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Abstract


We supplement the determinantal bounds of [4] for many-body localization of free fermions,
by considering the high dimensional case and complex-time correlations. Our proof uses the an-
alyticity of correlation functions via the Hadamard three-line theorem. We show that the dynam-
ical localization for the one-particle system yields the dynamical localization for the many-point
fermionic correlation functions, with respect to the Hausdorff distance. In [4], a stronger notion
of decay for many-particle configurations was used but only at dimension one and for real times.
Considering determinantal correlation functionals for complex times is important in the study of
weakly interacting fermions.
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1 Introduction
Since a few years, the problem of (Anderson) localization in many-body systems is garnering at-
tention. The mathematical understanding of this phenomenon for interacting quantum particles, as
adressed in 2006 by [1] for weakly interacting fermions at small densities, is a long-term goal. In
2009, [2, 3] contributed first rigorous results. In 2016, [4] proved an exponential decay of many-
particle correlations at any temperature for free fermions in one-dimensional lattices with disorder.
Via the Jordan-Wigner transformation, this includes the celebrated disordered XY spin chains. This
paper has attracted much attention and it has already been cited many times in one and a half year.
See, e.g., [5–13].


As pointed out in [4], it is an interesting open question (a) whether the main results [4, Theorems
1.1 and 1.2] can be generalized to higher dimensions. Another open question (b) is their general-
ization for complex-time correlation functions. This last point is relevant because such correlation
functions (of free fermions) can be useful to study localization of weakly interacting fermion systems
on lattices. In fact, (free) complex-time correlation functions appear in the perturbative expansion of
(full) correlations for weakly interacting systems. See, for instance, [14, Section 5.4.1].


By considering the many-body localization in the sense of the Hausdorff distance, like in [3], we
propose an answer to both questions (a) and (b), using the Hadamard three-line theorem (Section 4).
See Corollary 2.3, which, together with Theorem 2.2, is the main result of the current paper.
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2 Setup of the Problem and Main Results
(i): Let d ∈ N. For a fixed parameter ϵ ∈ (0, 1], we define


dϵ(X1,X2)
.
= max


{
max
x1∈X1


min
x2∈X2


|x1 − x2|ϵ , max
x2∈X2


min
x1∈X1


|x1 − x2|ϵ
}
, X1,X2 ⊂ Zd, (1)


which is the well-known Hausdorff distance between the two sets, associated with the metric (x1, x2) 7→
|x1 − x2|ϵ on Zd.


(ii): We consider (non-relativistic) fermions in the lattice Zd with arbitrary finite spin set S. Thus,
we define the one-particle Hilbert space to be h


.
= ℓ2


(
Zd;CS


)
, the canonical orthonormal basis


{ex,σ}(x,σ)∈Zd×S of which is


ex0,σ0(x, σ)
.
= δx,x0δσ,σ0 , x, x0 ∈ Zd, σ, σ0 ∈ S. (2)


(iii): Let (Ω,F, a) be a standard1 probability space. As is usual, E[ · ] denotes the expectation value
associated with the probability measure a. We consider F-measurable families {Hω}ω∈Ω ⊂ B (h) of
bounded one-particle Hamiltonians satisfying the following (one-body localization) assumption, at
fixed β ∈ R+:


Condition 2.1
There is a Borel set I ⊂ R as well as constants ϵ ∈ (0, 1], D and µ ∈ R+ such that, for all x1 ∈ Zd


and R > 0,


∑
x2∈Zd:|x1−x2|ϵ≥R


E


[
sup
z∈Sβ


max
σ1,σ2∈S


∣∣∣∣∣
⟨
ex1,σ1 ,


eizHωχI (Hω)


1 + eβHω
ex2,σ2


⟩
h


∣∣∣∣∣
]
≤ D e−µR, (3)


where
Sβ


.
= R− i [0, β] , β ∈ R+, (4)


χI is the characteristic function of the set I , and |x1 − x2| the euclidean distance between the lattice
points x1, x2 ∈ Zd.


This assumption is similar to the so-called strong exponential dynamical localization in I , see,
e.g., [15, Definition 7.1]. Note that, for ϵ ∈ (0, 1], (x1, x2) 7→ |x1 − x2|ϵ defines a translation
invariant metric on the lattice Zd. Observe also that, for all β ∈ R+ and z ∈ Sβ , the function
λ 7→ |ezλ


(
1 + eβλ


)−1 | on R is bounded by 1. In particular, the left-hand side of (3) is bounded by
the eigenfunction correlator [15, Eq. (7.1)]. Condition 2.1 replaces [4, Eq. (1.19)], noting that


ρ (s, t) =
ei(t−s)Hω


1 + eβHω
, s, t ∈ R, (5)


is the main example they have in mind [4, Eq. (2.37)].


(iv): Let CAR(h) be the CAR C∗–algebra generated by the unit 1 and {a(φ)}φ∈h. For any A1, A2 ∈
CAR(h) and any z1, z2 ∈ C, we define


Oz1,z2 (A1, A2)
.
=


{
A1A2 if Im (z1) ≤ Im (z2) ,
−A2A1 if Im (z1) > Im (z2) .


1I.e., F is the Borel σ-algebra of a Polish space Ω.
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(v): For any β ∈ R+ and ω ∈ Ω, we define the quasi-free state ρω ≡ ρβ,ω by the condition


ρω (a(φ1)
∗a(φ2)) =


⟨
φ2,


1


1 + eβHω
φ1


⟩
h


, φ1, φ2 ∈ h. (6)


This state is the unique KMS state at inverse temperature β ∈ R+ associated with the unique strongly
continuous group {τ (ω)t }t∈R of (Bogoliubov) automorphisms of CAR(h) satisfying


τ
(ω)
t (a (φ)) = a(eitHωφ) , t ∈ R, φ ∈ h. (7)


Note that, for all φ ∈ h, the maps


t 7→ τ
(ω)
t (a (φ)) and t 7→ τ


(ω)
t (a (φ)∗)


on R uniquely extend to entire functions on the whole complex plane C: For any z ∈ C and φ ∈ h,


τ (ω)z (a (φ)∗)
.
= a(eizHωφ)∗ and τ (ω)z (a (φ))


.
= a(eizHωφ). (8)


Observe additionally that, for any z1, z2 ∈ C and φ1, φ2 ∈ h,


ρω
(
Oz1,z2


(
τ (ω)z1


(a(φ1)
∗), τ (ω)z2


(a(φ2))
))


(9)


=



⟨
φ2,


ei(z1−z2)Hω


1+eβHω φ1


⟩
h


if Im (z1) ≤ Im (z2) ,


−
⟨
φ2,


e(β+i(z1−z2))Hω


1+eβHω φ1


⟩
h


if Im (z1) > Im (z2) .


The aim of the current paper is to show that strong one-body localization, in the sense of Condi-
tion 2.1, yields the corresponding many-body localization for the quasi-free state ρω, in the sense of
the Hausdorff distance, as stated in Corollary 2.3. This is achieved by estimating, in Theorem 4.1,
determinants of the form


det [Gω ((φk, zk) , (φN+l, zN+l))]
N
k,l=1 (10)


in terms of the entries of one single row or column. In (10), β ∈ R+, N ∈ N, φ1, . . . , φ2N ∈ h are
normalized vectors, z1, . . . , z2N ∈ Sβ and


Gω ((φk, zk) , (φN+l, zN+l))
.
= ρω


(
Ozk,zN+l


(
τ (ω)zk


(a(φk)
∗), τ (ω)zN+l


(a(φN+l))
))


is the two-point, complex-time-ordered correlation function associated with the quasi-free state ρω.


Theorem 2.2
Let {Hω}ω∈Ω ⊂ B (h) be a family of bounded Hamiltonians. For all ω ∈ Ω, β ∈ R+, N ∈ N,
norm-one vectors φ1, . . . , φ2N ∈ h, and z1, . . . , z2N ∈ Sβ (see (4))∣∣∣det [Gω ((φk, zk) , (φN+l, zN+l))]


N
k,l=1


∣∣∣
≤ min


{
min


k∈{1,...,N}


N∑
l=1


|Gω ((φk, zk) , (φN+l, zN+l))| , min
l∈{1,...,N}


N∑
k=1


|Gω ((φk, zk) , (φN+l, zN+l))|


}
.
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Proof. Fix all parameters of the theorem. By expanding the determinant along a fixed row or column,
for any m ∈ {1, . . . , N},


det [Gω ((φk, zk) , (φN+l, zN+l))]
N
k,l=1


=
N∑


n=1


(−1)m+n Gω ((φm, zm) , (φN+n, zN+n))


× det [Gω ((φk, zk) , (φN+l, zN+l))]k∈{1,...,N}\{m}
l∈{1,...,N}\{n}


=
N∑


n=1


(−1)m+n Gω ((φn, zn) , (φN+m, zN+m))


× det [Gω ((φk, zk) , (φN+l, zN+l))]k∈{1,...,N}\{n}
l∈{1,...,N}\{m}


.


Then, the assertion directly follows from Lemma 3.2.


Corollary 2.3
If Condition 2.1 holds true then, for all β ∈ R+, N ∈ N, X1 = {x1, . . . , xN},X2 = {xN+1, . . . , x2N} ⊂
Zd such that |X1| = |X2| = N , and z1, . . . , z2N ∈ Sβ ,


E
[


max
σ1,...,σ2N


∣∣∣det [Gω


(
(χI(Hω)exk,σk


, zk), (χI(Hω)exN+l,σN+l
, zN+l)


)]N
k,l=1


∣∣∣] ≤ D e−µdϵ(X1,X2),


where dϵ(X1,X2) is the Hausdorff distance (1) between the N -particle configurations X1 and X2.
Recall that χI is the characteristic function of the Borel set I and note that the constants ϵ, D and µ
are exactly the same as in Condition 2.1.


Proof. Combine Condition 2.1 and Theorem 2.2 with Equations (8) and (9).
A similar estimate can be obtained for Pfaffians of the two-point correlation functions, by the same


methods, because they also can be seen, like in the proof of Lemma 3.2, as many-point correlation
functions of free fermions. See, e.g., [16, Equations (6.6.9) and (6.6.10) ]. We omit the details.


The analogue of [4, Theorem 1.1], i.e., an estimate like Corollary 2.3 for the many-point corre-
lation functions at fixed ω ∈ Ω, instead of an estimate for their expectation values, easily follows by
replacing Condition 2.1 with a similar bound for a fixed ω ∈ Ω. We also omit the details.


The estimate obtained here is a version of [4, Theorem 1.2] which holds at any dimension d ∈ N
and for any complex times within the strip Sβ . However, two observations in relation with [4] are
important to mention:


• Since, for any X1,X2,Y1,Y2 ⊂ Zd,


dϵ(X1 ∪ X2,Y1 ∪ Y2) ≤ max {dϵ(X1,Y1), dϵ(X2,Y2)} ,


we have
dϵ(X ,Y) ≤ d(S)ϵ (X ,Y)


.
= min


π∈SN


max
j∈{1,...,N}


∣∣xj − yπ(j)
∣∣ϵ


for any set X = {x1, . . . , xN} ⊂ Zd and Y = {y1, . . . , yN} ⊂ Zd of N ∈ N (different)
lattice points. Here, SN is the set of all permutations π of N elements. The distance we
use, i.e., the Hausdorff distance (1), is therefore weaker than the symmetrized configuration
distance d


(S)
ϵ [4, Equation (1.13) and remarks below]. Nevertheless, Corollary 2.3 yields the


main features of localization. Whether Corollary 2.3 holds true, at any dimension, when dϵ is
replaced with d


(S)
ϵ is an open question. See also discussions of [3, Section 1.3].
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• The proofs of [4, Theorems 1.1 and 1.2] use that, for all N ∈ N, x1, . . . , x2N ∈ Zd, σ1, . . . , σ2N ∈
S, and t1, . . . , t2N ∈ R, the N ×N matrix


M
.
=
[⟨
exN+l,σN+l


, ρ (tN+l, tk) exk,σk


⟩
h


]N
k,l=1


(cf. (5)) defines an operator on CN of norm at most 1. This is true even for complex times,
provided that


z1 = · · · = zN ∈ Sβ, zN+1 = · · · = z2N ∈ Sβ, Im (zN) ≤ Im (zN+1) . (11)


However, this is generally not true when z1, . . . , z2N ∈ Sβ are different from each other. For
this reason, instead of a bound on the norm of M, our proof uses (in an essential way) the
analyticity of correlation functions with respect to complex times.


The results of this paper are also reminiscent of [3, Theorem 1.1] where a bound like Corollary
2.3, with the Hausdorff distance but for complex times satisfying (11), can be found for n-particle
correlation functions. Note, additionally, that in [3] a particle interaction is included, but no particle
statistics is taken into account: The n-particle Hilbert space is the full space ℓ2


(
Znd
)
. By contrast, we


consider many-fermion systems, which would correspond in [3, Theorem 1.1] to restrict ℓ2
(
Znd
)


to
its subspace of antisymmetric functions. In this situation, the one-particle localization theory cannot
be directly used, even in the free fermion case. Moreover, we do not fix the particle number, by using
the grand-canonical setting.


Finally, observe that free, complex-time-ordered, many-point correlations appear in the perturba-
tive expansion of interacting correlation functions. See, e.g., [14, Section 5.4.1]. Therefore, as a first
step towards the proof of localization in fully interacting fermion systems, it is important to establish
localization for these correlations, as stated in Corollary 2.3. For instance, by combining Corollary
2.3 with [14, Theorem 5.4.4], one can show that a local, weak interaction cannot destroy the (static)
localization of the thermal, many-point correlation functions of free fermions in lattices.


3 Universal Bounds on Determinants from the Hadamard Three-
line Theorem


For any permutation π of n ∈ N elements with sign (−1)π, we define the monomial Oπ(A1, . . . , An) ∈
CAR(h) in A1, . . . , An ∈ CAR(h) by the product


Oπ (A1, . . . , An)
.
= (−1)π Aπ−1(1) · · ·Aπ−1(n) . (12)


In other words, Oπ places the operator Ak at the π(k)th position in the monomial (−1)πAπ−1(1) · · ·Aπ−1(n).
Further, for all k, l ∈ {1, . . . , n}, k ̸= l,


πk,l : {1, 2} → {1, 2} (13)


is the identity function if π(k) < π(l), otherwise πk,l interchanges 1 and 2. Then, the following
identities holds true for quasi–free states:


Lemma 3.1
Let ρ be a quasi–free state on CAR(h). For any N ∈ N, all permutations π of 2N elements and
φ1, . . . , φ2N ∈ h,


det
[
ρ
(
Oπk,N+l


(a(φk)
∗, a(φN+l))


)]N
k,l=1


= ρ
(
Oπ (a(φ1)


∗, . . . , a(φN)
∗, a(φ2N), . . . , a(φN+1))


)
. (14)
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Proof. See [17, Lemma 3.1].
Using Lemma 3.1 and the Hadamard three-line theorem (via Corollary 4.2), we obtain a universal


bound on determinants of the form (10):


Lemma 3.2
Fix H = H∗ ∈ B (h). Let the quasi–free state ρ on CAR(h) be the unique KMS state at inverse
temperature β ∈ R+ associated with the unique strongly continuous group {τt}t∈R of automorphisms
of CAR(h) satisfying (7)-(8) for Hω = H . Then, for any N ∈ N, φ1, . . . , φ2N ∈ h and z1, . . . , z2N ∈
Sβ (see (4)), ∣∣∣∣det [ρ(Ozk,zN+l


(
τzk(a(φk)


∗), τzN+l
(a(φN+l))


) )]N
k,l=1


∣∣∣∣ ≤ 2N∏
k=1


∥φk∥h .


Proof. Fix all parameters of the lemma and choose any permutation π of 2N elements such that, for
all k, l ∈ {1, . . . , N},


Im(zk) ≤ Im(zN+l) ⇔ π (k) < π (N + l) . (15)


Then, by Lemma 3.1,


det
[
ρ
(
Ozk,zN+l


(
τzk(a(φk)


∗), τzN+l
(a(φN+l))


) )]N
k,l=1


(16)


= ρ
(
Oπ


(
τz1(a(φ1)


∗), . . . , τzN (a(φN)
∗), τz2N (a(φ2N)), . . . , τzN+1


(a(φN+1))
) )


.


Define the entire analytic map Υ from C2N to C by


Υ(ξ1, . . . , ξ2N)
.
= ρ
(
Oπ


(
τξ1+···+ξ2N−π(1)+1


(a(φ1)
∗), . . . , τξ1+···+ξ2N−π(N)+1


(a(φN)
∗),


τξ1+···+ξ2N−π(2N)+1
(a(φ2N)), . . . , τξ1+···+ξ2N−π(N+1)+1


(a(φN+1))
))


. (17)


Now, impose additionally that the permutation π of 2N elements used in (16)-(17) satisfies, for any
k, l ∈ {1, . . . , N}, k ̸= l, the conditions


Im(zk) < Im(zl) ⇔ π (k) < π (l) ; Im(z2N−k) < Im(z2N−l) ⇔ π (2N − k) < π (2N − l) .


Ergo, by (15),


Im(zπ−1(1)) ≤ · · · ≤ Im(zπ−1(N)) ≤ Im(zπ−1(2N)) ≤ · · · ≤ Im(zπ−1(N+1))


and, by (16)-(17), the assertion follows if we can bound the function Υ on the tube T2N defined below
by (19) for n = 2N . Since Υ is uniformally bounded on T2N , it suffices to bound the function Υ on
the boundary


∂T2N
.
=


{
(ξ1, . . . , ξ2N) ∈ C2N : ∀j ∈ {1, . . . , 2N}, Im(ξj) ∈ {−β, 0} ,


2N∑
j=1


Im(ξj) ∈ {−β, 0}


}
,


by Corollary 4.2. By the KMS property [14, Section 5.3.1], note that, for all t1, . . . , t2N ∈ R and
k ∈ {1, . . . , 2N},


Υ(t1, . . . , tk−1, tk − iβ, tk+1, . . . , t2N) = Υ(tk+1, . . . , t2N , t1, . . . , tk)


while


sup |Υ|
(
R2N


)
≤


2N∏
k=1


∥φk∥h .
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As a consequence,


sup |Υ| (T2N) = sup |Υ| (∂T2N) ≤
2N∏
k=1


∥φk∥h (18)


and the assertion follows from (16), (17) and (19).
Observe that estimates like (18) are related to the generalization of the Hölder inequality to non–


commutative Lp–spaces. See, e.g., [18].


4 Appendix: Log convexity of Multivariable Analytic Functions
on Tubes


Fix β ∈ R+. Let
T1


.
= {ξ ∈ C : Im {ξ} ∈ [−β, 0]} = Sβ,


(see (4)) and f : T1 → C be a bounded continuous function. Define the map Bf : [−β, 0] →
[−∞,∞) by


B
(1)
f (s)


.
= ln


(
sup
t∈R


|f (t+ is)|
)
.


We use the convention ln 0
.
= −∞ and 0 · (−∞)


.
= −∞. Then, the Hadamard three-line theorem [19,


Theorem 12.3] states:


Theorem 4.1
Let β ∈ R+ and f : T1 → C be a bounded continuous function. If f is holomorphic in the interior of
T1 then B


(1)
f is a convex function.


This theorem has the following generalization to holomorphic functions in several variables: For
all n ∈ N, let Kn ⊂ Rn be the simplex


Kn
.
= {(s1, . . . , sn) : s1, . . . , sn ∈ [−β, 0] , s1 + · · ·+ sn ≥ −β}


and define, for all n ∈ N, the “tube”


Tn
.
= {(ξ1, . . . , ξn) ∈ Cn : (Im {ξ1} , . . . , Im {ξn}) ∈ Kn} . (19)


Define further the map B
(n)
f : Kn → [−∞,∞) by


B
(n)
f (s1, . . . , sn)


.
= ln


(
sup


(t1,...,tn)∈Rn


|f (t1 + is1, . . . , tn + isn)|


)


with f : Tn → C being a bounded continuous function. Then, we obtain the following corollary:


Corollary 4.2
Let β ∈ R+, n ∈ N and f : Tn → C be a bounded continuous function. If f is holomorphic in the
interior of Tn then B


(n)
f is a convex function.


Proof. Fix all parameters of the corollary and assume that f is holomorphic in the interior of Tn.
Take (s1, . . . , sn) ∈ Kn and (s′1, . . . , s


′
n) ∈ Kn. For all (t1, . . . , tn) ∈ Rn, define the function


F(t1,...,tn) : T1 → C by


F(t1,...,tn) (ξ)
.
= f


(
t1 + i(s1(1 + ξβ−1)− s′1ξβ


−1), . . . , tn + i(sn(1 + ξβ−1)− s′nξβ
−1)
)
.
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For all ξ ∈ T1, note that(
t1 + i(s1(1 + ξβ−1)− s′1ξβ


−1), . . . , tn + i(sn(1 + ξβ−1)− s′nξβ
−1)
)
∈ Tn ,


by convexity of Kn. This function is bounded and continuous on T1, and holomorphic in the interior
of T1. Hence, by Theorem 4.1, for all α ∈ [0, 1],


ln


(
sup
t∈R


∣∣F(t1,...,tn) (t− iαβ)
∣∣) ≤ α ln


(
sup
t∈R


∣∣F(t1,...,tn) (t− iβ)
∣∣) (20)


+(1− α) ln


(
sup
t∈R


∣∣F(t1,...,tn) (t)
∣∣) .


Since ln is a monotonically increasing, continuous function, for all α ∈ [0, 1],


B
(n)
f (αs′1 + (1− α)s1, . . . , αs


′
n + (1− α)sn) = sup


(t1,...,tn)∈Rn


ln


(
sup
t∈R


∣∣F(t1,...,tn) (t− iαβ)
∣∣) ,


which, by (20), in turn implies that


B
(n)
f (αs′1 + (1− α)s1, . . . , αs


′
n + (1− α)sn) ≤ (1− α)B


(n)
f (s1, . . . , sn) + αB


(n)
f (s′1, . . . , s


′
n)


for all α ∈ [0, 1].
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