A remark on L^{p}-boundedness of wave operators for two dimensional Schrödinger operators

Arne Jensen* and Kenji Yajima ${ }^{\dagger}$
Department of Mathematical Sciences, University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

Abstract

Let $H=-\Delta+V$ be a two dimensional Schrödinger operator with a real potential $V(x)$ satisfying the decay condition $|V(x)| \leq$ $C\langle x\rangle^{-\delta}, \delta>6$. Let $H_{0}=-\Delta$. We show that the wave operators $s-\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}}$ are bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ under the condition that H has no zero resonances or bound states. In this paper thecondition $\int_{\mathbf{R}^{2}} V(x) d x \neq 0$, imposed in a previous paper (K. Yajima, Commun. Math. Phys. 208 (1999), 125-152), is removed.

1 Introduction

Let $H=-\Delta+V$ and $H_{0}=-\Delta$ be Schrödinger operators in $L^{2}\left(\mathbf{R}^{2}\right)$. We assume that V is multiplication by a function $V(x)$, which satisfies the following condition:

Assumption 1.1. $V(x)$ is real-valued and $|V(x)| \leq C\langle x\rangle^{-\delta}, x \in \mathbf{R}^{2}$, for some $\delta>6$.

[^0]It is well-known that under this assumption the wave operators $W_{ \pm}$defined by the limits

$$
W_{ \pm} u=\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}} u, \quad u \in L^{2}\left(\mathbf{R}^{2}\right)
$$

exist and are complete, i.e. $\operatorname{Ran} W_{ \pm}=L_{\mathrm{ac}}^{2}(H)$, the absolutely continuous subspace of $L^{2}\left(\mathbf{R}^{2}\right)$ for H, and the singular continuous spectrum of H is absent.

In this note we prove the following theorem:
Theorem 1.2. Let Assumption 1.1 be satisfied. Suppose that 0 is neither an eigenvalue nor a resonance of H, viz. there are no solutions $u \in H_{\mathrm{loc}}^{2}\left(\mathbf{R}^{2}\right)$ of $-\Delta u+V u=0$, which satisfy for $|\alpha| \leq 1$

$$
\begin{equation*}
\partial_{x}^{\alpha}\left(u-a-\frac{b_{1} x_{1}+b_{2} x_{2}}{|x|^{2}}\right)=O\left(|x|^{-1-\varepsilon-|\alpha|}\right), \quad|x| \rightarrow \infty . \tag{1.1}
\end{equation*}
$$

Then the wave operators $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for all $p, 1<p<\infty$.
In [2], one of the authors has shown Theorem 1.2 under the additional assumption that $\int_{\mathbf{R}^{2}} V(x) d x \neq 0$. This additional assumption was made to simplify the asymptotic analysis as $\lambda \rightarrow 0$ of the boundary values $R^{ \pm}(\lambda)=$ $\lim _{\varepsilon \downarrow 0} R(\lambda \pm i \varepsilon)$ on the reals of the resolvent $R(z)=(H-z)^{-1}$ of H. By applying the recent results [1] of the other author with G. Nenciu on precisely this asymptotic problem, we show that this additional assumption is unnecessary.

2 Proof of the Theorem

We choose $c>0$ sufficiently small and let $\chi(t) \in C_{0}^{\infty}([0, \infty))$ be a cut-off function such that $\chi(t)=1$ for $t \leq c / 2$ and $\chi(t)=0$ for $t \geq c$. We set $\tilde{\chi}(t)=1-\chi(t)$. The argument in Sections 2 and 3 of [2] does not use the assumption $\int_{\mathbf{R}^{2}} V(x) d x \neq 0$, and it implies that the high energy part of the wave operators $W_{ \pm} \tilde{\chi}\left(H_{0}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1<p<\infty$. Thus we have only to prove that the low energy part $W_{ \pm} \chi\left(H_{0}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1<p<\infty$.

2.1 Preliminaries

It suffices to consider W_{+}. We record some results from [1] and [2] which we need in what follows.

The following three results are Proposition 2.1, Lemma 4.4 and Lemma 4.1 of [2], respectively. We define the operator $W^{(1)}(V)$ depending on a function V by

$$
\begin{equation*}
W^{(1)}(V) u=-\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda \tag{2.1}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{2}\right)$. Here $R_{0}^{ \pm}(\lambda)=\lim _{\varepsilon \downarrow 0} R_{0}(\lambda \pm i \varepsilon)$ denote the boundary values of the free resolvent. As is well known, these boundary values exist for $\lambda>0$ in $\mathcal{B}\left(L^{2, s}\left(\mathbf{R}^{2}\right), L^{2,-s}\left(\mathbf{R}^{2}\right)\right)$ for $s>1 / 2$.

Lemma 2.1. If $V \in L^{2, s}\left(\mathbf{R}^{2}\right)$ for some $s>1$, then $W^{(1)}(V)$ extends to a bounded operator in $L^{p}\left(\mathbf{R}^{2}\right)$ for any $p, 1<p<\infty$, and

$$
\begin{equation*}
\left\|W^{(1)}(V)\right\|_{\mathcal{B}\left(L^{p}\right)} \leq C_{s p}\left\|\langle x\rangle^{s} V\right\|_{2} . \tag{2.2}
\end{equation*}
$$

Corollary 2.2. Suppose that K is an integral operator with the integral kernel $K(x, y)$ and that K satisfies

$$
\begin{equation*}
\int_{\mathbf{R}^{2}}\left(\int_{\mathbf{R}^{2}}\langle x\rangle^{2 s}|K(x, x-y)|^{2} d x\right)^{1 / 2} d y \equiv\|K\|_{s}<\infty \tag{2.3}
\end{equation*}
$$

for some $s>1$. Then the operator Z, defined by

$$
\begin{equation*}
Z u=-\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) K\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda \tag{2.4}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{2}\right)$, can be extended to a bounded operator in $L^{p}\left(\mathbf{R}^{2}\right)$ for any p, $1<p<\infty$, and furthermore $\|Z u\|_{p} \leq C_{s p}\|K\|_{s}\|u\|_{p}$.

Lemma 2.3. Suppose that $N(k)$ satisfies for some $s>3$

$$
\begin{equation*}
\left\|(d / d k)^{j} N(k)\right\|_{\mathcal{B}\left(L^{2,-s}, L^{2, s}\right)} \leq C_{j} k^{2-j}\langle\log k\rangle \tag{2.5}
\end{equation*}
$$

for $j=0,1,2$ and for $0<k<c$. Then the operator A, defined by

$$
\begin{equation*}
A u=-\frac{1}{\pi i} \int_{0}^{\infty} R_{0}^{-}\left(k^{2}\right) N(k)\left\{R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right\} \chi\left(k^{2}\right) u k d k \tag{2.6}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{2}\right)$, can be extended to a bounded operator in $L^{p}\left(\mathbf{R}^{2}\right)$ for any p, $1 \leq p \leq \infty$.

For studying the low energy behavior of $R^{ \pm}\left(k^{2}\right)$ we define, following [1],

$$
U(x)= \begin{cases}1 & \text { if } V(x) \geq 0 \\ -1 & \text { if } V(x)<0\end{cases}
$$

and

$$
v(x)=|V(x)|^{1 / 2}, \quad w(x)=U(x) v(x) .
$$

We also need

$$
M^{ \pm}(k)=U+v R_{0}^{ \pm}\left(k^{2}\right) v, \quad k>0 .
$$

Define the orthogonal projections in $L^{2}\left(\mathbf{R}^{2}\right)$ by

$$
P=\|V\|_{1}^{-1} v \otimes v, \quad Q=1-P .
$$

It follows from the results in [1] and Assumption 1.1 that

$$
\begin{equation*}
M^{ \pm}(k)=U+c^{ \pm}(k) P+v G_{0} v+O\left(k^{2} \log k\right) \tag{2.7}
\end{equation*}
$$

in the operator norm of $\mathcal{B}\left(L^{2}\right)$, where $c^{ \pm}(k)=a^{ \pm}+b^{ \pm} \log k$, and G_{0} is the integral operator with the integral kernel

$$
G_{0}(x, y)=-\frac{1}{2 \pi} \log |x-y|
$$

The term $O\left(k^{2} \log k\right)$ stands for a $\mathcal{B}\left(L^{2}\right)$-valued C^{2} function $\tilde{N}(k)$, which satisfies

$$
\begin{equation*}
\left\|d^{j} / d k^{j} \tilde{N}(k)\right\|_{\mathcal{B}\left(L^{2}\right)} \leq C k^{2-j}\langle\log k\rangle, \quad 0<k<c \tag{2.8}
\end{equation*}
$$

for $j=0,1,2$. The differentiability of the expansion (2.7) is easily verified using the results in [1]. Note that the decay rate $V(x)=O\left(\langle x\rangle^{-\delta}\right), \delta>6$, suffices in order to differentiate twice. The error term is handled using an appropriate version of the remainder in Taylor's formula and the results in [1]. Hereafter we denote operators which satisfy (2.8) indiscriminately by $O\left(k^{2} \log k\right)$.

Let $M_{0}=U+v G_{0} v$. It is known (cf. [1, Theorem 6.2]) that

$$
Q M_{0} Q \text { is invertibel in } Q L^{2}\left(\mathbf{R}^{2}\right),
$$

if and only if 0 is neither an eigenvalue nor a resonance of H and, in that case,

$$
\begin{align*}
M^{ \pm}(k)^{-1}= & g^{ \pm}(k)^{-1}\left\{P-P M_{0} Q D_{0} Q-Q D_{0} Q M_{0} P\right. \\
& \left.+Q D_{0} Q M_{0} P M_{0} Q D_{0} Q\right\} \\
& +Q D_{0} Q+O\left(k^{2} \log k\right), \tag{2.9}
\end{align*}
$$

where $g^{ \pm}(k)=c^{ \pm} \log k+d^{ \pm}$with non-vanishing constant $c^{ \pm}$, and where we introduced the notation $D_{0}=\left(Q M_{0} Q\right)^{-1}$, see formula (6.27) of [1]. Notice that each of the operators in the braces is a rank one operator. With $\alpha=$ $\|V\|_{1}$, and $v_{1}=Q D_{0} Q M_{0} v$ we have

$$
\begin{align*}
P & =\alpha^{-1} v \otimes v, & P M_{0} Q D_{0} Q & =\alpha v \otimes v_{1}, \tag{2.10}\\
Q D_{0} Q M_{0} P & =\alpha v_{1} \otimes v, & Q D_{0} Q M_{0} P M_{0} Q D_{0} Q & =\alpha v_{1} \otimes v_{1} . \tag{2.11}
\end{align*}
$$

Lemma 2.4. The operator $Q D_{0} Q-Q U Q$ is an operator of Hilbert-Schmidt type.

Proof. Since $Q M_{0} Q$ is invertible in $Q L^{2}\left(\mathbf{R}^{2}\right)$, the operator $T=P+Q M_{0} Q$ is invertible in $L^{2}\left(\mathbf{R}^{2}\right)$ and $D_{0}=Q T^{-1} Q$. Clearly

$$
T=U+\left\{v G_{0} v+P+P M_{0} P-P M_{0} Q-Q M_{0} P\right\} \equiv U(1+S)
$$

Here $P, P M_{0} P, P M_{0} Q$, and $Q M_{0} P$ are rank one operators, and $v G_{0} v$ is of Hilbert-Schmidt type, since $v(x)=O\left(\langle x\rangle^{-\delta / 2}\right), \delta / 2>3$. Thus S is a HilbertSchmidt operator. Since U is invertible, we have that $1+S$ is also invertible. Using

$$
(1+S)^{-1}=1-S(1+S)^{-1}
$$

it follows that $T^{-1}-U$ is a Hilbert-Schmidt operator, which implies the result in the lemma.

2.2 The Proof

By the stationary representation formula for the wave operators we have

$$
\begin{equation*}
W_{+} \chi\left(H_{0}\right) u=\chi\left(H_{0}\right) u-\frac{1}{2 \pi i} \int_{0}^{\infty} R^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} \chi(\lambda) u d \lambda . \tag{2.12}
\end{equation*}
$$

The operator $\chi\left(H_{0}\right)$ has a smooth and rapidly decreasing integral kernel, so it is bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for any $1 \leq p \leq \infty$. Hence, we need to study the operator W_{1} defined by the integral on the right of (2.12). Change to the variable k determined by $\lambda=k^{2}$, and use the formula

$$
\begin{equation*}
R^{ \pm}\left(k^{2}\right) V=R_{0}^{ \pm}\left(k^{2}\right) v M^{ \pm}(k) v, \tag{2.13}
\end{equation*}
$$

cf. Section 4 in [1]. Then

$$
\begin{equation*}
W_{1} u=-\frac{1}{\pi i} \int_{0}^{\infty} R_{0}^{-}\left(k^{2}\right) v M^{-}(k)^{-1} v\left\{R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right\} \chi\left(k^{2}\right) u k d k . \tag{2.14}
\end{equation*}
$$

By virtue of (2.9), (2.10), (2.11), and Lemma 2.4, we have

$$
\begin{equation*}
M^{-}(k)^{-1}=d(k) F+L+U+O\left(k^{2} \log k\right), \quad d(k)=g^{-}(k)^{-1}, \tag{2.15}
\end{equation*}
$$

where F is of rank 3, and L is of Hilbert-Schmidt type. It follows that the integral kernels $K_{1}(x, y)$ and $K_{2}(x, y)$ of $v F v$ and $v(L+U) v$ satisfy the condition (2.3) of Corollary 2.2. Thus,

$$
\begin{align*}
& W_{11} u=-\frac{1}{\pi i} \int_{0}^{\infty} R_{0}^{-}\left(k^{2}\right) v F v\left\{R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right\} \chi\left(k^{2}\right) u k d k, \tag{2.16}\\
& W_{12} u=-\frac{1}{\pi i} \int_{0}^{\infty} R^{-}\left(k^{2}\right) v(L+U) v\left\{R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right\} \chi\left(k^{2}\right) u k d k, \tag{2.17}
\end{align*}
$$

are bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1<p<\infty$. On the other hand $v O\left(k^{2} \log k\right) v$ satisfies the condition (2.5) of Lemma 2.3, since the error term in (2.15) is found using the Neumann series, cf. [1], and since the error term in (2.7) satisfies (2.8). Therefore we can apply Lemma 2.3 to conclude that

$$
\begin{equation*}
W_{13} u=-\frac{1}{\pi i} \int_{0}^{\infty} R_{0}^{-}\left(k^{2}\right) v O\left(k^{2} \log k\right) v\left\{R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right\} \chi\left(k^{2}\right) u k d k \tag{2.18}
\end{equation*}
$$

is bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1 \leq p \leq \infty$. Thus,

$$
W_{1}=W_{11} d(|D|)+W_{12}+W_{13}
$$

is bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1<p<\infty$, since $d(|D|)$ is bounded in $L^{p}\left(\mathbf{R}^{2}\right)$ for $1<p<\infty$ by the standard Fourier multiplier theorem.

References

[1] A. Jensen and G. Nenciu, A unified approach to resolvent expansion at thresholds. Rev. Math. Phys. 13 (2001), 717-754.
[2] K. Yajima, L^{p}-boundedness of wave operators for two dimensional Schrödinger Operators, Commun. Math. Phys. 208 (1999), 125-152.

[^0]: *E-mail: matarne@math.auc.dk. On leave from Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, DK-9220 Aalborg Ø, Denmark, and MaPhySto (Centre for Mathematical Physics and Stochastics, funded by the Danish Research Foundation)
 ${ }^{\dagger}$ E-mail: yajima@ms.u-tokyo.ac.jp. Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan \#11304006

