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1. Motivations

The radial basis function (RBF) method is truly meshfree and

independent of dimensionality and geometry complicityand has

inherent multiscale capability. Among the existing RBF-based

schemes for PDE’s are

1. Domain-type schemes:Kansa’s method (unsymmetric)and

Fasshauer’s Hermite method (symmetric). Both lose significant

accuracy nearby boundary.

2. Boundary-type schemes:method of fundamental solution (MFS),

also known asregular BEM. The method isunsymmetricand

requirescontroversial fictitious boundary outside physical domain

due to singularity of fundamental solution, which causesinstability

for irregular geometry.



The purposes of this study are to

1. develop asymmetric boundary knot method (BKM)which bases

on theHermite interpolation with nonsingular general solution

and uses thedual reciprocity principle (DRM) to evaluate

particular solution;

2. introduce a truly boundary-onlyboundary particle method

(BPM) which appliesthe multiple reciprocity principle (MRM);

3. present a domain-typemodified Kansa method (MKM)by

combining symmetric Hermite interpolationand the DRMto

improve the solution accuracy close to boundary.



2. Symmetric boundary knot method and

boundary particle method

The BKM can be viewed as atwo-step scheme, approximation of

particular solutionand the evaluation ofhomogeneous solution. Let us

consider the differential equation
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The solution of the above equation can be split as
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The particular solutionup satisfies the governing equation but not

necessarily boundary conditions, while thehomogeneous solutionuh

must hold both, namely,
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Like the MFS and BEM, theDRM andRBF are employed to evaluate

the particular solution. The inhomogeneous term is approximated by

f x( ) ≅ α j
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where the RBFφ is related to the RBFϕ through operatorℜ.



The distinctions of the BKM are to use thenonsingular general

solution, namely,
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Unlike the MFS, the BKM places all nodes only on physical

boundary. However, the naïve use of the above representation leads to

an unsymmetric scheme. Instead, we use
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Substituting the above RBF representation into boundary equations
produces
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3. Boundary particle method

According to themultiple reciprocity theorem, the particular solution

can be approximated byhigher-order homogeneous solution
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Through an incremental differentiation via operatorℜ{}, we have:
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whereℜn{} denotes then-th order operatorℜ{}.



The successive process is truncated at some orderM. The practical

solution procedure is a reversal recursive process:
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It is noted that due to
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the coefficient matrices of all successive equation are the same, i.e.

nn bQ =β , n=M,M-1,…,1,0.

Thus, the LU decomposition algorithm is suitable. Finally, we have
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4. Numerical validations for the BKM and BPM

4.1. Helmholtz problem

( )xfuu =+∇ 22 γ

with Dirichlet and Neumann boundary conditions. The exact solutions
are

( ) ( )dydxxu cossin2=

for 2D inhomogeneous Helmholtz problem ( 2d=γ ) and

( ) ( ) ( )dzdydxu sinsincos=

for 3D homogeneous Helmholtz ( 3d=γ ).



4.2. Steady convection-diffusion problem

( )xguuvuD =−∇•−∇ κ2

with Dirichlet and Neumann boundary conditions. The exact solutions
are

( )yxexu +−= η2

for 2D inhomogeneous problem, whereD=1, vx=vy=-σ, κ=3σ2/2,

( ) 222 κσση ++= , and

( )zyxeu ++−= σ

for 3D homogeneous problem, whereD=1, vx=vy=vz=-σ, κ=7σ2/12.



The L2 norms of relative errors are calculated at 460 nodes for 2D
cases and 1012 knots for 3D cases.

Table 1.L2 norm of relative errorsfor 2D inhomogeneousHelmholtz

problemsby the BKM and BPM

BKM (41+15) BKM (49+15) BPM (49) BPM (65)

2=γ 1.0e-2 1.0e-4 2.6e-4 1.4e-3

BKM (57+15) BKM (88+15) BPM (49) BPM (65)

22=γ 3.0e-2 8.0e-3 5.5e-4 3.2e-3

Table 2.L2 norm of relative errorsfor 2D inhomogeneousconvection-

diffusion problemsby the BKM and BPM

BKM (33+15) BKM (41+15) BPM (25) BPM (41)

P*=36 8.4e-3 2.1e-4 9.0e-3 3.6e-4

BKM (17+15) BKM (25+15) BPM (25) BPM (41)

P=540 1.1e-3 3.5e-2 4.3e-3 4.1e-3

*P denotes Peclect number.



Table 3.L2 norm of relative errors for 3D homogeneous Helmholtz

problems by the BKM.

Helmholtz ( 3=γ ) Helmholtz ( 32=γ )

1.3e-2 (366) 2.8e-3 (498) 5.7e-2 (804) 3.1e-3 (996)

Table 4.L2 norm of relative errors for 3D homogeneous convection-

diffusion problems by the BKM.

Convection-diffusion (P=56) Convection-diffusion (P=560)

7.0e-6 (114) 3.5e-6 (174) 2.2e-33 (114) 2.4e-33 (174)
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5. Modified Kansa method and its numerical validations

TheGreen integral solutionof the previous PDE case is given by
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With a numerical integral scheme, we have
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By analogy with theFasshauer’s Hermite scheme, we can construct
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Substituting the above expression into boundary and governing

equations, we have the standardAx=b formulation, where
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The above scheme is called themodified Kansa method(MKM) in

contrast to thetraditional Kansa method.

Table 5. L2 norms of relative errors for Dirichlet Laplace and

Helmholtz problems with a unit square domain by the MKM.

Laplace Helmholtz ( 22=γ )

8.7e-3 (49) 1.4e-3 (81) 1.5e-4 (25) 1.5e-4 (36)

The exact solution of Laplace problem is ( ) )2sin(sin2 yxu ππ += .



6. Remarks: merits and demerits

Merits :

1. Very easy to learn and program.

2. Independent of geometric complexity and dimensionality,

applicable to high-dimensional moving boundary problems.

3. Symmetric, meshfree, integration-free and spectral-convergence.

Demerits:

1. Severe ill-conditioning of large dense RBF interpolation matrix

2. Immature mathematical theory: convergence, stability, and

applicability.

3. Lacking rapid solution of global RBF interpolation of PDE’s:

localization and decomposition with preconditioning.


