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Abstract

It is well known that the formal Aharonov-Bohm Hamiltonian operator, describing the

interaction of a charged particle with a magnetic vortex, has a four-parameter family of

self-adjoint extensions, which reduces to a two-parameter family if one requires that the

Hamiltonian commutes with the angular momentum operator. The question we study

here is which of these self-adjoint extensions can considered as limits of regularised

Aharonov-Bohm Hamiltonians, that is Pauli Hamiltonians in which the magnetic field

corresponds to a flux tube of non-zero diameter. We show that not all the self-adjoint

extensions in this two-parameter family can be obtained by these approximations, but

only two one-parameter subfamilies. In these two cases we can choose the gyromagnetic

ratio in the approximating Pauli Hamiltonian in such a way that we get convergence

in the norm resolvent sense to the corresponding self-adjoint extension.
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1 Introduction

The Aharonov-Bohm Hamiltonian operator, describing the interaction of a charged particle
with a magnetic vortex, that is, an infinitely extended, infinitely thin, impenetrable magnetic
flux tube, is given by

H =
1

2m
(p − e

c
A)2, (1.1)

where the vector potential A is given by

A =
φ

2π

k × r

r2
, (1.2)

φ being the flux of the tube. It is well known [1, 2] that this formal operator has a four-
parameter family of self-adjoint extensions, which reduces to a two-parameter family if one
requires that the Hamiltonian commutes with the angular momentum operator. These self-
adjoint extensions can be obtained formally by adding a delta-function. The question we
study in this paper is which of these self-adjoint extensions can considered as limits of
regularised Aharonov-Bohm Hamiltonians, that is Pauli Hamiltonians in which the magnetic
field corresponds to a flux tube of non-zero diameter.

This problem has been studied by Bordag and Voropaev [3] and by Moroz [4]. These authors
make the connection between the regularised Hamiltonian and the self-adjoint extensions of
the A-B Hamiltonian and show that the gyromagnetic ratio has to be chosen in a particular
way. They do this by by matching the bound states as the radius of the vortex tends to zero,
but do not prove convergence of the operators. Also they do not take into account the second
parameter in the two-parameter family of self-adjoint extensions mentioned above. Here we
proceed more sytematically to extend the results of [3] and [4]. We consider convergence
in the norm resolvent sense. We show that not all the self-adjoint extensions in this two-
parameter family can be obtained by these approximations, but only two one-parameter
subfamilies. Tamura [5] has done related work but with a different emphasis.

When the A-B Hamiltonian is decomposed into the subspaces corresponding to the values of
the angular momentum m ∈ Z, it turns out that if N is the integer part of the dimensionless
parameter α = φe/hc, then the Hamiltonians restricted to m = N and m = N + 1 are not
essentially self-adjoint while the ones with other values of m are essentially self-adjoint. The
operators corresponding to m = N and m = N +1 each have a one-parameter family of self-
adjoint extensions. We denote these parameters in (−∞,∞] by νN and νN+1 respectively,
νN = ∞ and νN+1 = ∞ corresponding to the regular self-adjoint extension. We prove that
for the subfamilies νN ∈ (−∞,∞), νN+1 = ∞ and νN+1 ∈ (−∞,∞), νN = ∞ we can choose
the gyromagnetic ratio, g, in the approximating Pauli Hamiltonian in such a way that we
get convergence in the norm resolvent sense to the corresponding self-adjoint extension. The
approximating Hamiltonian is

HR =
1

2m
(p − e

c
AR)2 − ge~

2mc
k · BR (1.3)

with BR = curlAR. The vector potential AR is 0 inside a tube of radius R away from its
boundary and given by (1.2) outside the tube away from the boundary. It was shown in [3]
and [4] that to obtain a non-trivial limit, g must depend on R and must tend to 2 in a certain
way. For a discussion of the physical significance of this limit we refer the reader to these
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papers. The same result holds here for the self-adjoint extensions with νN+1 ∈ (−∞,∞),
νN = ∞. However, for the self-adjoint extensions with νN+1 ∈ (−∞,∞), νN = ∞, which
were not considered in [3] and [4], g must behave like −2 + 4(N + 1)/α.

Two other approximations have been considered, namely, the case when the magnetic field
inside the tube is homogeneous [3, 4] and the case when it is proportional to 1/r [3]. The
situation in these cases is similar but more complex. We deal with these briefly at the end
of the paper.

The paper is set out as follows. In Section 2 we give the basic properties of the A-B
Hamiltonian. In Section 3 we carry out the approximation to the A-B Hamiltonian with
an infinitely thin infinitely extended cylindrical shell of non-zero radius R. In Section 4 we
smooth the flux shell to give it a non-zero thickness. In this section we only sketch the
proof. In Section 5 we discuss the other two approximations. In the Appendix we give the
asymptotic behaviour of the Special Functions needed for these approximations.

2 The A-B Hamiltonian

In the sequel we set ~
2/m = 2 and e/c = 1 so that the A-B Hamiltonian is formally the

operator
H = (i∇ + A)2, (2.1)

in L2(R2), where the vector potential A is now given by

A = α
k × r

r2
. (2.2)

We let α = N + δ, where N ∈ Z and 0 < δ < 1. Without loss of generality, we shall assume
that α > 0.

This Hamiltonian is discussed in great detail in [1] and [2]. The analysis proceeds by decom-
posing the underlying space and studying the radial Hamiltonians

hm = −1

r

∂

∂r
r
∂

∂r
+

(m− α)2

r2
(2.3)

in L2((0,∞), r dr). Taking as domain C∞
0 ((0,∞), r dr), these operators are essentially self-

adjoint, except for the cases m = N,N + 1 which have deficiency indices (1,1). These two
operators therefore have self-adjoint extensions hN,νN

and hN+1,νN+1
, parametrized by νN

and νN+1, where −∞ < νN , νN+1 6 ∞. These self-adjoint extensions can be identified with
the boundary conditions

νmφ0 = φ1,

where
φ0 = lim

r↓0
r|m−α|φ(r)

and
φ1 = lim

r↓0
r−|m−α|

[
φ(r) − r−|m−α|φ0

]
.

A four-parameter family of self-adjoint extensions of HAB can be constructed from these.
If we consider only self-adjoint extensions which commute with the angular momentum
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operator, this reduces to a two-parameter family. For this particular choice, the self-adjoint
extension, Hν , with ν ∈ (−∞,∞]2, is just the direct sum

Hν = hN,νN
⊕ hN+1,νN+1

⊕
∞⊕

m=−∞
m6=N,N+1

hm.

We shall write H∞ for Hν with ν = (∞,∞). Let gk, m = (hm − k2)−1. Then

gk, m(r, r′) =
iπ

2
J|m−α|(kr<)H

(1)
|m−α|(kr>), (2.4)

where r< = min{r, r′} and r> = max{r, r′}. The resolvents gνm

k,m = (hm,νm
− k2)−1, m =

N,N + 1, are given by

gνm

k,m(r, r′) = gk, m(r, r′) + c(m, νm, k)H
(1)
|m−α|(kr)H

(1)
|m−α|(kr

′), m = N,N + 1, (2.5)

with

c(m, ν, k) =
−π2

2Γ(1 + |m− α|)

(
k

2

)2|m−α|

(2.6)

×
(
e−iπ|m−α|Γ(1 − |m− α|)

|m− α|

(
k

2

)2|m−α|

+ νΓ(|m− α|)
)−1

,

c(m,∞, k) = 0. (2.7)

Finally, the resolvent of the Hamiltonian Gν

k = (Hν − k2)−1 is given by (see [1]):

Gν

k = gνN

k,N ⊕ g
νN+1

k,N+1 ⊕
∞⊕

m=−∞
m6=N,N+1

gk,m. (2.8)

Note that the operators hm,νm
have one bound state, Em, given by

(√
Em

2

)2|m−α|

= −Γ(1 + |m− α|)
Γ(1 − |m− α|)νm, m = N,N + 1. (2.9)

3 Approximation by Finite Flux Tube

The Aharonov-Bohm Hamiltonian consists of an infinitely thin magnetic flux tube. As a
first approximation to HAB, consider a flux tube of radius R > 0, with a δ-function on a
cylindrical shell (following [3] but see also [6], [4]). That is we take the vector potential

AR =

{
0 r < R

α
k × r

r2
r > R.

(3.1)

Then k · BR =
α

R
δ(r − R), so that formally, the Hamiltonian is then given by:

HR = (i∇ + AR)2 +
β

R
δ(r −R) (3.2)
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where β = −gα/2. The components in L2((0,∞), r dr) corresponding to the angular mo-
mentum m of this formal operator are

−1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r − R))2

r2
+
β

R
δ(r − R) (3.3)

where Θ is the unit step function. The procedure for adding a point interaction at r = R
to a radial Hamiltonian is standard (cfr. [7] Sect. I.3.1). The point we make here is that β,
the strength of the point interaction, has to depend on R and α in a definite way so that the
self-adjoint extensions obtained in this manner converge to the A-B self-adjoint extensions
as R tends to 0.

Consider the following operator in L2((0,∞), r dr)

hm,R = −1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r −R))2

r2
(3.4)

with the closure of C∞
0 ((0,∞) \ {R}) as its domain ([7], p. 75) i.e.

D(hm, R) = {g ∈ H2,2((0,∞), r dr) s.t. hm, Rg ∈ L2((0,∞), r dr)

and g(R) = 0}. (3.5)

Then its adjoint has domain ([7], p. 75)

D(h∗m, R) = {g ∈ H2,2((0,∞) \ {R}, r dr) ∩H2,1((0,∞), r dr)

s.t. hm, Rg ∈ L2((0,∞), r dr)}. (3.6)

The equation h∗m, Rφ = k2φ, =(k) > 0, has one solution in D(h∗m, R) for all values of m ∈ Z

(see Note 1, Appendix 1), given by

φm,k(r) =

{
J|m|(kr) r < R

Bm(k)H
(1)
|m−α|(kr) r > R

(3.7)

where Bm(k) is chosen so that the condition φm,k(R+) = φm,k(R−) is satisfied. Thus the

operators hm, R have deficiency indices (1, 1). Self-adjoint extensions hβ
m, R are obtained by

imposing the following boundary condition on the domain of hm, R:

φ′
m,k(R+) − φ′

m,k(R−) =
β(α,R)

R
φm,k(R), (3.8)

where β(α,R) is a constant parameter ([7] p. 76). Note that we do not want the parameter
β(α,R) to depend on m since it represents −gα/2. We shall henceforth be writing β for this
parameter to make the notation less cumbersome.

Next we find the resolvent gβ
k, m, R = (hβ

m, R−k2)−1. Note first that g0
k, m, R = (hm, R−k2)−1,

=(k) > 0, is given by (Note 2, Appendix 1)

g0
k, m, R(r, r′) =





iπ
2
J|m|(kr<)

(
A

(2)
m,R

(k)

B
(2)
m,R

(k)
J|m|(kr>) +H

(1)
|m|(kr>)

)
, r, r′ < R

iπ
2

(
J|m−α|(kr<) +

B
(1)
m,R

(k)

A
(1)
m,R

(k)
H

(1)
|m−α|(kr<)

)
H

(1)
|m−α|(kr>), r, r′ > R

iπ

2A
(1)
m,R

(k)
J|m|(kr<)H

(1)
|m−α|(kr>) otherwise

(3.9)
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where the constants A
(1)
m,R(k), A

(2)
m,R(k), B

(1)
m,R(k) and B

(2)
m,R(k) are given by:

A
(1)
m,R(k) =

W [J|m|, H
(1)
|m−α|](kR)

W [J|m−α|, H
(1)
|m−α|](kR)

, (3.10)

B
(1)
m,R(k) =

W [J|m|, J|m−α|](kR)

W [H
(1)
|m−α|, J|m−α|](kR)

, (3.11)

A
(2)
m,R(k) =

W [H
(1)
|m−α|, H

(1)
|m|](kR)

W [J|m|, H
(1)
|m|](kR)

, (3.12)

B
(2)
m,R(k) =

W [J|m|, H
(1)
|m−α|](kR)

W [J|m|, H
(1)
|m|](kR)

. (3.13)

Here W [ · , · ] denotes the Wronskian. Then the resolvent of hβ
m, R is given by (Note 3,

Appendix 1):

gβ
k, m, R = g0

k, m, R − β

1 + βg0
k, m, R(R,R)

g0
k, m, R( · , R) ⊗ g0

k, m, R( · , R), (3.14)

for =(k) > 0. We are interested in the behaviour of gβ
k, m, R(r, r′) for small R. We note first

that lim
R→0

g0
k, m, R(r, r′) = gk, m(r, r′), which is the resolvent of the regular operator. For small

R,
g0

k, m, R(r, R)g0
k, m, R(R, r′) ' c̃2m(k)R2|m−α|H

(1)
|m−α|(kr)H

(1)
|m−α|(kr

′), (3.15)

where

c̃m(k) =
iπ

(|m− α| + |m|)Γ(|m− α|)

(
k

2

)|m−α|

. (3.16)

If |m− α| > 1 (i.e. if m /∈ {N,N + 1}), then the second term will either go to zero, or to a

constant multiple of H
(1)
|m−α|(kr)H

(1)
|m−α|(kr

′). Now H
(1)
|m−α|(kr) is not in L2((0,∞), rdr) since

it behaves like r−|m−α| for small r (see Note 1, Appendix 1). So in the latter case, the limit
is not the kernel of a rank-one operator in L2((0,∞), r dr). In particular, this means that
it cannot be the kernel of a resolvent operator. Thus a meaningful non-zero limit for the
second term in equation (3.14) exists only for the cases m = N,N + 1. It shall be shown
later that for small R, we get

g0
k, m, R(R,R) ' 1

|m− α| + |m|

(
1 − 2e−iπ|m−α|Γ(1 − |m− α|)

(|m− α| + |m|) Γ(|m− α|)

(
kR

2

)2|m−α|
)
. (3.17)

For the case r, r′ > R (the other cases are straightforward), this results in

gβ
k, m, R(r, r′) ' g0

k, m, R(r, r′) − βc̃2m(k)R2|m−α|

1 +
β(1 − c̃′(k)R2|m−α|)

|m− α| + |m|

H
(1)
|m−α|(kr)H

(1)
|m−α|(kr

′), (3.18)

where

c̃′(k) =
2e−iπ|m−α|Γ(1 − |m− α|)

(|m− α| + |m|) Γ(|m− α|)

(
k

2

)2|m−α|

. (3.19)
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The second term in (3.18) converges to a non-zero limit if β has the following R-dependence
for small R:

β ' − (|m− α| + |m|)
(

1 − 2|m− α|νm

|m− α| + |m|R
2|m−α|

)
. (3.20)

Then we obtain

lim
R→0

gβ
k, m, R(r, r′) = gk, m(r, r′) + c(m, νm, k)H

(1)
|m−α|(kr)H

(1)
|m−α|(kr

′). (3.21)

This gives the correct expression in (2.5) for the kernel of the resolvent of some self-adjoint
extension of hm, m = N,N + 1.

The following are the only cases of interest:

(I) if β ' −α
(

1 − 2δ

α
νNR

2δ

)
, then the second term in equation (3.14) approaches

1. a non-zero limit for m = N , corresponding to the self-adjoint extension hN,νN
;

2. zero limit for m = N + 1, corresponding to the regular self-adjoint extension hN+1,∞;

3. zero limit for m 6= N,N + 1, corresponding to the self-adjoint operators hm.

(II) if β ' (α− 2(N + 1))

(
1 − 2(1 − δ)

2(N + 1) − α
νN+1R

2(1−δ)

)
, then the second term in equa-

tion (3.14) approaches

1. a non-zero limit for m = N + 1, corresponding to the self-adjoint extension hN+1,νN+1
;

2. zero limit for m = N , corresponding to the regular self-adjoint extension hN,∞;

3. zero limit for m 6= N,N + 1, as before.

We can state the above results as a Theorem:

Theorem 1

Let

Hβ
R =

∞⊕

m=−∞

hβ
m,R. (3.22)

Then H
β(α,R)
R converges, as R → 0, to one of the self-adjoint extensions Hν of the A-B

Hamiltonian only if either

(I)
β(α,R) + α

R2δ
→ 2δνN

or

(II)
β(α,R) − α + 2(N + 1)

R2(1−δ)
→ 2(1 − δ)νN+1.

In case (I) H
β(α,R)
R converges in the norm resolvent sense, as R → 0, to H (νN , ∞), and in

case (II) to H (∞, νN+1).
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Proof Let us consider case (I), case (II) is similar. Since

∥∥∥(Hβ(α,R)
R − k2)−1 −G

(νN , ∞)
k

∥∥∥ (3.23)

= max





∥∥∥gβ(α,R)
k, N, R − gνN

k, N

∥∥∥ ,
∥∥∥gβ(α,R)

k, N+1, R − gk, N+1

∥∥∥ , sup
m∈Z

m6=N,N+1

∥∥∥gβ(α,R)
k, m, R − gk, m

∥∥∥




,

we not only have to prove that the the terms in the righthand side of the above equations
tend to zero, but we have to show that ‖gβ(α,R)

k, m, R − gk, m‖ tends to zero uniformly in m. To
do this we need to obtain detailed upper and lower bounds on the special functions Jν and
H

(1)
ν . These are given in the Appendix.

The first term in the expressions for g
β(α,R)
k, m, R is g0

k, m, R and first term in the expressions
for gν

k, m is gk, m. Therefore we start with the following lemma. Here ‖ · ‖2 denotes the
Hilbert-Schmidt norm, and of course ‖ · ‖ 6 ‖ · ‖2.

Lemma 1

For any m, lim
R→0

∥∥g0
k, m, R − gk, m

∥∥
2

= 0.

Furthermore, there exists M ∈ N such that for |m| > M , there exists a constant c(R),
independent of m, such that ‖g0

k, m, R − gk, m‖2 6 c(R), and lim
R→0

c(R) = 0.

Proof :

∥∥g0
k, m, R − gk, m

∥∥
2

6 ‖g̃1‖2 + ‖g̃2‖2 + ‖g̃3‖2 + ‖g̃4‖2 + ‖g̃5 − gk, m‖2 (3.24)

where

g̃1(r, r
′) =

iπ

2

A
(2)
m,R(k)

B
(2)
m,R(k)

J|m|(kr)J|m|(kr
′)1(0, R)×(0, R)(r, r

′) (3.25)

g̃2(r, r
′) =

iπ

2
J|m|(kr<)H

(1)
|m|(kr>)1(0, R)×(0, R)(r, r

′) (3.26)

g̃3(r, r
′) =

iπ

2

B
(1)
m,R(k)

A
(1)
m,R(k)

H
(1)
|m−α|(kr)H

(1)
|m−α|(kr

′)1(R, ∞)×(R, ∞)(r, r
′) (3.27)

g̃4(r, r
′) =

iπ

2A
(1)
m,R(k)

J|m|(kr<)H
(1)
|m−α|(kr<)1(0, R]×[R, ∞)∪[R, ∞)×(0, R](r, r

′)

(3.28)

g̃5(r, r
′) =

iπ

2
J|m−α|(kr<)H

(1)
|m−α|(kr>)1(R, ∞)×(R, ∞)(r, r

′) (3.29)

Using the bounds (7.32), (7.41)and (7.45) in Appendix 2 and the relation

W [Jν(z), H
(1)
ν (z)] =

2i

πz
, (3.30)

we can see that for any ε > 0, there exists R0 > 0 such that if R < R0, then the following
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bounds hold:

1

|A(1)
m,R(k)|

6
2Γ(|m| + 1)

||m− α| + |m||Γ(|m− α|)

∣∣∣∣
kR

2

∣∣∣∣
|m−α|−|m|

(1 + ε) (3.31)

∣∣∣∣∣
B

(1)
m,R(k)

A
(1)
m,R(k)

∣∣∣∣∣ 6
π ||m− α| − |m||

(|m− α| + |m|)Γ(|m− α|)Γ(|m− α| + 1)

∣∣∣∣
kR

2

∣∣∣∣
2|m−α|

(1 + ε)

(3.32)∣∣∣∣∣
A

(2)
m,R(k)

B
(2)
m,R(k)

∣∣∣∣∣ 6
||m− α| − |m||Γ(|m|)Γ(|m| + 1)

2π(|m− α| + |m|)

∣∣∣∣
kR

2

∣∣∣∣
−2|m|

(1 + ε) (3.33)

Now we can find bounds for the terms in equation (3.24) for small R.

‖g̃1‖2
2 =

∫ ∫
|g̃1(r, r

′)|2 r dr r′ dr′ =
π2

4

∣∣∣∣∣
A

(2)
m,R(k)

B
(2)
m,R(k)

∣∣∣∣∣

2(∫ R

0

r dr|J|m|(kr)|2
)2

.

Using (3.33) and (7.1) we get

‖g̃1‖2
2 6





(|m− α| − |m|)2R4

64|m|2(|m| + 1)2(|m− α| + |m|)2
(1 + ε), m 6= 0,

R4

64
(1 + ε), m = 0.

(3.34)

Next we have

‖g̃2‖2
2 =

∫
|g̃2(r, r

′)|2 r dr r′ dr′

=
π2

4

∫ R

0

r dr r′ dr′|J|m|(kr<)|2|H(1)
|m|(kr

′
>)|2

=
π2

2

∫ R

0

r dr|J|m|(kr)|2
∫ R

r

r′ dr′|H(1)
|m|(kr

′)|2.

From (7.1), (7.18) and (7.25), we get

‖g̃2‖2
2 6





R4

8|m|2(1 + |m|)(1 + ε), |m| > 1,

R4

32
(1 + ε), |m| = 1,

R4

32

(
8 ln

∣∣∣∣
k

2

∣∣∣∣+ 14 lnR + 1

)
(1 + ε), m = 0.

(3.35)

From the relations Kν(z) = Kν(z̄) and

H(1)
ν (z) = −2i

π
e−

1
2
iπνKν(−iz), (3.36)
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we obtain
∫ ∞

R

r dr |H (1)
|m−α|(kr)|2 =

4

π2

∫ ∞

R

dr
r2|m−α|+ξ−1

r2|m−α|+ξ−2
K|m−α|(ik̄r)K|m−α|(−ikr)

6
4R2−2|m−α|−ξ

π2

∫ ∞

0

dr r2|m−α|+ξ−1K|m−α|(ik̄r)K|m−α|(−ikr).

for 2|m− α| + ξ > 2.

Using the formula 6.576 of [9], we then get

∫ ∞

R

r dr |H (1)
|m−α|(kr)|2 6

2

π2
|k|−2|m−α|−ξ

∣∣∣∣
R

2

∣∣∣∣
2−2|m−α|−ξ Γ

(
ξ
2

)
Γ(1

2
)

Γ( ξ
4

+ 1
2
)
×

×Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ
(
2|m− α| + ξ

2

) (
Γ
(
|m− α| + ξ

2

))2

Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ)

(3.37)

for |m− α| > 1 and ξ > 0.

So, if m 6= N,N + 1,

‖g̃3‖2
2 =

∫
|g̃3(r, r

′)|2 r dr r′ dr′

=
π2

4

∣∣∣∣∣
B

(1)
m,R(k)

A
(1)
m,R(k)

∣∣∣∣∣

2 ∫ ∞

R

r dr|H (1)
|m−α|(kr)|2

∫ ∞

r

r′ dr′|H(1)
|m−α|(kr

′)|2

6
π2

4

∣∣∣∣∣
B

(1)
m,R(k)

A
(1)
m,R(k)

∣∣∣∣∣

2 [∫ ∞

R

r dr|H (1)
|m−α|(kr)|2

]2

6
(|m− α| − |m|)2

(|m− α| + |m|)2

(
R

2

)4−2ξ

|k|−2ξ

(
Γ
(

ξ
2

)
Γ(1

2
)

Γ( ξ
4

+ 1
2
)

)2

(1 + ε) ×

×
(

Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ
(
2|m− α| + ξ

2

) (
Γ
(
|m− α| + ξ

2

))2

Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ)Γ(|m− α|)Γ(|m− α| + 1)

)2

.

(3.38)

For m = N,N + 1 the following bound is sufficient:

‖g̃3‖2
2 6

(
π2 ||m− α| − |m||

4(|m− α| + |m|)Γ(|m− α|)Γ(|m− α| + 1)

)2 ∣∣∣∣
kR

2

∣∣∣∣
4|m−α|

×

×‖H (1)
|m−α|(kr)‖4(1 + ε). (3.39)

Thus, for fixed m, ‖g̃3‖2 → 0 as R → 0 provided we choose ξ < 2.

To make the bound for ‖g̃3‖2 in (3.38) independent of m, we use the following limit:

lim
n→∞

nb−a Γ(n+ a)

Γ(n+ b)
= 1, (3.40)
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to deduce that there exists M0 ∈ N such that, if |m| > M0, then

(
Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ(2|m− α| + ξ/2)

)2
(Γ(|m− α| + ξ/2))4

(
Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ)Γ(|m− α|)Γ(|m− α| + 1)

)2 6 2−ξm
3
2
ξ−2 (3.41)

where m = b|m− α|c, and we must choose ξ < 4
3
.

Similarly, for m 6= N,N + 1,

‖g̃4‖2
2 =

∫
|g̃4(r, r

′)|2 r dr r′ dr′ (3.42)

=
π2

2|A(1)
m,R(k)|2

∫ R

0

r dr|J|m|(kr)|2
∫ ∞

R

r′ dr′|H(1)
|m−α|(kr

′)|2 (3.43)

6
2ξ−1R4−ξ

(|m| + 1)(|m− α| + |m|)2
|k|−ξ Γ

(
ξ
2

)
Γ(1

2
)

Γ( ξ
4

+ 1
2
)

(1 + ε) ×

×Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ
(
2|m− α| + ξ

2

) (
Γ
(
|m− α| + ξ

2

))2

Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ) (Γ(|m− α|))2 , (3.44)

while for m = N,N + 1,

‖g̃4‖2
2 6

π2
∣∣k
2

∣∣2|m−α|
R2|m−α|+2

(|m| + 1)(|m− α| + |m|)2(Γ(|m− α|))2
‖H (1)

|m−α|(kr)‖2(1 + ε).

(3.45)

As previously, for fixed m, ‖g̃4‖2 → 0 as R→ 0 if we choose ξ < 2.

To obtain a bound independent of m in (3.44), we again use the limit in (3.40) to show that
there exists M1 ∈ N such that, if |m| > M1, then

Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ
(
2|m− α| + ξ

2

) (
Γ
(
|m− α| + ξ

2

))2

(1 + |m|)Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ) (Γ(|m− α|))2 6 2

ξ

4M
3
4
ξ−1

1 . (3.46)

Finally,

g̃5(r, r
′) − gk, m(r, r′) =

iπ

2
J|m−α|(kr<)H

(1)
|m−α|(kr>)1

R
2
\(R,∞)×(R,∞)

(3.47)

so

‖g̃5 − gk, m‖2
2 =

π2

2

∫ R

0

r dr|J|m−α|(kr)|2
∫ R

r

r′ dr′|H(1)
|m−α|(kr

′)|2 +

+
π2

2

∫ R

0

r dr|J|m−α|(kr)|2
∫ ∞

R

r′ dr′|H(1)
|m−α|(kr

′)|2. (3.48)

The first term is bounded by
R4(1 + ε)

8|m− α|2(1 + |m− α|) , while for the second term we need to

consider the cases m 6= N,N + 1 separately using equation (3.37).
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Then we deduce that for m 6= N,N + 1,

‖g̃5 − gk, m‖2
2 6

R4(1 + ε)

8|m− α|2(1 + |m− α|) +

(
2
k

)ξ
Γ(1

2
)R4−ξ

8(1 + |m− α|)(1 + ε)× (3.49)

×Γ
(

ξ
2

)
Γ
(
|m− α| + ξ

2
+ 1

2

)
Γ(2|m− α| + ξ/2) (Γ(|m− α| + ξ/2))2

Γ( ξ
4

+ 1
2
)Γ
(
|m− α| + ξ

4
+ 1

2

)
Γ(2|m− α| + ξ)(Γ(|m− α| + 1))2

,

while for m = N,N + 1,

‖g̃5 − gk, m‖2
2 6

R4(1 + ε)

8|m− α|2(1 + |m− α|) + (3.50)

+
π2
∣∣k
2

∣∣2|m−α|
R2|m−α|+2

4(1 + |m− α|)(Γ(1 + |m− α|))2
‖H (1)

|m−α|(kr)‖2(1 + ε).

A similar argument to that used previously shows that the bound in (3.50) may be taken to
be independent of m. This completes the proof of Lemma 1.

�

Next we shall show that the operator hβ
m, R converges in norm the resolvent sense to the

appropriate limit provided β obeys condition I or II.

Lemma 2:

(a) If condition I (condition II) holds, then for m 6= N (m 6= N + 1), the operator hβ
m, R

converges to hm in the norm resolvent sense as R → 0.

Furthermore, there exists M ∈ N such that for |m| > M , there exists a constant c(R),
independent of m, such that ‖gβ

k, m, R − gk, m‖2 6 c(R), and lim
R→0

c(R) = 0.

(b) If condition I (condition II) holds, then the operator hβ
N,R converges to hN,νN

(hβ
N+1,R

converges to hN+1,νN+1
) in the norm resolvent sense as R→ 0.

Proof: We shall prove the Lemma for the case when condition I holds. The corresponding
proof for the case when condition II holds is similar.

First we note the limiting behaviour of g0
k, m, R(R,R) for small R:

g0
k, m, R(R,R) '





1

|m− α| + |m|
(
1 − c̃′(k)R2|m−α|

)
m = N,N + 1,

1

|m− α| + |m|
(
1 − d(k)R2

)
m 6= N,N + 1.

(3.51)

where

c̃′(k) =
2e−iπ|m−α|Γ(1 − |m− α|)

(|m− α| + |m|) Γ(|m− α|)

(
k

2

)2|m−α|

(3.52)

and

d(k) =
1

1 − |m− α|

(
1 +

|m− α| − |m|
|m− α|(|m− α| + |m|)

)(
k

2

)2

. (3.53)
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(a) Let m 6= N and suppose condition I holds. We need to show that

lim
R→0

∥∥∥gβ
k, m, R − gk, m

∥∥∥
2

= 0. (3.54)

Now
∥∥∥gβ

k, m, R − gk, m

∥∥∥
2

6
∥∥g0

k, m, R − gk, m

∥∥
2
+

+

∣∣∣∣∣
β

1 + βg0
k, m, R(R,R)

∣∣∣∣∣
∥∥g0

k, m, R( · , R)
∥∥2
. (3.55)

In Lemma 1, we have shown that lim
R→0

∥∥g0
k, m, R − gk, m

∥∥
2

= 0.

The following three cases need to be considered separately:

Case 1. m = 0, 1, 2, . . . , N − 1;

Case 2. m = N + 1.

Case 3. m 6 −1 or m > N + 2.

Case 1. If m = 0, 1, 2, . . . , N − 1, then |m− α| + |m| = α. For small R,

∣∣∣∣∣
β

1 + βg0
k, m, R(R,R)

∣∣∣∣∣ '
α2

2δ|νN |
R−2δ, (3.56)

while

∥∥g0
k, m, R( · , R)

∥∥2
=

∫ ∞

0

r dr|g0
k, m, R(r, R)|2

=
π2

4|A(1)
m,R(k)|2

{
|H(1)

|m−α|(kR)|2
∫ R

0

r dr|J|m|(kr)|2

+ |J|m|(kR)|2
∫ ∞

R

r dr|H (1)
|m−α|(kr)|2

}

6 (1 + ε)

[
R2

2α2(1 + |m|) +
R2−ξ

2α2

(
2

k

)ξ Γ
(

ξ
2

)
Γ(1

2
)

Γ( ξ
4

+ 1
2
)

×

× Γ
(
|m− α| + ξ+1

2

)
Γ(2|m− α| + ξ/2) (Γ(|m− α| + ξ/2))2

Γ
(
|m− α| + ξ+2

4

)
Γ(2|m− α| + ξ)(Γ(|m− α|))2

]
,

(3.57)

Taking ξ < 2(1 − δ) gives the desired limit.

Case 2. If m = N + 1, then |m− α| + |m| = N + 2 − δ. Then

lim
R→0

∣∣∣∣∣
β

1 + βg0
k,N+1,R(R,R)

∣∣∣∣∣ =
α(N + 2 − δ)

2(1 − δ)
, (3.58)
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while
∫ ∞

0

r dr|g0
k,N+1,R(r, R)|2 =

π2

4|A(1)
N+1,R(k)|2

{
|H(1)

1−δ(kR)|2
∫ R

0

r dr|JN+1(kr)|2+

+ |JN+1(kR)|2
∫ ∞

R

r dr|H (1)
1−δ(kr)|2

}
(3.59)

6
R2

2(N + 2)(N + 2 − δ)2
(1 + ε) +

+
π2‖H (1)

1−δ(kr)‖2

(N + 2 − δ)2(Γ(1 − δ))2

∣∣∣∣
kR

2

∣∣∣∣
2(1−δ)

(1 + ε). (3.60)

Case 3. If m 6 −1 or m > N + 2, then |m − α| + |m| = |2m − α|. The constant term is
bounded as follows:

∣∣∣∣∣
β

1 + βg0
k, m, R(R,R)

∣∣∣∣∣ 6
α|2m− α|

|2m− α| − α
(1 + ε), (3.61)

and
∫ ∞

0

r dr|g0
k, m, R(r, R)|2 =

π2

4|A(1)
m,R(k)|2

{
|H(1)

|m−α|(kR)|2
∫ R

0

r dr|J|m|(kr)|2+

+ |J|m|(kR)|2
∫ ∞

R

r dr|H (1)
|m−α|(kr)|2

}
(3.62)

6

[
R2

2|2m− α|2(1 + |m|) +
R2−ξ

2|2m− α|2
(

2

k

)ξ Γ
(

ξ
2

)
Γ(1

2
)

Γ( ξ
4

+ 1
2
)

(1 + ε) ×

× Γ
(
|m− α| + ξ+1

2

)
Γ(2|m− α| + ξ/2) (Γ(|m− α| + ξ/2))2

Γ
(
|m− α| + ξ+2

2

)
Γ(2|m− α| + ξ)(Γ(|m− α|))2

]
,

(3.63)

An argument similar to that used in (3.46) ensures that the bound is independent of m if
|m| is large enough.

(b) Let m = N and suppose condition I holds. Then

∥∥∥gβ
k,N,R − gνN

k,N

∥∥∥
2

6
∥∥g0

k,N,R − gk,N

∥∥
2
+ ‖lk,N,R − lk,N‖2 (3.64)

where

lk,N,R(r, r′) =
β

1 + βg0
k,N,R(R,R)

g0
k,N,R(r, R)g0

k,N,R(R, r′), (3.65)

and

lk,N = c(N, νN , k)H
(1)
δ (kr)H

(1)
δ (kr′). (3.66)

As noted previously, Lemma 1 proves that lim
R→0

∥∥∥gβ
k,N,R − gνN

k,N

∥∥∥
2

= 0.
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Now,

‖lk,N,R − lk,N‖2
2 =

∫
r dr r′ dr′

∣∣∣∣∣
β

1 + βg0
k,N,R(R,R)

g0
k,N,R(r, R)g0

k,N,R(R, r′)−

−c(N, νN , k)H
(1)
δ (kr)H

(1)
δ (kr′)

∣∣∣
2

(3.67)

= l(1) + l(2) − l(3) − l(3) (3.68)

where

l(1) =

∣∣∣∣∣
β

1 + βg0
k,N,R(R,R)

∣∣∣∣∣

2 ∫
r dr r′ dr′

∣∣g0
k,N,R(r, R)g0

k,N,R(R, r′)
∣∣2 , (3.69)

l(2) = |c(N, νN , k)|2
∫
r dr r′ dr′

∣∣∣H(1)
δ (kr)H

(1)
δ (kr′)

∣∣∣
2

, (3.70)

and

l(3) =
β

1 + βg0
k,N,R(R,R)

c(N, νN , k)

∫
r dr r′ dr′g0

k,N,R(r, R) ×

×g0
k,N,R(R, r′)H

(1)
δ (kr)H

(1)
δ (kr′) (3.71)

For small R,

β

1 + βg0
k,N,R(R,R)

' −α2R−2δ

2δνN + αc̃′(k)
. (3.72)

Then
∫
r dr r′ dr′

∣∣g0
k,N,R(r, R)g0

k,N,R(R, r′)
∣∣2 =

π4

16|A(1)
N,R(k)|4

× (3.73)

×
{
|H(1)

δ (kR)|4
[∫ R

0

r dr|JN(kr)|2
]2

+ |JN(kR)|4
[∫ ∞

R

r dr|H (1)
δ (kR)|2

]2
}

The first term is bounded by
R4

4α4(N + 1)2
(1 + ε), while for small R

∣∣∣∣∣
β

1 + βg0
k,N,R(R,R)

∣∣∣∣∣

2
π4|JN(kR)|4

16|A(1)
N,R(k)|4

[∫ ∞

R

r dr|H (1)
δ (kR)|2

]2

' (3.74)

π4
(

k
2

)4δ

(Γ(δ))4(2δνN + αc̃′(k))2
‖H (1)

δ (kr)1(R,∞)‖4 = |c(N, νN , k)|2 ‖H (1)
δ (kr)1(R,∞)‖4.

Then l(1) → l(2) as R → 0 by dominated convergence.
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For l(3) we have∫
r dr r′ dr′g0

k,N,R(r, R)g0
k,N,R(R, r′)H

(1)
δ (kr)H

(1)
δ (kr′) = (3.75)

=

[
iπ

2A
(1)
N,R(k)

{
H

(1)
δ (kR)

∫ R

0

r drJN(kr)H
(1)
δ (kr) +

+ JN(kR)

∫ ∞

R

r dr|H (1)
δ (kr)|2

}]2

. (3.76)

The first term in the bracket goes to
iΓ(δ)R2−δ

απ(N + 2 − δ)

(
k̄

2

)−δ

, while for small R,

iπ

2A
(1)
N,R(k)

JN(kR)

∫ ∞

R

r dr|H (1)
δ (kr)|2 ' iπ

αΓ(δ)

∣∣∣∣
kR

2

∣∣∣∣
δ

‖H (1)
δ (kr)1(R,∞)‖2.

(3.77)

Then l(3) → l(2) as R → 0 by dominated convergence, which completes the proof.

�

4 Approximation by Smooth Flux Tube

In Section 3, AR = α
k × r

r2
Θ(r−R) so that BR is concentrated on a cylindrical shell. Now

we replace the Θ-function by a smooth step function which approximates the Θ-function as
R → 0. Let a : R 7→ R be a differentiable function with a(r) = 0 for r 6 0 and a(r) = 1

for r > r0, where r0 > 0. Furthermore, let a be such that the function b(r) =
1

r

d

dr
a(r) is

bounded in absolute value (i.e. there exists b0 ∈ R such that |b(r)| 6 b0). Then b(r) has

support only in (0, r0), and

∫ ∞

0

b(r) r dr = 1. We take

ÂR = α
k × r

r2
a

(
r − R

R5

)
(4.1)

so that k · B̂R = R−5α b

(
r −R

R5

)
. Let

ĤR = (i∇ + ÂR)
2
+
β

α
k · B̂R. (4.2)

β here depends on α and R. Motivated by the result of Section 3 we shall consider two cases:

(a) β(α,R) ' −α
(

1 − 2δ

α
νNR

2δ

)
,

(b) β(α,R) ' (α− 2(N + 1))

(
1 − 2(1 − δ)

2(N + 1) − α
νN+1R

2(1−δ)

)
.

The component of the operator ĤR on the space with angular momentum m are

ĥm,R = −1

r

∂

∂r
r
∂

∂r
+

(m− α a
(

r−R
R5

)
)2

r2
+ βR−5b

(
r − R

R5

)
. (4.3)
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We shall prove convergence in the norm resolvent sense of the operators ĥm,R, and hence of

ĤR.

We can rewrite the last equation as

ĥm,R = −1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r −R))2

r2
+

β

R5r
Vm

(
r − R

R5

)
(4.4)

where

Vm(r) = r b(r) +
R4

β(rR4 + 1)

{
−2mα(a(r) − Θ(r)) + α2(a2(r) − Θ(r))

}
. (4.5)

We note that Vm(r) has support only in (0, r0), and that

|âm(r)| := | − 2mα(a(r) − Θ(r)) + α2(a2(r) − Θ(r))| 6 mK (4.6)

where K is a constant independent of m and R.

Define the auxiliary operators

h̃m, R = −1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r − 1
R4 ))

2

r2
+
R5β

r
Vm

(
r − 1

R4

)
. (4.7)

Vm is form compact (Note 4, Appendix 1) with respect to

−1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r − R))2

r2
,

so the form sum (4.7) is well-defined. From Thm. B.1(b) of [7], the resolvent of h̃m, R for
k2 ∈ ρ(h̃m, R) and =(k) > 0, is given by

[h̃m, R − k2]−1 = g0
k, m, R −R5βg0

k, m, Rṽm[1 + βB̃m,R(k)]−1ũmg
0
k, m, R (4.8)

where

ṽm(r) =

∣∣∣∣
1

r
Vm

(
r − 1

R4

)∣∣∣∣
1
2

, ũm(r) =

∣∣∣∣
1

r
Vm

(
r − 1

R4

)∣∣∣∣
1
2

sgn

[
Vm

(
r − 1

R4

)]
(4.9)

and
B̃m,R(k) = R5ũmg

0
k, m, Rṽm; =(k) > 0. (4.10)

B̃m,R extends to a Hilbert-Schmidt operator (Note 4, Appendix 1).

Introducing the unitary scaling group (URg)(r) =
1

R5
g
( r

R5

)
, we get

ĥm,R =
1

R10
URh̃m, RU

−1
R . (4.11)

Then, noting that
R10URg

0
k, m, RU

−1
R = g0

k/R5,m,R (4.12)
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and taking the translation r → r + 1
R4 , we obtain

[ĥm,R − k2]−1 =

[
1

R10
URh̃m, RU

−1
R − k2

]−1

= R10UR

[
h̃m, R − (R5k)2

]−1

U−1
R

= R10UR

[
g0

R5k, m, R −

− R5βg0
R5k, m, Rṽm[1 + βB̃m,R(R5k)]−1ũmg

0
R5k, m, R

]
U−1

R

(4.13)

for k2 ∈ ρ(ĥ) and =(k) > 0. For =(k) > 0, define Hilbert-Schmidt operators Am,R(k),
Bm,R(k) and Cm,R(k), with integral kernels:

Am,R(k, r, r′) = g0
k, m, R(r, R(1 +R4r′))v̂m(r′); (4.14)

Bm,R(k, r, r′) = ûm(r)g0
k, m, R(R(1 +R4r), R(1 +R4r′))v̂m(r′) (4.15)

Cm,R(k, r, r′) = ûm(r)g0
k, m, R(R(1 +R4r), r′) (4.16)

where

v̂m(r) =

∣∣∣∣
Vm(r)

r

∣∣∣∣
1
2

and ûm(r) =

∣∣∣∣
Vm(r)

r

∣∣∣∣
1
2

sgn[Vm(r)]. (4.17)

Then (4.13) becomes

[ĥm,R − k2]−1 = g0
k, m, R − βAm,R(k)[1 + βBm,R(k)]−1Cm,R(k) (4.18)

for k2 ∈ ρ(hε, m, R) and =(k) > 0.

Using this representation we can prove the following result.

Theorem 2.

Let

ĤR =
∞⊕

m=−∞

ĥm,R. (4.19)

Then ĤR converges, as R → 0, to one of the self-adjoint extensions Hν of the A-B Hamilto-
nian only if either

(I)
β(α,R) + α

R2δ
→ 2δνN

or

(II)
β(α,R) − α + 2(N + 1)

R2(1−δ)
→ 2(1 − δ)νN+1.

In case (I) ĤR converges in the norm resolvent sense, as R → 0, to H (νN , ∞), and in case (II)
to H (∞, νN+1).

The proof of this theorem is fairly standard but by no means trivial. Because again we
require uniform convergence in m we need to control the m-behaviour and this makes the
proof very lengthy. We therefore we do not give the proof here but only state the two lemmas
required in the case when Condition I holds. Once we have these two lemmas, the proof is
similar to that of Theorem 1. and the result follows from them.
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We have already proved that g0
k, m, R → gk,m in norm. Let

v(r) = |b(r)|
1
2 ; u(r) = |b(r)|

1
2 sgn[b(r)]. (4.20)

Lemma 3: If condition I holds, then

(a) for m < 0 and m > N , the operators Am,R(k), Cm,R(k) → 0 in norm;

(b) for m = 0, . . . , N − 1, the operators R−δAm,R(k), R−δCm,R(k) → 0 in norm;

(c) for m = N , R−δAm,R(k) → AN (k) and R−δCm,R(k) → CN(k) in norm, where

AN(k, r, r′) = c̃N(k)H
(1)
δ (kr)v(r′) and CN(k, r, r′) = c̃N(k)u(r)H

(1)
δ (kr′).

Lemma 4:

If condition I holds, then

(a) for m < 0 and m > N , ‖β(α,R)Bm,R(k)‖2 6
C|α|

|m− α| + |m| , where C is a constant

independent of m and R;

(b) for m = 0, . . . , N , R2δ [1 + β(α,R)Bm,R]−1 → 1

κm

〈v, ·〉u in norm as R → 0, where

κm =





− α

2δνN
m = 0, . . . , N − 1;

αc̃2N(k)

c(N, νN , k)
m = N.

(4.21)

5 Other Approximations

As mentioned in the Introduction, there are two other very natural approximations. These
were investigated also in [3, 4]. Case (1) is when the magnetic field inside the cylinder of
radius R is homogeneous, that is,

AR =





α
k × r

R2
, r < R

α
k × r

r2
, r > R.

(5.1)

Here k ·BR =
2α

R2
Θ(R− r).

Case (2) is when the magnetic field is proportional to
1

r
inside the cylinder:

AR =





α
k × r

rR
, r < R

α
k × r

r2
, r > R.

(5.2)
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In this case k · BR =
α

rR
Θ(R− r).

Let

σ =





1 +N

M(1, 2 +N,α)
, in case (1)

1 + 2N

M(1, 2 + 2N, 2α)
, in case (2),

(5.3)

where M(a, b, z) is Kummer’s function. Let η be a solution of the equation

η = −(1 − δ)(2 +N)M(η, 2 +N,α)

αM(η + 1, 3 +N,α)
, (5.4)

in case (1) and of the equation

η = −(1 − δ)(3 + 2N)M(η, 3 + 2N, 2α)

αM(η + 1, 4 + 2N, 2α)
, (5.5)

in case (2). Note that both these equations have an infinite number of solutions.

Let
φk, m, R(r, r′) = gβ

k, m, R(r, r′) − gk, m(r, r′)

where gβ
k, m, R(r, r′) is the resolvent of the approximating Hamiltonian in each case and

gk, m(r, r′) is as in (2.4).

The following are the only cases which give non-trivial results:

(I) if β ' −α
(

1 − σ
2δ

α
νNR

2δ

)
as R→ 0, then φk, m, R(r, r′) approaches

1. a non-zero limit for m = N , corresponding to the self-adjoint extension hN,νN
;

2. zero limit for m = N + 1, corresponding to the regular self-adjoint extension hN+1,∞;

3. zero limit for m 6= N,N + 1, corresponding to the self-adjoint operators hm.

(II) if β ' α(2η − 1)

(
1 − 2η

2η − 1
νN+1R

2(1−δ)

)
as R → 0, then φk, m, R(r, r′) approaches

1. a non-zero limit for m = N + 1, corresponding to the self-adjoint extension hN+1,νN+1
;

2. zero limit for m = N , corresponding to the regular self-adjoint extension hN,∞;

3. zero limit for m 6= N,N + 1, as before.

Acknowledgement: One of the authors (J.L.B.) would like to thank the University of
Malta (Staff Development Fund) for financial support during the course of this work.
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6 Appendix 1

Note 1:

The Bessel functions of the first and third kind have the following limiting and asymptotic
properties [8]:

1. for small z,

Jν(z) ' 1

Γ(ν + 1)

(z
2

)ν

(ν 6= −1,−2,−3, . . .) (6.1)

H(1)
ν (z) ' −iΓ(ν)

π

(z
2

)−ν

(Rν > 0) (6.2)

2. for large |z|,

Jν(z) =

√
2

πz

{
cos(z − νπ

2
− π

4
) + e|Iz|O(|z|−1)

}

(| arg z| < π) (6.3)

H(1)
ν (z) =

√
2

πz
ei(z− νπ

2
−π

4
) (−π < arg z < 2π) (6.4)

Two linearly independent solutions of
(
−1

r

∂

∂r
r
∂

∂r
+
ν2

r2

)
φk(r) = k2φk(r) (6.5)

are Jν(kr) and H
(1)
ν (kr).

In the given case, the only solution for r < R which lies in D(h∗
m, R) is J|m|(kr), while for

r > R the only solution is H
(1)
|m−α|(kr).

Note 2:

To obtain the Green’s function, consider two solutions of equation (6.5), one of which is
regular at r = 0 and irregular at r = ∞, while the other is irregular at r = 0 and regular at
r = ∞.

Consider

φ1,m,k(r) =

{
J|m|(kr) r < R

A
(1)
m (k)J|m−α|(kr) +B

(1)
m (k)H

(1)
|m−α|(kr) r > R

(6.6)

φ2,m,k(r) =

{
A

(2)
m,R(k)J|m|(kr) +B

(2)
m,R(k)H

(1)
|m|(kr) r < R

H
(1)
|m−α|(kr) r > R

(6.7)

where the constants A
(1)
m,R(k), A

(2)
m,R(k), B

(1)
m,R(k) and B

(2)
m,R(k) are chosen so that the boundary

conditions φm,k(R+) = φm,k(R−) and φ′
m,k(R+) = φ′

m,k(R−) are satisfied (note that the
second boundary condition is the one imposed to obtain the regular self-adjoint extension
i.e. the one with β = 0).



Pauli Approximations to the Aharonov-Bohm Hamiltonian 22

Then g0
k, m, R(r, r′) = cφ1,m,k(r<)φ2,m,k(r>), where r< = min{r, r′} and r> = max{r, r′}. The

constant c is determined by considering the boundary condition at r = r′:

∆
∂g0

k, m, R

∂r

∣∣∣∣
r=r′

≡ lim
r↓r′

∂g0
k, m, R

∂r
(r, r′) − lim

r↑r′

∂g0
k, m, R

∂r
(r, r′) = − 1

r′
(6.8)

Then we obtain

g0
k, m, R(r, r′) =





iπ

2B
(2)
m,R

(k)
φ1,m,k(r<)φ2,m,k(r>) r, r′ 6 R

iπ

2A
(1)
m,R

(k)
φ1,m,k(r<)φ2,m,k(r>) r, r′ > R

(6.9)

Note that the boundary conditions imply that

lim
R→0

(
A

(1)
m,R(k) − B

(2)
m,R(k)

)
= 0. (6.10)

Note 3:

(Cfr. Thm I.3.1.2 of [7]) The general structure of equation (3.14) follows from Krein’s formula.
To verify the constant in the second term, define for g ∈ L2((0,∞), r dr) and =(k) > 0,

fβ(r) =
(
(hm,R − k2)−1g

)
(r) − β

1 + βg0
k, m, R(R,R)

×〈g0
k, m, R(·, R), g〉g0

k, m, R(r, R) (6.11)

=

∫ ∞

0

dr′ r′ g0
k, m, R(r, r′)g(r′) − β

1 + βg0
k, m, R(R,R)

×
∫ ∞

0

dr′ r′ g0
k, m, R(r, R)g0

k, m, R(R, r′)g(r′). (6.12)

Then fβ ∈ H2,2
loc ((0,∞) \ {R}, r dr) ∩H2,1((0,∞), r dr) and

f ′
β(R+) − f ′

β(R−) =
β/R

1 + βRg0
k, m, R(R,R)

∫ ∞

0

dr′ r′ g0
k, m, R(R, r′)g(r′)

=
β

R
fβ(R) (6.13)

This means that fβ ∈ D(hβ
m, R). Furthermore, for =(k) > 0

(hβ
m, R − k2)fβ = g(r), r ∈ (0,∞) \ {R} (6.14)

which proves equation (3.14).

Note 4:

To show that B̃ extends to a Hilbert-Schmidt operator, we need to show that (cfr. [7] p.80)
∫

[0,∞]×[0,∞]

dr dr′ |V (r)||g0
k, m, R(r, r′)|2|V (r′)| < ∞, =(k) > 0. (6.15)
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This follows by considering the behaviour of the Bessel functions for small and large argu-
ments, as discussed in Note 1. From the previous estimate we obtain

∣∣∣∣
V (r)

r

∣∣∣∣
1/2(

−1

r

∂

∂r
r
∂

∂r
+

(m− αΘ(r − R))2

r2
+ E

)1/2

∈ B∞(L2((0,∞), r dr)),

E > 0

(6.16)

7 Appendix 2

In this section we shall derive bounds for expressions involving the Bessel functions Jν(z)

and H
(1)
ν (z).

First we shall obtain upper bounds for |Jν(z)|. If ν > −1
2
, then it follows [10] from Poisson’s

integral that

|Jν(z)| 6

∣∣ z
2

∣∣ν

Γ(ν + 1)
e|=z|. (7.1)

For ν < −1
2
, the following series expansion [8], which is valid for all z and ν, is used:

Jν(z) =
(z

2

)ν
∞∑

k=0

(
−1

4
z2
)k

k!Γ(ν + k + 1)
(7.2)

=

(
z
2

)ν

Γ(ν + 1)

(
1 +

∞∑

k=1

Γ(ν + 1)
(
−1

4
z2
)k

k!Γ(ν + k + 1)

)
. (7.3)

For ν 6= −1,−2,−3, . . .,
|Γ(ν + 1)|

|Γ(ν + k + 1)| 6
1

|ν0 + 1|k , where |ν0 +1| = min{|ν+1|, |ν+2|, |ν+

3|, . . .}. Thus we obtain:

|Jν(z)| 6

∣∣ z
2

∣∣ν

|Γ(ν + 1)|e
1
4 |z|2

|ν0+1| , ν 6= −1,−2,−3, . . . . (7.4)

Next we obtain lower bounds for |Jν(z)|. Using the series expansion (7.2), and the same
argument used for (7.4), we obtain

|Jν(z)| >

∣∣ z
2

∣∣ν

|Γ(ν + 1)|

(
2 − e

1
4 |z|2

|ν0+1|

)
, ν 6= −1,−2,−3, . . . . (7.5)

The above bounds imply that, given any ε > 0, there exists z0 such that, for any ν, if
|z| < |z0| then

|Jν(z)| 6

∣∣ z
2

∣∣ν

|Γ(ν + 1)|(1 + ε); (7.6)

and |Jν(z)| >

∣∣ z
2

∣∣ν

|Γ(ν + 1)|(1 − ε). (7.7)
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If ν is a negative integer, upper and lower bounds may be deduced using

Jν(z) = (−1)νJ|ν|(z). (7.8)

Upper and lower bounds for expressions involving the derivatives of Jν(z) may be deduced
from the recurrence relation:

J ′
ν(z) = −Jν+1(z) +

ν

z
Jν(z). (7.9)

Now we turn to bounds for |H (1)
ν (z)|. These are obtained using the following relation

H(1)
ν (z) = i csc(νπ){e−νπiJν(z) − J−ν(z)}. (7.10)

Note that we are only interested in the case ν > 0. Thus, when ν > 0 and ν /∈ Z:

|H(1)
ν (z)| 6

Γ(ν)

π

∣∣∣z
2

∣∣∣
−ν

e
1
4 |z|2

|ν1+1|

(
1 +

|Γ(1 − ν)|
Γ(1 + ν)

∣∣∣z
2

∣∣∣
2ν
)
, (7.11)

|H(1)
ν (z)| >

Γ(ν)

π

∣∣∣z
2

∣∣∣
−ν
(

2 − e
1
4 |z|2

|ν1+1|

)(
1 − |Γ(1 − ν)|

Γ(1 + ν)

∣∣∣z
2

∣∣∣
2ν
)
. (7.12)

Here |ν1 + 1| = min{|ν + 1|, |ν + 2|, |ν + 3|, . . . , | − ν + 1|, | − ν + 2|, | − ν + 3|, . . .}.

For ν ∈ Z
+, we use the relation:

H(1)
n (z) = Jn(z) + iYn(z) (7.13)

where Yn(z) is the Bessel function of the second kind with series expansion:

Yn(z) = −
(

z
2

)−n

π

n−1∑

k=0

(n− k − 1)!

k!

(
z2

4

)k

+
2

π
ln
(z

2

)
Jn(z)

−
(

z
2

)n

π

∞∑

k=0

ψ(k + 1) + ψ(n+ k + 1)

k!(n+ k)!

(
−z

2

4

)k

, n > 1 (7.14)

with the Digamma function ψ(n) = Γ′(n)
Γ(n)

given by:

ψ(1) = −γ, ψ(n) = −γ +
n−1∑

k=1

1

k
n > 2, (7.15)

where γ is Euler’s constant.

Noting that (n− k− 1)! 6 Γ(n) and
ψ(k + 1) + ψ(n + k + 1)

(n+ k)!
6 2Γ(n) for n > 1, we get the

following bounds:

|Yn(z)| 6
Γ(n)

π

∣∣∣z
2

∣∣∣
−n

e
1
4
|z|2
{

1 +
2

Γ(n)

∣∣∣z
2

∣∣∣
2n

(1+

+
1

Γ(n + 1)

∣∣∣ln z
2

∣∣∣ e|=(z)|− 1
4
|z|2
)}

n > 1 (7.16)

|Yn(z)| >
Γ(n)

π

∣∣∣z
2

∣∣∣
−n
{(

2 − e
1
4
|z|2
)
− 2

Γ(n)

∣∣∣z
2

∣∣∣
2n

e
1
4
|z|2−

− 2

Γ(n)Γ(n + 1)

∣∣∣ln z
2

∣∣∣
∣∣∣z
2

∣∣∣
2n

e|=(z)|

}
n > 1. (7.17)
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The corresponding inequalities for H
(1)
n (z) are:

|H(1)
n (z)| 6

Γ(n)

π

∣∣∣z
2

∣∣∣
−n

e
1
4
|z|2
{

1 +
2

Γ(n)

∣∣∣z
2

∣∣∣
2n

(1 +

+

(∣∣∣ln z
2

∣∣∣ +
π

2

) 1

Γ(n+ 1)
e|=(z)|− 1

4
|z|2
)}

, n > 1 (7.18)

|H(1)
n (z)| >

Γ(n)

π

∣∣∣z
2

∣∣∣
−n
{(

2 − e
1
4
|z|2
)
− 2

Γ(n)

∣∣∣z
2

∣∣∣
2n

e
1
4
|z|2−

−
(
2
∣∣∣ln z

2

∣∣∣ + π
) 1

Γ(n)Γ(n+ 1)

∣∣∣z
2

∣∣∣
2n

e|=(z)|

}
n > 1. (7.19)

The above bounds imply that, given any ε > 0, there exists z0 such that, for any ν > 0, if
|z| < |z0| then

|H(1)
ν (z)| 6

Γ(ν)

π

∣∣∣z
2

∣∣∣
−ν

(1 + ε); (7.20)

and |H (1)
ν (z)| >

Γ(ν)

π

∣∣∣z
2

∣∣∣
−ν

(1 − ε). (7.21)

For n = 0, we use the following series expansion for Y0(z):

Y0(z) =
2

π

{
ln
(z

2

)
+ γ
}
J0(z) (7.22)

+
2

π

{
z2

4
−
(

1 +
1

2

) (1
4
z2
)2

(2!)2
−
(

1 +
1

2
+

1

3

) (1
4
z2
)3

(3!)2
− · · ·

}
.

Noting that 1 + 1
2

+ · · · + 1
n

6 n!, we find that the term in the second bracket of (7.22) is

bounded in absolute value by e
1
4
|z|2 − 1. Hence we get the following bounds for Y0(z):

|Y0(z)| 6
2

π
| ln z|

{
|J0(z)| +

|J0(z)|
| ln z| (ln 2 + γ) +

e
1
4
|z|2 − 1

| ln z|

}
; (7.23)

|Y0(z)| >
2

π
| ln z|

{
|J0(z)| −

|J0(z)|
| ln z| (ln 2 + γ) − e

1
4
|z|2 − 1

| ln z|

}
. (7.24)

Then, using (7.4) and (7.5) for the case ν = 0, we obtain the corresponding bounds for

H
(1)
0 (z):

|H(1)
0 (z)| 6

2

π
| ln z|e 1

4
|z|2

{
1 +

1

| ln z|
(
ln 2 + γ +

π

2

)
+

1 − e−
1
4
|z|2

| ln z|

}
; (7.25)

|H(1)
0 (z)| >

2

π
| ln z|

{(
2 − e

1
4
|z|2
)
− e

1
4
|z|2

| ln z|
(
ln 2 + γ +

π

2

)
− e

1
4
|z|2 − 1

| ln z|

}
. (7.26)

Now, for fixed arg(z), we know that | ln z| > ln |z|, and that for any ε′ > 0, | ln z| 6

ln |z|(1+ ε′) if |z| is small enough. This implies that for any ε > 0, there exists z0 such that,
if |z| < |z0|, then:

|H(1)
0 (z)| 6

2

π
ln |z|(1 + ε); (7.27)

|H(1)
0 (z)| >

2

π
ln |z|(1 − ε). (7.28)
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Next we obtain bounds for the Wronskians that appear in the expressions for the constants
A

(1)
m,R(k), A

(2)
m,R(k), B

(1)
m,R(k), and B

(2)
m,R(k) which are defined in Note 2 of Appendix 1.

Using (7.9) and (7.10), we can write

W [H(1)
ν (z), Jν′(z)] = H (1)

ν (z)J ′
ν′(z) −H (1)′

ν (z)Jν′(z) (7.29)

=
i

sin(νπ)

(
{e−νπiJν(z) − J−ν(z)}J ′

ν′(z)

−{e−νπiJ ′
ν(z) − J ′

−ν(z)}Jν(z)
)

=
i

sin(νπ)

(
−ν

′ + ν

z
Jν′(z)J−ν(z) + Jν′+1(z)J−ν(z)

−Jν′(z)J−ν+1(z) + e−iπν

{
ν ′ − ν

z
Jν′(z)Jν(z)

−Jν′+1(z)Jν(z) + Jν′(z)Jν+1(z)}) . (7.30)

From the bounds derived above, we obtain

|W [H(1)
ν (z), Jν′(z)]| >

(ν ′ + ν)Γ(ν)

2πΓ(ν ′ + 1)

∣∣∣z
2

∣∣∣
ν′−ν−1

{(
2 − e

1
4 |z|2

ν′+1

)(
2 − e

1
4 |z|2

|ν1+1|

)
−

−2e|=(z)|

ν ′ + ν


e

1
4 |z|2

|ν1+1|

ν ′ + 1

∣∣∣z
2

∣∣∣
2

+
e

1
4 |z|2

|ν1+1|

|1 − ν|
∣∣∣z
2

∣∣∣
2

+
|ν ′ + ν|e|=(z)|

2Γ(ν + 1)

∣∣∣z
2

∣∣∣
2ν

+
|Γ(1 − ν)|e|=(z)|

Γ(ν + 2)

∣∣∣z
2

∣∣∣
2ν+2

+
|Γ(1 − ν)|e|=(z)|

(ν ′ + 1)Γ(ν + 1)

∣∣∣z
2

∣∣∣
2ν+2

)}
,

(7.31)

for ν, ν ′ > 0, ν /∈ Z.

Since Γ(1 − ν) =
π

sin(πν)Γ(ν)
, then for any ε0 > 0 there exist z0 and ν̃0 such that for

|z| < |z0| and ν ′, ν > ν̃0,

|W [H(1)
ν (z), Jν′(z)]| >

(ν ′ + ν)Γ(ν)

2πΓ(ν ′ + 1)

∣∣∣z
2

∣∣∣
ν′−ν−1

(1 − ε0). (7.32)

Using a similar argument to that used in (7.30), as well as the relation

H(1)′
ν (z) = −H (1)

ν+1(z) +
ν

z
H(1)

ν (z), (7.33)

we can write

W [H(1)
ν (z), H (1)

n (z)] = H (1)
ν (z)H (1)′

n (z) −H (1)′
ν (z)H (1)

n (z) (7.34)

=
i

sin(νπ)

(
J−ν(z)H

(1)
n+1(z) −

n + ν

z
J−ν(z)H

(1)
n (z)

−J1−ν(z)H
(1)
n (z) + e−iπν

{
n− ν

z
Jν(z)H

(1)
n (z)

−Jν(z)H
(1)
n+1(z) + Jν+1(z)H

(1)
n (z)

})
. (7.35)
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Let n ∈ Z
+, ν > 0, and ν /∈ Z. Using the relation H

(1)
n+1(z) =

2n

z
H(1)

n (z) −H
(1)
n−1(z), and the

bounds in (7.4) and (7.11), one can see that for any ε1 > 0 there exist z1 and n1 such that
for |z| < |z1| and ν, n > n1,

∣∣∣∣J−ν(z)

(
H

(1)
n+1(z) −

n+ ν

z
H(1)

n (z)

)∣∣∣∣ 6
ν − n

2π

Γ(n)

|Γ(1 − ν)|
∣∣∣z
2

∣∣∣
−n−ν−1

(1 + ε1) ;

∣∣J1−ν(z)H
(1)
n (z)

∣∣ 6
Γ(n)

π|Γ(2 − ν)|
∣∣∣z
2

∣∣∣
−n−ν+1

(1 + ε1) ; (7.36)

∣∣∣∣
n− ν

z
Jν(z)H

(1)
n (z)

∣∣∣∣ 6
|n− ν|Γ(n)

2πΓ(ν + 1)

∣∣∣z
2

∣∣∣
−n+ν−1

(1 + ε1) ; (7.37)

∣∣∣Jν(z)H
(1)
n+1(z)

∣∣∣ 6
Γ(n+ 1)

πΓ(ν + 1)

∣∣∣z
2

∣∣∣
−n+ν−1

(1 + ε1) ; (7.38)

∣∣Jν+1(z)H
(1)
n (z)

∣∣ 6
Γ(n)

πΓ(ν + 2)

∣∣∣z
2

∣∣∣
−n+ν+1

(1 + ε1) . (7.39)

The above results imply that for |z| < |z1| and ν, n > n1,

|W [H(1)
ν (z), H (1)

n (z)]| 6
|ν − n|

2π2
Γ(n)Γ(ν)

∣∣∣z
2

∣∣∣
−n−ν−1

(
1 +

2

|ν − n||1 − ν|
∣∣∣z
2

∣∣∣
2

+
|Γ(1 − ν)|
Γ(ν + 1)

∣∣∣z
2

∣∣∣
2ν

+
2n|Γ(1 − ν)

|ν − n|Γ(ν + 1)

∣∣∣z
2

∣∣∣
2ν

+
2|Γ(1 − ν)|

|ν − n|Γ(ν + 2)

∣∣∣z
2

∣∣∣
2ν+2

)
(1 + ε1) (7.40)

From this we deduce that for any ε2 > 0 there exist z2 and n2 such that for |z| < |z2| and
ν, n > n2,

|W [H(1)
ν (z), H (1)

n (z)]| 6
|ν − n|

2π2
Γ(n)Γ(ν)

∣∣∣z
2

∣∣∣
−n−ν−1

(1 + ε2) (7.41)

Using (7.9), we obtain

W [Jn(z), Jν(z)] = Jn(z)J
′
ν(z) − J ′

n(z)Jν(z) (7.42)

=
ν − n

z
Jn(z)Jν(z) − Jn(z)Jν+1(z) + Jn+1(z)Jν(z). (7.43)

Then, for n ∈ Z
+, and ν > −1

2
,

|W [Jn(z), Jν(z)]| 6
|ν − n|e|=(z)|

2Γ(n+ 1)Γ(ν + 1)

∣∣∣z
2

∣∣∣
n+ν−1

{
1 +

(
2n

ν + 1
+

2

n + 1

) ∣∣∣z
2

∣∣∣
2
}
.

(7.44)

In the case n = |m|, ν = |m−α|, for any ε4 > 0 there exist z4 and n4 such that for |z| < |z4|
and ν, n > n4,

|W [Jn(z), Jν(z)]| 6
|ν − n|

2Γ(n+ 1)Γ(ν + 1)

∣∣∣z
2

∣∣∣
n+ν−1

{1 + ε4} (7.45)
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