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1 Introduction


We recall that a linear operator L which acts from a Banach space E into another Banach
space F possesses the Fredholm property if its image is closed, the dimension of its kernel
and the codimension of its image are finite. Consequently, the problem Lu = f is solvable
if and only if ϕi(f) = 0 for a finite number of functionals ϕi from the dual space F ∗.
These properties of Fredholm operators are widely used in various approaches of linear and
nonlinear analysis.


Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy the
Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii conditions
are satisfied (see e.g. [1], [9], [11]). This is the main result of the theory of linear elliptic
equations. When domains are unbounded, these conditions may be insufficient and the
Fredholm property may not be satisfied. For instance, Laplace operator, Lu = ∆u, in Rd fails
to satisfy the Fredholm property when considered in Hölder spaces, L : C2+α(Rd) → Cα(Rd),
or in Sobolev spaces, L : H2(Rd) → L2(Rd).


Linear elliptic equations in unbounded domains satisfy the Fredholm property if and only
if, in addition to the conditions cited above, limiting operators are invertible (see [12]). In
some simple cases, limiting operators can be explicitly constructed. For instance, if
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Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R


with the coefficients of this operator having limits at infinity,


a± = lim
x→±∞


a(x), b± = lim
x→±∞


b(x), c± = lim
x→±∞


c(x),


the limiting operators are given by:


L±u = a±u
′′ + b±u


′ + c±u.


Due to the fact that the coefficients are constant, the essential spectrum of the operator, that
is the set of complex numbers λ for which the operator L − λ fails to satisfy the Fredholm
property, can be explicitly computed by means of the Fourier transform:


λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.


Invertibility of limiting operators is equivalent to the condition that the essential spectrum
does not contain the origin.


In the case of general elliptic equations, the same assertions hold true. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or if the limiting
operators are invertible. However, these conditions may not be explicitly written.


When the operators are non-Fredholm the usual solvability conditions may not be ap-
plicable and solvability conditions are, in general, not known. There are some classes of
operators for which solvability conditions are derived. We illustrate them with the following
example. Let us consider the problem


Lu ≡ ∆u+ au = f (1.1)


in Rd, where a > 0 is a constant. The operator L here coincides with its limiting operators.
The homogeneous problem admits a nonzero bounded solution. Hence the Fredholm property
is not satisfied. However, since the operator has constant coefficients, we can use the Fourier
transform and find the solution precisely. Solvability conditions can be formulated as follows.
If f ∈ L2(Rd) and xf ∈ L1(Rd), then there exists a solution of this problem in H2(Rd) if
and only if (


f(x),
eipx


(2π)
d
2


)
L2(Rd)


= 0, p ∈ Sd√
a a.e.


(see [21]). Here and below Sd
r stands the sphere in Rd of radius r centered at the origin.


Hence, though the operator fails to satisfy the Fredholm property, solvability conditions are
formulated similarly. However, this similarity is only formal due to the fact that the range
of the operator is not closed.


In the case of the operator involving a potential,


Lu ≡ ∆u+ a(x)u = f,
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the Fourier transform is not of any help. Nevertheless, solvability conditions in R3 can be
derived by a rather sophisticated application of the theory of self-adjoint operators (see [14]).
As before, solvability relations are formulated in terms of orthogonality to solutions of the
homogeneous adjoint problem. There are several other examples of linear elliptic operators
without Fredholm property for which solvability conditions can be obtained (see [12]-[21]).


Solvability relations play a crucial role in the analysis of nonlinear elliptic equations.
When the operators are non-Fredholm, in spite of some progress in understanding of linear
equations, there exist only few examples where nonlinear non-Fredholm operators are ana-
lyzed (see [4]-[6], [20], [21], [24]). In the present work we consider the nonlinear problem,
for which the Fredholm property may not be satisfied:


∂u


∂t
= ∆u+ au+


∫
Ω


G(x− y)F (u(y, t), y)dy, a ≥ 0. (1.2)


Here Ω is a domain in Rd, d = 1, 2, 3, the more physically interesting dimensions. Equations
of that kind appear in cell population dynamics. The space variable x here corresponds to the
cell genotype, u(x, t) denotes the cell density as a function of their genotype and time. The
right side of problem (1.2) describes the evolution of cell density due to cell proliferation and
mutations. Here the diffusion term corresponds to the change of genotype via small random
mutations, and the nonlocal term describes large mutations. In this context, F (u, x) is
the rate of cell birth which depends on u and x (density dependent proliferation), and the
function G(x−y) shows the proportion of newly born cells which change their genotype from
y to x. We assume that it depends on the distance between the genotypes. In population
dynamics the integro-differential equations describe models with intra-specific competition
and nonlocal consumption of resources (see e.g. [2], [3], [7]). The existence of stationary
solutions of (1.2) was studied in [20] using the fixed point technique. Related to problem
(1.2), we consider the sequence of iterated equations with m ∈ N


∂u


∂t
= ∆u+ au+


∫
Ω


Gm(x− y)F (u(y, t), y)dy, a ≥ 0. (1.3)


The sequence of kernels Gm(x) → G(x) as m → ∞ in the appropriate function spaces
discussed below. We will show that under the certain technical conditions each of equations
(1.3) has a unique stationary solution um(x) ∈ H2, the limiting problem (1.2) will have a
unique stationary solution u(x) ∈ H2 and um(x) → u(x) in H2 as m → ∞, which is a
so-called existence of stationary solutions in the sense of sequences. The similar ideas in the
sense of standard Schrödinger type operators were exploited in [22] and [23]. The operators
without Fredholm property arise also when studying the so-called embedded solitons (see
e.g. [10]).


2 Formulation of the results


The nonlinear part of problems (1.2) and (1.3) will satisfy the regularity conditions analogous
to the ones of [20].


3







Assumption 1. Function F (u, x) : R× Ω → R is such that


|F (u, x)| ≤ k|u|+ h(x) for u ∈ R, x ∈ Ω, (2.1)


where a constant k > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Furthermore, it is a Lipschitz
continuous function, such that


|F (u1, x)− F (u2, x)| ≤ l|u1 − u2| for any u1,2 ∈ R, x ∈ Ω (2.2)


with a constant l > 0.


Obviously, the stationary solutions of (1.2) and (1.3), which exist under certain technical
conditions, will satisfy the nonlocal elliptic equations


∆u+


∫
Ω


G(x− y)F (u(y), y)dy + au = 0, a ≥ 0 (2.3)


and


∆um +


∫
Ω


Gm(x− y)F (um(y), y)dy + aum = 0, a ≥ 0, m ∈ N. (2.4)


Let us denote


(f1(x), f2(x))L2(Ω) :=


∫
Ω


f1(x)f̄2(x)dx,


with a slight abuse of notations when these functions are not square integrable, like for
instance those used in the orthogonality conditions of Theorem 1 below. Indeed, if f1(x) ∈
L1(Ω) and f2(x) ∈ L∞(Ω), then the integral in the right side of the definition above makes
sense. In the first part of the article we treat the case of Ω = Rd, such that the appropriate
Sobolev space is equipped with the norm


∥u∥2H2(Rd) := ∥u∥2L2(Rd) + ∥∆u∥2L2(Rd). (2.5)


The main issue for equations (2.3) and (2.4) above is that the operator −∆− a : H2(Rd) →
L2(Rd), a ≥ 0 fails to satisfy the Fredholm property, which is the obstacle when solving these
equations. The similar situations arising in linear and nonlinear equations, both self- adjoint
and non self-adjoint involving non Fredholm second or fourth order differential operators
or even systems of equations with non Fredholm operators have been treated extensively in
recent years (see [14]-[24]). Our first main result is as follows.


Theorem 1. Let Ω = Rd, m ∈ N, Gm(x) : Rd → R, Gm(x) ∈ L1(Rd), such that
Gm(x) → G(x) in L1(Rd) as m → ∞ and Assumption 1 holds.


I) When a > 0 we assume that xGm(x) ∈ L1(Rd), such that xGm(x) → xG(x) in L1(Rd)
as m → ∞, orthogonality relations (6.7) hold if d = 1 and (6.22) when d = 2, 3 and


√
2(2π)


d
2Na, d, m l ≤ 1− ε (2.6)
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for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) admits a unique solution
um(x) ∈ H2(Rd) and the limiting equation (2.3) has a unique solution u(x) ∈ H2(Rd).


II) When a = 0 we assume that x2Gm(x) ∈ L1(Rd), such that x2Gm(x) → x2G(x) in
L1(Rd) as m → ∞, orthogonality conditions (6.26) hold, d = 1, 2, 3 and


√
2(2π)


d
2N0, d, m l ≤ 1− ε (2.7)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) possesses a unique
solution um(x) ∈ H2(Rd) and the limiting equation (2.3) admits a unique solution u(x) ∈
H2(Rd).


In both cases I) and II) we have um(x) → u(x) in H2(Rd) as m → ∞.
The unique solution of each problem (2.4) um(x) is nontrivial provided the intersection


of supports of the Fourier transforms of functions suppF̂ (0, x)∩ suppĜm is a set of nonzero
Lebesgue measure in Rd. Similarly, the unique solution of the limiting problem (2.3) u(x)


does not vanish identically if suppF̂ (0, x) ∩ suppĜ is a set of nonzero Lebesgue measure in
Rd.


The second part of the article is devoted to the studies of the analogous problem on the
finite interval with periodic boundary conditions, i.e. Ω = I := [0, 2π] and the appropriate
functional space is


H2(I) = {u(x) : I → R | u(x), u′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)}.


We define the following auxiliary constrained subspaces


H2
0 (I) := {u ∈ H2(I) |


(
u(x),


e±in0x


√
2π


)
L2(I)


= 0}, n0 ∈ N (2.8)


and
H2


0, 0(I) := {u ∈ H2(I) | (u(x), 1)L2(I) = 0}, (2.9)


which are Hilbert spaces as well (see e.g. Chapter 2.1 of [8]). Our second main result is as
follows.


Theorem 2. Let Ω = I, m ∈ N, Gm(x) : I → R, Gm(x) ∈ L∞(I), such that Gm(x) →
G(x) in L∞(I), m → ∞, Gm(0) = Gm(2π), F (u, 0) = F (u, 2π) for u ∈ R and Assumption
1 holds.


I) When a > 0 and a ̸= n2, n ∈ Z, we assume that


2
√
πNa, ml ≤ 1− ε (2.10)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) possesses a unique
solution um(x) ∈ H2(I) and the limiting equation (2.3) admits a unique solution u(x) ∈
H2(I).
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II) If a = n2
0, n0 ∈ N, let us assume that orthogonality relations (6.42) hold and


2
√
πNn2


0, ml ≤ 1− ε (2.11)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) has a unique solution
um(x) ∈ H2


0 (I) and the limiting problem (2.3) admits a unique solution u(x) ∈ H2
0 (I).


III) When a = 0, assume that orthogonality relations (6.46) hold and


2
√
πN0, ml ≤ 1− ε (2.12)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) admits a unique solution
um(x) ∈ H2


0, 0(I) and the limiting equation (2.3) possesses a unique solution u(x) ∈ H2
0, 0(I).


In all the cases I), II and III) we have um(x) → u(x) as m → ∞ in the norms of
H2(I), H2


0 (I) and H2
0, 0(I) respectively.


The unique solution of each problem (2.4) um(x) is nontrivial provided the Fourier co-
efficients Gm,nF (0, x)n ̸= 0 for some n ∈ Z. Similarly, the unique solution of the limiting
problem (2.3) u(x) does not vanish identically if GnF (0, x)n ̸= 0 for some n ∈ Z.


Remark. We use the constrained subspaces H2
0 (I) and H2


0, 0(I) in cases II) and III) of


the theorem above respectively, such that the Fredholm operators − d2


dx2
− n2


0 : H
2
0 (I) → L2(I)


and − d2


dx2
: H2


0, 0(I) → L2(I) have empty kernels.


Let us conclude the article with the studies of our problem on the product of spaces,
where one is the finite interval with periodic boundary conditions as before and another is
the whole space of dimension not exceeding two, such that in our notations Ω = I × Rd =
[0, 2π] × Rd, d = 1, 2 and x = (x1, x⊥) with x1 ∈ I and x⊥ ∈ Rd. The appropriate Sobolev
space for the problem is H2(Ω) defined as


{u(x) : Ω → R | u(x),∆u(x) ∈ L2(Ω), u(0, x⊥) = u(2π, x⊥), ux1(0, x⊥) = ux1(2π, x⊥)},


where x⊥ ∈ Rd a.e. and ux1 stands for the derivative of u(x) with respect to the first variable
x1. Analogously to the whole space case treated in Theorem 1, the operator −∆ − a :
H2(Ω) → L2(Ω), a ≥ 0 fails to possess the Fredholm property. Our final main result is as
follows.


Theorem 3. Let Ω = I × Rd, d = 1, 2, m ∈ N, Gm(x) : Ω → R, such that


Gm(x) ∈ L1(Ω), Gm(x) → G(x) in L1(Ω) as m → ∞,


for x⊥ ∈ Rd a.e.
Gm(0, x⊥) = Gm(2π, x⊥) ∈ L∞(Rd),


F (u, 0, x⊥) = F (u, 2π, x⊥), u ∈ R and Assumption 1 holds. Moreover, let us assume that


Gm(0, x⊥) → G(0, x⊥), Gm(2π, x⊥) → G(2π, x⊥), m → ∞
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in L∞(Rd).
I) If n2


0 < a < (n0 + 1)2, n0 ∈ Z+ = N ∪ {0}, let x⊥Gm(x) ∈ L1(Ω), such that
x⊥Gm(x) → x⊥G(x) in L1(Ω) as m → ∞, condition (6.86) holds if dimension d = 1 and
(6.87) if d = 2 and √


2(2π)
d+1
2 Ma, ml ≤ 1− ε (2.13)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) admits a unique
solution um(x) ∈ H2(Ω) and the limiting equation (2.3) has a unique solution u(x) ∈ H2(Ω).


II) When a = n2
0, n0 ∈ N, let x2


⊥Gm(x) ∈ L1(Ω), such that x2
⊥Gm(x) → x2


⊥G(x) in L1(Ω)
as m → ∞, conditions (6.69), (6.71) hold if dimension d = 1 and conditions (6.70), (6.71)
hold if d = 2 and √


2(2π)
d+1
2 Mn2


0, ml ≤ 1− ε (2.14)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) possesses a unique
solution um(x) ∈ H2(Ω) and the limiting equation (2.3) admits a unique solution u(x) ∈
H2(Ω).


III) When a = 0, let x2
⊥Gm(x) ∈ L1(Ω), such that x2


⊥Gm(x) → x2
⊥G(x) in L1(Ω) as


m → ∞, conditions (6.62) hold and


√
2(2π)


d+1
2 M0, ml ≤ 1− ε (2.15)


for all m ∈ N with some 0 < ε < 1. Then each of the equations (2.4) admits a unique
solution um(x) ∈ H2(Ω) and the limiting equation (2.3) has a unique solution u(x) ∈ H2(Ω).


In all the cases I), II and III) we have um(x) → u(x) in H2(Ω) as m → ∞.
The unique solution of each equation (2.4) um(x) is nontrivial provided that the inter-


section of supports of the Fourier transforms of functions suppF̂ (0, x)n ∩ suppĜm,n is a set
of nonzero Lebesgue measure in Rd for some n ∈ Z. Similarly, the unique solution of the


limiting equation (2.3) u(x) does not vanish identically if suppF̂ (0, x)n ∩ suppĜn is a set of
nonzero Lebesgue measure in Rd for some n ∈ Z.


Remark. Note that in the article we deal with real valued functions due to the assump-
tions on F (u, x), Gm(x) and G(x) involved in the nonlocal terms of equations (2.3) and
(2.4).


3 The Whole Space Case


Proof of Theorem 1. By means of Theorem 1 of [20], each equation (2.4) admits a unique
solution um(x) ∈ H2(Rd), m ∈ N. Equation (2.3) possesses a unique solution u(x) ∈ H2(Rd)
as a result of Lemma A1 of the Appendix in dimension d = 1 and via Lemma A2 when
d = 2, 3 along with Theorem 1 of [20].
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Let us apply the standard Fourier transform (6.1) to both sides of equations (2.3) and
(2.4). This yields


û(p) = (2π)
d
2
Ĝ(p)f̂(p)


p2 − a
, ûm(p) = (2π)


d
2
Ĝm(p)f̂m(p)


p2 − a
, m ∈ N, (3.1)


where f̂(p) and f̂m(p) stand for the Fourier transforms of F (u(x), x) and F (um(x), x) respec-
tively. Obviously, we have the estimate from above


|ûm(p)− û(p)| ≤ (2π)
d
2


∥∥∥∥Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


|f̂(p)|+ (2π)
d
2


∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


|f̂m(p)− f̂(p)|,


such that


∥um − u∥L2(Rd) ≤ (2π)
d
2


∥∥∥∥Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


∥F (u(x), x)∥L2(Rd)+


+(2π)
d
2


∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


∥F (um(x), x)− F (u(x), x)∥L2(Rd).


By means of inequality (2.2) of Assumption 1, we have


∥F (um(x), x)− F (u(x), x)∥L2(Rd) ≤ l∥um − u∥L2(Rd). (3.2)


Note that um(x), u(x) ∈ H2(Rd) ⊂ L∞(Rd), d ≤ 3 by virtue of the Sobolev embedding.
Thus, we arrive at


∥um − u∥L2(Rd)


{
1− (2π)


d
2 l


∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


}
≤


≤ (2π)
d
2


∥∥∥∥Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


∥F (u(x), x)∥L2(Rd).


By virtue of (2.6) if a > 0 and (2.7) in the case of a = 0, we arrive at


∥um − u∥L2(Rd) ≤
(2π)


d
2


ε


∥∥∥∥Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


∥F (u(x), x)∥L2(Rd).


By means of inequality (2.1) of Assumption 1, we have F (u(x), x) ∈ L2(Rd) for u(x) ∈
H2(Rd). Therefore,


um(x) → u(x), m → ∞ (3.3)


in L2(Rd) due to Lemma A1 of the Appendix for d = 1 and Lemma A2 when d = 2, 3.
Clearly,


p2û(p) = (2π)
d
2
p2Ĝ(p)f̂(p)


p2 − a
, p2ûm(p) = (2π)


d
2
p2Ĝm(p)f̂m(p)


p2 − a
, m ∈ N,
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such that


|p2ûm(p)− p2û(p)| ≤ (2π)
d
2


∥∥∥∥p2Ĝm(p)


p2 − a
− p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


|f̂(p)|+


+(2π)
d
2


∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


|f̂m(p)− f̂(p)|.


Thus, using (3.2) we arrive at


∥∆um −∆u∥L2(Rd) ≤ (2π)
d
2


∥∥∥∥p2Ĝm(p)


p2 − a
− p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


∥F (u(x), x)∥L2(Rd)+


+(2π)
d
2


∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


l∥um − u∥L2(Rd).


Hence, by virtue of Lemma A1 of the Appendix when d = 1 and Lemma A2 for d = 2, 3
along with (3.3), we have ∆um(x) → ∆u(x) in L2(Rd) as m → ∞. Norm definition (2.5)
implies that um(x) → u(x) in H2(Rd) as m → ∞.


Suppose the solution um(x) of equation (2.4) discussed above vanishes a.e. in Rd for a
certain m ∈ N. This will contradict to our assumption that the Fourier images of Gm(x) and
F (0, x) do not vanish on a set of nonzero Lebesgue measure in Rd. The analogous reasoning
holds for the solution u(x) of the limiting problem (2.3) studied above.


4 The Problem on the Finite Interval


Proof of Theorem 2. Note that under the given conditions we have Gm(x) ∈ L1(I), m ∈ N
and Gm(x) → G(x) in L1(I) as m → ∞. By virtue of Theorem 2 of [20], each equation (2.4)
possesses a unique solution um(x) belonging to H2(I) in case I) of the Theorem, to H2


0 (I) in
case II) and to H2


0, 0(I) in case III) with m ∈ N. Equation (2.3) has a unique solution u(x)
belonging to H2(I) in case I), to H2


0 (I) in case II) and to H2
0, 0(I) in case III) as a result of


Lemma A3 of the Appendix along with Theorem 2 of [20].
Let us apply Fourier transform (6.33) to both sides of equations (2.3) and (2.4). This


yields for n ∈ Z


un =
√
2π


Gnfn
n2 − a


, um,n =
√
2π


Gm,nfm,n


n2 − a
, m ∈ N (4.1)


with fn and fm,n denoting the Fourier images of F (u(x), x) and F (um(x), x) respectively
under transform (6.33). This enables us to obtain the estimate from above


|um,n − un| ≤
√
2π


∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞
|fn|+


√
2π


∥∥∥∥ Gm,n


n2 − a


∥∥∥∥
l∞
|fm,n − fn|,
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such that


∥um(x)− u(x)∥L2(I) ≤
√
2π


∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞
∥F (u(x), x)∥L2(I)+


+
√
2π


∥∥∥∥ Gm,n


n2 − a


∥∥∥∥
l∞
∥F (um(x), x)− F (u(x), x)∥L2(I).


Inequality (2.2) of Assumption 1 yields


∥F (um(x), x)− F (u(x), x)∥L2(I) ≤ l∥um(x)− u(x)∥L2(I). (4.2)


Note that by means of the Sobolev embedding we have um(x), u(x) ∈ H2(I) ⊂ L∞(I).
Edivently,


∥um(x)− u(x)∥L2(I)


{
1−


√
2πl


∥∥∥∥ Gm,n


n2 − a


∥∥∥∥
l∞


}
≤


√
2π


∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞
∥F (u(x), x)∥L2(I).


Let us use inequalities (2.10), (2.11) and (2.12) in cases I), II) and III) of the theorem
respectively. Thus, we arrive at


∥um(x)− u(x)∥L2(I) ≤
√
2π


ε


∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞
∥F (u(x), x)∥L2(I).


Clearly, F (u(x), x) ∈ L2(I) for u(x) ∈ H2(I) due to bound (2.1) of Assumption 1. Then by
means of the result of Lemma A3 of the Appendix, we have


um(x) → u(x), m → ∞ (4.3)


in L2(I). Evidently,


|n2um,n − n2un| ≤
√
2π


∥∥∥∥n2Gm,n


n2 − a
− n2Gn


n2 − a


∥∥∥∥
l∞
|fn|+


√
2π


∥∥∥∥n2Gm,n


n2 − a


∥∥∥∥
l∞
|fm,n − fn|,


such that via (4.2)


∥u′′
m(x)− u′′(x)∥L2(I) ≤


√
2π


∥∥∥∥n2Gm,n


n2 − a
− n2Gn


n2 − a


∥∥∥∥
l∞
∥F (u(x), x)∥L2(I)+


+
√
2π


∥∥∥∥n2Gm,n


n2 − a


∥∥∥∥
l∞
l∥um(x)− u(x)∥L2(I).


By virtue of the result of Lemma A3 of the Appendix along with (4.3), we arrive at


u′′
m(x) → u′′(x), m → ∞


in L2(I). Therefore, um(x) → u(x) in the H2(I) norm as m → ∞.
Suppose um(x) = 0 a.e. in I for some m ∈ N. Then we will obtain the contradiction


to the assumption that the Fourier coefficients Gm,nF (0, x)n ̸= 0 for some n ∈ Z. The
analogous argument holds for the solution u(x) of the limiting equation (2.3).
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5 The Problem on the Product of Spaces


Proof of Theorem 3. By means of Theorem 3 of [20], each equation (2.4) admits a unique
solution um(x) ∈ H2(Ω), m ∈ N. Equation (2.3) possesses a unique solution u(x) ∈ H2(Ω)
as a result of Lemmas A6, A5 and A4 of the Appendix in cases I), II) and III) respectively
along with Theorem 3 of [20].


We apply Fourier transform (6.54) to both sides of equations (2.3) and (2.4). This yields
for n ∈ Z, p ∈ Rd, d = 1, 2, m ∈ N


ûn(p) = (2π)
d+1
2 ξan(p)f̂n(p), ûm,n(p) = (2π)


d+1
2 ξam,n(p)f̂m,n(p) (5.1)


with f̂n(p) and f̂m,n(p) standing for the Fourier images of F (u(x), x) and F (um(x), x) under
transform (6.54) and ξan(p), ξam,n(p) defined in (6.57). This allows us to obtain the upper
bound


|ûm,n(p)−ûn(p)| ≤ (2π)
d+1
2 ∥ξam,n(p)−ξan(p)∥L∞


n,p
|f̂n(p)|+(2π)


d+1
2 ∥ξam,n(p)∥L∞


n,p
|f̂m,n(p)−f̂n(p)|,


such that


∥um(x)− u(x)∥L2(Ω) ≤ (2π)
d+1
2 ∥ξam,n(p)− ξan(p)∥L∞


n,p
∥F (u(x), x)∥L2(Ω)+


+(2π)
d+1
2 ∥ξam,n(p)∥L∞


n,p
∥F (um(x), x)− F (u(x), x)∥L2(Ω).


Bound (2.2) of Assumption 1 implies


∥F (um(x), x)− F (u(x), x)∥L2(Ω) ≤ l∥um(x)− u(x)∥L2(Ω). (5.2)


Note that by virtue of the Sobolev embedding we have um(x), u(x) ∈ H2(Ω) ⊂ L∞(Ω).
Apparently,


∥um(x)− u(x)∥L2(Ω){1− (2π)
d+1
2 l∥ξam,n(p)∥L∞


n,p
} ≤


≤ (2π)
d+1
2 ∥ξam,n(p)− ξan(p)∥L∞


n,p
∥F (u(x), x)∥L2(Ω).


We use bounds (2.13), (2.14) and (2.15) in cases I), II) and III) of the theorem respectively.
Hence, we derive


∥um(x)− u(x)∥L2(Ω) ≤
(2π)


d+1
2


ε
∥ξam,n(p)− ξan(p)∥L∞


n,p
∥F (u(x), x)∥L2(Ω).


Obviously, F (u(x), x) ∈ L2(Ω) for u(x) ∈ H2(Ω) via inequality (2.1) of Assumption 1. By
means of the results of Lemmas A6, A5 and A4 of the Appendix in cases I), II) and III) of
the theorem respectively, we obtain


um(x) → u(x), m → ∞ (5.3)
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in L2(Ω). Apparently,


|(p2 + n2)ûm,n(p)− (p2 + n2)ûn(p)| ≤ (2π)
d+1
2 ∥(p2 + n2)ξam,n(p)− (p2 + n2)ξan(p)∥L∞


n,p
|f̂n(p)|+


+(2π)
d+1
2 ∥(p2 + n2)ξam,n(p)∥L∞


n,p
|f̂m,n(p)− f̂n(p)|,


which yields via (5.2)


∥∆um(x)−∆u(x)∥L2(Ω) ≤ (2π)
d+1
2 ∥(p2 + n2)ξam,n(p)− (p2 + n2)ξan(p)∥L∞


n,p
∥F (u(x), x)∥L2(Ω)+


+(2π)
d+1
2 ∥(p2 + n2)ξam,n(p)∥L∞


n,p
l∥um(x)− u(x)∥L2(Ω).


By means of (5.3) along with the results of Lemmas A6, A5 and A4 of the Appendix in cases
I), II) and III) of the theorem respectively, we arrive at


∆um(x) → ∆u(x), m → ∞


in L2(Ω). This proves that
um(x) → u(x), m → ∞


in H2(Ω).
Suppose um(x) = 0 a.e. in Ω for some m ∈ N. This yields the contradiction to the


assumption that there exists n ∈ Z for which suppĜm,n ∩ suppF̂ (0, x)n is a set of nonzero
Lebesgue measure in Rd. The analogous reasoning is valid for the solution u(x) of the limiting
problem (2.3).


6 Appendix


Let G(x) be a function, G(x) : Rd → R, d ≤ 3. We designate its standard Fourier
transform via the hat symbol as


Ĝ(p) :=
1


(2π)
d
2


∫
Rd


G(x)e−ipxdx, p ∈ Rd. (6.1)


Hence


∥Ĝ(p)∥L∞(Rd) ≤
1


(2π)
d
2


∥G∥L1(Rd) (6.2)


and G(x) =
1


(2π)
d
2


∫
Rd


Ĝ(q)eiqxdq, x ∈ Rd. We introduce the auxiliary quantities for m ∈ N


Na, d, m := max
{∥∥∥Ĝm(p)


p2 − a


∥∥∥
L∞(Rd)


,
∥∥∥p2Ĝm(p)


p2 − a


∥∥∥
L∞(Rd)


}
(6.3)
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when a > 0 and


N0, d, m := max
{∥∥∥Ĝm(p)


p2


∥∥∥
L∞(Rd)


,
∥∥∥Ĝm(p)


∥∥∥
L∞(Rd)


}
(6.4)


for a = 0. Similarly, in the limiting case


Na, d := max
{∥∥∥ Ĝ(p)


p2 − a


∥∥∥
L∞(Rd)


,
∥∥∥p2Ĝ(p)


p2 − a


∥∥∥
L∞(Rd)


}
, a > 0 (6.5)


and


N0, d := max
{∥∥∥Ĝ(p)


p2


∥∥∥
L∞(Rd)


,
∥∥∥Ĝ(p)


∥∥∥
L∞(Rd)


}
, a = 0. (6.6)


Lemma A1. Let the assumptions of Theorem 1 hold in dimension d = 1.
a) If a > 0, let (


Gm(x),
e±i


√
ax


√
2π


)
L2(R)


= 0, m ∈ N. (6.7)


Then
Ĝm(p)


p2 − a
→ Ĝ(p)


p2 − a
,


p2Ĝm(p)


p2 − a
→ p2Ĝ(p)


p2 − a
, m → ∞ (6.8)


in L∞(R), such that∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(R)


→
∥∥∥∥ Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


,


∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(R)


→
∥∥∥∥p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


, m → ∞. (6.9)


Moreover, √
2(2π)


1
2Na, 1l ≤ 1− ε (6.10)


holds.
b) When a = 0, let


(Gm(x), 1)L2(R) = 0 and (Gm(x), x)L2(R) = 0, m ∈ N. (6.11)


Then
Ĝm(p)


p2
→ Ĝ(p)


p2
, Ĝm(p) → Ĝ(p), m → ∞ (6.12)


in L∞(R), such that∥∥∥∥Ĝm(p)


p2


∥∥∥∥
L∞(R)


→
∥∥∥∥Ĝ(p)


p2


∥∥∥∥
L∞(R)


, ∥Ĝm(p)∥L∞(R) → ∥Ĝ(p)∥L∞(R), m → ∞. (6.13)


Furthermore, √
2(2π)


1
2N0, 1l ≤ 1− ε (6.14)
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holds.


Proof. In both parts a) and b) of the lemma by means of (6.2)


∥Ĝm(p)− Ĝ(p)∥L∞(R) ≤
1√
2π


∥Gm(x)−G(x)∥L1(R) → 0, m → ∞ (6.15)


as assumed. Let us first establish part a) of the lemma. Via the trivial limiting argument,
we have (


G(x),
e±i


√
ax


√
2π


)
L2(R)


= 0 (6.16)


as well. Indeed, if w(x) ∈ L∞(R) is the right side of the inner product in orthogonality
condition (6.7), then


|(G(x), w(x))L2(R)| = |(G(x)−Gm(x), w(x))L2(R)| ≤ ∥w∥L∞(R)∥Gm −G∥L1(R) → 0


as m → ∞ as assumed, which yields (6.16). Therefore, by means of the part a) of Lemma
A1 of [20], we have


Na, 1 < ∞.


We introduce the intervals on the real line


I+δ := [
√
a− δ,


√
a+ δ], I−δ := [−


√
a− δ,−


√
a+ δ],


√
a > δ > 0,


such that Iδ := I+δ ∪ I−δ . This yields


Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a
=


Ĝm(p)− Ĝ(p)


p2 − a
χIcδ


+
Ĝm(p)− Ĝ(p)


p2 − a
χI+δ


+
Ĝm(p)− Ĝ(p)


p2 − a
χI−δ


, (6.17)


where χA here and further down denotes the characteristic function of a set A, Ac stands
for its complement. The first term in the right side of (6.17) can be easily bounded in the
norm from above using (6.2) as∥∥∥∥Ĝm(p)− Ĝ(p)


p2 − a
χIcδ


∥∥∥∥
L∞(R)


≤
∥Gm(x)−G(x)∥L1(R)√


2πδ2
→ 0


as m → ∞ due to one of our assumptions. Clearly,


Ĝ(±
√
a) = 0, Ĝm(±


√
a) = 0, m ∈ N


due to orthogonality relations (6.16) and (6.7). This enables us to use the representation
formulas


Ĝ(p) =


∫ p


√
a


dĜ(q)


dq
dq, Ĝm(p) =


∫ p


√
a


dĜm(q)


dq
dq, m ∈ N.
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By means of the definition of the Fourier transform (6.1), we have∣∣∣∣dĜm(p)


dp
− dĜ(p)


dp


∣∣∣∣ ≤ 1√
2π


∥xGm(x)− xG(x)∥L1(R), p ∈ R.


This enables us to obtain the bound∥∥∥∥Ĝm(p)− Ĝ(p)


p2 − a
χI+δ


∥∥∥∥
L∞(R)


≤ 1√
2π


∥xGm(x)− xG(x)∥L1(R)


2
√
a− δ


→ 0


as m → ∞ by means of the one of our assumptions. Similarly to the above, we have


Ĝ(p) =


∫ p


−
√
a


dĜ(q)


dq
dq, Ĝm(p) =


∫ p


−
√
a


dĜm(q)


dq
dq, m ∈ N,


such that ∥∥∥∥Ĝm(p)− Ĝ(p)


p2 − a
χI−δ


∥∥∥∥
L∞(R)


≤ 1√
2π


∥xGm(x)− xG(x)∥L1(R)


2
√
a− δ


→ 0


as m → ∞ according to the one of our assumptions. This proves that


Ĝm(p)


p2 − a
→ Ĝ(p)


p2 − a
, m → ∞


in L∞(R). Thus by virtue of the triangle inequality, we have∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(R)


→
∥∥∥∥ Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


, m → ∞.


Clearly,


p2Ĝm(p)


p2 − a
− p2Ĝ(p)


p2 − a
= Ĝm(p)− Ĝ(p) + a


[
Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


]
,


such that∥∥∥∥p2Ĝm(p)


p2 − a
−p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


≤ ∥Ĝm(p)−Ĝ(p)∥L∞(R)+a


∥∥∥∥Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


→ 0, m → ∞


via the results obtained above. Thus,


p2Ĝm(p)


p2 − a
→ p2Ĝ(p)


p2 − a
, m → ∞


in L∞(R). By virtue of the triangle inequality,∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(R)


→
∥∥∥∥p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(R)


, m → ∞.
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Inequality (6.10) comes from (2.6) as a result of the trivial limiting argument.
Then we turn our attention to the proof of part b) of the lemma. Via the simple limiting


argument below, we have


(G(x), 1)L2(R) = 0 and (G(x), x)L2(R) = 0. (6.18)


The proof of the first identity in (6.18) is analogous to establishing (6.16). Obviously,


|(G(x), x)L2(R)| = |(G(x)−Gm(x), x)L2(R)| ≤
∫
|x|≤1


|G(x)−Gm(x)|dx+


+


∫
|x|>1


|x2G(x)− x2Gm(x)|dx ≤ ∥Gm(x)−G(x)∥L1(R) + ∥x2Gm(x)− x2G(x)∥L1(R) → 0


as m → ∞ by virtue of our assumptions. Then by means of the result of part b) of Lemma
A1 of [20], we have


N0, 1 < ∞.


We express


Ĝm(p)


p2
− Ĝ(p)


p2
=


Ĝm(p)− Ĝ(p)


p2
χ{|p|≤1} +


Ĝm(p)− Ĝ(p)


p2
χ{|p|>1}. (6.19)


Using (6.15), we easily obtain∥∥∥∥Ĝm(p)− Ĝ(p)


p2
χ{|p|>1}


∥∥∥∥
L∞(R)


≤ ∥Ĝm(p)− Ĝ(p)∥L∞(R) ≤
1√
2π


∥Gm(x)−G(x)∥L1(R), (6.20)


which tends to zero as m → ∞ as assumed. Orthogonality relations (6.11) and (6.18) imply
that


Ĝ(0) = 0,
dĜ


dp
(0) = 0, Ĝm(0) = 0,


dĜm


dp
(0) = 0, m ∈ N,


which yields


Ĝm(p) =


∫ p


0


(∫ s


0


d2Ĝm(q)


dq2
dq


)
ds, Ĝ(p) =


∫ p


0


(∫ s


0


d2Ĝ(q)


dq2
dq


)
ds.


By means of the definition of the Fourier transform (6.1), we have∣∣∣∣d2Ĝm(p)


dp2
− d2Ĝ(p)


dp2


∣∣∣∣ ≤ 1√
2π


∥x2Gm(x)− x2G(x)∥L1(R),


such that


|Ĝm(p)− Ĝ(p)| ≤ 1√
2π


∥x2Gm(x)− x2G(x)∥L1(R)
p2


2
.
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Thus∥∥∥∥Ĝm(p)− Ĝ(p)


p2
χ{|p|≤1}


∥∥∥∥
L∞(R)


≤ 1


2
√
2π


∥x2Gm(x)− x2G(x)∥L1(R) → 0, m → ∞ (6.21)


due to one of the assumptions of the lemma. Therefore,


Ĝm(p)


p2
→ Ĝ(p)


p2
, m → ∞


in L∞(R). By means of the triangle inequality, we have∥∥∥∥Ĝm(p)


p2


∥∥∥∥
L∞(R)


→
∥∥∥∥Ĝ(p)


p2


∥∥∥∥
L∞(R)


, m → ∞.


Also,
∥Ĝm(p)∥L∞(R) → ∥Ĝ(p)∥L∞(R), m → ∞,


which comes from (6.15) via the triangle inequality. Estimate (6.14) stems from (2.7) as a
result of the elementary limiting argument.


The proposition above can be generalized to higher dimensions in the following statement.


Lemma A2. Let the assumptions of Theorem 1 hold in dimensions d = 2, 3.
a) If a > 0, let(


Gm(x),
eipx


(2π)
d
2


)
L2(Rd)


= 0 for p ∈ Sd√
a a.e., m ∈ N. (6.22)


Then
Ĝm(p)


p2 − a
→ Ĝ(p)


p2 − a
,


p2Ĝm(p)


p2 − a
→ p2Ĝ(p)


p2 − a
, m → ∞ (6.23)


in L∞(Rd), such that∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


→
∥∥∥∥ Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


,


∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


→
∥∥∥∥p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


(6.24)


as m → ∞. Furthermore, √
2(2π)


d
2Na, dl ≤ 1− ε (6.25)


holds.
b) When a = 0, let


(Gm(x), 1)L2(Rd) = 0 and (Gm(x), xk)L2(Rd) = 0, 1 ≤ k ≤ d, m ∈ N. (6.26)
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Then
Ĝm(p)


p2
→ Ĝ(p)


p2
, Ĝm(p) → Ĝ(p), m → ∞ (6.27)


in L∞(Rd), such that∥∥∥∥Ĝm(p)


p2


∥∥∥∥
L∞(Rd)


→
∥∥∥∥Ĝ(p)


p2


∥∥∥∥
L∞(Rd)


, ∥Ĝm(p)∥L∞(Rd) → ∥Ĝ(p)∥L∞(Rd), m → ∞. (6.28)


Moreover, √
2(2π)


d
2N0, dl ≤ 1− ε (6.29)


holds.


Proof. Let us first establish part a) of the lemma. Via the trivial limiting argument
similar to the proof of (6.16), we obtain(


G(x),
eipx


(2π)
d
2


)
L2(Rd)


= 0 for p ∈ Sd√
a a.e. (6.30)


Then by virtue of part a) of Lemma A2 of [20], we have


Na, d < ∞.


We will use the auxiliary spherical layer in the space of d = 2, 3 dimensions


Aδ := {p ∈ Rd |
√
a− δ < |p| <


√
a+ δ}, 0 < δ <


√
a,


such that
Ĝm(p)


p2 − a
− Ĝ(p)


p2 − a
=


Ĝm(p)− Ĝ(p)


p2 − a
χAδ


+
Ĝm(p)− Ĝ(p)


p2 − a
χAc


δ
. (6.31)


The second term in the right side of (6.31) can be estimated above in the absolute value as∣∣∣∣Ĝm(p)− Ĝ(p)


p2 − a
χAc


δ


∣∣∣∣ ≤ |Ĝm(p)− Ĝ(p)|√
aδ


.


By virtue of the analog of inequality (6.15) in dimensions d = 2, 3, we obtain∥∥∥∥Ĝm(p)− Ĝ(p)


p2 − a
χAc


δ


∥∥∥∥
L∞(Rd)


≤
∥Gm(x)−G(x)∥L1(Rd)


(2π)
d
2
√
aδ


→ 0, m → ∞


due to one of our assumptions. By means of (6.30) and (6.22), we have


Ĝ(
√
a, σ) = 0, Ĝm(


√
a, σ) = 0, m ∈ N.
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Here and below σ denotes the angle variables on the sphere. This enables us to express


Ĝ(p) =


∫ |p|


√
a


∂Ĝ(s, σ)


∂s
ds, Ĝm(p) =


∫ |p|


√
a


∂Ĝm(s, σ)


∂s
ds, m ∈ N.


Evidently, using the definition of the Fourier transform (6.1), we arrive at∣∣∣∣∂Ĝm(|p|, σ)
∂|p|


− ∂Ĝ(|p|, σ)
∂|p|


∣∣∣∣ ≤ 1


(2π)
d
2


∥xGm(x)− xG(x)∥L1(Rd).


Therefore,∥∥∥∥Ĝm(p)− Ĝ(p)


p2 − a
χAδ


∥∥∥∥
L∞(Rd)


≤ 1


(2π)
d
2
√
a
∥xGm(x)− xG(x)∥L1(Rd) → 0, m → ∞


by virtue of the one of our assumptions. This implies that


Ĝm(p)


p2 − a
→ Ĝ(p)


p2 − a
, m → ∞


in L∞(Rd). By means of the triangle inequality∥∥∥∥Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


→
∥∥∥∥ Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


, m → ∞,


which is analogous to the first statement of (6.9) of Lemma A1 in one dimension. Note that


p2Ĝm(p)


p2 − a
→ p2Ĝ(p)


p2 − a
, m → ∞


in L∞(Rd) and ∥∥∥∥p2Ĝm(p)


p2 − a


∥∥∥∥
L∞(Rd)


→
∥∥∥∥p2Ĝ(p)


p2 − a


∥∥∥∥
L∞(Rd)


, m → ∞


holds here as well, which can be proven analogously to corresponding statements of Lemma
A1 in one dimension. By means of the trivial limiting argument, we arrive at


√
2(2π)


d
2Na, dl ≤ 1− ε.


Then we turn our attention to the proof of part b) of the lemma. By virtue of the straight-
forward limiting argument similarly to the proof of (6.18) in one dimension, we arrive at


(G(x), 1)L2(Rd) = 0, (G(x), xk)L2(Rd) = 0, 1 ≤ k ≤ d. (6.32)


By means of part b) of Lemma A2 of [20], we obtain


N0, d < ∞.
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Identities (6.26) and (6.32) imply that


Ĝ(0) = 0,
∂Ĝ


∂|p|
(0, σ) = 0, Ĝm(0) = 0,


∂Ĝm


∂|p|
(0, σ) = 0, m ∈ N.


This enables us to express


Ĝ(p) =


∫ |p|


0


(∫ s


0


∂2Ĝ(q, σ)


∂q2
dq


)
ds, Ĝm(p) =


∫ |p|


0


(∫ s


0


∂2Ĝm(q, σ)


∂q2
dq


)
ds, m ∈ N.


Using the definition of the standard Fourier transform (6.1), we derive∣∣∣∣∂2Ĝm(|p|, σ)
∂|p|2


− ∂2Ĝ(|p|, σ)
∂|p|2


∣∣∣∣ ≤ 1


(2π)
d
2


∥x2Gm(x)− x2G(x)∥L1(Rd),


such that


|Ĝm(p)− Ĝ(p)| ≤ 1


(2π)
d
2


∥x2Gm(x)− x2G(x)∥L1(Rd)


p2


2
.


We will use the analog of formula (6.19) in dimensions d = 2, 3. Clearly, the estimate similar
to (6.20) holds here as well. The analog of (6.21) is valid here due to the argument presented
above. This proves (6.27) along with (6.28). Inequality (6.29) can be easily established via
the limiting argument.


Let the function G(x) : I → R, G(0) = G(2π) and its Fourier image on the finite
interval is given by


Gn :=


∫ 2π


0


G(x)
e−inx


√
2π


dx, n ∈ Z, (6.33)


such that G(x) =
∞∑


n=−∞


Gn
einx√
2π


. Clearly we have the bound


∥Gn∥l∞ ≤ 1√
2π


∥G∥L1(I). (6.34)


Analogously to the whole space case we introduce for m ∈ N


Na, m := max


{∥∥∥∥ Gm,n


n2 − a


∥∥∥∥
l∞
,


∥∥∥∥n2Gm,n


n2 − a


∥∥∥∥
l∞


}
(6.35)


for a > 0. In the case of a = 0


N0, m := max


{∥∥∥∥Gm,n


n2


∥∥∥∥
l∞
,


∥∥∥∥Gm,n


∥∥∥∥
l∞


}
. (6.36)
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In the limiting case


Na := max


{∥∥∥∥ Gn


n2 − a


∥∥∥∥
l∞
,


∥∥∥∥ n2Gn


n2 − a


∥∥∥∥
l∞


}
, a > 0 (6.37)


and


N0 := max


{∥∥∥∥Gn


n2


∥∥∥∥
l∞
,


∥∥∥∥Gn


∥∥∥∥
l∞


}
, a = 0. (6.38)


We have the following technical statement.


Lemma A3. Let the assumptions of Theorem 2 hold.
a) If a > 0 and a ̸= n2, n ∈ Z then


Gm,n


n2 − a
→ Gn


n2 − a
,


n2Gm,n


n2 − a
→ n2Gn


n2 − a
, m → ∞ (6.39)


in l∞, such that∥∥∥∥ Gm,n


n2 − a


∥∥∥∥
l∞


→
∥∥∥∥ Gn


n2 − a


∥∥∥∥
l∞
,


∥∥∥∥n2Gm,n


n2 − a


∥∥∥∥
l∞


→
∥∥∥∥ n2Gn


n2 − a


∥∥∥∥
l∞
, m → ∞. (6.40)


Moreover,
2
√
πNal ≤ 1− ε (6.41)


holds.
b) When a = n2


0, n0 ∈ N, let(
Gm(x),


e±in0x


√
2π


)
L2(I)


= 0, m ∈ N. (6.42)


Then
Gm,n


n2 − n2
0


→ Gn


n2 − n2
0


,
n2Gm,n


n2 − n2
0


→ n2Gn


n2 − n2
0


, m → ∞ (6.43)


in l∞, such that∥∥∥∥ Gm,n


n2 − n2
0


∥∥∥∥
l∞


→
∥∥∥∥ Gn


n2 − n2
0


∥∥∥∥
l∞
,


∥∥∥∥n2Gm,n


n2 − n2
0


∥∥∥∥
l∞


→
∥∥∥∥ n2Gn


n2 − n2
0


∥∥∥∥
l∞
, m → ∞. (6.44)


Furthermore,
2
√
πNn2


0
l ≤ 1− ε (6.45)


holds.
c) If a = 0, let


(Gm(x), 1)L2(I) = 0, m ∈ N. (6.46)
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Then
Gm,n


n2
→ Gn


n2
, Gm,n → Gn, m → ∞ (6.47)


in l∞, such that ∥∥∥∥Gm,n


n2


∥∥∥∥
l∞


→
∥∥∥∥Gn


n2


∥∥∥∥
l∞
, ∥Gm,n∥l∞ → ∥Gn∥l∞ , m → ∞. (6.48)


Moreover,
2
√
πN0l ≤ 1− ε (6.49)


holds.


Proof. Obviously,


|G(0)−G(2π)| ≤ |G(0)−Gm(0)|+|Gm(2π)−G(2π)| ≤ 2∥Gm(x)−G(x)∥L∞(I) → 0, m → ∞


as assumed, such that G(0) = G(2π). As noted in the proof of Theorem 2 above, under the
given conditions Gm(x) ∈ L1(I), m ∈ N and Gm(x) → G(x) in L1(I) as m → ∞. By means
of (6.34), we have


∥Gm,n −Gn∥l∞ ≤ 1√
2π


∥Gm(x)−G(x)∥L1(I) → 0, m → ∞, (6.50)


such that
Gm,n → Gn, m → ∞


in l∞. Let us first address case a) when a > 0, a ̸= n2, n ∈ Z. Part a) of Lemma A3 of [20]
implies that Na < ∞. We define


γ := minn∈Z|n2 − a| > 0.


Apparently,∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞


≤ 1√
2πγ


∥Gm(x)−G(x)∥L1(I) → 0, m → ∞,


such that
Gm,n


n2 − a
→ Gn


n2 − a
, m → ∞


in l∞. A trivial calculation yields


n2Gm,n


n2 − a
− n2Gn


n2 − a
= Gm,n −Gn + a


Gm,n −Gn


n2 − a
,


such that∥∥∥∥n2Gm,n


n2 − a
− n2Gn


n2 − a


∥∥∥∥
l∞


≤ ∥Gm,n −Gn∥l∞ + a


∥∥∥∥ Gm,n


n2 − a
− Gn


n2 − a


∥∥∥∥
l∞


→ 0, m → ∞.
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Hence
n2Gm,n


n2 − a
→ n2Gn


n2 − a
, m → ∞ (6.51)


in l∞. Therefore, (6.40) holds by means of the triangle inequality. We obtain (6.41) via an
easy limiting argument.


Then we turn our attention to establishing part b) of the lemma. By virtue of the limiting
argument analogous to the proof of (6.16), we derive(


G(x),
e±in0x


√
2π


)
L2(I)


= 0. (6.52)


Then Nn2
0
< ∞ due to part b) of Lemma A3 of [20]. We obtain∥∥∥∥ Gm,n


n2 − n2
0


− Gn


n2 − n2
0


∥∥∥∥
l∞


≤
∥Gm(x)−G(x)∥L1(I)√


2π(2n0 − 1)
→ 0, m → ∞,


such that
Gm,n


n2 − n2
0


→ Gn


n2 − n2
0


, m → ∞


in l∞. Note that Gm,±n0 , m ∈ N and G±n0 vanish due to orthogonality conditions (6.42) and
(6.52). Similarly to the proof of (6.51) above, we obtain


n2Gm,n


n2 − n2
0


→ n2Gn


n2 − n2
0


, m → ∞


in l∞. By virtue of the triangle inequality, we easily arrive at (6.44). Inequality (6.45) stems
from the trivial limiting argument.


We conclude the proof of the lemma with considering case c). The limiting argument
analogous to the proof of (6.16) yields


(G(x), 1)L2(I) = 0. (6.53)


Part c) of Lemma A3 of [20] gives us N0 < ∞. Evidently,∥∥∥∥Gm,n


n2
− Gn


n2


∥∥∥∥
l∞


≤ 1√
2π


∥Gm(x)−G(x)∥L1(I) → 0, m → ∞.


Note that Gm,0, m ∈ N and G0 vanish due to orthogonality conditions (6.46) and (6.53).
Hence,


Gm,n


n2
→ Gn


n2
, m → ∞


in l∞. The triangle inequality yields (6.48). Inequality (6.49) is a result of a simple limiting
argument.
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Let G(x) be a function on the product of spaces studied in Theorem 3, G(x) : Ω =
I × Rd → R, d = 1, 2, G(0, x⊥) = G(2π, x⊥) for x⊥ ∈ Rd a.e. and its Fourier transform on
the product of spaces is given by


Ĝn(p) :=
1


(2π)
d+1
2


∫
Rd


dx⊥e
−ipx⊥


∫ 2π


0


G(x1, x⊥)e
−inx1dx1, p ∈ Rd, n ∈ Z (6.54)


such that for the norm


∥Ĝn(p)∥L∞
n,p


:= sup{p∈Rd, n∈Z}|Ĝn(p)| ≤
1


(2π)
d+1
2


∥G(x)∥L1(Ω) (6.55)


and G(x) =
1


(2π)
d+1
2


∞∑
n=−∞


∫
Rd


Ĝn(p)e
ipx⊥einx1dp. It is also useful to consider the Fourier


transform only in the first variable, such that


Gn(x⊥) :=


∫ 2π


0


G(x1, x⊥)
e−inx1


√
2π


dx1, n ∈ Z.


Evidently, under the assumptions of Theorem 3 by means of (6.55), we have


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


≤ 1


(2π)
d+1
2


∥Gm(x)−G(x)∥L1(Ω) → 0, m → ∞. (6.56)


We define the auxiliary quantities for a ≥ 0


ξan(p) :=
Ĝn(p)


p2 + n2 − a
, ξam,n(p) :=


Ĝm,n(p)


p2 + n2 − a
, m ∈ N (6.57)


and introduce for m ∈ N


Ma, m := max{∥ξam,n(p)∥L∞
n,p
, ∥(p2 + n2)ξam,n(p)∥L∞


n,p
} (6.58)


if a > 0 and


M0, m := max


{∥∥∥∥Ĝm,n(p)


p2 + n2


∥∥∥∥
L∞
n,p


, ∥Ĝm,n(p)∥L∞
n,p


}
(6.59)


when a = 0. Similarly, in the limiting case we define


Ma := max{∥ξan(p)∥L∞
n,p
, ∥(p2 + n2)ξan(p)∥L∞


n,p
} (6.60)


when a > 0 and


M0 := max


{∥∥∥∥ Ĝn(p)


p2 + n2


∥∥∥∥
L∞
n,p


, ∥Ĝn(p)∥L∞
n,p


}
(6.61)


if a = 0. Here the momentum vector p ∈ Rd.
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Lemma A4. Let the assumptions of Theorem 3 hold, a = 0 and for all m ∈ N


(Gm(x), 1)L2(Ω) = 0, (Gm(x), x⊥, k)L2(Ω) = 0, 1 ≤ k ≤ d, d = 1, 2. (6.62)


Then
Ĝm,n(p)


p2 + n2
→ Ĝn(p)


p2 + n2
, Ĝm,n(p) → Ĝn(p), m → ∞ (6.63)


in L∞
n,p, such that∥∥∥∥Ĝm,n(p)


p2 + n2


∥∥∥∥
L∞
n,p


→
∥∥∥∥ Ĝn(p)


p2 + n2


∥∥∥∥
L∞
n,p


, ∥Ĝm,n(p)∥L∞
n,p


→ ∥Ĝn(p)∥L∞
n,p
, m → ∞. (6.64)


Moreover, √
2(2π)


d+1
2 M0l ≤ 1− ε (6.65)


holds.


Proof. Evidently, ∥G(0, x⊥)−G(2π, x⊥)∥L∞(Rd) can be bounded above by


∥G(0, x⊥)−Gm(0, x⊥)∥L∞(Rd) + ∥Gm(2π, x⊥)−G(2π, x⊥)∥L∞(Rd) → 0, m → ∞


as assumed, such that G(0, x⊥) = G(2π, x⊥) for x⊥ ∈ Rd a.e.. The anologous reasoning is
valid for Lemmas A5 and A6 below. A trivial limiting argument similar to the proof of (6.32)
gives us


(G(x), 1)L2(Ω) = 0, (G(x), x⊥, k)L2(Ω) = 0, 1 ≤ k ≤ d, d = 1, 2. (6.66)


By means of the result of Lemma A4 of [20], we obtain M0 < ∞. We express


Ĝm,n(p)


p2 + n2
− Ĝn(p)


p2 + n2


as
Ĝm,n(p)− Ĝn(p)


p2 + n2
χ{p∈Rd, n=0} +


Ĝm,n(p)− Ĝn(p)


p2 + n2
χ{p∈Rd, n∈Z, n ̸=0}. (6.67)


Clearly, the second term in (6.67) can be bounded above in the absolute value by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


→ 0, m → ∞


due to (6.56). Let us write the first term in (6.67) as


Ĝm,0(p)− Ĝ0(p)


p2
χ{|p|≤1} +


Ĝm,0(p)− Ĝ0(p)


p2
χ{|p|>1}. (6.68)


Using (6.56), we estimate the second term in (6.68) from above in the norm as∥∥∥∥Ĝm,0(p)− Ĝ0(p)


p2
χ{|p|>1}


∥∥∥∥
L∞
n,p


≤ 1


(2π)
d+1
2


∥Gm(x)−G(x)∥L1(Ω) → 0, m → ∞
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as assumed. Let us first study the first term in (6.68) in dimension d = 1. By virtue of
relations (6.62) and (6.66), we have


Ĝ0(0) = 0,
dĜ0


dp
(0) = 0, Ĝm,0(0) = 0,


dĜm,0


dp
(0) = 0, m ∈ N.


This yields the representations


Ĝ0(p) =


∫ p


0


(∫ s


0


d2Ĝ0(q)


dq2
dq


)
ds, Ĝm,0(p) =


∫ p


0


(∫ s


0


d2Ĝm,0(q)


dq2
dq


)
ds, m ∈ N.


Our definition (6.54) of the Fourier transform easily implies the upper bound∣∣∣∣d2Ĝm,0(p)


dp2
− d2Ĝ0(p)


dp2


∣∣∣∣ ≤ 1


2π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω).


Therefore,


|Ĝm,0(p)− Ĝ0(p)| ≤
1


2π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω)


p2


2
,


such that∥∥∥∥Ĝm,0(p)− Ĝ0(p)


p2
χ{|p|≤1}


∥∥∥∥
L∞
n,p


≤ 1


4π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω) → 0, m → ∞


due to one of our assumptions. Finally, we consider the case of the dimension d = 2. By
virtue of conditions (6.62) and (6.66), we derive


Ĝ0(0) = 0,
∂Ĝ0


∂|p|
(0, σ) = 0, Ĝm,0(0) = 0,


∂Ĝm,0


∂|p|
(0, σ) = 0, m ∈ N,


such that


Ĝ0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝ0


∂q2
(q, σ)dq


)
ds, Ĝm,0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝm,0


∂q2
(q, σ)dq


)
ds, m ∈ N.


Using definition (6.54) of the Fourier transform, we arrive at∣∣∣∣∂2Ĝm,0


∂|p|2
(|p|, σ)− ∂2Ĝ0


∂|p|2
(|p|, σ)


∣∣∣∣ ≤ 1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω).


Hence


|Ĝm,0(p)− Ĝ0(p)| ≤
1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω)


p2


2
.


Therefore, we arrive at∥∥∥∥Ĝm,0(p)− Ĝ0(p)


p2
χ{|p|≤1}


∥∥∥∥
L∞
n,p


≤ 1


2(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω) → 0, m → ∞
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according to one of our assumptions. Hence


Ĝm,n(p)


p2 + n2
→ Ĝn(p)


p2 + n2
, m → ∞


in L∞
n,p in dimensions d = 1, 2. Using the triangle inequality, we easily obtain (6.64). A


trivial limiting argument yields (6.65).


Next we turn our attention to the cases when the parameter a does not vanish.


Lemma A5. Let the conditions of Theorem 3 hold, a = n2
0, n0 ∈ N and for all m ∈ N(


Gm(x1, x⊥),
einx1


√
2π


e±i
√


n2
0−n2x⊥


√
2π


)
L2(Ω)


= 0, |n| ≤ n0 − 1, d = 1, (6.69)


(
Gm(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)
L2(Ω)


= 0, p ∈ S2√
n2
0−n2


a.e., |n| ≤ n0 − 1, d = 2, (6.70)(
Gm(x1, x⊥),


e±in0x1


√
2π


)
L2(Ω)


= 0,


(
Gm(x1, x⊥),


e±in0x1


√
2π


x⊥, k


)
L2(Ω)


= 0, 1 ≤ k ≤ d.


(6.71)
Then


ξn
2
0


m,n(p) → ξn
2
0


n (p), (p2 + n2)ξn
2
0


m,n(p) → (p2 + n2)ξn
2
0


n (p), m → ∞ (6.72)


in L∞
n,p, such that when m → ∞


∥ξn2
0


m,n(p)∥L∞
n,p


→ ∥ξn2
0


n (p)∥L∞
n,p
, ∥(p2 + n2)ξn


2
0


m,n(p)∥L∞
n,p


→ ∥(p2 + n2)ξn
2
0


n (p)∥L∞
n,p
. (6.73)


Moreover, √
2(2π)


d+1
2 Mn2


0
l ≤ 1− ε (6.74)


holds.


Proof. Apparently, (6.73) will follow from (6.72) by virtue of the standard triangle
inequality. Let us prove that the first statement in (6.72) will yield the second one. Indeed,
it can be trivially shown that


(p2 + n2)ξn
2
0


m,n(p)− (p2 + n2)ξn
2
0


n (p) = [Ĝm,n(p)− Ĝn(p)] + n2
0[ξ


n2
0


m,n(p)− ξn
2
0


n (p)],


such that due to (6.56)


∥(p2+n2)ξn
2
0


m,n(p)−(p2+n2)ξn
2
0


n (p)∥L∞
n,p


≤ ∥Ĝm,n(p)−Ĝn(p)∥L∞
n,p


+n2
0∥ξn


2
0


m,n(p)−ξn
2
0


n (p)∥L∞
n,p


→ 0,


m → ∞. By means of the elementary limiting argument, similarly to the proof of (6.66), we
derive (


G(x1, x⊥),
einx1


√
2π


e±i
√


n2
0−n2x⊥


√
2π


)
L2(Ω)


= 0, |n| ≤ n0 − 1, d = 1, (6.75)
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(
G(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)
L2(Ω)


= 0, p ∈ S2√
n2
0−n2


a.e., |n| ≤ n0 − 1, d = 2, (6.76)(
G(x1, x⊥),


e±in0x1


√
2π


)
L2(Ω)


= 0,


(
G(x1, x⊥),


e±in0x1


√
2π


x⊥, k


)
L2(Ω)


= 0, 1 ≤ k ≤ d. (6.77)


Note that it can be easily checked that


x⊥Gm(x) → x⊥G(x), m → ∞ (6.78)


in L1(Ω) under the given conditions. Indeed, ∥x⊥Gm(x)−x⊥G(x)∥L1(Ω) can be expressed as∫ 2π


0


dx1


∫
|x⊥|≤1


|x⊥||Gm(x)−G(x)|dx⊥ +


∫ 2π


0


dx1


∫
|x⊥|>1


|x⊥||Gm(x)−G(x)|dx⊥ ≤


≤ ∥Gm(x)−G(x)∥L1(Ω) + ∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω) → 0, m → ∞
as assumed. By the similar reasoning, it can be trivially shown that


∥x⊥Gm(x)∥L1(Ω) ≤ ∥Gm(x)∥L1(Ω) + ∥x2
⊥Gm(x)∥L1(Ω) < ∞, m ∈ N


due to our assumptions, such that x⊥Gm(x), x⊥G(x) ∈ L1(Ω). By virtue of the result of
Lemma A5 of [20], we obtain Mn2


0
< ∞. Inequality (6.74) can be easily established via a


limiting argument.


Let us use the representation of ξ
n2
0


m,n(p)− ξ
n2
0


n (p), m ∈ N, n ∈ Z, p ∈ Rd as the sum


[ξn
2
0


m,n(p)− ξn
2
0


n (p)]χ{p∈Rd, |n|>n0} + [ξn
2
0


m,n(p)− ξn
2
0


n (p)]χ{p∈Rd, |n|<n0}+


+[ξn
2
0


m,n(p)− ξn
2
0


n (p)]χ{p∈Rd, n=n0} + [ξn
2
0


m,n(p)− ξn
2
0


n (p)]χ{p∈Rd, n=−n0}. (6.79)


Evidently, the first term in (6.79) can be estimated from above in the absolute value by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


→ 0, m → ∞


by virtue of (6.56). Let us first study the third term in (6.79) in dimension d = 1. Orthogo-
nality conditons (6.71) and (6.77) imply that


Ĝn0(0) = 0,
dĜn0


dp
(0) = 0, Ĝm,n0(0) = 0,


dĜm,n0


dp
(0) = 0, m ∈ N,


such that


Ĝn0(p) =


∫ p


0


(∫ s


0


d2Ĝn0(q)


dq2
dq


)
ds, Ĝm,n0(p) =


∫ p


0


(∫ s


0


d2Ĝm,n0(q)


dq2
dq


)
ds, m ∈ N.


Definition (6.54) of our Fourier transform easily yields the upper bound∣∣∣∣d2Ĝm,n0(p)


dp2
− d2Ĝn0(p)


dp2


∣∣∣∣ ≤ 1


2π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω).
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Hence, we obtain


|Ĝm,n0(p)− Ĝn0(p)| ≤
p2


4π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω).


Therefore, when the dimension d = 1, the third term in (6.79) can be bounded from above
in the absolute value by


1


4π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω) → 0, m → ∞


due to one of our assumptions. Then we turn our attention to the analogous estimates on
the third term in (6.79) in dimension d = 2. By means of orthogonality conditions (6.71)
and (6.77), we arrive at


Ĝn0(0) = 0,
∂Ĝn0


∂|p|
(0, σ) = 0, Ĝm,n0(0) = 0,


∂Ĝm,n0


∂|p|
(0, σ) = 0, m ∈ N.


This yields the representations


Ĝn0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝn0(q, σ)


∂q2
dq


)
ds, Ĝm,n0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝm,n0(q, σ)


∂q2
dq


)
ds,


with m ∈ N. By virtue of our definition of the Fourier transform (6.54), we easily estimate∣∣∣∣∂2Ĝm,n0(|p|, σ)
∂|p|2


− ∂2Ĝn0(|p|, σ)
∂|p|2


∣∣∣∣ ≤ 1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω).


This enables us to obtain the upper bound


|Ĝm,n0(p)− Ĝn0(p)| ≤
1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω)


p2


2
.


Therefore, the third term in (6.79) in dimension d = 2 can be estimated from above in the
absolute value by


1


2(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω) → 0, m → ∞


as assumed. Then we turn our attention to the studies of the fourth term of (6.79), first in
dimension d = 1. Orthogonality conditions (6.71) and (6.77) enable us to obtain


Ĝ−n0(0) = 0,
dĜ−n0


dp
(0) = 0, Ĝm,−n0(0) = 0,


dĜm,−n0


dp
(0) = 0, m ∈ N.


Thus


Ĝ−n0(p) =


∫ p


0


(∫ s


0


d2Ĝ−n0(q)


dq2
dq


)
ds, Ĝm,−n0(p) =


∫ p


0


(∫ s


0


d2Ĝm,−n0(q)


dq2
dq


)
ds,
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withm ∈ N. Definition (6.54) of our Fourier transform easily implies the estimate from above∣∣∣∣d2Ĝm,−n0(p)


dp2
− d2Ĝ−n0(p)


dp2


∣∣∣∣ ≤ 1


2π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω).


Thus, we derive


|Ĝm,−n0(p)− Ĝ−n0(p)| ≤
p2


4π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω).


Hence, when the dimension d = 1, the fourth term in (6.79) can be estimated from above in
the absolute value by


1


4π
∥x2


⊥Gm(x)− x2
⊥G(x)∥L1(Ω) → 0, m → ∞


via one of our assumptions. Then we perform the similar estimates on the fourth term in
(6.79) when the dimension d = 2. By virtue of orthogonality relations (6.71) and (6.77), we
derive


Ĝ−n0(0) = 0,
∂Ĝ−n0


∂|p|
(0, σ) = 0, Ĝm,−n0(0) = 0,


∂Ĝm,−n0


∂|p|
(0, σ) = 0, m ∈ N.


This gives us the representations


Ĝ−n0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝ−n0(q, σ)


∂q2
dq


)
ds, Ĝm,−n0(p) =


∫ |p|


0


(∫ s


0


∂2Ĝm,−n0(q, σ)


∂q2
dq


)
ds,


with m ∈ N. By means of our definition of the Fourier transform (6.54), we easily estimate∣∣∣∣∂2Ĝm,−n0(|p|, σ)
∂|p|2


− ∂2Ĝ−n0(|p|, σ)
∂|p|2


∣∣∣∣ ≤ 1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω).


This allows us to derive the upper bound


|Ĝm,−n0(p)− Ĝ−n0(p)| ≤
1


(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω)


p2


2
.


Hence, the fourth term in (6.79) in dimension d = 2 can be bounded from above in the
absolute value by


1


2(2π)
3
2


∥x2
⊥Gm(x)− x2


⊥G(x)∥L1(Ω) → 0, m → ∞


due to one of the assumptions. Finally, it remains to treat the second term in (6.79). Let us
consider the situation when the dimension d = 1 first. With a slight abuse of notations, for
all |n| ≤ n0 − 1, we introduce 0 < γ <


√
n2
0 − n2 and define the intervals on the real line


I+n,γ :=


[√
n2
0 − n2 − γ,


√
n2
0 − n2 + γ


]
, I−n,γ :=


[
−


√
n2
0 − n2 − γ,−


√
n2
0 − n2 + γ


]
,
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such that Icn,γ will stand for the complement of I+n,γ ∪ I−n,γ. Let us first consider the term


Ĝm,n(p)− Ĝn(p)


p2 − (n2
0 − n2)


χI+n,γ
, |n| ≤ n0 − 1. (6.80)


Orthogonality relations (6.69) and (6.75) imply for |n| ≤ n0 − 1 that


Ĝn


(√
n2
0 − n2


)
= 0, Ĝm,n


(√
n2
0 − n2


)
= 0, m ∈ N,


such that we can write


Ĝn(p) =


∫ p


√
n2
0−n2


dĜn(s)


ds
ds, Ĝm,n(p) =


∫ p


√
n2
0−n2


dĜm,n(s)


ds
ds, m ∈ N, |n| ≤ n0 − 1.


By virtue of definition (6.54) of our Fourier transform, we obtain∣∣∣∣dĜm,n(p)


dp
− dĜn(p)


dp


∣∣∣∣ ≤ 1


2π
∥x⊥Gm(x)− x⊥G(x)∥L1(Ω), (6.81)


such that


|Ĝm,n(p)− Ĝn(p)| ≤
1


2π
∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


∣∣∣∣p−√
n2
0 − n2


∣∣∣∣, m ∈ N, |n| ≤ n0 − 1.


This enables us to estimate (6.80) in the absolute value from above by


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


2π(2
√
2n0 − 1− γ)


→ 0, m → ∞


due to (6.78) with 0 < γ <
√
2n0 − 1. Similarly, we treat the term


Ĝm,n(p)− Ĝn(p)


p2 − (n2
0 − n2)


χI−n,γ
, |n| ≤ n0 − 1. (6.82)


Orthogonality conditions (6.69) and (6.75) give us for |n| ≤ n0 − 1 that


Ĝn


(
−
√


n2
0 − n2


)
= 0, Ĝm,n


(
−


√
n2
0 − n2


)
= 0, m ∈ N.


This enables us to express


Ĝn(p) =


∫ p


−
√


n2
0−n2


dĜn(s)


ds
ds, Ĝm,n(p) =


∫ p


−
√


n2
0−n2


dĜm,n(s)


ds
ds, m ∈ N, |n| ≤ n0 − 1


31







and to bound (6.82) in the absolute value from above by


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


2π(2
√
2n0 − 1− γ)


→ 0, m → ∞


via (6.78). Finally for the studies in dimension d = 1, we consider the term


Ĝm,n(p)− Ĝn(p)


p2 − (n2
0 − n2)


χIcn,γ
, |n| ≤ n0 − 1. (6.83)


Evidently, (6.83) can be estimated from above in the absolute value by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


γ2
→ 0, m → ∞


by means of (6.56). Let us conclude the proof of the lemma with the studies of the second
term in (6.79) when the dimension d = 2. For |n| ≤ n0 − 1 we introduce the sets


An,γ :=


{
p ∈ R2 |


√
n2
0 − n2 − γ ≤ |p| ≤


√
n2
0 − n2 + γ


}
with 0 < γ <


√
2n0 − 1. Let us first analyze the term


Ĝm,n(p)− Ĝn(p)


p2 − (n2
0 − n2)


χAc
n,γ


, |n| ≤ n0 − 1.


Evidently, it can be trivially estimated from above in the absolute value by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


γ
√
2n0 − 1


→ 0, m → ∞


due to (6.56). At last, let us treat the term


Ĝm,n(p)− Ĝn(p)


p2 − (n2
0 − n2)


χAn,γ , |n| ≤ n0 − 1. (6.84)


Orthogonality conditions (6.70) and (6.76) imply that for |n| ≤ n0 − 1


Ĝn


(√
n2
0 − n2, σ


)
= 0, Ĝm,n


(√
n2
0 − n2, σ


)
= 0, m ∈ N,


which enables us to express


Ĝn(p) =


∫ |p|


√
n2
0−n2


∂Ĝn(s, σ)


∂s
ds, Ĝm,n(p) =


∫ |p|


√
n2
0−n2


∂Ĝm,n(s, σ)


∂s
ds, m ∈ N,
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with |n| ≤ n0 − 1. By virtue of our definition (6.54), we easily arrive at∣∣∣∣∂Ĝm,n(p)


∂|p|
− ∂Ĝn(p)


∂|p|


∣∣∣∣ ≤ 1


(2π)
3
2


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω). (6.85)


This allows us to estimate expression (6.84) from above in the absolute value by


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


(2π)
3
2


√
2n0 − 1


→ 0, m → ∞


in dimension d = 2 due to (6.78). Therefore, (6.72) holds.


We conclude the article with the studies of the case when the parameter a is located on
an open interval between the squares of two consecutive nonnegative integers.


Lemma A6. Let the assumptions of Theorem 3 hold, n2
0 < a < (n0 + 1)2, n0 ∈ Z+ =


N ∪ {0} and for all m ∈ N(
Gm(x1, x⊥),


einx1


√
2π


e±i
√
a−n2x⊥


√
2π


)
L2(Ω)


= 0, |n| ≤ n0, d = 1, (6.86)


(
Gm(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)
L2(Ω)


= 0, p ∈ S2√
a−n2 a.e., |n| ≤ n0, d = 2. (6.87)


Then
ξam,n(p) → ξan(p), (p2 + n2)ξam,n(p) → (p2 + n2)ξan(p), m → ∞ (6.88)


in L∞
n,p, such that when m → ∞


∥ξam,n(p)∥L∞
n,p


→ ∥ξan(p)∥L∞
n,p
, ∥(p2 + n2)ξam,n(p)∥L∞


n,p
→ ∥(p2 + n2)ξan(p)∥L∞


n,p
. (6.89)


Moreover, √
2(2π)


d+1
2 Mal ≤ 1− ε (6.90)


holds.


Proof. Obviously, (6.89) will follow from (6.88) by means of the standard triangle in-
equality. Let us show that the first statement in (6.88) will imply the second one. Indeed, it
can be easily verified that


(p2 + n2)ξam,n(p)− (p2 + n2)ξan(p) = [Ĝm,n(p)− Ĝn(p)] + a[ξam,n(p)− ξan(p)],


such that via (6.56)


∥(p2+n2)ξam,n(p)− (p2+n2)ξan(p)∥L∞
n,p


≤ ∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


+a∥ξam,n(p)− ξan(p)∥L∞
n,p


→ 0,
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m → ∞. By virtue of the trivial limiting argument, similarly to the proof of (6.16), we arrive
at (


G(x1, x⊥),
einx1


√
2π


e±i
√
a−n2x⊥


√
2π


)
L2(Ω)


= 0, |n| ≤ n0, d = 1, (6.91)(
G(x1, x⊥),


einx1


√
2π


eipx⊥


2π


)
L2(Ω)


= 0, p ∈ S2√
a−n2 a.e., |n| ≤ n0, d = 2. (6.92)


Then by means of the result of Lemma A6 of [20], we have Ma < ∞. Let us express
ξam,n(p)− ξan(p) as the sum of two terms


Ĝm,n(p)− Ĝn(p)


p2 + n2 − a
χ{p∈Rd, n∈Z, |n|≥n0+1} +


Ĝm,n(p)− Ĝn(p)


p2 + n2 − a
χ{p∈Rd, n∈Z, |n|≤n0}, (6.93)


such that the absolute value of the first one can be estimated from above by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


(n0 + 1)2 − a
→ 0, m → ∞


due to (6.56). Let us first study the second term in (6.93) when the dimension d = 1.
Orthogonality relations (6.86) and (6.91) with |n| ≤ n0 yield


Ĝn(±
√
a− n2) = 0, Ĝm,n(±


√
a− n2) = 0, m ∈ N,


such that we have the representations for |n| ≤ n0


Ĝn(p) =


∫ p


±
√
a−n2


dĜn(s)


ds
ds, Ĝm,n(p) =


∫ p


±
√
a−n2


dĜm,n(s)


ds
ds, m ∈ N. (6.94)


With a slight abuse of notations, let us introduce 0 < γ <
√
a− n2 for all |n| ≤ n0 and


related to it the intervals on the real line


I+n,γ := [
√
a− n2 − γ,


√
a− n2 + γ], I−n,γ := [−


√
a− n2 − γ,−


√
a− n2 + γ].


Their union on the real line will be denoted as In,γ := I+n,γ ∪ I−n,γ and the complement is Icn,γ,
such that R = I+n,γ ∪ I−n,γ ∪ Icn,γ. Therefore, for |n| ≤ n0, it remains to study the sum of the
three terms


Ĝm,n(p)− Ĝn(p)


p2 − (a− n2)
χI+n,γ


+
Ĝm,n(p)− Ĝn(p)


p2 − (a− n2)
χI−n,γ


+
Ĝm,n(p)− Ĝn(p)


p2 − (a− n2)
χIcn,γ


. (6.95)


Evidently, the last term in (6.95) can be easily estimated in the absolute value from above
by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p


γ2
→ 0, m → ∞
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via (6.56). The first term in (6.95) can be bounded from above in the absolute value using
(6.94) along with (6.81) by


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


2π(2
√
a− n2


0 − γ)
→ 0, m → ∞


due to one of our assumptions with 0 < γ <
√
a− n2


0. Apparently, the second term in (6.95)
can be estimated similarly to the first one. Therefore, (6.88) holds when the dimension
d = 1.


Let us conclude the proof of the lemma by treating the case of d = 2. By virtue of
orthogonality conditions (6.87) and (6.92), for |n| ≤ n0 we have


Ĝn(
√
a− n2, σ) = 0, Ĝm,n(


√
a− n2, σ) = 0, m ∈ N.


This yields the representations for |n| ≤ n0


Ĝn(p) =


∫ |p|


√
a−n2


∂Ĝn(s, σ)


∂s
ds, Ĝm,n(p) =


∫ |p|


√
a−n2


∂Ĝm,n(s, σ)


∂s
ds, m ∈ N. (6.96)


With a slight abuse of notations, we introduce 0 < δ <
√
a− n2 for all |n| ≤ n0 and define


the sets
An,δ := {p ∈ R2 |


√
a− n2 − δ ≤ |p| ≤


√
a− n2 + δ}, |n| ≤ n0.


The complement of An,δ on the plane is denoted as Ac
n,δ. Thus, for |n| ≤ n0 it remains to


study the sum of the two terms


Ĝm,n(p)− Ĝn(p)


p2 − (a− n2)
χAn,δ


+
Ĝm,n(p)− Ĝn(p)


p2 − (a− n2)
χAc


n,δ
. (6.97)


Clearly, the second term in (6.97) can be estimated from above in the absolute value by


∥Ĝm,n(p)− Ĝn(p)∥L∞
n,p√


a− n2
0δ


→ 0, m → ∞


due to (6.56). By virtue of (6.96) along with (6.85), the first term in (6.97) can be bounded
from above in the absolute value by


∥x⊥Gm(x)− x⊥G(x)∥L1(Ω)


(2π)
3
2


√
a− n2


0


→ 0, m → ∞


as assumed. This proves that (6.88) holds when the dimension d = 2 as well. A straightfor-
ward limiting argument gives us (6.90).
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