈ [0, T1]. Repeating the same arguments for intervals [T1, 2T1],


[2T1, 3T1], . . . , we dedue (v(t), i(t), w(t)) = 0 for all t ∈ [0, T ], and hene, (ṽ, ĩ, w̃) = (v̂, î, ŵ) forall t ∈ [0, T ], whih is a ontradition and ompletes the proof of uniqueness.23







Proposition 4.6 (Regularity of weak solutions) Suppose that the assumptions of Theorem 4.5hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2


v, i0 ∈ L2
i , i′0 ∈ L2


i , w0 ∈ H1
w, and w′


0 ∈ L2
w. Then the Ω-periodi weak solution (v, i, w) of the initial value problem (3.3)�(3.6) satis�es
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∥
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∥
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∥
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i ∈ H2(0, T ;L2


i ) ∩ C1, 1
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i ), dti ∈ H1(0, T ;L2
i ) ∩ C0, 1


2 ([0, T ];L2
i ),


w ∈ H1(0, T ;L2
w) ∩ C0([0, T ];H1


w), dtw ∈ C0([0, T ];L2
w),where κv, κi, and κw are given by (4.17)�(4.19). Moreover, if g ∈ C0([0, T ];L2


i ), then(4.41) v ∈ C3([0, T ];L2
v), i ∈ C2([0, T ];L2


i ), dti ∈ C1([0, T ];L2
i ),and if g ∈ C1([0, T ];L2


i ), then(4.42) v ∈ C4([0, T ];L2
v), i ∈ C3([0, T ];L2


i ), dti ∈ C2([0, T ];L2
i ).Proof. First, reall that L2


v = L2
v
∗ and L2


i = L2
i
∗. Assertion (4.39) follows immediately from (4.14)�(4.16) by setting m = mk and passing to the limits through (4.25) and (4.26). The inlusions in


H1 and H2 in assertion (4.40) are immediate from (4.39). The Sobolev embedding theorems [8, Th.6.6-1℄ applied to Banah spae-valued funtions on [0, T ] ⊂ R imply that v ∈ C0, 1
2 ([0, T ];L2


v),
i ∈ C1, 1


2 ([0, T ];L2
i ), and dti ∈ C0, 1


2 ([0, T ];L2
i ), whih further implies by (3.3) that v ∈ C2([0, T ];L2


v).Let A := (−∆ + I) : H1
w→ H1


w
∗ be the time-independent, self-adjoint operator onsidered inLemma 4.1. Note that f(v) ∈ C2([0, T ];L∞


v ) sine f is a bounded smooth funtion and v ∈
C2([0, T ];L2


v). Then, it follows from (3.5) and (4.39) that d2
t w + Aw ∈ L2(0, T ;L2


w). Therefore,by [48, Lemma II.4.1℄ we have w ∈ C([0, T ];H1
w) and dtw ∈ C([0, T ];L2


w), whih ompletes the proofof (4.40). Assertions (4.41) and (4.42) are now immediate from (3.3), (3.4), and (4.40).Theorem 4.7 (Existene and uniqueness of strong solutions) Suppose that g ∈ L2(0, T ;L2
i ),


v0 ∈ L2
v, i0 ∈ L2


i , i′0 ∈ L2
i , w0 ∈ H2


w, and w′
0 ∈ H1


w. Then there exists a unique Ω-periodi strongsolution (v, i, w) of the initial value problem (3.3)�(3.6).Proof. Uniqueness follows immediately from Theorem 4.5 sine every strong solution is also aweak solution. Moreover, Proposition 4.6 implies that the weak solutions v ∈ H1(0, T ;L2
v) and


i ∈ H2(0, T ;L2
i ) are indeed strong solutions as given in De�nition 4.3. It remains to prove theregularity required for w by De�nition 4.3.Consider (4.12) with the approximation (4.9), let Bw =
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(k)
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be the orthogonal basis of H1
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∗ as given by Lemma 4.1, and let24







λk denote the eigenvalue orresponding to the eigenfuntion h
(k)
w . Multiplying (4.12) by λkc
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(m)


)


L2
w


+ ν2
(
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Using similar arguments as in the proof of Proposition 4.4, it follows from the above inequality andYoung's inequality that, for every ε > 0,
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)for some α > 0. Now, using the above estimate and passing to the limits, the result follows bysimilar arguments as in the proof of Theorem 4.5.Proposition 4.8 (Regularity of strong solutions) Suppose that the assumptions of Theorem4.7 hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2


v, i0 ∈ L2
i , i′0 ∈ L2


i , w0 ∈ H2
w, and w′


0 ∈ H1
w. Then,in addition to the properties of the weak solution given in Proposition 4.6, the Ω-periodi strongsolution (v, i, w) of the initial value problem (3.3)�(3.6) satis�es
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Proof. Di�erentiate (4.12) with respet to t and denote ẇ := dtw. Use (4.44) and follow the samesteps used to prove (4.16) in Proposition 4.4 to show ∥


∥d2
t ẇ


(m)
∥


∥


2


L2(0,T ;H1
w
∗)


≤ β̃w for every positiveinteger m, all t ∈ [0, T ], and some β̃w > 0 proportional to β̂w in (4.46). Replaing ẇ = dtw, addingthe result to (4.46), and passing to the limits establishes (4.47) for some βw > 0 proportional to β̂w.The inlusions in H1, H2, and L∞ in assertion (4.48) follow immediately from (4.47), whereasthe inlusions in the time-ontinuous spaes are implied by the Sobolev embedding theorems [8, Th.6.6-1℄ applied to Banah spae-valued funtions on [0, T ] ⊂ R. Finally, the inlusion in the spae-ontinuous spae is implied by the Sobolev embedding theorems applied to Ω-periodi funtions in
R


2.Other than the regularity properties given in Propositions 4.6 and 4.8, boundedness of weakand strong solutions for bounded input funtions g an also be established. We defer this result toSetion 5, where the proof is obtained as a orollary of Proposition 5.3.In the remainder of the paper, we give formal arguments for some of the proofs, in the sense thatwe take the inner produt of (3.5) with funtions that belong to L2
w, instead of funtions belongingto H1


w that is required for the test funtions hw in (4.4). However, the proofs an be made rigoroususing the Galerkin approximation tehnique based on the dual orthogonal basis of H1
w ⋐ L2


w andthen passing to the limits, as in the proofs of Theorems 4.5 and 4.7. See the disussion and resultsin [41, Se. 11.1.2℄ for further details.5. Semidynamial Systems and Biophysial Plausibility of the Evo-lutionIn this setion, we establish a semidynamial system framework for the initial-value problem pre-sented in Setion 4. Assume g ∈ L2(0,∞;L2
i ) and let u(t) := (v(t), i(t),dti(t), w(t),dtw(t)) denotea solution of (3.3)�(3.5) with the initial value u0 := u(0) = (v0, i0, i


′
0, w0, w


′
0). Reall the De�nitions4.2 and 4.3 and the results of Theorems 4.5 and 4.7 to note that the Hilbert spaes


Uw := L2
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i × Li ×H1
w × L2


w,(5.1)
Us := L2


v × L2
i × Li ×H2


w ×H1
w,onstrut, respetively, the phase spaes assoiated with the weak and strong solutions. Now, forevery t ∈ [0,∞), de�ne the mappings


Sw(t) : Uw → Uw, Sw(t)u0 := u(t),


Ss(t) : Us → Us, Ss(t)u0 := u(t).The existene and uniqueness of solutions given by Theorems 4.5 and 4.7 along with the time-ontinuity of solutions given by Propositions 4.6 and 4.8 imply that the above mappings are well-de�ned for all t ∈ [0,∞). Then, {
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t∈[0,∞)
and {
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form semigroups of operatorswhih give the weak and strong solutions of (3.1), respetively. The following propositions showthat these semigroups are ontinuous, whih also ensures that the initial-value problems of �ndingweak and strong solutions for (3.1) are well-posed.Proposition 5.1 (Continuity of the smigroup {Sw}) The semigroup {
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of weaksolution operators is ontinuous for all g ∈ L2(0,∞;L2


i ).27







Proof. Continiuity of the semigroup with respet to t follows immediately from the ontinuity ofthe weak solutions given in Proposition 4.6. It remains to prove ontinuous dependene of thesolution on the initial values. Let ũ0 and û0 be any two initial values in Uw that give the solutions
ũ(t) = Sw(t)ũ0 and û(t) = Sw(t)û0 for all t ∈ [0, T ], T > 0. Let u(t) := ũ(t) − û(t) be the weaksolution with the initial value u0 := ũ0 − û0. Now, onsider (3.3)�(3.5) satis�ed by ũ and û, andtake the inner produt of (3.3)�(3.5) in eah set with v, dti, and dtw, respetively. Subtrating theresulting two sets of equations yields
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L2
i


(5.3)
−e


(


ΥΓNJ7(f(ṽ) − f(v̂)),dti
)


L2
i


= 0,
(


d2
t w,dtw


)


L2
w


+ 2ν
(


Λdtw,dtw
)


L2
w
− 3


2ν2
(


∆w,dtw
)


L2
w


+ ν2
(


Λ2w,dtw
)


L2
w


(5.4)
−ν2


(


Λ2MJ8(f(ṽ) − f(v̂)),dtw
)


L2
w


= 0.As in the proof of uniqueness given in Theorem 4.5,
−


(


J2(ṽĩT − v̂îT)ΨJ4, v
)


L2
v
≤


√


2κĩ


∥


∥Ψ
∥


∥


2


∥


∥v
∥


∥


2


L2
v


+
∥


∥v
∥


∥


2


L2
v


+ 1
2κv̂


∥


∥Ψ
∥


∥


2


2


∥


∥i
∥


∥


2


L2
i


,(5.5)
−


(


J3(ṽĩT − v̂îT)ΨJ5, v
)


L2
v
≤


√


2κĩ


∥


∥Ψ
∥


∥


2


∥


∥v
∥


∥


2


L2
v


+
∥


∥v
∥


∥


2


L2
v


+ 1
2κv̂


∥


∥Ψ
∥


∥


2


2


∥


∥i
∥


∥


2


L2
i


,


e
(


ΥΓNJ7(f(ṽ) − f(v̂)),dti
)


L2
i
≤


∥


∥dti
∥


∥


2


L2
i


+ 1
32e2


∥


∥ΥΓNJ7


∥


∥


2


2
max


{


F2
E


σ2
E


,
F2


I


σ2
I


}


∥


∥v
∥


∥


2


L2
v
,


ν2
(


Λ2MJ8(f(ṽ) − f(v̂)),dtw
)


L2
w
≤ ν2


∥


∥dtw
∥


∥


2


L2
w


+ 1
32ν2 F2


E


σ2
E


tr(Λ4M2)
∥


∥v
∥


∥


2


L2
v
,


(


J1i, v
)


L2
v
≤


∥


∥v
∥


∥


2


L2
v


+ 1
2


∥


∥i
∥


∥


2


L2
i


,


e
(


ΥΓJ6w,dti
)


L2
i
≤


∥


∥dti
∥


∥


2


L2
i


+ 1
4e2


∥


∥ΥΓJ6


∥


∥


2


2


∥


∥w
∥


∥


2


L2
w
,where κv̂ and κĩ are in the form of (4.17) and (4.18). Now, substituting the above inequalitiesinto (5.2)�(5.4), adding the resulting inequalities together, and using Grönwall's inequality yield,for some α, β > 0,(5.6) ∥


∥u(t)
∥


∥


2


Uw
≤ βeαT


∥


∥u0


∥


∥


2


Uw
for all t ∈ [0, T ],whih ompletes the proof.Proposition 5.2 (Continuity of the smigroup {Ss}) The semigroup {


Ss(t)
}


t∈[0,∞)
of strongsolution operators is ontinuous for all g ∈ L2(0,∞;L2


i ).Proof. Continiuity of the semigroup with respet to t follows immediately from the time ontinuityof the strong solutions given by Proposition 4.8. To prove ontinuous dependene on the initialvalues, onsider any two initial values ũ0 and û0 in Us and onstrut the solutions ũ(t) = Ss(t)ũ0and û(t) = Ss(t)û0, t ∈ [0, T ], T > 0, for (3.3)�(3.5). Let u := ũ − û and A := −∆ + I, and takethe inner produt of (3.3)�(3.5) for eah solutions with v, dti, and Adtw, respetively. Subtrating28







the resulting two sets of equations gives (5.2), (5.3), and(5.7) 1
2dt


∥


∥dtw
∥


∥


2


H1
w


+ 2ν
∥


∥Λ
1
2 dtw


∥


∥


2


H1
w


+ 3
4ν2dt


∥


∥∂w
∥


∥


2


H1
∂w


+ 1
2ν2dt


∥


∥Λw
∥


∥


2


H1
w


= ν2
(


Λ2MJ8(f(ṽ) − f(v̂)),dtAw
)


L2
w
.Note that (5.6) also holds sine Us ⊂ Uw, and sine (5.2) and (5.3) remain unhanged, the ontinuityof v and i holds.Now, it follows from (5.7) by integrating over [0, t] that


∥


∥dtw
∥


∥


2


H1
w


+ ν2
[


3
2


∥


∥∂w
∥


∥


2


H1
∂w


+
∥


∥Λw
∥


∥


2


H1
w


]


≤
(


∥


∥dtw
∥


∥


2


H1
w


+ ν2
[


3
2


∥


∥∂w
∥


∥


2


H1
∂w


+
∥


∥Λw
∥


∥


2


H1
w


])
∣


∣


∣


t=0


+ 2ν2


∫ t


0


(


Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)


L2
w
ds,whih, using (2.1), an be written equivalently for some α1, β1 > 0 as(5.8) Q(w(t),dtw(t)) ≤ α1Q(w(0),dtw(0)) + β1


∫ t


0


(


Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)


L2
w
ds,where(5.9) Q(w(t),dtw(t)) :=


∥


∥dtw(t)
∥


∥


2


H1
w


+
∥


∥Aw(t)
∥


∥


2


L2
w
.Integrating by parts in the seond term of the right-hand side of the above inequality yields


β1


∫ t


0


(


Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)


L2
w
ds(5.10)


= β1


(


Λ2MJ8(f(ṽ) − f(v̂)), Aw
)


L2
w
− β1


(


Λ2MJ8(f(ṽ0) − f(v̂0)), Aw0


)


L2
w


− β1


∫ t


0


(


Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)


L2
w
ds.Next, realling that supvX(x,t)∈R |∂vX


fX(vX)| ≤ FX


2
√


2σX


by (4.37) and using Young's inequality weobtain
β1


(


Λ2MJ8(f(ṽ) − f(v̂)), Aw
)


L2
w
≤ 1


2


∥


∥Aw
∥


∥


2


L2
w


+
β2


1


16


F2
E


σ2
E


tr(Λ4M2)
∥


∥v
∥


∥


2


L2
v
,(5.11)


−β1


(


Λ2MJ8(f(ṽ0) − f(v̂0)), Aw0


)


L2
w
≤ 1


2


∥


∥Aw0


∥


∥


2


L2
w


+
β2


1


16


F2
E


σ2
E


tr(Λ4M2)
∥


∥v0


∥


∥


2


L2
v
.Moreover,


−β1


(


Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)


L2
w


= −β1


(


Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂), Aw
)


L2
w


≤ 1
2


∥


∥Aw
∥


∥


2


L2
w


+ 1
2β2


1


∥


∥Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂)
∥


∥


2


L2
w


= 1
2


∥


∥Aw
∥


∥


2


L2
w


+ 1
2β2


1 tr(Λ4M2)


∫


Ω
|∂ṽE


f(ṽE)dsṽE − ∂v̂E
f(v̂E)dsv̂E|2dx,29







where, noting that supvE(x,t)∈R |∂2
vE


fE(vE)| < 1
5


FE


σ2
E


by diret omputation of the derivative of (4.37),we an write
|∂ṽE


f(ṽE)dsṽE − ∂v̂E
f(v̂E)dsv̂E|2dx = |∂ṽE


f(ṽE)dsvE + (∂ṽE
f(ṽE) − ∂v̂E


f(v̂E))dsv̂E|2


≤ 2|∂ṽE
f(ṽE)|2|dsvE|2 + 2|∂ṽE


f(ṽE) − ∂v̂E
f(v̂E)|2|dsv̂E|2


≤ 1
4


F2
E


σ2
E


|dsvE|2 + 2


[


sup
vE(x,t)∈R


|∂2
vE


fE(vE)|
]2


|vE|2|dsv̂E|2


≤ 1
4


F2
E


σ2
E


|dsvE|2 + 2
25


F2
E


σ4
E


|vE|2|dsv̂E|2.Therefore, it follows that
−β1


(


Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)


L2
w
≤ 1


2


∥


∥Aw
∥


∥


2


L2
w


+
β2


1


8


F2
E


σ2
E


tr(Λ4M2)
∥


∥dsv
∥


∥


2


L2
v


(5.12)
+


β2
1


25


F2
E


σ4
E


tr(Λ4M2)
∥


∥dsv̂
∥


∥


2


C1([0,T ];L2
v)


∥


∥v
∥


∥


2


L2
v
.Furthermore, (3.3) implies that for some α2 > 0,(5.13) ∥


∥dsv(s)
∥


∥


2


L2
v
≤ α2


(


∥


∥v(s)
∥


∥


2


L2
v


+
∥


∥i(s)
∥


∥


2


L2
i


+
∥


∥v(s)
∥


∥


2


L2
v


∥


∥i(s)
∥


∥


2


L2
i


) for all s ∈ [0, T ].Now, substituting (5.11), (5.12) and (5.13) into (5.10) and using (5.6), it follows that there existsome β2, . . . , β6 > 0 suh that
β1


∫ t


0


(


Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)


L2
w
ds


≤ 1
2


∫ t


0


∥


∥Aw
∥


∥


2


L2
w
ds + β2


∫ t


0


(


∥


∥v
∥


∥


2


L2
v


+
∥


∥i
∥


∥


2


L2
i


+
∥


∥v
∥


∥


2


L2
v


∥


∥i
∥


∥


2


L2
i


)


ds


+ 1
2


∥


∥Aw
∥


∥


2


L2
w


+ β3


∥


∥v
∥


∥


2


L2
v


+ 1
2


∥


∥Aw0


∥


∥


2


L2
w


+ β4


∥


∥v0


∥


∥


2


L2
v
,


≤ 1
2


∫ t


0


∥


∥Aw
∥


∥


2


L2
w
ds + β5


∥


∥u0


∥


∥


2


Uw


(


1 +
∥


∥u0


∥


∥


2


Uw


)


t + 1
2


∥


∥Aw
∥


∥


2


L2
w


+ 1
2


∥


∥Aw0


∥


∥


2


L2
w


+ β6


∥


∥u0


∥


∥


2


Uw
.Substituting this inequality into (5.8) yields


1
2Q(w(t),dtw(t)) ≤ 1


2


∫ t


0
Q(w(s),dsw(s))ds + β5


∥


∥u0


∥


∥


2


Uw


(


1 +
∥


∥u0


∥


∥


2


Uw


)


t(5.14)
+ α1Q(w(0),dtw(0)) + 1


2


∥


∥Aw0


∥


∥


2


L2
w


+ β6


∥


∥u0


∥


∥


2


Uw
,where, using Grönwall's inequality for the funtion 1


2


∫ t


0 Q(w(s),dsw(s))ds, we an write
1
2


∫ t


0
Q(w(s),dsw(s))ds ≤ β5


∥


∥u0


∥


∥


2


Uw


(


1 +
∥


∥u0


∥


∥


2


Uw


)


(


et − (t + 1)
)


+
[


α1Q(w(0),dtw(0)) + 1
2


∥


∥Aw0


∥


∥


2


L2
w


+ β6


∥


∥u0


∥


∥


2


Uw


]


(


et − 1
)


.30







This inequality along with (5.14) and the de�nition of Q, given by (5.9), implies that for some
β7 > 0,


Q(w(t),dtw(t)) ≤ β7e
T


[


Q(w(0),dtw(0)) +
∥


∥u0


∥


∥


2


Uw


(


1 +
∥


∥u0


∥


∥


2


Uw


)] for all t ∈ [0, T ].Now, noting that Q(w(0),dtw(0)) =
∥


∥w′
0


∥


∥


2


H1
w


+
∥


∥Aw0


∥


∥


2


L2
w
, it follows from the above inequality and(5.6) that, for some α̂, β̂ > 0,


∥


∥u(t)
∥


∥


2


Us
≤ β̂eα̂T


∥


∥u0


∥


∥


2


Us


(


1 +
∥


∥u0


∥


∥


2


Uw


) for all t ∈ [0, T ],whih ompletes the proof.Although the spaes Uw and Us onstruted in (5.1) provide the theoretial phase spaes of theproblem for the solutions onstruted in Setion 4, the evolution of the dynamis of the model isnot biophysially plausible on entire spaes Uw and Us. As desribed in Setion 3, i(x, t) and w(x, t)(and also g(x, t)) are nonnegative quantities.In fat, one an onstrut initial funtions i′0 ∈ L2
i and


w′
0 ∈ L2


w suh that the solutions i(x, t) and w(x, t), despite starting from nonnegative initial values
i0 ∈ L2


i and w0 ∈ H1
w, take negative values over a subset X ∈ Ω of positive measure for a timeinterval of positive length. In the following propositions, we establish onditions under whih thedynamis of the model is guaranteed to evolve in biophysially plausible subsets of Uw and Us.Proposition 5.3 (Nonnegativity of the solution w(x, t)) Suppose that w ∈ L2(0, T ;H1


w) isthe w-omponent of an Ω-periodi weak solution u(t) = Sw(t)u0 of (3.3)�(3.6) and de�ne the set
Dw ⊂ H1


w × L2
w as(5.15) Dw :=
{


(w0, w
′
0) ∈ W1,∞ × L∞


w : w′
0 + νΛw0 ≥ 0 a.e. in Ω,and w0(y) + ∂yw0(y)(y − x) ≥ 0 for almost every x ∈ Ω, y ∈ B(x, t), t ∈ (0, T ]} .Then, for every initial values (w0, w


′
0) ∈ Dw, the solution w(x, t) remains nonnegative almost ev-erywhere in Ω for all t ∈ (0, T ].Proof. First, note that the weak and strong solutions oinide for v(t) and they satisfy (3.3) and(3.4) almost everywhere in Ω for all t ∈ [0, T ], T > 0; see the proof of Theorem 4.7. Substituting v(t)into f , we an interpret f(v) in (3.5) as a funtion f̂(x, t) := f(v(x, t)) for almost every x ∈ Ω andall t ∈ [0, T ]. Next, note that, by de�nitions (3.2) and (3.7), and Proposition 4.6, f̂ ∈ L∞(0, T ;L∞


v )and f̂ > 0 in Ω × [0, T ]. Now, replae f(v) in (3.5) by f̂ and sale x by the fator √


3
2ν to obtain


∂2
t w̃ + 2νΛ∂tw̃ − ∆w̃ + ν2Λ2w̃ − f̃ = 0, in Ω̃ × (0, T ],


w̃ = w̃0, ∂tw̃ = w̃′
0, on Ω̃ × {0},where Ω̃ :=


√


3
2νΩ, and w̃, w̃0, w̃′


0, and f̃ denote w, w0, w′
0, and ν2Λ2MJ8f̂ in the saled domain


Ω̃, respetively. Note that with the new interpretation of f , the above equation is a system of twodeoupled telegraph equations. Therefore, applying the same arguments to eah of the two equationsindependently, in what follows we assume without loss of generality that the above equation is salar.31







Using the hange of variable q := eνΛtw̃ the problem an be transformed to the initial-valueproblem of the standard wave equation given by
∂2


t q − ∆q = eνΛtf̃ , in R
2 × (0, T ],(5.16)


q = w̃0, ∂tq = w̃′
0 + νΛw̃0, on R


2 × {0}.Here, the extension from Ω̃ to R
2 is done periodially due to the Ω̃-periodiity of the funtions. Let


w̃0ε, w̃′
0ε, and f̃ε denote, respetively, w̃0, w̃′


0, and f̃ after molli�ation by the standard positivemolli�er φε ∈ C∞
c ; see [8, Se. 2.6℄. Using Poisson's formula for the homogeneous wave equation in


R
2, along with Duhamel's priniple for the nonhomogenous problem [15, Se. 2.4℄, it an be shownthat the funtion


qε(x, t) := 1
2−
∫


B(x,t)


t
[


w̃0ε(y) +
(


∂yw̃0ε(y), y − x
)


R2


]


+ t2
[


w̃′
0ε(y) + νΛw̃0ε(y)


]


[


t2 −
∥


∥y − x
∥


∥


2


R2


]
1
2


dy(5.17)
+ 1


2


∫ t


0
(t − s)2eνΛs−


∫


B(x,t−s)


f̃ε(y, s)
[


(t − s)2 −
∥


∥y − x
∥


∥


2


R2


]
1
2


dy dssolves the wave equation (5.16) lassially for the foring term eνΛtf̃ε and initial values w̃0ε and
w̃′


0ε.The seond term in this solution is nonnegative for all t ∈ [0, T ] sine f̃ , and onsequently, f̃εare nonnegative on B(x, t) for all x ∈ Ω and all t ∈ [0, T ]. Moreover, by [8, Theorem 2.6-1℄ and thede�nition of weak derivative we an write
(


∂yw̃0ε(y), y − x
)


R2 =
(


∫


B(y,ε)
∂yφε(y − z)w̃0(z)dz , y − x


)


R2


=
(


−
∫


B(y,ε)
∂zφε(y − z)w̃0(z)dz , y − x


)


R2


=
(


∫


B(y,ε)
φε(y − z)∂zw̃0(z)dz , y − x


)


R2


=


∫


B(y,ε)
φε(y − z)


(


∂zw̃0(z), z − x
)


R2dz


+


∫


B(y,ε)
φε(y − z)


(


∂zw̃0(z), y − z
)


R2dz,where, using Hölder's inequality and the property ∫


B(0,ε) φε(x)dx = 1, we have
∣


∣


∣


∣


∣


∫


B(y,ε)
φε(y − z)


(


∂zw̃0(z), y − z
)


R2dz


∣


∣


∣


∣


∣


≤
∥


∥∂xw̃0


∥


∥


L∞
∂w


∫


B(y,ε)
φε(y − z)


∥


∥y − z
∥


∥


1
dz


≤
√


2
∥


∥∂xw̃0


∥


∥


L∞
∂w


ε.
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Therefore, it follows that
−
∫


B(x,t)


t
[


w̃0ε(y) +
(


∂yw̃0ε(y), y − x
)


R2


]


[


t2 −
∥


∥y − x
∥


∥


2


R2


]
1
2


dy


≥ −
∫


B(x,t)
t








∫


B(y,ε) φε(y − z)
[


w̃0(z) +
(


∂zw̃0(z), z − x
)


R2


]


dz


[


t2 −
∥


∥y − x
∥


∥


2


R2


]
1
2


−
√


2
∥


∥∂xw0


∥


∥


L∞
∂w


ε


[


t2 −
∥


∥y − x
∥


∥


2


R2


]
1
2





 dy


≥ −
√


2
∥


∥∂xw̃0


∥


∥


L∞
∂w


ε for all (w̃0, w̃
′
0) ∈ D̃w,where D̃w denotes Dw in the saled domain Ω̃. Note that the last inequality holds sine the �rst termin the integration on the right-hand side is nonnegative by (5.15), and t


[


t2−
∥


∥y−x
∥


∥


2


R2


]− 1
2 takes theaverage value 1 over the ball B(x, t). Finally, note that w̃′


0ε(y) + νΛw̃0ε(y) in (5.17) is nonnegativeon B(x, t) when (w̃0, w̃
′
0) ∈ D̃w. Therefore, it follows that(5.18) qε(x, t) ≥ −


√
2
∥


∥∂xw̃0


∥


∥


L∞
∂w


ε for all (w̃0, w̃
′
0) ∈ D̃w.Now, taking the limits as ε → 0, it follows from [8, Theorem 2.6-3℄ that w̃0ε → w̃0, w̃′


0ε →
w̃′


0, and f̃ε → f̃ in L2(Ω̃t), where Ω̃t :=
{


y ∈ R
2 : y ∈ B(x, t), x ∈ Ω


}. Therefore, there exists asubsequene {


εn


}∞
n=1


, onvergent to 0, suh that w̃0εn → w̃0, w̃′
0εn


→ w̃′
0, and f̃εn → f̃ almosteverywhere on Ωt as n → ∞ [17, Th. 2.30℄. Moreover, sine (w̃0, w̃


′
0) ∈ W1,∞ × L∞


w in D̃w,
f̃ ∈ L∞(0, T ;L∞


v ), and the funtion [


t2 −
∥


∥y − x
∥


∥


2


R2


]− 1
2 is integrable over B(x, t), it follows thatthe integrands in (5.17) are uniformly bounded with respet to ε by integrable funtions over B(x, t).The Lebesgue dominated onvergene theorem then implies that q(x, t) := limn→∞ qεn(x, t) exists on


Ω̃t and, by uniqueness of the weak solution, is a weak solution of the wave equation (5.16). Now,letting ε = εn → 0 in (5.18), it follows that if (w̃0, w̃
′
0) ∈ D̃w, then q(x, t) ≥ 0 for almost every


x ∈ Ω̃ and all t ∈ (0, T ]. This ompletes the proof sine the hange of variable w̃ = e−νΛtq and spaeresaling Ω =
√


2
3ν−1Ω̃ do not hange the sign of solutions.Corollary 5.4 (Boundedness of the weak solutions) Suppose g ∈ L∞(0, T ;L∞


i ), v0 ∈ L∞
v ,


i0 ∈ L∞
i , i′0 ∈ L∞


i , w0 ∈ W1,∞, and w′
0 ∈ L∞


w . Then, in addition to the regularities given byProposition 4.6, the weak solution (v(t), i(t), w(t)) of (3.3)�(3.6) satis�es
v ∈ C1,1([0, T ];L∞


v ), i ∈ C0,1([0, T ];L∞
i ), w ∈ L∞(0, T ;L∞


w ).Proof. The boundedness of w follows immediately from the proof of Proposition 5.3, sine underthe assumption w0 ∈ W1,∞ and w′
0 ∈ L∞


w the integrands in (5.17) are integrable and eah omponentof the weak solution w(t) is ahieved almost everywhere in Ω as the limit of (5.17) when ε → 0,followed by the spae resaling from Ω̃ to Ω.Now, to prove boundedness of v, i, and dti let x0 ∈ Ω be any Lebesgue point of the initialfuntions v0, i0, i′0, w0, and g(0). Take the R
4-inner produt of (3.4) at x0 with dti(x0, t) for every


t ∈ (0, T ] to obtain
(


d2
t ix0


,dtix0


)


R4 + 2
(


Γdtix0
,dtix0


)


R4 +
(


Γ2ix0
,dtix0


)


R4


− e
(


ΥΓJ6wx0
,dtix0


)


R4 − e
(


ΥΓNJ7f(vx0
),dtix0


)


R4 = e
(


ΥΓgx0
,dtix0


)


R4 ,33







where vx0
(t) := v(x0, t), ix0


(t) := i(x0, t), wx0
(t) := w(x0, t), and gx0


(t) := g(x0, t). This equality issimilar to (4.21) in the proof of Proposition 4.4, with L2
i -inner produts being replaed by R


4-innerprodut, and the approximate solutions v(m), i(m), and w(m) being replaed by vx0
, ix0


, and wx0
,respetively. Therefore, similar arguments as in the proof of Proposition 4.4 imply that


sup
t∈[0,T ]


(


∥


∥dtix0
(t)


∥


∥


2


R4 +
∥


∥ix0
(t)


∥


∥


2


R4


)


≤ κi,(5.19)where, with κw :=
∥


∥w
∥


∥


2


L∞(0,T ;L∞
w )


and for some α1 > 0 independent of x0,
κi = α1


(


∥


∥i′0
∥


∥


2


L∞
i


+
∥


∥i0
∥


∥


2


L∞
i


+


[


e2κw


γmin


∥


∥ΥΓJ6


∥


∥


2


2
+


e2|Ω|
γmin


(F2
E + F2


I )
∥


∥ΥΓNJ7


∥


∥


2


2


]


T


+
e2


2γmin


∥


∥ΥΓ
∥


∥


2


2


∥


∥g
∥


∥


2


L∞(0,T ;L∞
i )


)


,and γmin is the smallest eigenvalue of Γ.Similarly, taking the R
2-inner produt of (3.3) at x0 with vx0


(t) and using the arguments follow-ing (4.23) in the proof of Proposition 4.4 yields
sup


t∈[0,T ]


(


∥


∥vx0
(t)


∥


∥


2


L2
v


)


≤ κv ,(5.20)where, for some α2, β > 0 independent of x0,
κv = α2 exp


(


β
√


2κi


∥


∥Ψ
∥


∥


2
T


)


(


∥


∥v0


∥


∥


2


L∞
v


+ κiT
)


.Now, note that almost every point x0 ∈ Ω is a Lebesgue point for the loally integrable initialfuntions, and the estimates κv and κi are independent of x0. Therefore, taking the supremum overall Lebesgue points x0 ∈ Ω in (5.19) and (5.20) implies v ∈ L∞(0, T ;L∞
v ) and i ∈ W 1,∞(0, T ;L∞


i )whih, realling (3.3), further imply v ∈ W 2,∞(0, T ;L∞
v ). Finally, it follows by using Morrey'sinequality [15, Th. 5.6-4 and Th. 5.6-5℄ that v ∈ C1,1([0, T ];L∞


v ) and i ∈ C0,1([0, T ];L∞
i ), whihompletes the proof.Next, we reall and use the following standard result in the theory of ordinary di�erntial equa-tions to establish onditions that guarantee nonnegativity of i(x, t) for all biophysially plausiblevalues of the input g, that is, for all g ∈ L2(0, T ;Dg), where(5.21) Dg :=


{


ℓ ∈ L2
i : ℓ ≥ 0 a.e. in Ω


}


.Proposition 5.5 (Invariane of the nonnegative one [7, Prop. I.1.1℄) Let {


S(t)
}


t∈[0,∞)
bethe semigroup of solution operators assoiated with the ordinary di�erential equation


dtq(t) = P (q(t)), q(t) ∈ R
n, t ∈ [0,∞),where P : R


n → R
n is a ontinuous loally Lipshitz mapping. Then the nonnegative one R


n
+ isinvariant for {


S(t)
}


t∈[0,∞)
if and only if P (q) is quasipositive, that is, for every j ∈ {1, . . . , n},


Pj(q1, . . . , qn) ≥ 0 whenevr qj = 0 and qk ≥ 0 for all k 6= j.34







Proposition 5.6 (Positively invariant region for the solution i(x, t)) Suppose g ∈ L2(0, T ;
Dg) and let u(t) = Sw(t)u0 be an Ω-periodi weak solution of (3.3)�(3.6). Suppose the w-omponentof the weak solution, w(x, t), is nonnegative for almost every x ∈ Ω and all t ∈ [0, T ], T > 0, andde�ne the set(5.22) Di :=


{


(ℓ, ℓ′) ∈ L2
i × L2


i : ℓ ≥ 0 and ℓ′ + Γℓ ≥ 0 a.e. in Ω
}


.Then, for every (i0, i
′
0) ∈ Di, we have (i(t),dti(t)) ∈ Di almost everywhere in Ω for all t ∈ [0, T ].An idential result holds for strong solutions u(t) = Ss(t)u0 of (3.3)�(3.6) with nonnegative w-omponent.Proof. Let b := dti + Γi and rewrite (3.4) as the �rst-order system of equations


dti = −Γi + b,(5.23)
dtb = −Γb + eΥΓJ6w + eΥΓNJ7f(v) + eΥΓg.Let x0 ∈ Ω be a Lebesgue point of the initial funtions v0, i0, i′0, w0, and g(0), and de�ne vx0


(t),
ix0


(t), wx0
(t), and gx0


(t) as given in the proof of Corollary 5.4. Aordingly, let bx0
(t) := b(x0, t) =


dtix0
(t) + Γix0


(t).Now, (5.23) implies that the funtion qx0
:= (ix0


, bx0
) satis�es the ordinary di�erential equation


dtqx0
(t) = P (qx0


(t)), t ∈ [0, T ], where the mapping P : R
8 → R


8 given by
P (qx0


) = P (ix0
, bx0


) := (−Γix0
+ bx0


,−Γbx0
+ eΥΓJ6wx0


+ eΥΓNJ7f(vx0
) + eΥΓgx0


)is Lipshitz ontinuous. Moreover, note that by assumption we have wx0
≥ 0 and gx0


≥ 0 whih,along with the de�nitions of f , Υ, Γ, N, J6, and J7 given by (3.2) and (3.7), implies eΥΓJ6wx0
(t) ≥


0, eΥΓNJ7f(vx0
(t)) ≥ 0 and eΥΓgx0


(t) ≥ 0 for all t ∈ [0, T ]. Therefore, it follows that P isquasipositive, and hene, by Proposition 5.5 we have qx0
(t) ≥ 0 for all t ∈ [0, T ]. This ompletes theproof sine x0 is an arbitrary Lebesgue point of the initial funtions and almost every points in Ω isa Lebesgue point for these funtions.Remark 5.7 (Biophysially plausible set of initial values) Propositions 5.3 and 5.6 ensurethat if g ∈ L2(0,∞;Dg), where Dg is given by (5.21), and the initial values lie in the set(5.24) DBio := L2


v ×Di ×Dw,where Dw and Di are given by (5.15) and (5.22), respetively, then i(x, t) and w(x, t) always remainnonnegative at almost every point in Ω as they evolve over the time. However, it should be notedthat this does not imply that the set DBio ⊂ Uw is positively invariant, sine Proposition 5.3 doesnot imply positive invariane of the set Dw. Therefore, DBio annot serve as a phase spae for thesemidynamial system framework of the problem.In the analysis of next setions, nonnegativity of the solution i(x, t) is essential. Moreover, itwould be of no pratial value if we analyze the dynamis of the model out of the biophysial regionsof the phase spae. Therefore, we de�ne
Dw := {u0 ∈ Uw : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Sw(t)u0} ,(5.25)
Ds := {u0 ∈ Us : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Ss(t)u0} ,35







as the maximal losed subsets of Uw and Us for the initial values of the weak and strong solutions,respetively, suh that i and w initiated from the points in these sets evolve nonnegatively overtime. Note that Dw and Ds are nonempty sine DBio ⊂ Dw and DBio ∩ Us ⊂ Ds when g ∈
L2(0,∞,Dg). Moreover, Dw and Ds are losed sets sine {


Sw(t)
}


t∈[0,∞)
and {


Ss(t)
}


t∈[0,∞)
areontinuous semigroups, as given by Propositions 5.1 and 5.2. Moreover, it follows immediately fromthe de�nitions given by (5.25) that Dw and Ds are positively invariant sets. Therefore, endowedwith the metri indued by the norm in Uw and Us, the sets Dw and Ds form positively invariantomplete metri spaes and an be onsidered as biophysially plausible phase spaes of the model,based on whih, we onstrut the semidynamial systems


(


Dw,
{


Sw(t)
}


t∈[0,∞)


)


,
(


Ds,
{


Ss(t)
}


t∈[0,∞)


)


,assoiated with the weak and strong solutions of (3.3)�(3.6), respetively, and investigate theirglobal dynamis in the remainder of the paper.6. Existene of Absorbing SetsIn this setion, we prove the existene of absorbing sets for the semigroups {


Sw(t)
}


t∈[0,∞)
and


{


Ss(t)
}


t∈[0,∞)
ating on Dw and Ds, respetively. First reall the following de�nition of an absorbingset for an operator semigroup.De�nition 6.1 (Absorbing set [7, Def. II.2.3℄) A set B0 in a omplete metri spae D isalled an absorbing set for the semigroup {


S(t) : D → D
}


t∈[0,∞)
if for every bounded set B ∈ Dthere exists t0(B) ∈ (0,∞) suh that S(t)B ⊂ B0 for all t ≥ t0(B).Theorem 6.2 (Existene of absorbing sets in Uw) Assume that g ∈ L∞(0,∞;Dg) and thereexists θ > 2γ−3


min suh thati) 4
3θe2Υ2


EEγmax(νΛEE)−3 < 1,ii) 4
3θe2Υ2


EIγmax(νΛEI)
−3 < 1,where γmin := min{γEE, γEI, γIE, γII} and γmax := max{γEE, γEI, γIE, γII} are the smallest and largesteigenvalues of Γ, respetively. Then the semigroup {


Sw(t) : Dw → Dw


}


t∈[0,∞)
assoiated with theweak solutions of (3.3)�(3.6) has a bounded absorbing set Bw. Spei�ally, onsider the funtions


Q−
w : Dw → [0,∞) and Q+


w : Dw → [0,∞) de�ned by
Q−


w(u) :=
∥


∥Φ
1
2 v


∥


∥


2


L2
v


+ θ
∥


∥dti + 3
2Γi


∥


∥


2


L2
i


+ 1
4θ


∥


∥Γi
∥


∥


2


L2
i


+
∥


∥dtw + 3
2νΛw


∥


∥


2


L2
w


(6.1)
+ 1


4ν2 min{6,Λ2
min}


∥


∥w
∥


∥


2


H1
w
,


Q+
w(u) :=


∥


∥Φ
1
2 v


∥


∥


2


L2
v


+ θ
∥


∥dti + 3
2Γi


∥


∥


2


L2
i


+ 1
4θ


∥


∥Γi
∥


∥


2


L2
i


+
∥


∥dtw + 3
2νΛw


∥


∥


2


L2
w


+ 1
4ν2 max{6,Λ2


max}
∥


∥w
∥


∥


2


H1
w
,and a salar ε suh that(6.2) max


{


4
3θe2Υ2


EEγmax(νΛEE)−3, 4
3θe2Υ2


EIγmax(νΛEI)
−3


}


< 2γmaxε < 1.36







Let τmax := max{τE, τI} denote the largest eigenvalue of Φ, and Λmin := min{ΛEE,ΛEI} and Λmax :=
max{ΛEE,ΛEI} denote the smallest and largest eigenvalues of Λ, respetively. Let ρ2


w := βw


αw
, where


αw := min
{


2
3τ−1


max,
(


1
2γ−1


max − ε
)


γ2
min, 3θ


−1
(


θγmin − 2γ−2
min


)


, 1
2νΛmin,(6.3)


3νΛ−2
max min{Λ3


EE − 2
3


e2


ν3ε
Υ2


EE,Λ3
EI − 2


3
e2


ν3ε
Υ2


EI}
}


,


βw :=
4θe2


γ−1
max − 2ε


[


|Ω|(F2
E + F2


I )
∥


∥ΥNJ7


∥


∥


2


2
+


∥


∥Υ
∥


∥


2


2


∥


∥g
∥


∥


2


L∞(0,∞;L2
i )


]


+ 2ν3|Ω|F2
E tr(Λ3M2).(6.4)Then, for all ρ > ρw, the bounded sets Bw :=


{


u ∈ Dw : Q−
w(u) ≤ ρ2


} are absorbing in Uw. More-over, for every bounded set B ⊂ Dw there exists R > 0 suh that Q+
w(u0) ≤ R2 for all u0 ∈ B, and


S(t)B ⊂ Bw for all t ≥ tw(B), where(6.5) tw(B) = tw(R) := max


{


0,
1


αw
log


R2


ρ2 − ρ2
w


}


.Proof. First, taking the inner produt of (3.3) with v yields
1
2dt


∥


∥Φ
1
2 v


∥


∥


2


L2
v


+
∥


∥v
∥


∥


2


L2
v
−


(


J1i, v
)


L2
v


+


∫


Ω


(


v2
1i


TΨJ4 + v2
2i


TΨJ5


)


dx = 0.The integral term in this equation is nonnegative in Dw for all t ∈ [0,∞); see (3.7) and (5.25).Therefore, dropping the integral term and using Young's inequality yields, for every ε1 > 0,
dt


∥


∥Φ
1
2 v


∥


∥


2


L2
v
≤ −2(1 − ε1)


∥


∥v
∥


∥


2


L2
v


+
1


ε1


∥


∥i
∥


∥


2


L2
i


(6.6)
≤ −2(1 − ε1)τ


−1
max


∥


∥Φ
1
2 v


∥


∥


2


L2
v


+
1


ε1γ
2
min


∥


∥Γi
∥


∥


2


L2
i


.Next, let b := dti + 3
2Γi and rewrite (3.4) as
dtb + 1


2Γb + 1
4Γ2i − eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg.Taking the inner produt of the above equality with b yields


1
2dt


∥


∥b
∥


∥


2


L2
i


+ 1
2


(


Γb, b
)


L2
i
+ 1


8dt


∥


∥Γi
∥


∥


2


L2
i


+ 3
8


∥


∥Γ
3
2 i


∥


∥


2


L2
i


− e
(


ΥΓJ6w, b
)


L2
i
− e


(


ΥΓNJ7f(v), b
)


L2
i


= e
(


ΥΓg, b
)


L2
i
.Note that


(


Γb, b
)


L2
i
≥ γ−1


max


∥


∥Γb
∥


∥


2


L2
i


,


∥


∥Γ
3
2 i


∥


∥


2


L2
i


≥ γmin


∥


∥Γi
∥


∥


2


L2
i


,and, using similar arguments as in the proof of Proposition 4.4, it follows that for every ε2, ε3, ε4 > 0,
e
(


ΥΓJ6w, b
)


L2
i
≤ ε2


∥


∥Γb
∥


∥


2


L2
i


+
e2


4ε2


∥


∥ΥJ6w
∥


∥


2


L2
i


e
(


ΥΓNJ7f(v), b
)


L2
i
≤ ε3


∥


∥Γb
∥


∥


2


L2
i


+
e2|Ω|
4ε3


(F2
E + F2


I )
∥


∥ΥNJ7


∥


∥


2


2
,


e
(


ΥΓg, b
)


L2
i
≤ ε4


∥


∥Γb
∥


∥


2


L2
i


+
e2


4ε4


∥


∥Υ
∥


∥


2


2


∥


∥g
∥


∥


2


L2
i


.37







Therefore,(6.7) dt


[


∥


∥b
∥


∥


2


L2
i


+ 1
4


∥


∥Γi
∥


∥


2


L2
i


]


≤ −
(


γ−1
max − 2(ε2 + ε3 + ε4)


)
∥


∥Γb
∥


∥


2


L2
i


− 3
4γmin


∥


∥Γi
∥


∥


2


L2
i


+
e2


2ε2


∥


∥ΥJ6w
∥


∥


2


L2
i


+
e2


2ε3
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I )


∥


∥ΥNJ7


∥


∥


2


2
+


e2


2ε4


∥


∥Υ
∥


∥


2


2


∥


∥g
∥


∥


2


L2
i


.Next, let q := dtw + 3
2νΛw and rewrite (3.5) as(6.8) dtq + 1


2νΛq − 3
2ν2∆w + 1


4ν2Λ2w − ν2Λ2MJ8f(v) = 0.Taking the inner produt of this equality with q yields
1
2dt


∥


∥q
∥


∥


2


L2
w


+ 1
2ν


∥


∥Λ
1
2 q


∥


∥


2


L2
w


+ 3
4ν2dt


∥


∥∂w
∥


∥


2


L2
∂w


+ 9
4ν3


∥


∥Λ
1
2 ∂w


∥


∥


2


L2
∂w


+ 1
8ν2dt


∥


∥Λw
∥


∥


2


L2
w


+ 3
8ν3


∥


∥Λ
3
2 w


∥


∥


2


L2
w
− ν2


(


Λ2MJ8f(v), q
)


L2
w


= 0.Using similar arguments as in the proof of Proposition 4.4 we an write, for every ε5 > 0,
(


Λ2MJ8f(v(m)), q
)


L2
w
≤ ε5


∥


∥Λ
1
2 q


∥


∥


2


L2
w


+
1


4ε5
|Ω|F2


E tr(Λ3M2),and hene, it follows that
dt


[


∥
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∥


∥


2
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w


+ 3
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∥


∥∂w
∥


∥


2
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∂w


+ 1
4ν2


∥
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∥


∥


2


L2
w


](6.9)
≤ −ν(1 − 2νε5)


∥
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1
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w
− 3ν
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3
2ν2


∥


∥Λ
1
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2
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+ 1
4ν2


∥


∥Λ
3
2 w


∥


∥


2


L2
w


)


+
ν2


2ε5
|Ω|F2


E tr(Λ3M2).Now, set ε1 = 2
3 in (6.6), set ε3 = ε4 = 1


8(γ−1
max − 2ε) in (6.7) with ε := ε2, and set ε5 = 1


4ν
in(6.9). Then, multiplying (6.7) by θ > 0 and adding the result to (6.6) and (6.9) yields


dtQw ≤ −2
3τ−1


max


∥
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1
2 v


∥


∥


2


L2
v
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(


1
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max − ε
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∥


2


L2
i
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(


θγmin − 2γ−2
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)
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∥


∥
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)


+ βw,where βw is given by (6.4) and(6.10) Qw(u) =
∥


∥Φ
1
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∥


∥
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L2
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+ θ
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∥
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.Note that for θ > 2γ−3


min we have θγmin−2γ−2
min > 0 and for range of values of ε given by (6.2) we have


1
2γ−1


max−ε > 0. Moreover, Assumptions (i) and (ii) along with (6.2) ensure that Λ3− 2
3


θe2


ν3ε
JT


6 Υ2J6 >


0. Therefore, with the deay rate αw given by (6.3),(6.11) dtQw(u) ≤ −αwQw(u) + βw,and hene, using Grönwall's inequality [48, Se. III.1.1.3.℄,(6.12) Q−
w(u(t)) ≤ Q+


w(u(0))e−αw t + ρ2
0


(


1 − e−αwt
)
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where Q−
w and Q+


w are given in (6.1) and lim supt→∞ Q−
w(u(t)) ≤ ρ2


0 := βw


αw
. Now, sine the mapping(6.13) (v, i, i′, w,w′) 7→ (Φ


1
2 v, 1


2θ
1
2 Γi, θ


1
2 [i′ + 3


2Γi], 1
2ν[max{6,Λ2


max}]
1
2 w,w′ + 3


2νΛw)is a linear isomorphism over Uw, for every bounded set B ⊂ Dw there exists R > 0 suh that
Q+


w(u0) ≤ R2 for all u0 ∈ B. Hene, it is immediate from (6.12) that Sw(t)B ⊂ Bw for all
t ≥ tw(B), where tw(B) is given by (6.5).Theorem 6.3 (Existene of absorbing sets in Ds) Suppose the assumptions of Theorem 6.2hold, namely, assume g ∈ L∞(0,∞;Dg) and there exists θ > 2γ−3


min suh that the biophysial param-eters of the model satisfyi) 4
3θe2Υ2


EEγmax(νΛEE)−3 < 1,ii) 4
3θe2Υ2


EIγmax(νΛEI)
−3 < 1,where γmin and γmax are the smallest and largest eigenvalues of Γ, respetively. Then the semigroup


{


Ss(t) : Ds → Ds


}


t∈[0,∞)
assoiated with the strong solutions of (3.3)�(3.6) has a bounded absorbingset Bs. Spei�ally, onsider the funtion Q−


s : Ds → [0,∞) de�ned by(6.14) Q−
s (u) :=


∥
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1
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∥
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∥
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,and denote by Λmin and Λmax the smallest and largest eigenvalues of Λ, respetively, and by τmaxthe largest eigenvalue of Φ. Let ρ2


s := 2βs


αs
with
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,where η is a positive onstant, ρ2
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is the same onstant given in Theorem 6.2, the salar εtakes values within the same range given by (6.2), and(6.17) ε1 := 1
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min}.Then, for all ρ > ρs, the bounded sets Bs :=
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s (u) ≤ ρ2


} are absorbing in Ds.Proof. Let A := −∆ + I and take the inner produt of (6.8) with Aq to obtain
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This equality, along with the inequalities (6.6) and (6.7) derived in the proof of Theorem 6.2 andthe same values of ε1, . . . , ε4 therein, implies that
dtQs ≤ −2
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,and ε takes values within the range given by (6.2). Now, using similar arguments as in the proof ofTheorem 6.2, it follows from Assumptions (i) and (ii) with θ > 2γ−3
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where, for some α > 0,
κ0(B) := α
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.Next, using Grönwall's inequality for the funtion ∫ t
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s (u)eαssds in (6.21) gives
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,whih, along with (6.21) implies(6.22) Q−
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,where lim supt→∞ Q−
s (u(t)) ≤ ρ2


s := 2βs


αs
.Finally, onsidering the linear isomorphism (6.13) over Us, it follows that for every bounded set


B ⊂ Ds there exists R > 0 suh that κ(B) ≤ R2 for all u0 ∈ B. Therefore, (6.22) implies that
Ss(t)B ⊂ Bs for all t ≥ ts(B) and some ts(B) > 0, whih ompletes the proof.Note that an estimate similar to (6.5) given in Theorem 6.2 an be also obtained for ts(B) inthe proof of Theorem 6.3. However, this would be of limited pratial value sine the bound (6.20)is very onservative for times t ≪ tw(B).Remark 6.4 (Conditions on parameter sets) For the range of values given in Table 1, themaximum value that the left-hand side of the inequalities in Assumptions (i) and (ii) of Theorems6.2 and 6.3 may take is 39.4083 θ, whih is ahieved when ΥEE = 2, ΥEI = 2, ΛEE = 0.1, ΛEI = 0.1,
ν = 100, and γmax = 1000. Assumptions (i) and (ii) then require that θ < 1


39.4083 = 0.0254.Moreover, Theorems 6.2 and 6.3 allow for θ > 2γ−3
min ≥ 0.002, in aordane with Table 1. Thisimplies that�for the entire range of values that the biophysial parameters of the model may take�the onditions imposed by Theorems 6.2 and 6.3 are satis�ed at least for any 0.002 < θ < 0.0254,and the model (3.1) possesses bounded absorbing sets as given by these theorems.
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7. Existene and Nonexistene of a Global AttratorIn this setion, we investigate the problem of existene of a global attrator for the semigroups
{


Sw(t) : Dw → Dw


}


t∈[0,∞)
and {


Ss(t) : Ds → Ds


}


t∈[0,∞)
of solution operators of (3.3)�(3.6). First,we reall the de�nition of a global attrator and a widely used theorem for establishing the existeneof a global attrator.De�nition 7.1 (Attrating set [7, Def. II.2.4℄) A set P in a omplete metri spae D isalled an attrating set for a semigroup {


S(t)
}


t∈[0,∞)
ating in D if for every bounded set B ∈ D,


distD(S(t)B,P) → 0 as t → ∞. Here, distD(G ,H ) := supg∈G infh∈H


∥


∥g − h
∥


∥


D is the Hausdor�distane between the two sets G ,H ⊂ D.De�nition 7.2 (Global attrator [7, Def. II.3.1℄) A bounded set A in a omplete metri spae
D is alled a global attrator for a semigroup {


S(t)
}


t∈[0,∞)
ating in D if it satis�es the followingonditions:i) A is ompat in D.ii) A is an attrating set for {


S(t)
}


t∈[0,∞)
.iii) A is stritly invariant with respet to {


S(t)
}


t∈[0,∞)
, that is, S(t)A = A for all t ∈ [0,∞).De�nition 7.3 (Asymptoti ompatness [7, Def. II.2.5℄) The semigroup {


S(t)
}


t∈[0,∞)
at-ing in a omplete metri spae D is alled asymptotially ompat if it possesses a ompat attratingset K ⋐ D.Theorem 7.4 (Global Attrator [7, Th. II.3.1℄) Let {


S(t)
}


t∈[0,∞)
be an asymptotially om-pat ontinuous semigroup in a omplete metri spae D possessing a ompat attrating set K ⋐ D.Then {


S(t)
}


t∈[0,∞)
has a global attrator A ⊂ K given by A = ω(K ), where ω(K ) is the ω-limitset of K .7.1 Challenges in Establishing a Global AttratorContinuity of {Sw(t)
}


t∈[0,∞)
and {


Ss(t)
}


t∈[0,∞)
, as required by Theorem 7.4, is established in Propo-sitions 5.1 and 5.2, respetively. To prove asymptoti ompatness of a semigroup {


S(t)
}


t∈[0,∞)ating in D a general approah is to show �rst, that the semigroup possesses a bounded absorbingset and seond, that the semigroup is κ-ontrating, meaning that limt→∞ κ(S(t)B) = 0 for anybounded set B ∈ D, where κ denotes the Kuratowski measure of ompatness [35,53℄. An e�etiveway to establish the later property is through a deomposition S(t) = S1(t) + S2(t) suh that forevery bounded set B ∈ D the omponent S1(t)B onverges uniformly to 0 as t → 0, and theomponent S2(t)B is κ-ontrative or is preompat in D for large t [44, 48℄.As the �rst step towards proving the asymptoti ompatness property stated above, existene ofbounded absorbing sets for {


Sw(t)
}


t∈[0,∞)
and {


Ss(t)
}


t∈[0,∞)
is established in Theorems 6.2 and 6.3,respetively. However, it turns out that the κ-ontrating property is hard to ahieve for the model(3.3)�(3.5) with parameter values in the range given in Table 1, due to the lak of spae-dissipativeterms in the ordinary di�erential equations (3.3) and (3.4), the nature of nonlinear ouplings in(3.3) and (3.4), and the range of values of the biophysial parameters of the model.42







The uniform ompatness of the omponent S2(t) in the deomposition approah stated above isusually veri�ed by establishing energy estimates in more regular funtion spaes and then deduingompatness from ompat embedding theorems. This approah, although suessfully used in [36℄to prove existene of a global attrator for a oupled ODE-PDE reation-di�usion system, is not verypromising here. In [36℄, the ODE subsystem is linear and the energy estimates in a higher regularspae are ahieved by taking spae-derivatives of the ODE's and onstruting energy funtionalsfor the resulting equations. As seen in the proof of Theorem 6.2, the nonnegativity of i(x, t) is akey property that permits elimination of the sign-inde�nite quadrati term in the energy equationof (3.3), whih results in the energy variation inequality 6.6. This nonnegativity property, however,is not preserved in the derivative or any other variations of i(x, t), leaving some sign-inde�nitequadrati terms in the analysis. Moreover, it an be observed from the range of parameter valuesgiven in Table 1 that the sign-inde�nite nonlinear terms that would appear in the energy equations ofany variations of (3.3) and (3.4) have signi�antly larger oe�ients than the sign-de�nite dissipativeterms. This makes the analysis hallenging to balane the terms in the energy funtional to absorbthe nondissipative terms into dissipative ones. Finally, the nonlinear terms appearing in (3.3) and(3.4) do not satisfy the usual assumptions, e.g., as in [13℄, that enable shaping the energy funtionalto eliminate the nondissipative terms that would otherwise appear in the equations.Some other tehniques are available in the literature to avoid energy estimations in higher regularspaes. In [35℄, for instane, the notion of ω-limit ompatness is used to develope neessary andsu�ient onditions for existene of a global attrator. This is aomplished by deomposing thephase spae into two spaes, one of whih being �nite-dimensional, and then showing that for everybounded set B ⊂ D the anonial projetion of S(t)B onto the �nite-dimensional spae is bounded,and the anonial projetion on the omplement spae remains arbitrarily small for su�iently large
t ≥ t0, for some t0 = t0(B) > 0. These deomposition tehniques, however, rely on the spetraldeomposition of the spae-ating operators to onstrut the desired phase spae deomposition.Suh operators do not exist in the ODE subsystems (3.3) and (3.4) in our problem.7.2 Nonexistene of a Global AttratorAs disussed in Setion 7.1, establishing a global attrator for (3.3)�(3.5) is a hallenging problem.In fat, in this setion we show that there exit sets of parameter values, leading to physiologiallyreasonable behavior in the model, for whih the semigroups {


Sw(t)
}


t∈[0,∞)
and {


Ss(t)
}


t∈[0,∞)
donot possess a global attrator. We �rst use [13, Prop. 4.7℄ to prove the following theorem givingsu�ient onditions for nonompatness of the equilibrium sets of (3.3)�(3.5) in Uw and Us.Theorem 7.5 (Nonompatness of equilibrium sets) Suppose g is bounded and onstant intime, that is, g(x, t) = g(x) for all (x, t) ∈ Ω × [0,∞) and g ∈ L∞


i . Let ue := (ve, ie, 0, we, 0) bean equilibrium of (3.3)�(3.5) suh that ve ∈ L∞
v , ie ∈ L∞


i , and we ∈ H2
w. De�ne the mapping


P = (Pv , Pi) : L∞
v × L∞


i → L∞
v × L∞


i as
Pv(v, i) := v − J1i + J2viTΨJ4 + J3viTΨJ5,(7.1)
Pi(v, i) := (eΥ)−1Γi − NJ7f(v) − g,and let A := −3


2∆ + Λ2I. Assume that the following onditions hold:i) ΛEE and ΛEI take the same values, that is, Λ = ΛEEI2×2 = ΛEII2×2.43







ii) There exists (v0, i0) ∈ L∞
v × L∞


i suh that
ess inf


x∈Ω


∥


∥(ve(x), ie(x)) − (v0(x), i0(x))
∥


∥


∞ > 0and(7.2) Pv(v0, i0) = 0, Pi(v0, i0) = Pi(ve, ie).iii) ∂(v,i)P (ve, ie) and ∂(v,i)P (v0, i0) are nonsingular almost everywhere in Ω.iv) There exists α > 0 suh that, for every b = (bv, bi) ∈ L∞
v × L∞


i , the system of equations
∂(v,i)Pv(ve, ie)φ = bv,(7.3)


∂(v,i)Pi(ve, ie)φ − J6A
−1Λ2MJ8∂vf(ve)φv = bi,has a unique solution φ = (φv, φi) ∈ L∞


v × L∞
i that satis�es(7.4) ∥


∥φ
∥


∥


L∞
v ×L∞


i


≤ α
∥


∥b
∥


∥


L∞
v ×L∞


i


.Then, for a measurable partition Ω = Ωe ∪ Ω0 and(7.5) v̄ := veχΩe
+ v0χΩ0


, ī := ieχΩe
+ i0χΩ0


,the following assertions hold:I) For every ε > 0 there exists δ > 0 and an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) of (3.3)�(3.5)suh that
∥


∥(v∗, i∗) − (v̄, ī)
∥


∥


L∞
v ×L∞


i


≤ ε, whenever |Ω0| ≤ δ.II) The equilibrium sets of (3.3)�(3.5) are nonompat in Us and Uw.Proof. First, we show that the system of equations
∂(v,i)Pv(v̄, ī)φ = bv,(7.6)


∂(v,i)Pi(v̄, ī)φ − J6A
−1Λ2MJ8∂vf(v̄)φv = bi,has a unique solution φ ∈ L∞


v × L∞
i for every b = (bv, bi) ∈ L∞


v × L∞
i .Let φ(0) = (φ


(0)
v , φ


(0)
i ) be the solution of (7.3) for a given b ∈ L∞


v × L∞
i and onstrut anapproximate solution for (7.6) of the form φ(1) := φ(0) + φ


(1)
r , where φ


(1)
r = (φ


(1)
rv , φ


(1)
ri ) is the uniquesolution of


∂(v,i)P (v0, i0)φ
(1)
r =


(


∂(v,i)P (ve, ie) − ∂(v,i)P (v0, i0)
)


φ(0)χΩ0
.(7.7)Note that by Assumption (iii) the unique solution φ


(1)
r exists and belongs to L∞


v ×L∞
i . The approx-imate solution φ(1) solves


∂(v,i)Pv(v̄, ī)φ(1) = bv,


∂(v,i)Pi(v̄, ī)φ(1) − J6A
−1Λ2MJ8∂vf(v̄)φ(1)


v = bi + b(1)
ri


,44







where b
(1)
r = (0, b


(1)
ri ), with(7.8) b(1)
ri


:= J6A
−1Λ2MJ8


[


(∂vf(ve) − ∂vf(v0)) φ(0)
v − ∂vf(v0)φ


(1)
rv


]


χΩ0
,is the remainder resulting from the approximation error in φ(1).Now, note that by Assumption (iv) there exist α0 := α > 0 suh that(7.9) ∥


∥φ(0)
∥


∥


L∞
v ×L∞


i


≤ α0


∥


∥b
∥


∥


L∞
v ×L∞


i


.Moreover, sine by Assumption (ii) we have (v0, i0) ∈ L∞
v ×L∞


i , it is immediate from the de�nitionof Pv and Pi, given by (7.1), that ∂(v,i)P (v0, i0) is bounded. This, along with Assumption (iii) and(7.9), implies that the solution φ
(1)
r of (7.7) satis�es(7.10) ∥


∥φ(1)
r


∥


∥


L∞
v ×L∞


i


≤ ζ1


∥


∥φ(0)
∥


∥


L∞
v ×L∞


i


≤ α1


∥


∥b
∥


∥


L∞
v ×L∞


ifor some ζ1, α1 > 0.Next, note that sine A−1 : L2
w → H2


w is a bounded operator and f is smooth, the de�nition of
b
(1)
r , given by (7.8), implies that b


(1)
r ∈ H2


w. Moreover, it further implies by the Sobolev embeddingtheorems that b
(1)
r ∈ C


0,λ
per(Ω, R2) for all λ ∈ (0, 1) and, in partiular, there exist ζ2, . . . , ζ5, β1 > 0suh that


∥


∥b(1)
r


∥


∥


L∞
w


≤ ζ2


∥


∥b(1)
r


∥


∥


H2
w
≤ ζ3


(


∥


∥φ(0)
v


∥


∥


L2
v


+
∥


∥φ(1)
rv


∥


∥


L2
v


)


≤ ζ4


∥


∥φ(0)
∥


∥


L2
v×L2


i


≤ ζ5|Ω0|
1
2


∥


∥φ(0)
∥


∥


L∞
v ×L∞


i


≤ β1|Ω0|
1
2


∥


∥b
∥


∥


L∞
v ×L∞


i


.Now, for m = 2, 3, . . . , let φ(m) := φ(m−1) + φ
(m)
r , where φ


(m)
r is the unique solution of


∂(v,i)P (v0, i0)φ
(m)
r = b(m−1)


r χΩ0
.It follows immediately that, for some η > 0,(7.11) ∥


∥φ(m)
r


∥


∥


L∞
v ×L∞


i


≤ η
∥


∥b(m−1)
r


∥


∥


L∞
v ×L∞


i


, m = 2, 3, . . . .Moreover, φ
(m)
r solves the system of equations


∂(v,i)Pv(v̄, ī)φ(m) = bv,


∂(v,i)Pi(v̄, ī)φ(m) − J6A
−1Λ2MJ8∂vf(v̄)φ(m)


v = bi + b(m)
ri


,where
b(m)
ri


:= J6A
−1Λ2MJ8∂vf(v0)φ


(m)
rv


χΩ0
, m = 2, 3, . . . .The remainder b


(m)
r = (0, b


(m)
ri ) satis�es, for some ζ6, ζ7, ζ8, β > 0,


∥


∥b(m)
r


∥


∥


L∞
w


≤ ζ6


∥


∥b(m)
r


∥


∥


H2
w
≤ ζ7


∥


∥φ(m)
r


∥


∥


L2
v×L2


i


≤ ζ8|Ω0|
1
2


∥


∥φ(m)
r


∥


∥


L∞
v ×L∞


i


≤ β|Ω0|
1
2


∥


∥b(m−1)
r


∥


∥


L∞
v ×L∞


i


, m = 2, 3, . . . ,45







whih, letting κ := β|Ω0|
1
2 , implies


∥


∥b(m)
r


∥


∥


L∞
w


≤ β1|Ω0|
1
2 κ(m−1)


∥


∥b
∥


∥


L∞
v ×L∞


i


m = 2, 3, . . . .Now, let |Ω0| < δ̄, δ̄ > 0, and hoose δ̄ suh that κ < 1. Note that β, and onsequently, thehoie of δ̄ and the value of κ do not depend on b and the spei� form of the partition Ω = Ωe∪Ω0.Therefore, it follows that ∥


∥b
(m)
r


∥


∥


L∞
v ×L∞


i


→ 0 as m → ∞, and hene, φ(m) onverges to a solution φfor (7.6) when |Ω0| < δ̄. Moreover, (7.9), (7.10), and (7.11) imply
∥


∥φ(m)
∥


∥


L∞
v ×L∞


i


≤
∥


∥φ(0)
∥


∥


L∞
v ×L∞


i


+
∥


∥φ(1)
r


∥


∥


L∞
v ×L∞


i


+


m
∑


l=2


∥


∥φ(l)
r


∥


∥


L∞
v ×L∞


i


≤
[


α0 + α1 + ηβ1|Ω0|
1
2


m
∑


l=2


κ(l−2)


]


∥


∥b
∥


∥


L∞
v ×L∞


i


,and hene, taking the limit as m → ∞, there exists ᾱ > 0 suh that(7.12) ∥


∥φ
∥


∥


L∞
v ×L∞


i


≤ ᾱ
∥


∥b
∥


∥


L∞
v ×L∞


i


.To prove the solution onstruted above for (7.6) is unique, �rst note that by Assumption (i) theoperator A beomes a salar operator given by A = (−3
2∆ + Λ2


EEI). Then, onsidering the strutureof the matrix parameters given by (3.7) and reinspeting the expanded form (3.1), the system ofequations (7.6) an be transformed to a system omposed of �ve algebrai equations and one partialdi�erential equation by pre-multiplying the seond equation in (7.6) by the elementary matrix









1 0


− MEI


MEE
1 02×2


02×2 I2×2









.This follows from the fat that the salar operator (−3


2∆+Λ2
EEI)−1 ats only on one of the unknowns,namely, φvE


. Now, sine ∂(v,i)P (v̄, ī) is nonsingular by Assumption (iii), φi and φvI
an be uniquelydetermined with respet to φvE


by elementary algebrai operations. Consequently, (7.6) is redued toa salar partial di�erential equation of the form
p(v̄, ī)φvE


− (−3
2∆ + Λ2


EEI)−1Λ2
EEMEE∂vE


f(v̄E)φvE
= ĥ,where ĥ ∈ L∞


per(Ω, R) is given by the same elementary operations on b and p(v̄, ī) is nonzero almosteverywhere in Ω, sine elementary operations do not disrupt the nonsingularity of ∂(v,i)P (v̄, ī).Next, dividing by p(v̄, ī), the above equation an be written as(7.13) (I − K)φvE
= h,where K := p(v̄, ī)−1Λ2


EEMEE∂vE
f(v̄E)(−3


2∆ + Λ2
EEI)−1 and h := p(v̄, ī)−1ĥ. The operator K :


L2
per(Ω, R) → L2


per(Ω, R) is linear, self-adjoint, and ompat by the Rellih-Kondrahov ompatembedding theorems [8, Th. 6.6-3℄. The existene of solutions of (7.6) proved above guaranteersthe existene of a solution φvE
∈ L∞


per(Ω, R) for every h ∈ L∞
per(Ω, R), whih implies, L∞


per(Ω, R) ⊂
Range(I − K). However, Range(I − K) = Kernel(I − K∗)⊥ = Kernel(I − K)⊥ by Fredholm46







alternative [15, Th. 5, Appx. D℄, and hene, L∞
per(Ω, R) ∩ Kernel(I − K) = {0}. This proves theuniqueness of bounded solutions of (7.13), and onsequently, the uniqueness of solutions of (7.6)for every b = (bv, bi) ∈ L∞


v × L∞
i .Now, to prove Assertion (I) note that sine ue := (ve, ie, 0, we, 0) is an equilibrium of (3.3)�(3.5),we have(7.14) Pv(ve, ie) = 0, Pi(ve, ie) = J6we, we = A−1Λ2MJ8f(ve).We seek an equilibrium point u∗ := (v∗, i∗, 0, w∗, 0) suh that


v∗ = v̄ + φv, i∗ = ī + φi,where φ := (φv , φi) ∈ L∞
v ×L∞


i is a small orretor funtion that satis�es(7.15) Pv(v
∗, i∗) = 0, Pi(v


∗, i∗) = J6w
∗, w∗ = A−1Λ2MJ8f(v∗).Note that (7.2), (7.5), and (7.14) imply


Pv(v̄, ī) = 0, Pi(v̄, ī) = J6we, ve = v̄ − (v0 − ve)χΩ0
.Therefore, it follows from (7.14) and (7.15) that


Pv(v̄ + φv, ī + φi) − Pv(v̄, ī) = 0,(7.16)
Pi(v̄ + φv, ī + φi) − Pi(v̄, ī) = J6A


−1Λ2MJ8


(


f(v̄ + φv) − f(v̄ − (v0 − ve)χΩ0
)
)


,whih, by the impliit funtion theorem [8, Th. 7.13-1℄, has a unique solution φ ∈ L∞
v × L∞


i sine(7.6) has a unique solution in L∞
v × L∞


i for every b ∈ L∞
v × L∞


i , as proved above. Moreover, it isimmediate from the de�nition of the Fréhet derivative of the mappings Pi and Pv that the solutionof (7.16) is arbitrarily lose to the solution of (7.6) with
b := (0, J6A


−1Λ2MJ8∂vf(v̄)(v0 − ve))χΩ0
,provided it is su�iently small, whih is ensured for small |Ω0| sine ∥


∥b
∥


∥


L∞
v ×L∞


i


≤ β|Ω0|
1
2 for some


β > 0. Therefore, (7.12) implies that Assertion (I) holds for some δ = δ(ε) ≤ δ̄.Finally, to prove Assertion (II), let(7.17) ε := 1
3 ess inf


x∈Ω


∥


∥(ve(x), ie(x)) − (v0(x), i0(x))
∥


∥


∞ > 0in Assertion (I) and let δ = δ(ε) > 0 be the orresponding bound on the size of the partitions thatsatis�es the result of Assertion (I). Note that ε exists by Assumption (ii). Moreover, let M (Ω)denote the set of all measurable subsets of Ω and de�ne
Pδ(Ω) := {(Ωe,Ω0) ∈ M (Ω) × M (Ω) : Ωe = Ω \ Ω0, |Ω0| ≤ δ} .Let Θδ(Ω) ⊂ Pδ(Ω) suh that for every θ̃ = (Ω̃e, Ω̃0) ∈ Θδ(Ω) and θ̂ = (Ω̂e, Ω̂0) ∈ Θδ(Ω) wehave |Ω̃0 △ Ω̂0| > 1


2δ. Note that Θδ(Ω) is an unountable set that an be viewed as an index setenumerating all measurable partitions Ω = Ωe ∪ Ω0, |Ω0| ≤ δ, whih are distint in the sense ofmeasure by a fator of at least 1
2δ. 47







Now, it follows from Assertion (I) that, for every θ̃ 6= θ̂ ∈ Θδ(Ω), there exist equilibria u
θ̃


:=
(v


θ̃
, i


θ̃
, 0, w


θ̃
, 0) and u


θ̂
:= (v


θ̂
, i


θ̂
, 0, w


θ̂
, 0) suh that


ess sup
x∈(Ω̃e∩Ω̂0)


∥


∥(v
θ̂
(x), i


θ̂
(x)) − (v0(x), i0(x))


∥


∥


∞ ≤ ε,


ess sup
x∈(Ω̃0∩Ω̂e)


∥


∥(v
θ̂
(x), i


θ̂
(x)) − (ve(x), ie(x))


∥


∥


∞ ≤ ε,


ess sup
x∈(Ω̃e∩Ω̂0)


∥


∥(v
θ̃
(x), i


θ̃
(x)) − (ve(x), ie))


∥


∥


∞ ≤ ε,


ess sup
x∈(Ω̃0∩Ω̂e)


∥


∥(vθ̃(x), iθ̃(x)) − (v0(x), i0))
∥


∥


∞ ≤ ε.Therefore, noting that Ω̃0 △ Ω̂0 = (Ω̃0 ∩ Ω̂e) ∪ (Ω̃e ∩ Ω̂0) and realling the de�nition of ε given by(7.17),
ess sup


x∈(Ω̃0△Ω̂0)


∥


∥(vθ̃, iθ̃) − (v
θ̂
, i


θ̂
)
∥


∥


∞ ≥ ε,whih further implies
∥


∥(v
θ̃
, i


θ̃
) − (v


θ̂
, i


θ̂
)
∥


∥


L2
v×L2


i


≥ |Ω̃0 △ Ω̂0|
1
2 ess sup


x∈(Ω̃0△Ω̂0)


∥


∥(v
θ̃
, i


θ̃
) − (v


θ̂
, i


θ̂
)
∥


∥


∞ > (1
2δ)


1
2 ε.Sine θ̃ and θ̂ are arbitrary, it follows that the set E :=


{


uθ


}


θ∈Θδ(Ω)
omposed of the equilibria uθonstruted as above is an unountable disrete subset of the equilibrium sets of (3.3)�(3.5) in Usand Uw. This ompletes the proof.Remark 7.6 (Alternative assumptions for Theorem 7.5) Aording to the proof of Theorem7.5, some of the assumptions of this theorem an be relaxed or replaed by alternative assumptionsas follows:


• Assumption (i) is used to prove the uniqueness of solutions of (7.6). Without this assumption,the operator A is not a salar operator and (7.6) annot be redued to a salar partial di�eren-tial equation using elementary algebrai operations. The system of PDE's arising in this asewould not be self-adjoint, and hene, appliation of the Fredholm alternative would not im-mediately imply uniqueness of solutions. However, an alternative assumption to Assumption(i) an be made on the adjoint of the operator representing the system of PDE's suh that itstill ensures uniqueness of solutions of (7.6) dedued from the Fredholm alternative. We avoidthis unneessary ompliation sine the �ber deay sale onstants ΛEE and ΛEI are alwaysassumed to be equal in the pratial appliations of the model [5℄.
• In Assumption (ii), it is su�ient to have ess infx∈X


∥


∥(ve, ie) − (v0, i0)
∥


∥


∞ > 0, where Xis any measurable subset of Ω with positive measure. Correspondingly, it su�es that thenonsingularity in Assumption (iii) holds almost everywhere on an open subset Y ⊃ X of Ω.In this ase, the proof is modi�ed by restriting Pδ(Ω) to its subset onsisting of partitionswith Ω0 ⊂ X . The index set Θδ(Ω) remains unountable, and the nonompatness result ofthe theorem holds with no hange.
48







Table 2: A set of biophysially plausible parameter values for the model (3.1) for whih Theorem7.5 implies nonexistene of a global attrator [5, Table VI, Col. 2℄. The parameters ḡEE, ḡEI, ḡEI,and ḡII are, respetively, the mean values of the physiologially shaped random inputs gEE, gEI, gEI,and gII used in [5℄.Parameter τE τI VEE VEI VIE VII γEE γEIValue 11.787×10−3 138.25×10−3 61.264 51.703 −7.127 −12.679 816.04 261.29Parameter γIE γII ΥEE ΥEI ΥIE ΥII NEE NEIValue 219.09 40.575 0.92695 1.3012 0.19053 0.94921 3893.0 3326.8Parameter NIE NII ν ΛEE, ΛEI MEE MEI FE FIValue 839.39 682.41 101.78 0.96545 4013.5 1544.3 266.44 300.65Parameter µE µI σE σI ḡEE ḡEI ḡIE ḡIIValue 30.628 19.383 5.6536 3.3140 83.190 6407.5 0 0Remark 7.7 (Nonexistene of a Global Attrator) Suppose that the assumptions of Theorem7.5 hold for an input g and an equilibrium ue that further satisfy ie, we > 0 almost everywherein Ω and g ∈ Dg, where Dg is given by (5.21). Note that ue then belongs to Ds. Then, theequation Pi(ve, ie) = J6we in the equilibrium equations (7.14) implies that Pi(ve, ie) ≥ 0, and hene,
Pi(v0, i0) ≥ 0 in (7.2). Therefore, it follows from the de�nition of Pi given by (7.1) that everysolution i0 of (7.2) is positive almost everywhere in Ω. Then, by de�nition of (v̄, ī), given by (7.5),all equilibria u∗ onstruted by Assertion (I) of Theorem 7.5 satisfy i∗ > 0 almost everywhere in
Ω when δ is su�iently small. Also, the equilibrium equations we = A−1Λ2MJ8f(ve) and w∗ =
A−1Λ2MJ8f(v∗) imply that


∥


∥w∗ − we


∥


∥


L∞
w


≤ β1


∥


∥w∗ − we


∥


∥


H2
w
≤ β


∥


∥v∗ − ve


∥


∥


L∞
vfor some β > 0, and hene, w∗ > 0 almost everywhere in Ω, when δ is su�iently small. Therefore,Assertion (II) of Theorem 7.5 ensures existene of a biophysially plausible nonompat set of equi-libria E ⊂ Ds ⊂ Dw. This, in partiular, implies that in the ase where the assumptions of Theorem7.5 are satis�ed for some ue and g as given above, the semigroups {


Sw(t) : Dw → Dw


}


t∈[0,∞)
and


{


Ss(t) : Ds → Ds


}


t∈[0,∞)
are not asymptotially ompat, and hene, they do not posses a globalattrator.The assumptions of Theorem 7.5 are relatively straightforward to hek for the spae-homogeneousequilibria of (3.3)�(3.5). Consider the set of values given in Table 2 for the parameters of the model,whih are suggested in [5, Table VI, ol. 2℄ as a set of parameter values leading to physiologiallyreasonable behavior in the model. The parameters ḡEE, ḡEI, ḡEI, and ḡII are the mean values of thephysiologially shaped random signals used in [5℄ as the subortial inputs gEE, gEI, gEI, and gII,respetively. Here, we set g(t, x) = (ḡEE, ḡEI, ḡEI, ḡII) for all x and t, and hek the assumptions ofTheorem 7.5 for a spae-homogeneous equilibrium of (3.3)�(3.5).Assumption (i) holds with ΛEE = ΛEE = 0.96545, as given in Table 2. Solving the equations


Pv(ve, ie) = 0, Pi(ve, ie) = J6we and we = MJ8f(ve), a spae-homogeneous equilibrium is alulatedas
ve = (1.9629, 6.5150), ie = (5.2552, 100.2372, 2.4493, 53.5665), we = (821.7136, 316.1760).49







Note that the numbers given here should atually be regarded as onstant funtions over Ω. As-sumption (ii) then holds by �nding a solution (v0, i0) 6= (ve, ie) for (7.2) as
v0 = (10.9417, 7.7148), i0 = (25.9005, 177.5837, 4.0757, 89.1352).Assumption (iii) also holds with the following nonsingular matrix-valued funtions


∂(v,i)P (ve, ie) =


























1.4294 0 −0.9680 0 1.2754 0
0 7.1635 0 −0.8740 0 1.5138


−199.2222 0 323.8625 0 0 0
−170.2472 0 0 73.8727 0 0


0 −440.3409 0 0 423.0237 0
0 −357.9898 0 0 0 15.7254


























,


∂(v,i)P (v0, i0) =


























1.9946 0 −0.8214 0 2.5352 0
0 11.4648 0 −0.8508 0 1.6085


−1858.395 0 323.8625 0 0 0
−1588.109 0 0 73.8727 0 0


0 −730.7260 0 0 423.0237 0
0 −594.0680 0 0 0 15.7254


























.To hek Assumption (iv), note that for every b = (bv, bi) ∈ L∞
v × L∞


i , elementary algebraioperations redue (7.3) to
φvE


= 0.6287φiEE + hvE
, φvI


= 0.0521φiEE + hvI
,(7.18)


φiEI
= 2.4834φiEE + hiEI


, φiIE = 0.0543φiEE + hiIE , φiII = 1.1870φiEE + hiII ,and the salar partial di�erential equation(7.19) (I − D)φiEE
= hiEE


, D := 0.6060(−3
2∆ + 0.965452I)−1,where h = (hv , hi) ∈ L∞


v × L∞
i is the result of the same algebrai operations on b. Now, note thatsine −∆ is a nonnegative operator in H2


per(Ω; R), it follows from the spetral theory of boundedlinear self-adjoint operators [15, Appx. D.6℄ that the spetrum of the operator (I−D) : L2
per(Ω; R) →


L2
per(Ω; R) lies entirely above 1−0.6060×0.96545−2 = 0.3498 > 0. Therefore, the partial di�erentialequation (7.19) has a unique solution φiEE


∈ L2
per(Ω; R) for every hiEE


∈ L2
per(Ω; R) ⊃ L∞


per(Ω; R),and hene, it follows from (7.18) that (7.3) has a unique solution φ = (φv, φi) ∈ L∞
v ×L∞


i for every
b ∈ L∞


v × L∞
i .It remains to hek (7.4). Using the spetral theory of bounded linear self-adjoint operators andCauhy-Shwarz inequality we an write
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∥


∥


2
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≤ 1
0.3498
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)
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hiEE
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∥
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.Therefore, there exists α1 = 1
0.3498 > 0 suh that
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Now, using (7.19) and the Sobolev embedding theorems we an write, for some α2, α3 > 0,
∥
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∥
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≤
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∥
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∥
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∥


∥
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,whih, along with the algebrai equalities (7.18), implies (7.4). Hene, Assumption (iv) holds.It is now implied by Theorem 7.5 that the equilibrium sets of (3.3)�(3.5) are nonompat in Usand Uw. Moreover, it follows immediately from the equilibrium equations (7.14) and the de�nitionof Pi given by (7.1) that, in general, all spae-homogeneous equilibria ie and we are positive and, inpartiular, belong to DBio∩Ds. Therefore, by Remark 7.7, the semigroups {


Ss(t) : Ds → Ds


}


t∈[0,∞)assoiated with the model with parameter values given by Table 2 do not possess a global attrator.It an be shown by similar alulations as above that the assumptions of Theorem 7.5 aresatis�ed by spae-homogeneous equilibria of the model for 3 other sets of parameter values out the
24 sets available in [5, Tables V and VI℄, namely, the sets given in [5, Tables V, ol. 2℄ and [5, TablesVI, ol. 10 and ol. 12℄. Moreover, it is likely that these assumptions or their possible alternativessuggested in Remark 7.6 would also hold for other sets of parameter values if we onsider equilibria
ue and inputs g that are not homogeneous over Ω. Cheking the assumptions of Theorem 7.5 inthis ase is, however, not very straightforward.8. Disussion and ConlusionIn this paper, we developed basi analytial results to establish a global attrator theory for themean �eld model of the eletroenephalogram proposed by Liley et al., 2002. We showed theboundary-initial value problem assoiated with the model is well-posed in the weak and strong sense,and established su�ient onditions for the nonnegativity of the i(x, t) and w(x, t) omponents ofthe solution over the entire time horizon. Moreover, we proved existene of bounded absorbingsets for semigroups of weak and strong solutions, and disussed hallenges towards proving theasymptoti ompatness property for these semigroups. Finally, we showed that the equilibriumsets of the model are nonompat for some physiologially reasonable sets of parameter values whih,in partiular, implies nonexistene of a global attrator.The onditions developed in this paper for ensuring nonnegativity of the solution omponents
i(x, t) and w(x, t) over the entire in�nite time horizon an be useful in omputational analysis ofthe model. Without using suh mathematial analysis, it is impossible to ensure that the solutionsomputed numerially over a �nite time horizon are biophysially plausible sine, evidently, non-negativity might our for time intervals beyond the �nite time horizon of numerial omputations.This fat has been overlooked in most of the available omputational analysis of the model. However,in these omputational studies, the initial values are usually set equal to the numerially omputedspae-homogenous equilibrium of the model, or equal to zero in the ase where no equilibrium isfound numerially. In both ases, the preset initial values satisfy the su�ient onditions developedin Setion 5 of this paper for biophysial plausibility of the solutions. It is perhaps an intratableproblem to speify a set of biophysial initial values for a model of the EEG; however, analyzing amore diverse set of reasonable initial values satisfying the su�ient onditions developed in Setion5 an be bene�ial in observing di�erent behaviors of the model.51







Existene of bounded absorbing sets is a desirable global property for a model of eletrialativity in the neoortex. As stated in Remark 6.4, the EEG model investigated in this paperpossesses this global property for its entire range of parameter values given in Table 1. Moreover, thisproperty holds independently of the parameters of the �ring rate funtions, number of intraortialand ortioortial onnetions, mean Nernst potentials, and membrane time onstants, as observedin Assumptions (i) and (ii) of Theorems 6.2 and 6.3.The lak of spae dissipation terms in the ODE omponents (3.3) and (3.4) of the model is amajor soure of di�ulty towards establishing a global attrator. Indeed, as implied by the proofof Theorem 7.5, the v(x, t) and i(x, t) omponents of the solution an evolve disontinuously inspae despite ontinuous evolution of the w(x, t) omponent. Other than disrupting the asymptotiompatness property of the semigroups of solution operators, these spae irregularities an preditsharp transitions in the v(x, t) and i(x, t) omponents of the solution, whih an potentially beproblemati in numerial omputation of the model. A slight modi�ation to the model wherein theunderlying neurophysiologial struture of the model is maintained an be bene�ial. Consideringa singularly perturbed version of (3.3) and (3.4) by inluding additional di�usion terms ε∆ withsu�iently small ε an be onsidered as a potential modi�ation.AknowledgmentThe authors would like to thank Professor Andrzej �wi�h from the Shool of Mathematis atGeorgia Institute of Tehnology for his helpful suggestions with some of the proofs appearing in thispaper.Referenes[1℄ M. F. Bear, B. W. Connors, and M. A. Paradiso, Neurosiene: Exploring the Brain,Wolters Kluwer, Philadelphia, PA, 4th ed., 2016.[2℄ I. Bojak, H. C. Day, and D. T. J. Liley, Ketamine, propofol and the EEG: a neural �eldanalysis of HCN1-mediated interations, Frontiers in Computational Neurosiene, 7 (2013).[3℄ I. Bojak and D. Liley, Self-organized 40 hz synhronization in a physiologial theory ofEEG, Neuroomputing, 70 (2007), pp. 2085 � 2090.[4℄ I. Bojak, D. Liley, P. Cadush, and K. Cheng, Eletrorhythmogenesis and anaesthesiain a physiologial mean �eld theory, Neuroomputing, 58â��60 (2004), pp. 1197 � 1202.[5℄ I. Bojak and D. T. J. Liley, Modeling the e�ets of anesthesia on the eletroenephalogram,Phys. Rev. E, 71 (2005), p. 041902.[6℄ I. Bojak, Z. V. Stoyanov, and D. Liley, Emergene of spatially heterogeneous burst sup-pression in a neural �eld model of eletroortial ativity, Frontiers in Computational Neuro-siene, 9 (2015).[7℄ V. V. Chepyzhov and M. I. Vishik, Attrators for Equations of Mathematial Physis,Amerian Mathematial Soiety, Providene, Rhode Island, 2002.52
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