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1. Introduction


Quantum graphs are one of the fast developing areas of quantum physics, the interest


to them being driven both by their ‘practical’ use in modeling nanostructures and other







Periodic quantum graphs from the Bethe–Sommerfeld perspective 2


physical objects, as well as by theoretical reasons. They allow us to understand better


various quantum effects by analyzing them in the situation where the configuration


space has nontrivial geometrical and topological properties. The literature concerning


quantum graphs is extensive and we limit ourselves to referring the reader to the recent


monograph [2] as a guide to further ilumination.


While the quantum graph Hamiltonians describing particles ‘living’ on a metric


graph share many properties with the ‘usual’ Schrödinger operators, this analogy is far


from being complete; a well-known example is the failure of the unique continuation


property [2, Sec. 3.4] that makes possible, for instance, the existence of compactly


supported eigenfunctions on infinite graphs. This concerns, in particular, infinite


periodic graphs the spectrum of which may not be purely absolutely continuous


containing flat bands, or infinitely degenerate eigenvalues, and it is even possible that


the absolutely continuous part is empty as is the case for magnetic chain graphs with a


half-of-the-quantum flux through each chain element [10, Thm 2.3].


Our goal in this paper is to investigate Hamiltonians of infinite periodic graphs


from another point of view, namely the number of open gaps in their spectra. To begin


with we recall the Bethe–Sommerfeld conjecture [20] put forward in the early days of


the quantum theory, according to which a quantum system periodic in more than one


direction — with a slight abuse of terminology one usually speaks of Zν-periodicity with


ν ≥ 2 — has a finite number of open gaps in the spectrum only. The reasoning behind


the conjecture is based on the behavior of the spectral bands identified with the ranges


of the dispersion curves or surfaces. Those at most touch for Z-periodic systems while


in higher dimensions they typically overlap making opening of gaps more and more


difficult as we proceed to higher energies. This looked convincing and the property was


taken for granted, although mathematically it proved to be a rather hard problem and it


took decades before an affirmative answer was obtained for most cases of the ‘ordinary’


Schrödinger operators — see, for instance, [6, 11, 14, 18, 19] and references therein.


Discussing this question in the context of quantum graphs, the authors of [2] recall


the above mentioned heuristic argument (Sec. 4.7), however, they add immediately that


this is not a ‘strict law’; in Sec. 5.1 of [2] they illustrate this claim by examples of periodic


graphs with an infinite number of resonant gaps created by a graph ‘decoration’, the


effect noticed first in the context of discrete graphs [16] and later verified also for metric


graphs. In other words, we have examples of numerous situations in which the claim


represented by the BS conjecture is false. The question thus arise whether it is a ‘law’ at


all, that is, whether there are infinite periodic graphs having a finite nonzero number of


open gaps above the threshold of the spectrum. This is the topic we are going to discuss


in the present paper; for the brevity of expression we will speak of those graphs as of


graphs belonging to the Bethe–Sommerfeld class, or simply Bethe–Sommerfeld graphs.


We have two main conclusions. The first one concerns the fact that the said property


is sensitive to the type of vertex coupling. Recall that the standard coupling conditions


(U − I)Ψ + i(U + I)Ψ′ = 0 , (1.1)
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where Ψ, Ψ′ are vectors of values and derivatives at the vertex, U is an n × n unitary


matrix, where n is the degree of the vertex, can be decomposed into the Dirichlet,


Neumann, and Robin parts [2, Thm. 1.4.4] corresponding to the eigenspaces of U


referring to eigenvalues −1, 1, and the rest, respectively; if the latter is absent we call


such a coupling for obvious reasons scale-invariant.


Theorem 1.1. An infinite periodic quantum graph does not belong to the Bethe–


Sommerfeld class if the couplings at its vertices are scale-invariant.


In fact, one can make a stronger claim. Given a graph with general couplings we


consider the same graph with the couplings made scale-invariant by removing the Robin


component in the way described in Sec. 2.6. If the latter has at least one gap open, the


original one is not of the Bethe–Sommerfeld class, cf. Proposition 2.6 below.


On the other hand, we are going to demonstrate that the said class is nonempty.


Our second main result in this paper is expressed in the following claim.


Theorem 1.2. Bethe–Sommerfeld graphs exist.


As it is usually the case with existence claims it is sufficient to present an example.


With this aim we revisit in the second part of the paper the model introduced in [7] and


further discussed in [8, 9] describing a periodic lattice whose basic cell is a rectangle of


the side ratio θ and the coupling in the vertices is of the δ-type with a coupling constant


α ∈ R. It was shown in the mentioned papers that the spectral properties of such a


quantum graph depend on the number-theoretical properties of the ratio θ. Here we


are going to demonstrate that if θ is badly approximable by rationals, there are values


of α for which this graph belongs to the Bethe–Sommerfeld class. More than that, our


construction makes it possible to find values of α for which the lattice graph in question


has any prescribed number of gaps.


Before closing the introduction, let us recall that there are examples of the ‘usual’


Schrödinger operators where the question about validity of the conjecture remains open,


a prominent example being Laplacian in a periodically curved tube or a Schrödinger


operator in a straight tube with a Z-periodic potential. These systems are sometimes


said to have a ‘mixed dimensionality’ even if they are obviously periodic in one direction


only, however they have a ‘two-dimensional’ feature, namely that in the absence of


potential or the deformation they have intersecting dispersion curves, which could


suggest a BS-type behaviour. An analogue of such systems in the present context are


Z-periodic graphs with period cells connected by more than a single link for which the


question about the Bethe-Sommerfeld property remains also open.


2. Absence of the Bethe–Sommerfeld property


In this section we are going to prove Theorem 1.1 and its generalization.
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2.1. The ST-form of the coupling


As it is common in the quantum graph theory the Hamiltonians we consider act as the


(negative) second derivative on the graph edges with the domain consisting of functions


which belong locally to the second Sobolev space and satisfy suitable coupling conditions


at the vertices. For the purposes of the argument it is useful to replace the vertex


condition (1.1) by an equivalent form proposed in [4] and referred to as the ST-form.


Given a vertex of degree n, the vectors Ψ and Ψ′ in Cn will again stand for the boundary


values in the vertex,


Ψ :=


 ψ1(0)
...


ψn(0)


 , Ψ′ :=


 ψ′1(0)
...


ψ′n(0)


 ,


where the limits of the first derivatives are conventionally taken in the outward direction.


The coupling condition at the vertex can be then written in the form(
I(r) T


0 0


)
Ψ′ =


(
S 0


−T ∗ I(n−r)


)
Ψ (2.1)


for certain r, S, and T , where the symbol I(r) denotes the identity matrix of order r and


the matrix S is Hermitian. The condition (2.1) allows us to single out scale-invariant


couplings; it is easy to see that the coupling has this property if and only if S = 0 [5].


In particular, the on-shell scattering matrix S(k) for the vertex in question is in the


ST -formalism given by


S(k) = −I(n) + 2


(
I(r)


T ∗


)(
I(r) + TT ∗ − 1


ik
S


)−1 (
I(r) T


)
(2.2)


and it obvious that it is independent of k iff S = 0.


The spectrum is obtained using the Bloch-Floquet theory [2, Sec. 4.2]. We assume


that the graph is locally finite and consider its elementary cell; cutting it out from


the original periodic graph we get a finite family of pairs of ‘antipodal’ vertices related


mutually by the action of the corresponding translation group. Each such pair of vertices


(v−, v+) can be regarded as a single vertex with the boundary conditions


ψ(v+) = eiϑlψ(v−) , ψ′(v+) = eiϑlψ′(v−) (2.3)


for some ϑl ∈ (−π, π], where l = 1, . . . , ν, and ν is the dimension of translation group


associated with graph periodicity. The pair of edges with the endpoints v± can be


turned into a single edge by identifying these endpoints, and the acquired phase ϑl
coming from the conditions (2.3) can be also regarded as being induced by a magnetic


potential. Denoting such a graph Γ and assuming that it has E edges, we consider the


2E × 2E matrices A, L, and S which are defined in the following way. The diagonal


matrix L is determined by the lengths of the directed edges (bonds) of the graph Γ.


The diagonal matrix A has the entries eiϑl or e−iϑl at the positions corresponding to


the edges created by the mentioned vertex identification, all its other entries are zero;
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the sign in the exponents depends on the edge orientation. Finally, the matrix S is the


bond scattering matrix, which contains directed edge-to-edge scattering coefficients. In


this way, each element of the matrix S corresponds to a certain entry of the scattering


matrix at a certain vertex of the elementary cell, cf. [2, eq. (2.1.15)]. Recall that the


bond scattering matrix S is unitary.


This definitions follow the usual treatment of periodic quantum graphs [1]. Having


introduced the matrices A, L, and S, we define the function F (k; ~ϑ) as


F (k; ~ϑ) := det
(
I− ei(A+kL)S(k)


)
; (2.4)


this allows us to write the spectral condition in the form


k2 ∈ σ(H) ⇔ (∃~ϑ ∈ (−π, π]ν)(F (k; ~ϑ) = 0) . (2.5)


Note that the function F (k; ~ϑ) is in general complex, however, one can consider a real-


valued function instead, dividing F (k; ~ϑ) by
√


det(ei(A+kL)S(k)), cf. [2, Rem. 2.1.10].


2.2. Graphs with scale-invariant couplings


Consider first the case of a periodic graph with scale-invariant couplings at all


the vertices. The scale-invariance assumption implies that the scattering matrix


at each graph vertex is independent of k and the same is naturally true for the


matrix S entering formula (2.4). The function value F (k; ~ϑ) thus depends on the


vectors ~ϑ and (k`0, k`1, . . . , k`d), where {`0, `1, . . . , `d}, d + 1 ≤ E, is the set of


mutually different edge lengths of Γ. Moreover, the value F (k; ~ϑ) is 2π-periodic


in each of the terms k`0, k`1, . . . , k`d. As a result, F (k; ~ϑ) depends on the vectors


({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π)) and ~ϑ only, where {`0, `1, . . . , `d}, d + 1 ≤ E, is the


set of mutually different edge lengths of Γ and the symbol {x}(2π) stands for the difference


between x and the nearest integer multiple of 2π, i.e.


{x}(2π) = x− 2πm if x ∈ ((2m− 1)π, (2m+ 1)π] . (2.6)


The spectral condition (2.5) can be, therefore, written in the form


k2 ∈ σ(H0) ⇔
(
∃~ϑ ∈ (−π, π]ν


)(
F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) = 0


)
(for simplicity here and elsewhere in this section the subscript 0 refers to graphs with


scale-invariant couplings).


Proposition 2.1. Let the assumptions given above be satisfied, then the following holds:


(i) If σ(H0) contains a gap, then it contains infinitely many gaps.


(ii) The gaps can be classified into series that have asymptotically constant lengths with


respect to k, thus the gap lengths within a series grow linearly with respect to k2.


(iii) In particular, if all the graph edge lengths are rationally dependent, then the


momentum spectrum is periodic.
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Proof. The easiest part to prove is (iii). If all the lengths are rationally dependent, there


exists an elementary length L > 0 and integers mj ∈ N such that `j = mjL holds for


j = 0, 1, . . . , d. Hence
(
k + 2π


L


)
`j = k`j + 2πmj which implies{(
k +


2π


L


)
`j


}
(2π)


= {k`j}(2π)


for all j = 0, 1, . . . , d. This means that F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) as a


function of k is periodic with period 2π/L, and consequently, the spectrum has a periodic


structure in terms of the momentum.


Next we proceed to the proof of (i). We shall prove that the existence of a k > 0


with property k2 /∈ σ(H0) implies


(∀C > 0)(∃k′ > C)((k′)2 /∈ σ(H0)) .


Since the function k 7→ F (k; ~ϑ) is continuous, it obviously suffices to check that for any


k > 0 and C > 0 there is a k′ > C such that the values k′`j are arbitrarily close to k`j
up to an integer multiple of 2π, more explicitly


(∀k > 0)(∀C > 0)(∀δ > 0)(∃k′ > C)(∀j ∈ {0, 1, . . . , d})
(
| {k′`j − k`j}(2π) | < δ


)
, (2.7)


where the symbol {·}(2π) was defined in (2.6).


We shall prove the claim (2.7) using the simultaneous version of the Dirichlet’s


approximation theorem. First of all, we set


αj =
`j
`0


(2.8)


for all j = 1, . . . , d. The said theorem guarantees for any α1, . . . , αd ∈ R and for any


natural number N the existence of integers p1, . . . , pd, q ∈ Z, 1 ≤ q ≤ N , such that∣∣∣∣αj − pj
q


∣∣∣∣ ≤ 1


qN1/d
. (2.9)


Let k, C and δ be given and choose m as an integer with the property that


m >
`0C


2π
. (2.10)


Once m is fixed, the number N can be taken as any integer satisfying


N >


(
2π


δ
m


)d
. (2.11)


Let q be the integer from the simultaneous version of the Dirichlet’s approximation


theorem corresponding to N chosen according to (2.11). Notice that q depends on N ,


and therefore also on δ. For this q, we define k′δ as follows,


k′δ := k + 2πm
q


`0
.







Periodic quantum graphs from the Bethe–Sommerfeld perspective 7


Our aim is to show that k′δ satisfies the following two conditions:


k′δ > C (2.12)


| {k′δ`j − k`j}(2π) | < δ , j = 0, 1, . . . , d (2.13)


Applying the definition of k′δ, the inequality q ≥ 1 and the assumption (2.10), we get


k′δ = k + 2πm
q


`0
> 2πm


q


`0
≥ 2πm


1


`0
> C ,


in other words, condition (2.12) holds true. Let us proceed to condition (2.13). We have


k′δ`j − k`j = 2πm
q


`0
`j = 2πmqαj ,


where αj was introduced in equation (2.8). Since
∣∣{x}(2π)∣∣ ≤ |x− 2πp| holds obviously


for all x ∈ R and p ∈ Z, we obtain in particular∣∣∣{k′δ`j − k`j}(2π)∣∣∣ ≤ |k′δ`j − k`j − 2πmpj| = |2πmqαj − 2πmpj| = 2πmq


∣∣∣∣αj − pj
q


∣∣∣∣
for p1, . . . , pd denoting the integers from (2.9). Consequently, the inequality (2.9) and


the assumption (2.11) imply∣∣∣{k′δ`j − k`j}(2π)∣∣∣ ≤ 2πmq
1


qN1/d
=


2πm


N1/d
< δ , (2.14)


which proves condition (2.13). The claim (2.7) thus holds true.


Finally, the claim (ii) is a consequence of the argument used to prove (i). It follows


trivially from (2.14) that letting δ → 0 we can always construct a number k′δ > C with


the property that limδ→0 {(k′δ + x)`j − (k + x)`j}(2π) = 0 holds for any x ∈ R. This


means that limδ→0 F (k′δ + x; ~ϑ) = F (k + x; ~ϑ) holds for any x ∈ R as δ → 0, and in


particular,


lim
δ→0


F (k′δ;
~ϑ)


{
= 0 if F (k; ~ϑ) = 0;


6= 0 if F (k; ~ϑ) 6= 0.
(2.15)


Suppose that the momentum spectrum of H0 has a gap (k −∆1, k + ∆2) of the width


∆1 + ∆2 located around the value k. For any C > 0 and δ > 0 we can construct a gap


(k′δ−∆′1, k
′
δ +∆′2), located around the momentum value k′δ > C. Relation (2.15) implies


that in the limit δ → 0 we haves ∆′1 → ∆1 and ∆′2 → ∆2, hence the width of the gap


around k′δ is ∆′1 + ∆′2 → ∆1 + ∆2. In other words, if k′δ is constructed by the procedure


described above by choosing a sufficiently small δ, then the widths of gaps around k and


k′δ can be as close to each other as required.


Corollary 2.2. Theorem 1.1 is valid.
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2.3. More general vertex couplings


Our next aim is to show that the Bethe–Sommerfeld property can be excluded also for


graphs with vertex couplings from a wider class. We begin with the following definition.


Definition 2.3. Let a vertex coupling be given by condition (2.1). The associated scale-


invariant vertex coupling is given by condition(
I(r) T


0 0


)
Ψ′ =


(
0 0


−T ∗ I(n−r)


)
Ψ . (2.16)


In other words, the coupling associated to a given (2.1) is obtained by removing the


Robin part represented by the square matrix S.


In the following proposition we show that the scattering matrix referring to (2.1)


decomposes into a constant part and a part that vanishes as k →∞. This observation


is useful for dealing with high momenta values, k � 1, note that this is the regime


crucial from the viewpoint of the Bethe–Sommerfeld property.


Proposition 2.4. Consider a quantum graph vertex with a general coupling described


by the condition (2.1). Its scattering matrix satisfies


S(k) = S0 +
1


k
S1(k) , (2.17)


where


S0 = lim
k→∞
S(k) = −I(n) + 2


(
I(r)


T ∗


)(
I(r) + TT ∗


)−1 (
I(r) T


)
is the constant scattering matrix corresponding to the associated scale-invariant vertex


coupling (2.16), and


S1(k) = −2i


(
I(r)


T ∗


)(
I(r) + TT ∗


)−1
S


(
I(r) + TT ∗ − 1


ik
S


)−1 (
I(r) T


)
.


Moreover, the matrix function k 7→ S1(k) is bounded on the interval [1,∞).


Proof. It is easy to check that the sum S0 + 1
k
S1(k) is equal to the right-hand side of


equation (2.2). The boundedness of S1(k) on [1,∞) is a straightforward consequence of


the continuity of k 7→ S1(k) and the existence of the limit


lim
k→∞
S1(k) = −2i


(
I(r)


T ∗


)(
I(r) + TT ∗


)−1
S
(
I(r) + TT ∗


)−1 (
I(r) T


)
.


Since each entry of the matrix S(k), appearing in (2.4) and referring to all the


vertices of the graph Γ, corresponds to a certain entry of S(k) for a particular vertex,


we can decompose the matrix S(k) in a way similar to (2.17), writing


S(k) = S0 +
1


k
S1(k) , (2.18)
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where S0 is a constant unitary matrix, corresponding to the same graph with the


associated scale-invariant couplings at its vertices, and S1(k) is a matrix that is bounded


on [1,∞) as a function of k.


Proposition 2.5. The quantity F (k; ~ϑ) of (2.4) can be expressed as


F (k; ~ϑ) = F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) +
1


k
F1(k; ~ϑ) , (2.19)


where


F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) := det
(
I− ei(A+kL)S0


)
and the function k 7→ F1(k; ~ϑ) is continuous and bounded on [1,∞).


Proof. According to (2.4) and (2.18) we have


F (k; ~ϑ) = det
(
I− ei(A+kL)S(k)


)
= det


(
M0 +


1


k
M1


)
with M0 := I− ei(A+kL)S0 and M1 := −ei(A+kL)S1(k). We distinguish two cases.


(i) Let F0(k; ~ϑ) 6= 0, i.e., detM0 6= 0. This assumption means that M0 is regular, hence


F (k; ~ϑ) = det


[
M0 ·


(
I +


1


k
M−1


0 M1


)]
= detM0·


(
1 +O(k−1)


)
= detM0+k


−1O(1) .


(ii) On the contrary, let F0(k; ~ϑ) = 0, i.e., detM0 = 0. Then


F (k; ~ϑ) = det


(
M0 +


1


k
M1


)
= k−hO(1) ,


where h ≥ 2E − rank (M0) ≥ 1.


In both cases the leading term of the component O(1) is a sum of products of entries


of the matrices S0 and S1(k) in (2.17), all of them being continuous and bounded with


respect to k ∈ [1,∞). Consequently, the terms k−1O(1) and k−hO(1) in F (k; ~ϑ) can


be written in the form 1
k
F1(k; ~ϑ), where the function k 7→ F1(k; ~ϑ) is continuous and


bounded on [1,∞).


For the sake of brevity we would also often employ the symbol F0(k; ~ϑ) as a


shorthand for the expression F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) appearing in (2.19).


Proposition 2.6. Consider a periodic graph with general couplings at the vertices and


denote its spectrum as σ(H). Let further σ(H0) be the spectrum of the same graph, in


which all vertex couplings are replaced by the associated scale-invariant couplings. Then


the following claims hold true:


(i) If σ(H0) has an open gap, then σ(H) has infinitely many gaps.


(ii) If the edge lengths are rationally dependent, then the gaps of σ(H) asymptotically


coincide with those of σ(H0).
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Proof. (i) If σ(H0) has a gap, then there is a k2 > 0 such that k2 /∈ σ(H0). From now


on we regard k > 0 as a fixed number. Let us recall that


k2 /∈ σ(H0) ⇔ (∀~ϑ ∈ (−π, π]ν)(|F0(k; ~ϑ)| > 0) .


Since |F0(k; ·)| is a continuous function of the quasimomentum ~ϑ, it attains a minimum


on any compact interval, hence


min
~ϑ∈[−π,π]ν


|F0(k; ~ϑ)| = γ .


Moreover, the Brillouin zone has the structure of a torus, hence the function |F0(k; ·)|
is periodic with the period 2π in every component of the vector ~ϑ, which in particular


means that the same value of minimum is attained also at the left-open interval (−π, π]ν .


Since k2 /∈ σ(H0), the value γ must be positive, hence we obtain


(∀~ϑ ∈ (−π, π]ν)(|F0(k; ~ϑ)| ≥ γ > 0) . (2.20)


Equation (2.15) implies that for every C > 0 there is a k′ > C such that∣∣∣F0(k
′; ~ϑ)− F0(k; ~ϑ)


∣∣∣ < γ


3
. (2.21)


Let us limit ourselves to large values C, specifically, to the values C with the property


k′ > C ⇒ |F1(k
′; ~ϑ)|
k′


<
γ


3
, (2.22)


where 1
k
F1(k; ~ϑ) is the term appearing in equation (2.19). Now we apply twice the


triangle inequality to the decomposition (2.19) and after that we use inequalities (2.20),


(2.21), and (2.22). In this way we obtain


|F (k′; ~ϑ)| ≥
∣∣∣F0({k′`0}(2π), {k′`1}(2π), . . . , {k′`d}(2π); ~ϑ)


∣∣∣− |F1(k
′; ~ϑ)|
k′


≥
∣∣∣F0(k; ~ϑ)


∣∣∣− ∣∣∣F0(k
′; ~ϑ)− F0(k; ~ϑ)


∣∣∣− |F1(k
′; ~ϑ)|
k′


> γ − γ


3
− γ


3
=
γ


3
> 0 ,


for all ~ϑ ∈ (−π, π]ν ; hence k′2 /∈ σ(H). To sum up, for any sufficiently large C > 0 one


can find a k′ > C such that k′2 /∈ σ(H), which proves the existence of infinitely many


gaps in σ(H) given the fact that the operator in question is unbounded.


(ii) We know from Proposition 2.1(iii) that the momentum spectrum of the graph


with scale-invariant couplings is periodic. Every such period contains a finite number


of gaps, thus there is a finite number of possible gap widths. Choose δ > 0 as a number


sufficiently small in the sense that all the gaps are wider than 2δ. Gaps are open intervals


of type (a, b); for each of them we consider the closed interval [a + δ, b − δ], nonempty


by construction, and define their union as follows:


Mδ =
⋃
{[a+ δ, b− δ] ; (a, b) is a gap} .
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The set Mδ covers the gaps of σ(H0) up to their margins of width δ. Obviously, for all
~ϑ ∈ [−π, π]ν we have


k ∈Mδ ⇒ F0(k; ~ϑ) 6= 0 .


The function k 7→ F0(k; ~ϑ) is periodic, the set Mδ is closed, and the set [−π, π]ν is


compact. Consequently, there exists the minimum


min
{
|F0(k; ~ϑ)| ; k ∈Mδ, ~ϑ ∈ [−π, π]ν


}
= γδ > 0 . (2.23)


The quantity F1(k; ~ϑ) appearing in equation (2.19) is bounded with respect to k, hence


there is a Cδ such that


k > Cδ ⇒ |F1(k; ~ϑ)|
k


<
γδ
2
. (2.24)


Applying the triangle inequality to (2.19) and using inequalities (2.23) with (2.24), we


arrive at


|F (k; ~ϑ)| ≥ |F0(k; ~ϑ)| − |F1(k; ~ϑ)|
k


> γδ −
γδ
2


=
γδ
2
> 0 ,


for all Cδ < k ∈ Mδ and ~ϑ ∈ (−π, π]ν , i.e. k2 /∈ σ(H). At the same time, the value δ


can be chosen as small as necessary. To sum up, to any δ > 0 there is a Cδ such that


k > Cδ ∧ ρ(k, σ(H0)) ≥ δ ⇒ k /∈ σ(H) ,


where ρ(k, σ(H0)) is the distance of k from the momentum spectrum of the graph with


scale invariant couplings. In other words, as k →∞, gaps of σ(H0) coincide with gaps


of σ(H).


3. Number theoretic preliminaries


Before turning to our second main topic we need to recall some number-theoretic notions


on which the analysis of rectangular-lattice graphs will rely substantially. A number


θ ∈ R is called badly approximable if there exists a c > 0 such that∣∣∣∣θ − p


q


∣∣∣∣ > c


q2


for all p, q ∈ Z with q 6= 0. An irrational number θ is badly approximable if and only if


the elements of its continued-fraction representation [c0, c1, c2, c3, . . .] are bounded [13].


With our goal in mind we observe that according to [8, Thm. 3.2] the badly approximable


numbers are the only ratios a
b


for which the spectrum of the rectangular lattice described


above may have a finite number of gaps.


The so-called Markov constant µ(θ) of θ ∈ R is defined as


µ(θ) = inf


{
c > 0


∣∣∣∣ (∃∞(p, q) ∈ Z2
)(∣∣∣∣θ − p


q


∣∣∣∣ < c


q2


)}
. (3.1)
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The Markov constant is sometimes denoted by ν(θ), cf. [3]. Notice that µ(θ) > 0 if and


only if θ is badly approximable. Since every θ ∈ Q has trivially µ(θ) = 0, some authors


define µ(θ) only for θ being irrational.


Recall that by a theorem of Hurwitz [12] for every irrational number θ there are


infinitely many (p, q) ∈ Z2 such that
∣∣∣θ − p


q


∣∣∣ < 1√
5q2


, in other words, µ(θ) ≤ 1√
5


holds


for any θ ∈ R.


We say that θ, θ′ ∈ R are equivalent if there are integers r, s, t, u such that


θ =
rθ′ + s


tθ′ + u
and ru− ts = ±1. (3.2)


According to [3, Thm. IV], θ, θ′ ∈ (0, 1) are equivalent if and only if their continued


fractions take the form


θ = [0; a1, a2, . . . , al, c1, c2, . . .]


θ′ = [0; b1, b2, . . . , bm, c1, c2, . . .]
(3.3)


for suitable l,m and a1, . . . , al, b1, . . . , bm, and c1, c2, . . .. One can prove that if θ and θ′


are equivalent, then µ(θ) = µ(θ′); cf. [3, p. 11]. The particular choice r = u = 0 and


s = t = 1 in equation (3.2) establishes the equivalence of the numbers θ and θ−1; hence


µ(θ) = µ(θ−1). (3.4)


Now we will introduce a function v : R → R+ the values υ(θ) of which will play an


important role in the analysis of our spectral problem; they can be regarded as a one-


sided version of the Markov constant.


Definition 3.1. For any θ > 0, we set


υ(θ) := inf


{
c > 0


∣∣∣∣ (∃∞(p, q) ∈ Z2
)(


0 < θ − p


q
<


c


q2


)}
. (3.5)


Proposition 3.2. For every θ > 0, we have


υ(θ) = inf {c > 0 | (∃∞m ∈ N) (m(mθ − bmθc) < c)} , (3.6)


υ(θ−1) = inf {c > 0 | (∃∞m ∈ N) (m(dmθe −mθ) < c)} , (3.7)


µ(θ) = min{υ(θ), υ(θ−1)}, (3.8)


where b·c and d·e are the floor and the ceiling function, respectively.


Proof. One can see easily that the right-hand side of (3.5) will remain unchanged if we


assume q > 0 and p is replaced with bqθc, i.e.,


υ(θ) = inf


{
c > 0


∣∣∣∣ (∃∞q ∈ N)


(
θ − bqθc


q
<


c


q2


)}
.


In this way we obtain formula (3.6).


Let us next prove (3.7). It follows from the definition that the left-hand side of


(3.7) equals


LHS = inf
{
c > 0


∣∣ (∃∞(p, q) ∈ (Z\{0})2
) (
q(qθ−1 − p) < c


)}
. (3.9)
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At the same time, in analogy with the previous step, it is easy to see that the right-hand


side of (3.7) is equal to


RHS = inf
{
c > 0


∣∣ (∃∞(p, q) ∈ (Z\{0})2
)


(p(q − pθ) < c)
}
. (3.10)


Our goal is to prove that LHS = RHS. To that end we will use the identity


q(qθ−1 − p) = p(q − pθ) +
[p(q − pθ)]2


p2θ
, (3.11)


which implies


q(qθ−1 − p) ≥ p(q − pθ) for all (p, q) ∈ (Z\{0})2 ;


hence LHS ≥ RHS. At the same time, for every c > RHS there are infinitely many


(p, q) ∈ (Z\{0})2 such that p(q − pθ) < c. Therefore, due to identity (3.11), there are


infinitely many (p, q) ∈ (Z\{0})2 such that


q(qθ−1 − p) < c+
c2


p2θ
.


Choosing p large enough, we can find for any c > RHS and any ε > 0 infinitely many


pairs (p, q) ∈ Z2 with the property


q(qθ−1 − p) < c+ ε .


Consequently, we have also the inequality LHS ≤ RHS which completes the proof of the


sought relation LHS = RHS.


It remains to prove formula (3.8). We know from the previous step that µ(θ−1) =


RHS according to (3.10), hence


υ(θ−1) = inf


{
c > 0


∣∣∣∣ (∃∞(p, q) ∈ Z2
)(q


p
− θ < c


p2


)}
. (3.12)


Formula (3.8) follows trivially from equations (3.5), (3.12) (where we have to rename


the variables, p 7→ q, q 7→ p) and (3.1).


Regarding equation (3.8), let us remark that the values υ(θ) and υ(θ−1) may or


may not coincide. For example, for the golden mean, φ = (
√


5 + 1)/2, we have


υ(φ) = υ(φ−1) = 1/
√


5 (see Section 5 below), on the other hand, the literature on


the Markov constant provides hints of the existence of numbers θ with the property


υ(θ) 6= υ(θ−1), see e.g. [15].


Function υ(θ) is closely related to approximations of θ by rationals. A number
p
q
∈ Q with p, q ∈ Z is called best Diophantine approximation of the second kind to a


given θ ∈ R if


|qθ − p| < |q′θ − p′| (3.13)


holds for all p′


q′
6= p


q
such that p′, q′ ∈ Z and 0 < q′ ≤ q. Every best Diophantine


approximation of the second kind to a θ ∈ R is a convergent pn
qn


of the continued
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fraction corresponding to θ, see e.g. [13]. If the inequality (3.13) is replaced with∣∣∣θ − p
q


∣∣∣ < ∣∣∣θ − p′


q′


∣∣∣, the corresponding fraction p
q


is called best Diophantine approximation


of the first kind to the number θ.


For the discussion of the problem we address in this work, we will need a certain


type of one-sided best approximations, which we will call, in analogy to the notions


mentioned above, ‘best approximation from below (respectively, from above) of the


third kind’. They are defined as follows.


Definition 3.3. Let θ ∈ R and p
q
∈ Q for p, q ∈ Z. We say that the number p


q
is a best


approximation from below of the third kind to θ if


0 ≤ q(qθ − p) < q′(q′θ − p′) (3.14)


for all p′


q′
≥ θ such that p′


q′
6= p


q
, p′, q′ ∈ Z and 0 < q′ ≤ q. Likewise, we call p


q
a best


approximation from above of the third kind to θ if


0 ≤ q(p− qθ) < q′(p′ − q′θ) (3.15)


for all p′


q′
≤ θ such that p′


q′
6= p


q
, p′, q′ ∈ Z and 0 < q′ ≤ q.


Best approximations from below of the third kind to θ greatly simplify the


evaluation of the function υ(θ). Indeed, we have


υ(θ) = inf


{
q(qθ − p)


∣∣∣∣ pq is a best approximation from below to θ


}
. (3.16)


Formula (3.16) is very efficient providing that one knows best approximations from below


of the third kind to θ. Their explicit characterization will be given in Proposition 3.5.


To derive the result, we will need the following lemma.


Lemma 3.4. Let θ = [a0; a1, a2, a3, . . .] and pn
qn
, n ∈ N, be convergents of θ. If the


inequalities
pn−1
qn−1


<
p


q
<
pn+1


qn+1


≤ θ or
pn−1
qn−1


>
p


q
>
pn+1


qn+1


≥ θ


hold, then we have


q|qθ − p| > 1


an
.


Proof. First we estimate the absolute value
∣∣∣pq − pn−1


qn−1


∣∣∣ from below,∣∣∣∣pq − pn−1
qn−1


∣∣∣∣ =
|pqn−1 − qpn−1|


q · qn−1
≥ 1


q · qn−1
, (3.17)


where we used a trivial fact that |pqn−1 − qpn−1| ≥ 1 because the expression is by


assumption a nonzero integer. In the next step we find an upper estimate of the same


quantity, taking advantage of a known formula pk−2


qk−2
− pk


qk
= (−1)k−1ak


qkqk−2
(cf. [13, Cor. of


Thm. 3]) for [a0; a1, a2, . . .] representing the continued-fraction form of θ,∣∣∣∣pq − pn−1
qn−1


∣∣∣∣ < ∣∣∣∣pn+1


qn+1


− pn−1
qn−1


∣∣∣∣ =
an


qn+1qn−1
. (3.18)
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Combining inequalities (3.17) and (3.18), we obtain


q >
qn+1


an
. (3.19)


Now we use the assumptions of the lemma to estimate
∣∣∣θ − p


q


∣∣∣:∣∣∣∣θ − p


q


∣∣∣∣ ≥ ∣∣∣∣pn+1


qn+1


− p


q


∣∣∣∣ =
|qpn+1 − pqn+1|


q · qn−1
≥ 1


q · qn+1


.


Hence we obtain, taking advantage of inequality (3.19),


q|qθ − p| ≥ q


qn+1


>
1


an
,


which yields the sought claim.


Proposition 3.5. Every best approximation of the third kind from below to a number


θ ∈ R is a convergent of θ.


Proof. We will proceed by reductio ad absurdum. Suppose that p
q


is a best approximation


of the third kind from below of θ which is not a convergent of θ. Then either we have
p
q
< p0


q0
= bθc, where b·c is the floor function, or p


q
lies between two convergents that are


smaller or equal to θ. First we will disprove the former case. For every p
q
< bθc we have


q(qθ − p) = q2
(
θ − p


q


)
≥ θ − p


q
> θ − bθc = 1 · (1 · θ − bθc).


Comparing this result with condition (3.14) for p′ = bθc and q′ = 1, we see that p
q


cannot be a best approximation from below of the third kind.


In the rest of the proof we will therefore suppose that p
q


lies between two convergents


that are smaller or equal to θ, i.e.
pn−1
qn−1


<
p


q
<
pn+1


qn+1


≤ θ for a certain odd n ; (3.20)


recall that the parity of n determines whether the convergents are larger or smaller


than θ. Our goal is to show that p
q


contradicts the requirement (3.14) on a best


approximation of the third kind from below, i.e.,


q > qn ∧ q(qθ − p) ≥ qn−1(qn−1θ − pn−1). (3.21)


On one hand, obviously


p


q
− pn−1
qn−1


=
pqn−1 − qpn−1


q · qn−1
≥ 1


q · qn−1
. (3.22)


On the other hand, the well-known formula pk
qk
− pk−1


qk−1
= (−1)k+1


qkqk−1
in combination with


assumptions (3.20) implies


p


q
−pn−1
qn−1


<
pn+1


qn+1


−pn−1
qn−1


=
pn+1


qn+1


−pn
qn


+
pn
qn
−pn−1
qn−1


=
(−1)n


qn+1qn
+


(−1)n−1


qnqn−1
=
qn+1 − qn−1
qn−1qnqn+1


.(3.23)
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Combining inequalities (3.22) and (3.23), we obtain


q >
qnqn+1


qn+1 − qn−1
,


which, in particular, implies


q > qn . (3.24)


This verifies the first part of (3.21). In the next step we estimate qn−1(qn−1θ − pn−1).
Since pn−1


qn−1
is a convergent, we have


θ − pn−1
qn−1


<
1


qnqn−1


or, in other words


qn−1(qn−1θ − pn−1) <
qn−1
qn


. (3.25)


Now we use Lemma 3.4 to obtain the estimate


q(qθ − p) > 1


an
. (3.26)


A well-known rule for continued fractions, qn = anqn−1 + qn−2, implies qn > anqn−1, and


therefore
1


an
>
qn−1
qn


. (3.27)


Inequalities (3.25), (3.26) and (3.27) together imply q(qθ − p) > qn−1(qn−1θ − pn−1).


Taking into account that q > qn, in view of estimate (3.24), we conclude that p
q


is not


a best approximation of the third kind from below to θ.


As for the approximation from above, the situation is slightly different.


Proposition 3.6. Every best approximation from above of the third kind of a θ ∈ R is


either dθe or a convergent of θ.


Proof. We proceed again by contradiction. Let p
q
6= dθe be a best approximation of the


third kind from above to θ which is not a convergent of θ. Then either p
q


lies between


two convergents that are smaller than θ, or p
q
> p1


q1
∧ p


q
6= dθe. The former case can be


treated in the same manner as in the proof of Proposition 3.5; therefore, we will omit


it here and proceed directly to the case p
q
> p1


q1
, p
q
6= dθe. Since p1


q1
= a0 + 1


a1
= a0a1+1


a1
,


every p
q
> p1


q1
satisfies


p > q


(
a0 +


1


a1


)
= qa0 +


q


a1
. (3.28)


We distinguish two cases.
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Figure 1. The rectangular-lattice graph


• If q < a1, inequality (3.28) gives p ≥ qa0 + 1; hence


q(p− qθ) ≥ q(qa0 + 1− qθ) = a0 + 1− θ + (q − 1) (1− (q + 1)(θ − a0))


(the last equality can be easily checked). The assumption q < a1 gives q + 1 ≤ a1.


Taking advantage of the trivial estimate θ−a0 ≤ 1
a1


, we get 1− (q+ 1)(θ−a0) ≥ 0;


hence


a0 + 1− θ + (q − 1) (1− (q + 1)(θ − a0)) ≥ a0 + 1− θ.


Since a0 + 1 ≥ dθe, we conclude that


q(p− qθ) ≥ 1 · (dθe − 1 · θ),


i.e., every p
q
6= dθe contradicts the condition (3.15) with the choice p′ = dθe, q′ = 1.


• If q ≥ a1, inequality (3.28) gives


q(p− qθ) > q


(
qa0 +


q


a1
− qθ


)
= a1(a0a1 + 1− a1θ) + (q2 − a21)


(
1


a1
− (θ − a0)


)
.


Using the assumption q ≥ a1 together with the trivial estimate θ− a0 ≤ 1
a1


, we get


q(p− qθ) > a1(a0a1 + 1− a1θ);


i.e., p
q


contradicts the condition (3.15) with the choice p′ = a0a1 + 1, q′ = a1.


To sum up, in both cases we found that p
q
> p1


q1
, p
q
6= dθe cannot be a best approximation


from above of the third kind to θ.


4. Number of spectral gaps of lattice graphs


Now we can address our second main topic, the existence of graphs with the Bethe-


Sommerfeld property. As indicated in the introduction, to this aim we shall revisit the


model introduced in [7] and further discussed in [8, 9]. Let us first recall some needed


notions. Consider a rectangular lattice graph in the plane with edges of lengths a and


b – cf. Fig. 1. In addition, suppose that the graph Hamiltonian H is the Laplacian


defined as a self-adjoint operator by imposing at each graph vertex v the δ coupling


condition – that is, continuity together with the requirement
∑4


j=1 ψ
′(v) = αψ(v) –
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with a parameter α ∈ R. According to [8], a number k2 > 0 belongs to a gap if and


only if k > 0 satisfies the gap condition, which reads


tan


(
ka


2
− π


2


⌊
ka


π


⌋)
+ tan


(
kb


2
− π


2


⌊
kb


π


⌋)
<


α


2k
for α > 0 (4.1)


and


cot


(
ka


2
− π


2


⌊
ka


π


⌋)
+ cot


(
kb


2
− π


2


⌊
kb


π


⌋)
<
|α|
2k


for α < 0 ; (4.2)


we neglect the case α = 0 where the spectrum is trivial, σ(H) = [0,∞). Note that


for α < 0 the spectrum extends to the negative part of the real axis and may have a


gap there. From the point of view of our present problem this is not that important,


though, the reason is that if such a gap exists, it always extends to positive values of the


energy – see Proposition 4.7 below and Figure 2 in [9] – hence it is sufficient to analyze


solutions to the gap conditions (4.1) and (4.2) only. Since the sign of α plays role here,


it is reasonable to discuss the two cases separately.


4.1. The case α > 0


Let us first make the gap description more specific.


Proposition 4.1. Let θ = a
b
. The following claims are valid:


• Every gap in the spectrum has the left (lower) endpoint equal to k2 =
(
mπ
a


)2
or


k2 =
(
mπ
b


)2
for some m ∈ N.


• A gap with the left endpoint at k2 =
(
mπ
a


)2
is present if and only if


2mπ


a
tan
(π


2
(mθ−1 − bmθ−1c)


)
< α. (4.3)


• A gap with the left endpoint at k2 =
(
mπ
b


)2
is present if and only if


2mπ


b
tan
(π


2
(mθ − bmθc)


)
< α. (4.4)


Proof. The gap condition (4.1) is equivalent to F (k) < α, where


F (k) = 2k


(
tan


(
ka


2
− π


2


⌊
ka


π


⌋)
+ tan


(
kb


2
− π


2


⌊
kb


π


⌋))
.


Function k 7→ F (k) has discontinuities at points k = mπ
a


and k = mπ
b


for m ∈ N. It is


easy to check that F (·) is strictly increasing in each interval of continuity and has limits


lim
k↗mπ


a


F (k) = lim
k↗mπ


b


F (k) = +∞


at the right endpoints of the continuity intervals. Hence there is at most one gap in


each interval of continuity of F (k), and moreover, all gaps are adjacent to points k2


corresponding to k being left endpoints of those intervals. This proves the first part of


the proposition.
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Furthermore, a gap with the left endpoint equal to k2 =
(
mπ
a


)2
is present if and


only if limk↘mπ
a
F (k) < α, and since


lim
k↘mπ


a


F (k) =
2mπ


a
tan


(
π


2


(
m
b


a
−
⌊
m
b


a


⌋))
,


we arrive at the gap conditions (4.3); the gap condition (4.4) is obtained similarly by


considering limk↘mπ
b
F (k) < α.


Corollary 4.2. Let θ = a
b
. If


2mπ


a
tan
(π


2
(mθ−1 − bmθ−1c)


)
≥ α ∧ 2mπ


b
tan
(π


2
(mθ − bmθc)


)
≥ α (4.5)


holds for all m ∈ N, then there are no gaps in the spectrum.


Next we relate the number of gaps to values of the function υ(θ) introduced above.


Proposition 4.3. Let θ = a
b
. If


α < π2 ·min


{
υ(θ)


b
,
υ(θ−1)


a


}
, (4.6)


then the number of gaps in the spectrum is at most finite.


Proof. The expression at the left-hand side of condition (4.4) satisfies


2mπ


b
tan
(π


2
(θm− bθmc)


)
>


2mπ


b
· π


2
(θm− bθmc) =


mπ2


b
· (θm− bθmc) .


At the same time, (3.6) implies that for every c < υ(θ), the inequality


θm− bθmc ≥ c


m


holds except possibly for finitely many values of m. Therefore, if c < υ(θ), we have


2mπ


b
tan
(π


2
(θm− bθmc)


)
>
mπ2


b
· c
m


=
π2


b
c


for all m with at most finitely many exceptions. To sum up, if


(∃c < υ(θ))


(
α ≤ π2


b
c


)
, (4.7)


the gap condition (4.4) is satisfied for at most finitely many values m only; note that


condition (4.7) is equivalent to


α <
π2


b
υ(θ) . (4.8)


One can repeat the same considerations for the gap condition (4.3). We get


2mπ


a
tan
(π


2


(
θ−1m− bθ−1mc


))
>


2mπ


a
·π
2


(
θ−1m− bθ−1mc


)
=
mπ2


a


(
θ−1m− bθ−1mc


)
.
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For every c < υ(θ−1) we have in view of (3.6)


θ−1m− bθ−1mc ≥ c


m


except possibly for finitely many values of m. Hence


2mπ


a
tan
(π


2


(
θ−1m− bθ−1mc


))
>
mπ2


a
· c
m


=
π2


a
c


holds for all m with possibly finitely many exceptions. To sum up, if(
∃c < υ(θ−1)


)(
α ≤ π2


a
c


)
, (4.9)


then the gap condition (4.3) is satisfied for at most finitely many values m only, and we


can again simplify (4.9) to the form


α <
π2


a
υ(θ−1) . (4.10)


The assumption (4.6) guarantees the validity of both (4.8) and (4.10), and thus implies


the finiteness of the total number of gaps with regard to Proposition 4.1.


To see that the condition on the number of gaps stated in Proposition 4.3 is sharp,


consider now the opposite situation.


Proposition 4.4. Let θ = a
b
. For all α satisfying


α > π2 ·min


{
υ(θ)


b
,
υ(θ−1)


a


}
the spectrum has infinitely many gaps.


Proof. If min
{
υ(θ)
b
, υ(θ


−1)
a


}
= υ(θ)


b
, we set c =


√
b·α·υ(θ)
π2 . Since α > π2 · υ(θ)


b
, we have


c > υ(θ). For such c and for any δ > 0, equation (3.6) guarantees that


(∃∞m ∈ N)


(
mθ − bmθc < c


m
<


2


π
δ


)
, (4.11)


where the second inequality can be satisfied by taking values m large enough. Now we


use the general fact


(∀ξ > 1)(∃δ > 0)(∀x ∈ (0, δ))(tanx < ξx) . (4.12)


Taking ξ = c
υ(θ)


and the corresponding δ, we use (4.11) to estimate the left-hand side of


the gap condition (4.4) as follows:


2mπ


b
tan
(π


2
(mθ − bmθc)


)
<


2mπ


b
· c


υ(θ)
· π


2
(mθ − bmθc) =


π2c2


b · υ(θ)
. (4.13)


Since π2c2


b·υ(θ) = α, we have established the existence of infinitely many m ∈ N satisfying


the gap condition (4.4). Consequently, the total number of spectral gaps is infinite due


to Proposition 4.1.
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If min
{
υ(θ)
b
, υ(θ


−1)
a


}
= υ(θ−1)


a
, we set c =


√
a·α·υ(θ−1)


π2 and proceed similarly as above.


Using function υ(θ−1), we establish the existence of infinitely many m ∈ N satisfying


the gap condition (4.3).


As an immediate consequence of Propositions 4.1 and 4.3, we obtain a sufficient


condition for the graph in question to have the Bethe–Sommerfeld property:


Theorem 4.5. Let θ = a
b


and


γ := min


{
inf
m∈N


{
2mπ


a
tan
(π


2
(mθ−1 − bmθ−1c)


)}
, inf
m∈N


{
2mπ


b
tan
(π


2
(mθ − bmθc)


)}}
.(4.14)


If the coupling constant α satifies


γ < α < π2 ·min


{
υ(θ)


b
,
υ(θ−1)


a


}
, (4.15)


then there is a nonzero and finite number of gaps in the spectrum.


Remark 4.6. Using equation (3.8), we can estimate the quantity min
{
υ(θ)
b
, υ(θ


−1)
a


}
in


terms of the Markov constant of θ; namely:


µ(θ)


max{a, b}
≤ min


{
υ(θ)


b
,
υ(θ−1)


a


}
≤ µ(θ)


min{a, b}
.


Propositions 4.3, 4.4 and Theorem 4.5 can be thus formulated in a weaker way as follows:


• If α > π2µ(θ)
min{a,b} , the spectrum has infinitely many gaps.


• If α < π2µ(θ)
max{a,b} , the spectrum has at most finitely many gaps.


• If γ < α < π2µ(θ)
max{a,b} for γ given by (4.14), there is a nonzero and finite number of


gaps in the spectrum.


4.2. The case α < 0


In this situation, the gap condition is of the form G(k) < |α|, where


G(k) := 2k


(
cot


(
ka


2
− π


2


⌊
ka


π


⌋)
+ cot


(
kb


2
− π


2


⌊
kb


π


⌋))
.


Using the identity


cot
(π


2
(x− bxc)


)
= tan


(π
2


(dxe − x)
)


for all x /∈ Z ,


we can rewrite G(k) for all k except for the points of discontinuity in the form


G(k) = 2k


(
tan


(
π


2


(⌈
ka


π


⌉
− ka


π


))
+ tan


(
π


2


(⌈
kb


π


⌉
− kb


π


)))
,


which allows to write the condition in the form more similar to the case α > 0, the main


difference being the swap between the floor and ceiling functions in the arguments.


Since the reasoning is completely analogous to the previous case, we limit ourselves to


presenting the results omitting the proofs.
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Proposition 4.7. Let α < 0 and θ = a
b
, then the following claims are valid:


• Every gap in the spectrum has the right (upper) endpoint equal to k2 =
(
mπ
a


)2
or


k2 =
(
mπ
b


)2
for some m ∈ N.


• A gap with the right endpoint at k2 =
(
mπ
a


)2
is present if and only if


2mπ


a
tan
(π


2


(
dmθ−1e −mθ−1


))
< |α|. (4.16)


• A gap with the right endpoint at k2 =
(
mπ
b


)2
is present if and only if


2mπ


b
tan
(π


2
(dmθe −mθ)


)
< |α|. (4.17)


• In particular, if


2mπ


a
tan
(π


2


(
dmθ−1e −mθ−1


))
≥ |α| ∧ 2mπ


b
tan
(π


2
(dmθe −mθ)


)
≥ |α| (4.18)


for all m ∈ N, then there are no gaps in the spectrum.


Proposition 4.8. Let α < 0 and θ = a
b
. If


|α| < π2 ·min


{
υ(θ−1)


b
,
υ(θ)


a


}
,


the number of gaps in the spectrum is at most finite. On the other hand, for |α| greater


than the right-hand side of the above inequality, there are infinitely many spectral gaps.


Note that in case of attractive potential α < 0, the bound on |α| in Proposition 4.8


(i.e., min{υ(θ−1)/b, υ(θ)/a}) is different from the bound in case of a repulsive potential,


which is equal to min{υ(θ−1)/a, υ(θ)/b} (cf. Propositions 4.3 and 4.4). However, the


estimates of the bounds in terms of the Markov constant for α < 0 are the same as for


α > 0, cf. Remark 4.6, namely


µ(θ)


max{a, b}
≤ min


{
υ(θ−1)


b
,
υ(θ)


a


}
≤ µ(θ)


min{a, b}
. (4.19)


Theorem 4.9. Let α < 0, θ = a
b
, and


γ := min


{
inf
m∈N


{
2mπ


a
tan
(π


2


(
dmθ−1e −mθ−1


))}
, inf
m∈N


{
2mπ


b
tan
(π


2
(dmθe −mθ)


)}}
.


If the coupling constant α satisfies


γ < |α| < π2 ·min


{
υ(θ−1)


b
,
υ(θ)


a


}
, (4.20)


there is a nonzero and finite number of gaps in the spectrum.
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5. Example: golden-mean lattice


The sufficient conditions in Theorems 4.5 and 4.9 do not yet solve our problem because


we do not know whether these statements are not empty. Let us now examine a


particular case discussed already in [8, 9] in which we choose the golden mean, φ =
√
5+1
2


,


for the rectangle side ratio θ.


For proving Theorem 5.1 below, we will employ the convergents of φ. The continued


fraction representation of φ is [1; 1, 1, 1, . . .], and therefore the convergents are of the form


Fn+1


Fn
=
pn−1
qn−1


, (5.1)


where Fn are Fibonacci numbers; recall that


Fn =
φn − (−φ)−n√


5
.


We will also need the values of υ(φ) and υ(φ−1). It is possible to find them using


formula (3.16) and Proposition 3.5, but we instead take advantage of known results on


the Markov constant. Since φ−1 = φ− 1, we have, due to (3.6),


υ(φ−1) = inf {c > 0 | (∃∞m ∈ N) (m(m(φ− 1)− bm(φ− 1)c) < c)}
= inf {c > 0 | (∃∞m ∈ N) (m(mφ− bmφc) < c)} = υ(φ) .


Consequently, equation (3.8) implies υ(φ) = υ(φ−1) = µ(φ), where the value of µ(φ) is


known to be equal to 1/
√


5, cf. [3, Chapter I, Thm. V]. To sum up,


υ(φ) = υ(φ−1) =
1√
5
. (5.2)


Theorem 5.1. Let a
b


= φ =
√
5+1
2


, then the following claims are valid:


(i) If α > π2
√
5a


or α ≤ − π2
√
5a


, there are infinitely many spectral gaps.


(ii) If


−2π


a
tan


(
3−
√


5


4
π


)
≤ α ≤ π2


√
5a
,


there are no gaps in the spectrum.


(iii) If


− π2


√
5a


< α < −2π


a
tan


(
3−
√


5


4
π


)
, (5.3)


there is a nonzero and finite number of gaps in the spectrum.


Proof. (i) With regard to (5.2), the existence of an infinite number of spectral gaps for


α > π2
√
5a


follows immediately from Proposition 4.4, for α < − π2
√
5a


we similarly employ


Proposition 4.8.
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The case α = − π2
√
5a


. We shall demonstrate that there are infinitely many m ∈ N
such that the gap condition (4.16) which reads


2mπ


a
tan
(π


2


(
dmφ−1e −mφ−1


))
<


π2


√
5a


is satisfied. Choosing m = Fn for even n and using the identity φ−1 = φ − 1, we can


rewrite the gap condition in the form


Fn tan
(π


2
(dFnφe − Fnφ)


)
<


π


2
√


5
. (5.4)


For even n, we have


Fnφ =
φn − φ−n√


5
φ =


φn+1 − φ−n+1


√
5


=
φn+1 + φ−n−1√


5
+
−φ−n−1 − φ−n+1


√
5


=
φn+1 − (−φ)−(n+1)


√
5


− φ+ φ−1√
5


φ−n = Fn+1 − φ−n ∈ (Fn+1 − 1, Fn+1) ,


which means that


dFnφe − Fnφ = Fn+1 − Fnφ = φ−n for even n. (5.5)


Hence we get, using the Taylor series of tan(x),


Fn tan
(π


2
(dFnφe − Fnφ)


)
=
φn − φ−n√


5
tan
(π


2
φ−n


)
=


1√
5


(
φn − φ−n


)(π
2
φ−n +


1


3


(π
2


)3
φ−3n +


2


15


(π
2


)5
φ−5n + · · ·


)
=


π


2
√


5


(
1−


(
1− 1


3
· π


2


4


)
φ−2n −


(
1


3
· π


2


4
− 2


15
· π


4


16


)
φ−4n · · ·


)
.


That is, taking n even leads to the expansion


Fn tan
(π


2
(dFnφe − Fnφ)


)
=


π


2
√


5


(
1 +


(
π2


12
− 1


)
φ−2n +O(φ−4n)


)
. (5.6)


Since the coefficient π2


12
− 1 at φ−2n in (5.6) is negative, condition (5.4) is satisfied for all


sufficiently large even n. The gap condition (4.16) with α = − π2
√
5a


is thus satisfied for


infinitely many numbers m = Fn with n being even; then Proposition 4.7 implies the


existence of infinitely many gaps.


(ii) We divide the argument into several parts referring to different values of α:


The case α ∈ (0, π2
√
5a


]. Using the identity φ−1 = φ− 1, we obtain


2mπ


a
tan
(π


2
(mφ−1 − bmφ−1c)


)
≥ 2mπ


a


(π
2


(mφ−1 − bmφ−1c)
)


=
π2


a
m (m(φ− 1)− bm(φ− 1)c) =


π2


a
m (mφ− bmφc) ,


and similarly,


2mπ


b
tan
(π


2
(mφ− bmφc)


)
≥ 2mπ


b


(π
2


(mφ− bmφc)
)


=
π2


b
m (mφ− bmφc) . (5.7)
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In order to disprove the existence of gaps using Corollary 4.2, we shall demonstrate that


π2


a
m (mφ− bmφc) ≥ π2


√
5a


∧ π2


b
m (mφ− bmφc) ≥ π2


√
5a


for all m ∈ N . (5.8)


With regard to the assumption a > b, condition (5.8) is equivalent to


m (mφ− bmφc) ≥ 1√
5


for all m ∈ N , (5.9)


which we are about to prove. We will verify that m (mφ− p) ≥ 1√
5


for any m ∈ N and


p ∈ N0. In view of Definition 3.3, it suffices to consider pairs (p,m) such that p
m


is a best


approximation from below of the third kind to φ. Such approximations are convergents


of φ, cf. Proposition 3.5. Convergents of φ that are smaller than φ are known to be of


the form Fn+1


Fn
, where n is odd. We obtain


Fn (Fnφ− Fn+1) =
φn + φ−n√


5


(
φn + φ−n√


5
φ− φn+1 − φ−(n+1)


√
5


)
=


1


5
(φ+ φ−1)(1 + φ−2n) =


1 + φ−2n√
5


>
1√
5
,


i.e., the inequality m (mφ− p) ≥ 1√
5


holds true for each best approximation from below


of the third kind to φ. Consequently, it holds true for all p
q
< θ, in particular, for


p/q = bmφc/m. This proves condition (5.9), hence there are no spectral gaps for


α ∈ (0, π2
√
5a


].


The case α = 0. Kirchhoff couplings obviously generate no gaps‡, see also [9].


The case α ∈ [ − 2π
a


tan (3−
√
5


4
π), 0). We are going to show that for all m ∈ N,


condition (4.18) holds true; then the claim would follow from Proposition 4.7. If m = 1,


we have


2 · 1 · π
a


tan
(π


2


(
d1 · φ−1e − 1 · φ−1


))
=


2π


a
tan


(
π


2
· 3−


√
5


2


)
≥ |α|


and
2 · 1 · π


b
tan
(π


2
(d1 · φe − 1 · φ)


)
=


2π


b
tan


(
π


2
· 3−


√
5


2


)
≥ |α| .


If m ≥ 2, we use the identity φ−1 = φ− 1 to get


2mπ


a
tan
(π


2


(
dmφ−1e −mφ−1


))
=


2mπ


a
tan
(π


2
(dmφe −mφ)


)
>


2mπ


a


(π
2


(dmφe −mφ)
)


=
π2


a
m (dmφe −mφ) ,


and
2mπ


b
tan
(π


2
(dmφe −mφ)


)
>
π2


b
m (dmφe −mφ) .


‡ Note that this also means that Proposition 2.6 has no implications for the present case, because


Kirchhoff condition is scale-invariant and associated with the δ-coupling of the considered model.
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According to condition (4.18), we have to check that


min


{
π2


a
m (dmφe −mφ) ,


π2


b
m (dmφe −mφ)


}
≥ 2π


a
tan


(
3−
√


5


4
π


)


holds for all m ≥ 2, which is equivalent, due to a > b, to


m (dmφe −mφ) ≥ 2


π
tan


(
3−
√


5


4
π


)
≈ 0.4355 for all m ≥ 2. (5.10)


Again, in view of Definition 3.3, it is sufficient to verify that m (p−mφ) ≥
2
π


tan
(


3−
√
5


4
π
)


holds for p
m


(with m ≥ 2) being best approximations from above of


the third kind to φ. According to Proposition 3.6, such approximations are convergents


of φ, i.e., we have to consider p
q


taking the form Fn+1


Fn
, where n is even. For this choice


we obtain


Fn (Fn+1 − Fnφ) =
φn − φ−n√


5


(
φn+1 + φ−(n+1)


√
5


− φn − φ−n√
5


φ


)
=


1


5
(φ+ φ−1)(1− φ−2n) =


1− φ−2n√
5


.


Moreover, we may assume n ≥ 4, because F4 = 3 is the smallest Fibonacci number Fn
obeying our conditions (having an even index n and satisfying m = Fn ≥ 2). Hence


Fn (Fn+1 − Fnφ) ≥ 1− φ−8√
5


,


and consequently,


m (p−mφ) ≥ 1− φ−8√
5
≈ 0.4377


for all p
m
> φ; in particular, for p = dmφe. This verifies condition (5.10), hence there


are no gaps in the spectrum.


(iii) It remains to deal with the case when − π2
√
5a
< α < −2π


a
tan
(


3−
√
5


4
π
)


. The


claim follows from Theorem 4.9 in combination with equation (5.2) and the estimate


inf
m∈N


{
2mπ


a
tan
(π


2


(
dmφ−1e −mφ−1


))}
≤ 2 · 1 · π


a
tan
(π


2


(
d1 · φ−1e − 1 · φ−1


))
=


2π


a
tan


(
π


2
· 3−


√
5


2


)
.


This concludes the proof of the theorem.


In particular, the claim (iii) of the theorem provides and affirmative answer to the


question we have posed in the introduction.


Corollary 5.2. Theorem 1.2 is valid.
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Remark 5.3. Note that a finite nonzero number of gaps in the spectrum can occur only


for α < 0. If α > 0, there are either no gaps in the spectrum or infinitely many of them


in accordance with the numerical observation made in [9]. In addition, the window in


which the golden-mean lattice has the Bethe–Sommerfeld property is narrow, roughly


can be characterized as 4.298 . −αa . 4.414.


We are also able to control the number of gaps in the Bethe–Sommerfeld regime.


Theorem 5.4. For a given N ∈ N, there are exactly N gaps in the spectrum if and


only if α is chosen within the bounds


−
2π
(
φ2(N+1) − φ−2(N+1)


)
√


5a
tan
(π


2
φ−2(N+1)


)
≤ α < −


2π
(
φ2N − φ−2N


)
√


5a
tan
(π


2
φ−2N


)
.(5.11)


Proof. The bounds on α can be concisely written as −AN+1 ≤ α < −AN , where


Aj :=
2π (φ2j − φ−2j)√


5
tan
(π


2
φ−2j


)
.


One can easily check that {Aj}∞j=1 is an increasing sequence with the property


A1 =
2π (φ2 − φ−2)√


5
tan
(π


2
φ−2
)


= 2π tan


(
3−
√


5


4
π


)


and


Aj <
π2


√
5


for all j ∈ N . (5.12)


Let us examine validity of the conditions (4.16) and (4.17) for m ∈ N. Using the identity


φ−1 = φ− 1, we can rewrite them in the form


2mπ


a
tan
(π


2
(dmφe −mφ)


)
< |α| (5.13)


and
2mπ


b
tan
(π


2
(dmφe −mφ)


)
< |α| , (5.14)


respectively.


We start with the situation where m = Fn for an even n. In this case we have


dFnφe − Fnφ = φ−n, cf. (5.5). The gap condition (5.13) for m = Fn with n even thus


acquires the form
2π (φn − φ−n)√


5a
tan
(π


2
φ−n


)
< |α| ,


in other words, 1
a
An


2
< |α|. Since |α| ∈ [AN


a
, AN+1


a
) in view of the assumptions


(5.11), the gap condition (5.13) is obviously satisfied with m = Fn for all even values


n = 2, 4, . . . , 2N , and violated for even values n ≥ 2(N+1). Similarly, the gap condition


(5.14) acquires the form
1


b
An


2
< |α|.
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Since
1


b
An


2
=
φ


a
An


2
≥ φ


a
A1 = φ


2π


a
tan


(
3−
√


5


4
π


)
≈ 6.955


a


and


|α| ≤ π2


√
5a
≈ 4.414


a
,


we have 1
b
An


2
≮ |α|. Consequently, the gap condition (5.14) cannot be satisfied for the


special choice m = Fn with n even.


Let us proceed to the situation when m is different from the values Fn with even


indices n. In this case we will show that none of the gap conditions (5.13) and (5.14) is


satisfied. First, we estimate an expression appearing on the left-hand side of conditions


(5.13) and (5.14) as follows:


2πm tan
(π


2
(dmφe −mφ)


)
≥ 2πm


π


2
(dmφe −mφ) = π2m (dmφe −mφ) .


The bounds (5.11) together with the estimate (5.12) imply that |α| < π2
√
5a


. Therefore,


conditions (5.13) and (5.14) can be disproved for a given m by showing that


π2


a
m (dmφe −mφ) ≥ π2


√
5a


∧ π2


b
m (dmφe −mφ) ≥ π2


√
5a
. (5.15)


Since a > b holds by assumption, condition (5.15) is equivalent to


m (dmφe −mφ) ≥ 1√
5
, (5.16)


which we are now about to prove. We distinguish the following three possibilities:


(i) dmφe
m


lies between two convergents greater than θ, that is, dmφe
m
∈
(
Fn+2


Fn+1
, Fn
Fn−1


)
for


a certain odd n;


(ii) dmφe
m


lies above the greatest convergent F3


F2
= 2


1
;


(iii) m = r · Fn and dmφe = r · Fn+1 holds for a certain r ≥ 2 and even n ∈ N.


In case (i) we use Lemma 3.4 to obtain the estimate


m (dmφe −mφ) >
1


an
= 1 ,


which means that (5.16) holds true. Case (ii) is actually impossible. Indeed, one can


easily check that dmφe
m
≤ 2 for all m ∈ N. Finally, in case (iii) we get


m (dmφe −mφ) = r2 · Fn(Fn+1 − Fnφ) = r2 · 1− φ−2n√
5


.


Since r ≥ 2 and n ∈ N is even, we have


m(dmφe −mφ) ≥ 4 · 1− φ−4√
5
≈ 3.42√


5
,
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and therefore (5.16) holds true. Consequently, the gap conditions (5.13) and (5.14)


cannot be satisfied in any of the cases (i)–(iii).


To sum up, the assumption (5.11) allows the gap condition (5.13) to be satisfied


for m = Fn with n = 2, 4, 6, . . . , 2N , while the gap condition (5.14) is never satisfied.


This implies the existence of exactly N gaps in view of Proposition 4.7.


6. Concluding remarks


As we have seen in the example discussed in Section 5, the Bethe–Sommerfeld property


for the special case of golden-mean ratio required an attractive δ coupling. One may ask


whether the Bethe–Sommerfeld behaviour is possible for some other ratios, and whether


it can occur for repulsive couplings. In this section we give an affirmative answer to both


these questions. First, we present an example of an edge ratio θ for which the Bethe–


Sommerfeld property is valid within a certain range of α for both signs of α. Then


we introduce an explicit method to construct ratios θ for which the Bethe–Sommerfeld


property of the graph is guaranteed.


Let θ = a
b
. Without loss of generality, we may assume θ < 1, i.e., a < b. If α > 0,


then Theorem 4.5 and Remark 4.6 imply that the rectangular-lattice Hamiltonian has


a nonzero and finite number of gaps in its spectrum whenever there exists an m+ ∈ N
such that


2m+π


b
tan
(π


2
(m+θ − bm+θc)


)
< α <


π2µ(θ)


b
.


Similarly, if α < 0, Theorem 4.9 together with the estimate (4.19) implies that the


Hamiltonian has a nonzero and finite number of gaps in the spectrum whenever there


exists an m− ∈ N such that


2m+π


b
tan
(π


2
(dm−θe −m−θ)


)
< |α| < π2µ(θ)


b
.


Therefore, the Hamiltonian has a nonzero and finite number of gaps in the spectrum


for some repulsive and attractive potentials whenever conditions (6.1) and (6.2) below


are satisfied, respectively:


(∃m+ ∈ N)


(
2m+


π
tan
(π


2
(m+θ − bm+θc)


)
< µ(θ)


)
, (6.1)


(∃m− ∈ N)


(
2m−
π


tan
(π


2
(dm−θe −m−θ)


)
< µ(θ)


)
. (6.2)


As the following Theorem explicitly shows, there exists a θ such that both conditions


(6.1) and (6.2) are satisfied at the same time.


Theorem 6.1. Let the edge ratio be


θ =
2t3 − 2t2 − 1 +


√
5


2(t4 − t3 + t2 − t+ 1)
for t ∈ N, t ≥ 3 ; (6.3)


then there is a nonzero and finite number of gaps in the spectrum for some α > 0 and


for some α < 0 as well.
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Proof. The number θ defined in (6.3) can be written as θ = tφ+1
(t2+1)φ+t


for φ = 1+
√
5


2


being the golden mean. Since θ is equivalent to φ, cf. (3.2), the Markov constant of θ is


µ(θ) = µ(φ) = 1√
5
≈ 0.4472.


It is easy to check that conditions (6.1) and (6.2) are satisfied for the choice m+ = 1


and m− = t with t ≥ 3, respectively. Indeed,


2 · 1
π


tan
(π


2
(1 · θ − b1 · θc)


)
=


2


π
tan


(
π


2
· 2t3 − 2t2 − 1 +


√
5


2(t4 − t3 + t2 − t+ 1)


)
is a decreasing function of t that has an approximate value 0.3310 < µ(θ) at t = 3.


Similarly, for m− = t, we get


2t


π
tan
(π


2
(dtθe − tθ)


)
=


2t


π
tan


(
π


2
· 2t2 − t− t


√
5 + 2


2(t4 − t3 + t2 − t+ 1)


)
,


which is again a decreasing function of t being approximately equal to 0.2546 < µ(θ) at


the point t = 3.


To conclude the paper, we present a general method to construct ratios θ that


give rise to graphs with the Bethe–Sommerfeld property. We start from any badly


approximable irrational number β ∈ (0, 1) with a continued-fraction representation


β = [0; c1, c2, c3, . . .] ;


recall that β is badly approximable if and only if the terms c1, c2, c3, . . . are bounded.


Then we define numbers ρ, ς and τ with continued-fraction representations


ρ = [0; t, c1, c2, c3, . . .] ; (6.4)


ς = [0; 1, t, c1, c2, c3, . . .] ; (6.5)


τ = [0; t, t, c1, c2, c3, . . .] (6.6)


for t ∈ N being a parameter to be specified. Since the numbers ρ, ς, τ are equivalent to


β, cf. (3.3), we have


µ(ρ) = µ(ς) = µ(τ) = µ(β) ,


where µ(β) > 0, because β is badly approximable. Now we examine conditions (6.1) and


(6.2). At first we prove that ρ and τ with a large enough parameter t satisfy condition


(6.1) for m+ = 1. Indeed, since ρ < 1/t and τ < 1/t, we have


2 · 1
π


tan
(π


2
(1 · ρ− b1 · ρc)


)
=


2


π
tan
(π


2
ρ
)
<


2


π
tan
( π


2t


)
→ 0 as t→∞ (6.7)


and
2 · 1
π


tan
(π


2
(1 · τ − b1 · τc)


)
=


2


π
tan
(π


2
τ
)
<


2


π
tan
( π


2t


)
→ 0 as t→∞. (6.8)


Similarly we can show that the number ς for a large enough t satisfies condition (6.2)


with m− = 1. Since 1/(1 + 1/t) < ς < 1, we have dςe = 1 and 1− ς < 1/t; therefore,


2 · 1
π


tan
(π


2
(d1 · ςe − 1 · ς)


)
=


2


π
tan
(π


2
(1− ς)


)
<


2


π
tan
( π


2t


)
→ 0 as t→∞. (6.9)
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Finally we prove that τ with a large enough t obeys condition (6.2) with the choice


m− = t. Since t/(t+ 1/t) < tτ < 1, we have dtτe = 1 and 1− tτ < 1/(t2 + 1); hence


2t


π
tan
(π


2
(dtτe − tτ)


)
=


2t


π
tan
(π


2
(1− tτ)


)
<


2t


π
tan


π


2(t2 + 1)
<


2


π
tan
( π


2t


)
. (6.10)


To sum up, we see from equations (6.7)–(6.10) that choosing t such that


2


π
tan
( π


2t


)
< µ(β) (6.11)


guarantees the Bethe–Sommerfeld property of the graph as follows:


• for a/b = ρ and certain repulsive potentials (α > 0);


• for a/b = ς and certain attractive potentials (α < 0);


• for a/b = τ and certain potentials of both repulsive (α > 0) and attractive (α < 0)


type.


Example 6.2. Let β be a root of a quadratic irreducible polynomial over Z with


discriminant D. For such β we have the estimate µ(β) ≥ 1√
D


, which follows from


[17, Sect. I, Lem. 2E]. Consequently, with regard to (6.11), we can define the numbers


ρ, ς, τ by (6.4)–(6.6) for any t such that 2
π


tan π
2t
< 1√


D
.


The idea was applied to construct the number θ from Theorem 6.1. The continued-


fraction representation of θ from equation (6.3) is [0; t, t, 1, 1, 1, 1, . . .], i.e., θ was obtained


from β = [0; 1, 1, 1, . . .] = (
√


5 − 1)/2 using scheme (6.6). Since µ(β) = 1/
√


5 (because


β = φ−1, see also Section 5 and (3.4)), condition (6.11) gives t ≥ 3.


As a final remark, recall the observation made in the introduction, namely that the


question of validity of Bethe–Sommerfeld property remains open for Z-periodic graphs


with the period cells linked by more than a single edge.
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[12] A. Hurwitz: Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche, Math.


Ann. 39 (1981), 279–284.


[13] A.Ya. Khinchin: Continued Fractions, University of Chicago Press, 1964.


[14] L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457–508.
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