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Abstract. The purpose of this short communication is to give a sketch of the
proof of a result. Its complete proof is to appear elsewhere.

We use sum rules of a special form to study spectral properties of Jacobi ma-
trices. As a consequence of the main theorem, we obtain a discrete counterpart
of a result by Molchanov-Novitskii-Vainberg [7].

Introduction

The intent of this short communication is to give a brief sketch of the proof of
a theorem. Its complete version is to appear elsewhere.

Recently, the Case sum rules [1, 2] were efficiently used to relate properties
of elements of a Jacobi matrix of certain class with its spectral properties and
vice versa. For instance, spectral data of Jacobi matrices being a Hilbert-Schmidt
perturbation of the free Jacobi matrix (see (1)) were characterized in [4]. Different
classes of Jacobi matrices were studied in [5, 6].

However, the sum rules become more and more complex with increasing order.
In this note, we suggest a modification of the method that permits us to work
with higher order sum rules. In particular, we obtain sufficient conditions for a
Jacobi matrix to satisfy certain constraints on its spectral measure (see Theorem
1).

We consider a Jacobi matrix

J = J(a, b) =





b0 a0 0
a0 b1 . . .
...

...
. . .



 ,

where a = {ak}, ak > 0, and b = {bk}, bk ∈ R. We assume that J is a compact
perturbation of the free (or Chebyshev) Jacobi matrix J0,

(1) J0 =





0 1 0
1 0 . . .
...

...
. . .



 .
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A scalar spectral measure σ = σ(J) of the matrix is defined by the formula

((J − z)e0, e0) =

∫

R

dσ(x)

x− z

with z ∈ C\R. In our situation, the absolutely continuous spectrum σac(J) of
J fills in [−2, 2], and the discrete spectrum consists of two sequences {x±j } with

properties x−j < −2, x−j → −2, and x+
j > 2, x+

j → 2.
Let ∂a = {ak − ak−1}. For a given a and a k ∈ N, we construct a sequence

γk(a) by formula

(γk(a))j = αk
j − αj . . . αj+k−1,

where α = a− 1 and 1 is a sequence of units.

Theorem 1. Let J = J(a, b) be a Jacobi matrix described above. If

i) a− 1, b ∈ lm+1, ∂a, ∂b ∈ l2,

ii) γk(a) ∈ l1, k = 3, [(m + 1)/2],(2)

then

(3) i′)

∫ 2

−2

log σ′(x) · (4− x2)m−1/2 dx > −∞, ii′)
∑

j

(x±2
j − 4)m+1/2 < ∞.

When m = 1, the theorem gives a half of [4], Theorem 1.
It is easy to give simple conditions sufficient for γk(a) ∈ l1. For instance, put

(Ak(a))j = αj+1 + . . . + αj+k−1 − (k − 1)αj.

Then relations a−1 ∈ lm+1, ∂a ∈ l2, and Ak(a) ∈ lq(k,m), q(k, m) = (m+1)/(m+
2− k), imply that γk(a) ∈ l1. In particular, we have the following corollary.

Corollary 1. Theorem 1 holds if condition (2) is replaced with

Ak(a) ∈ lq(k,m), q(k, m) = (m + 1)/(m + 2− k),

where k = 3, [m+1
2

].

We observe that relation (2) is trivially true in the case of a discrete Schrödinger
operator, i.e., when J = J(1, b).

Corollary 2. Let J = J(1, b). If b ∈ lm+1, ∂b ∈ l2, then inequalities (3) hold.

Note that assumptions of Theorem 1 may be slightly weakened in this setting.
Namely, the corollary is still true if b ∈ lm+2, m being even. The corollary is a
direct counterpart of a result from [7] for a “continuous” Schrödinger operator on
a half-line.

The author would like to thank S. Denisov, R. Killip, B. Simon, and P. Yuditskii
for interest to the work and helpful discussions.
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1. Proof of Theorem 1

The main tool used in the proof is a sum rule of a special type, see [4, 6, 9, 10]
in this connection. First, we obtain it assuming rank (J − J0) < ∞. The passage
to the limit is carried out later.

Applying methods of [10], we see that

1

2π

∫ 2

−2

log
1

σ′(x)
· (4− x2)m−1/2 dx +

∑

j

Gm(x±j ) = Ψm(J),

where Ψm(J) = Ψm(a, b), and

Gm(x) = (−1)m+1C0(x
2 − 4)m+1/2 + O((x2 − 4)m+3/2)

with x ∈ R\[−2, 2], C0 being a positive constant. An elementary, but long and
tedious computation gives that

(4) Ψm(J) = tr

{

m
∑

k=1

(−1)k+1

22k+1k
C̃2k−1

2m−1(J
2k − J2k

0 )−
(2m− 1)!!

(2m)!!
log A

}

,

where A = diag {ak} and C̃k
m = m!!

(m−k)!!k!!
. Notation k!! is used for “even” or “odd”

factorials.
The following lemma plays a central role in the whole proof.

Main Lemma. Let J = J(a, b). We have

(5) |Ψm(J)| ≤ C1

(

||a− 1||m+1 + ||b||m+1 + ||∂a||2 + ||∂b||2 +

[(m+1)/2]
∑

k=3

||γk(a)||1
)

,

where C1 depends on ||J || only.

Above, norms ||.||p refer to the standard lp-space norms.
With exception of the lemma, the proof of Theorem 1 goes along standard lines

(see [4, 5, 6, 9]). We quote only its main steps.

Proof of Theorem 1. Define Φm(J) as

Φm(J) = Φm(σ) = Φm,1(σ)+Φm,2(σ) =
1

2π

∫ 2

−2

log
1

σ′(x)
·(4−x2)m−1/2 dx+

∑

j

Gm(x±j ).

We have to show that Φm(J) < ∞.
We put aN = {(aN)k} and a′N = {(a′N)k}, where

(aN)k =

{

ak, k ≤ N,
1, k > N,

(a′N )k =

{

1, k ≤ N,
ak, k > N.

Define sequences bN , b′N in the same way (of course, with 1’s replaced by 0’s).
Let JN = J(aN , bN ). As we readily see, a′N − 1, bN → 0, ∂a′N , ∂b′N → 0, and
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γk(a
′

N ) → 0 in corresponding norms, as N → ∞. By the Main Lemma, we have
for N ′ = N −m

|Ψm(J)−Ψm(JN)| ≤ Ψm(a′N ′ , bN ′) ≤ C1(||a
′

N ′ − 1||m+1 + ||bN ′||m+1

+ ||∂aN ′ ||2 + ||∂bN ′ ||2 +
∑

k ||γk(a
′

N ′)||1),

or, Ψm(JN) → Ψm(J), as N →∞. On the other hand, (JN − z)−1 → (J − z)−1,
for z ∈ C\R, and, consequently, σN → σ weakly. Looking at [4], Corollary 5.3
and Theorem 6.2, we get

Φm,1(σ) ≤ lim inf
N

Φm,1(σN)

and
lim

N→∞
Φm,2(σN ) = Φm,2(σ).

We bound the latter quantity recalling [3], Theorem 2

|Ψm,2(J)| =
∑

j

|Gm(x±j )| ≤ C2(||a− 1||m+1
m+1 + ||b||m+1

m+1)

with some constant C2. Summing up, we obtain

Φ(σ) ≤ lim sup
N

Φ(σN ) = lim sup
N

Ψ(JN) = lim
N→∞

Ψ(JN) = Ψ(J).

The proof is complete. 2

Remark 1. The theorem gives one more proof of [3], Theorem 2, when m is odd.

2. Sketch of the proof of the Main Lemma

We begin with considering expressions tr (J2k − J2k
0 ), arising in (4). Defining

V = J − J0 = J(a− 1, b), we have

tr (J2k − J2k
0 ) = tr

2k
∑

p=1

∑

i1+...+ip=2k−p

V J i1
0 . . . V J

ip
0 .

We prove the Main Lemma in two steps. First, we reduce the situation to a
commutative one. To do this, we bound expressions |tr (V J i1

0 . . . V J
ip
0 −V pJ2k−p

0 )|
using properties of the commutator [V, J0] = V J0 − J0V . On the second stage,
we exploit specifics of Ψm(J) to get straightforward estimates of terms obtained
after the “commutation”.

Lemma 1. Let i = (i1, . . . , ip) and
∑

s is = n. Then

V J i1
0 . . . V J

ip
0 = V pJn

0 +
∑

l1 + l2 + l3 = p,

p1 + p2 + p3 = n

Cl,p Jp1

0 V l1 [V l2 , Jp2

0 ]V l3Jp3

0

+
∑Mi,p

i Ak[V, J0]Bk[V, J0]Ck,
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where p = (p1, p2, p3), l = (l1, l2, l3), and Ak, Bk, Ck are some bounded operators.

This proposition leads to the following lemma.

Lemma 2. Let
∑

s is = 2k − p. We have

|tr (V J i1
0 . . . V J

ip
0 − V pJ2k−p

0 )| ≤ C3(||∂a||2 + ||∂b||2)

with C3 depending on ||V || only.

The lemma exactly says that, modulo bounded terms, we may assume operators
V and J0 to commute. Turning back to (4), we see that the problem is reduced
to estimating Ψ′

m(J),

(6) Ψ′

m(J) = tr

{

2m
∑

p=1

V pFp(J0)−
(2m− 1)!!

(2m)!!
log(I + α̃)

}

,

where α̃ = diag {αk} = A− I, and

Fp(J0) =
m

∑

k=[(p+1)/2]

(−1)k+1

22k+1k
C̃2k−1

2m−1C
p
2k J2k−p

0 .

Here, Cp
k is a usual binomial coefficient.

Observe that for p ≥ m + 1 we have

|tr (V pFp(J0))| ≤ ||Fp(J0)|| ||V
p||S1

≤ C4(||a− 1||m+1
m+1 + ||b||m+1

m+1),

where ||.||S1
is the norm in the class of nuclear operators. Hence, it remains to

bound the first m terms in (6). Of course, we have

log(I + α̃) =
2m
∑

p=1

(−1)p+1

p
α̃p + O(α̃2m+1).

Set J0,p to be a symmetric matrix with 1’s on p-th auxiliary diagonals and 0’s
elsewhere. Surprisingly, the following lemma holds.

Lemma 3. We have

Fp(J0) = (−1)p+1 (2m− 1)!!

2p(2m)!!
J0,p.

Combining this with explicit form of V p and the series expansion for log(I +α̃),
we get the required bound (5).
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