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Abstract. It is shown that Schrödinger operators, with potentials along the
shift embedding of irreducible interval exchange transformations in a dense
set, have pure singular continuous spectrum for Lebesgue almost all points of
the interval. Such potentials are natural generalizations of the Sturmian case.

1. Introduction and Main Results

In this work some techniques for the study of the spectrum of discrete Schrödinger
operators Hω : l2(ZZ) → l2(ZZ),

(Hωψ)j = ψj+1 + ψj−1 + ωjψj ,(1)

with ω = (ωj)j∈ZZ a sequence of real numbers (usually called potential) taking a
finite number of values, are used to show the presence of pure singular continuous
spectrum for potentials along the shift embedding of some interval exchange trans-
formations (briefly, iets) [8]. An iet preserves Lebesgue measure and our results
apply for the shift associated with a dense set of iets and for a.e. points of the in-
terval (the symbol a.e. with no specification means almost everywhere with respect
to the corresponding Lebesgue measure). See ahead for precise formulations.

One of the main interests in the spectral type of such operators comes from
its relation with the asymptotic temporal behavior of the solutions of Schrödinger
equation (see, for instance, [7] and references therein)

i
∂ψ

∂t
(t) = Hωψ(t), ψ(0) = ψ0.

For example, assume that ‖ψ0‖ = 1, let ψ(t) = exp(−itHω)ψ0 be the solution of this
equation and denote by pψ(T ) = 1

T

∫ T

0
|〈ψ(t), ψ0〉|2dt the average return probability,

at time T , to the initial condition ψ0; by Wiener theorem [1, 7] limT→∞ pψ(T ) = 0
if, and only if, ψ0 belongs to the continuous spectral subspace of Hω; it is worth
noting that for ψ0 in the singular continuous subspace it is possible that 〈ψ(t), ψ0〉
does not vanish for t → ∞, which is sometimes called exotic behavior by physicists.

Here it will be considered the spectral type of operator (1) with sequences ω
directly related to iets; so, in order to formulate such spectral results properly, it is
convenient to introduce some notations and a description of the iets.

Key words: Schrödinger operator; interval exchange transformation; singular continuous spec-
trum.
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1.1. iet: a brief account. Fix n ∈ IN, an irreducible permutation

π : {1, 2, · · · , n} → {1, 2, · · · , n}
(i.e., π{1, 2, · · · , j} �= {1, 2, · · · , j} for all 1 ≤ j < n) and let

Λn = {a = (a0, a1, · · · , an) ∈ IRn+1 : 0 = a0 < a1 < · · · < an = 1}
provided with the metric induced by the norm

|a − b| = max{|ai − bi| : i = 0, 1, · · · , n},
where b = (b0, b1, · · · , bn). To each a = (a0, a1, · · · , an) ∈ Λn it is associated the
iet Ea : [0, 1) → [0, 1) defined by

Ea(x) = x +
π(i)−1∑

k=1

(aπ−1(k) − aπ−1(k)−1) −
i−1∑

k=1

(ak − ak−1), x ∈ [ai−1, ai).

Let E(π) = {Ea : [0, 1) → [0, 1) : a ∈ Λn}, i.e., the collection of all iets associated
to the given permutation π. The bijection Λn → E(π) is employed to transfer
to E(π) the metric of Λn.

Some simple properties of an iet are:
i) continuity, except at {a1, a2, · · · , an−1}, where it is right continuous;
ii) invertibility;
iii) piecewise isometric.

In fact, the iets consist of the order-preserving piecewise isometries of [0, 1).
An iet Ea is called irrational if the only rational relation between the lengths

{a1 − a0, a2 − a1, · · · , an − an−1} is (a1 − a0) + (a2 − a1) + · · · + (an − an−1) = 1,
and minimal if for each x ∈ [0, 1) its orbit Oa(x) = {(Ea)k(x) : k ∈ ZZ} is dense
in [0, 1). Ea is called rational if a ∈ IQn+1.

Lemma 1. [8] (a) If Ea is irrational, then it is minimal.
(b) If the orbits Oa(aj), 0 ≤ j < n, are infinite and pairwise disjoint, then Ea is

minimal.

Given a = (a0, a1, · · · , an) ∈ Λn, let

Aa : [0, 1) → {1, 2, · · · , n}
be the map such that Aa(x) = i if, and only if, x ∈ [ai−1, ai), for some i ∈
{1, 2, · · · , n}. Let Wn = {1, 2, · · · , n}∗ be the set of finite sequences whose terms
belong to {1, 2, · · · , n}, i.e., finite words or factors in the alphabet {1, 2, · · · , n}.
Denote also by Σn = {1, 2, · · · , n}ZZ, with the topology induced by the metric

dist(ω, α) =
∑

j∈ZZ

d(ωj , αj)
2|j|

,

(ω = (ωj)j∈ZZ and α = (αj)j∈ZZ) with d being the discrete metric, and by S :
Σn → Σn the left shift (Sω)j = ωj+1. Extend naturally Aa to Oa(x) and define
φ = φa : [0, 1) → Σn by φ(x) = Aa(Oa(x)); i.e., φ(x) is a natural coding of the
orbit of x by assigning to each entry of this orbit the number of the interval which
contains it. Set Ωa = closure {φ([0, 1))} in Σn.

Lemma 2. [8] If Ea is minimal, then the dynamical system (Ωa, S) is a minimal
subshift, i.e., the orbit {Sk(ω)} is dense in Ωa for all ω ∈ Ωa.



SCHRÖDINGER OPERATORS ALONG IET 3

Remark. [8, 9, 10, 13] For n = 2, 3 the iets reduce to the study of rotations of a
circle and, therefore, minimality implies unique ergodicity; for n ≥ 4 it is known
the upper bound n/2 for the number of ergodic probability measures, and there are
examples with n = 4 with exactly two ergodic probability measures; such results
are transferred to the subshifts (Ω, S), i.e., the corresponding minimality and with
a finite number of ergodic probability measures.

1.2. Main Results. As before fix an irreducible permutation

π : {1, 2, · · · , n} → {1, 2, · · · , n}
and let E(π) = {Ea : [0, 1) → [0, 1) : a ∈ Λn}. Identify the metric spaces Λn and
E(π) by the homeomorphism a ∈ Λn → Ea ∈ E(π).

Given ω ∈ Σn and an injective map V : {1, 2, · · · , n} → IR, consider the potential
V (ω) := (V (ωj))j∈ZZ and the operator HV (ω) as in (1).

Theorem 1. Given V as above, there is a dense subset D ⊂ E(π) such that:
(i) each Ea ∈ D is minimal and aperiodic (i.e., no sequence in Ωa is periodic);
(ii) for each Ea ∈ D the spectrum of HV (ω) in (1) is the same for all ω ∈ Ωa.
(iii) for each Ea ∈ D the corresponding Schrödinger operators (1) with potential

V (φ(x)) has pure singular continuous spectrum for a.e. x ∈ [0, 1).

Corollary 1. Given V as above, there is a dense subset D ⊂ E(π) such that,
for each Ea ∈ D, the set Γa ⊂ Ωa for which HV (ω) has pure singular continuous
spectrum for any ω ∈ Γa is a dense Gδ and νa(Γa) = 1 for some ergodic probability
measure νa over Ωa.

Remark. According to Gottschalk’s theorem [6, 14] the sequences in Ωa are almost
periodic if, and only if, Ωa is minimal; therefore, the spectral results presented
above refer to a (aperiodic) class of almost periodic Schrödinger operators.
Remark. For n = 2 and π(1, 2) = (2, 1), there is only one discontinuity point a1 ∈
[0, 1), the system is reduced to rotations of the circle by the angle (1− a1) and the
potentials Ωa are the Sturmian sequences [2, 3], which take just two values and
encompass the well-known Fibonacci substitution sequence [14, 17]; therefore, the
potentials generated by iets are natural generalizations of Sturmian potentials—
which have become standard models of quasicrystals. However, it is important to
underline that the dynamics for n > 3 can be richer than the Sturmian case and it
is not at all obvious which spectral results generalize for such larger class.
Remark. From the proofs it is clear that V does not need to be injective; it is
enough to require that the potentials V (ω), ω ∈ Ωa, are not periodic.

The main parts of the proof of this Theorem amount to exclude eigenvalues a.e.
and absolutely continuous spectrum, and those are the contents of Sections 2 and 3,
respectively; some arguments are well known, but a number of details is included
for convenience of the reader. Before going into details, this section finishes with
some related open problems:

1. Does the complement of D above lie in a set of Lebesgue measure zero?
2. Does D contain iets with more than one ergodic probability measure? Ma-

sur [13] has shown that a.e. Ea is uniquely ergodic.
3. What is the Lebesgue measure of the spectrum of such operators?
4. For which Ea the spectrum of Hω is pure singular continuous for all ω ∈ Ωa?

What about the spectrum of HOa(x)?
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2. Absence of Point Spectrum

The discussions in this and next sections will be restricted to potentials ω ∈ Σn

(or suitable subsets of it). This will cause no loss, since in Lemmas 3, 7 and 8 the
exact values of the potentials are not relevant and the function V : {1, 2, · · · , n} →
IR is supposed to be injective.

An important tool to exclude eigenvalues for a given operator Hω, ω ∈ Σn,
is the Delyon-Petritis version of an argument of Gordon [5], which utilizes local
repetitions and can be stated as follows.

Lemma 3. [4] If for given ω ∈ Σn there exists a sequence ki → ∞ such that

ωj−ki
= ωj = ωj+ki

,

for all 1 ≤ j ≤ ki, then the Schrödinger operator Hω has no eigenvalues.

Given an irreducible permutation π, the idea is to construct a dense subset D ⊂
E(π) so that, for each a ∈ D, Lemma 3 applies to Hω, ω = φa(x), with x in a set
of total Lebesgue measure over [0, 1).

Propositon 1. There is a dense subset D ⊂ E(π) such that each Ea ∈ D is
(aperiodic) minimal and, for a.e. x ∈ [0, 1), the coding φa(x) satisfies the hypotheses
of Lemma 3 and so, the operator Hφa(x) has empty point spectrum.

The proof of Proposition 1 will follow after a series of suitable remarks concerning
iets. The length of a factor B ∈ Wn will be denoted by |B|; the same U will
designate open sets of both Λn and E(π). It will also be convenient to use λ to
indicate Lebesgue measure over [0, 1).

Let j, k ∈ ZZ with j ≤ k, and suppose that I ⊂ [0, 1) is a nonempty interval
(which may be reduced to a point) such that, for all integer i ∈ [j, k], Ei

a|I is
continuous; then the sequence

{Aa(Ej
a(I)),Aa(Ej+1

a (I)), · · · ,Aa(Ek
a(I))}

will be said to be the Ea-itinerary of I associated to [j, k].

Definition 1. Given a ∈ Λn and B ∈ Wn, a nonempty interval I ⊂ [0, 1) (which
may be reduced to a point) is said to be of B-type for Ea ∈ E(π) if for all i ∈
{−k,−k + 1, · · · , 2k}, where k = |B|, Ei

a|I is continuous, Aa restricted to Ei
a(I) is

constant and
B = the Ea-itinerary of I associated to [−k, 0]

= the Ea-itinerary of I associated to [0, k]
= the Ea-itinerary of I associated to [k, 2k].

For a = (a0, a1, · · · , an) ∈ Λn a subinterval I of [0, 1) is said to be Ea-periodic
of period k ∈ IN, k ≥ 1, if
(a1) Ea|I , E2

a|I , · · · , Ek−1
a |I are continuous and the intervals I, Ea(I), · · · , Ek−1

a (I)
are pairwise disjoint, and

(a2) Ek
a |I is the identity map of I; in particular, every x ∈ I is Ea−periodic with

(minimum) period k.
Notice that if x is an Ea-periodic point of period %, then x is of B-type, where B

is the Ea−itinerary of x associated to [0, %].
The following lemma collects some useful facts about rational iets and since its

proof is rather simple it will be omitted.
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Lemma 4. If a = (a0, a1, · · · , an) ∈ Λn ∩ IQn+1, i.e., Ea is rational, then:
(b1) the Ea-saturated set of {a0, a1, · · · , an−1}, that is

Sa := ∪k∈ZZEk
a({a0, a1, · · · , an−1}),

is an Ea-invariant finite set;
(b2) every connected component of [0, 1) \ Sa is an Ea-periodic interval; therefore,

there exist positive integers ma, Ma such that every x ∈ [0, 1) is Ea-periodic
and its period belongs to [ma, Ma];

(b3) for every ε > 0, there exists δ = δ(ε) > 0 such that λ(Nδ(Sa)) < ε, where
Nδ(Sa) := {x ∈ [0, 1) : ∃y ∈ {1} ∪ Sa with |x− y| < δ}; notice that if 0 < δ is
small enough, then Nδ(Sa) is Ea−invariant.

Let a = (a0, a1, · · · , an) ∈ Λn ∩ IQn+1. A positive integer s is said to be a
separating integer for a, if ∀i ∈ {0, 1, · · · , n− 1}, the Ea−itinerary of ai, associated
to [1, s], is disjoint of {a0, a1, · · · , an−1}. Let

0 < δ ≤ 1
16

min{|x − y| : x, y ∈ {1} ∪ Sa, x �= y};

then δ̄ > 0 is a stability constant for the triple (a, δ, s) if δ̄ < δ and, for all b ∈ Λn,
with |a − b| < δ̄, the following are satisfied:

• let I be an arbitrary connected component of [0, 1) \ Nδ(Sa) and let τ be its
Ea-period; then I is of B-type for Eb, where B denotes the Ea−itinerary of I
associated to [0, τ ];

• s is a separating integer for b.
Another simple and important approximation properties are:

Lemma 5. Let s ∈ IN. Any a ∈ Λn can be arbitrarily approximated by b ∈ Λn and
c ∈ Λn ∩ IQn+1 such that Eb is minimal and every orbit of Ec is periodic having
period greater than s, which is also a separating integer for c.

Proof. By Lemma 1(a) any a ∈ Λn can be arbitrarily approximated by a b ∈ Λn

such that Eb is minimal. This b ∈ Λn can be arbitrarily approximated by a
c ∈ Λn ∩ IQn+1. As Ec is rational, all its orbits are periodic; the requirement on
the period of its orbits is fulfilled by selecting mc > s.

Lemma 6. Let a = (a0, a1, · · · , an) ∈ Λn ∩ IQn+1 and let s be a separating integer
for a. Let 0 < δ ≤ (1/16) min{|x− y| : x, y ∈ {1} ∪ Sa, x �= y}. Then, there exists a
stability constant for the triple (a, δ, s).

Proof. As s is a separating integer for a, it follows from the definition of iet that
if b = (b0, b1, · · · , bn) ∈ Λn is close enough to a, then ∀(i, j) ∈ {1, 2, · · · , n} ×
{1, 2, · · · , s}, Ej

b(bi) depends continuously on b ∈ Λn. We conclude that if b ∈ Λn

is close enough to a, then s is a separating integer for b.
Now, let [c, d] be a closed interval which is a connected component of [0, 1) \

Nδ(Sa), then the Ea−orbits of c and d are periodic and they are at a δ distance
of {1}∪Sa. Therefore, we may apply the same argument above to the endpoints of
the (finitely many) closed intervals which are connected component of [0, 1)\Nδ(Sa)
so to obtain that there exists a stability constant δ̄ for the triple (a, δ, s).

Definition 2. Consider factors B1, B2 ∈ Wn. Then B1 precedes B2, denoted
by B1 ≺ B2, if |B1| < |B2| and the first |B1| entries of B2 coincides with B1.
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Proposition 1 follows immediately from the next one, where the existence of the
set D will be proven.

Propositon 2. Let U be an open subset of E(π). There exists a minimal iet Ea0 ∈
U such that for a.e. p ∈ [0, 1) there exists a sequence (Bp

i )∞i=1 in Wn such that
(c1) Bp

1 ≺ Bp
2 ≺ · · · ≺ Bp

i ≺ · · ·
(c2) for all i ∈ IN, p is of Bp

i -type for Ea0 .

Proof. Fix, once for all, 0 < ε < 1/9. Let a1 ∈ Λn ∩ IQn+1 ∩ U. Select δ1 > 0 such
that {b ∈ Λn : |b − a1| < 2δ1} ⊂ U and
(1.1) λ(Nδ1(Sa1)) < ε

2
(1.2) δ1 ≤ (1/16) min{|x − y| : x, y ∈ {1} ∪ Sa1 , x �= y}.
Let s1 be a separating integer for a1 and choose δ̄1 > 0 so that
(1.3) δ̄1 > 0 is a stability constant for the triple (a1, δ1, s1).

In this proof, it will be selected inductively (among other sequences) a sequence
(ai)∞i=1 in Λn ∩ IQn+1, a sequence of separating integers (si)∞i=1, and sequences of
positive numbers (δi)∞i=1 and (δ̄i)∞i=1. The elements a1, s1, δ1 and δ̄1 have already
been selected.

The following notation, related to the sequence (ai)∞i=1, will be used throughout
this proof:

• if p ∈ [0, 1) and τ denotes its Eak
-period, then

Bp
k = the Eak

−itinerary of p associated to [0, τ ].

Now,
(2.1) select a2 ∈ Λn ∩ IQn+1 so that ma2 > Ma1 (see item (b2) of Lemma 4), the

separating integer s2 for a2 is greater than s1 (see Lemma 5) and

|a2 − a1| <
δ̄1

2
;

(2.2) select 0 < δ2 < δ̄1 so that λ(Nδ2(Sa2)) < ε
4 and

δ2 ≤ 1
16

min{|x − y| : x, y ∈ {1} ∪ Sa2 , x �= y};

(2.3) select a stability constant 0 < δ̄2 < δ2 for the triple (a2, δ2, s2).
Using the fact that δ̄1 is a stability constant for (a1, δ1, s1), one obtains that

if (ai)∞i=3 is an arbitrary sequence in Λn ∩ IQn+1 such that, for all i = 2, 3, · · · ,

|ai+1 − ai| <
δ̄2

2i

then, (ai)∞i=1 is not only a convergent sequence but also (as |a0 − a1| < δ1) its
limit a0 belongs to U. Moreover, by (b2) of Lemma 4 and (2.1)-(2.3), it follows
that:
(2.4) if p ∈ [0, 1) \ {Nδ1(Sa1) ∪ Nδ2(Sa2)} then

• Bp
1 ≺ Bp

2 ;
• for all i = 0, 1, 2, · · · , p is of Bp

1−type for Eai
;

• for all i = 0, 2, 3, · · · , (i �= 1), p is of Bp
2−type for Eai

;
• s2 is a separating integer for Ea0 ;

(2.5) the following are true
• λ([0, 1) \ {Nδ1(Sa1) ∪ Nδ2(Sa2)}) ≥ 1 − ε/2 − ε/4;
• λ([0, 1) \ Nδ2(Sa2)) ≥ 1 − ε/4.
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Suppose inductively that ak−1 ∈ Λn ∩ IQn+1, sk−1 ∈ IN, δk−1 > 0 and δ̄k−1 > 0
have been selected. Now proceed to
(k.1) select ak ∈ Λn ∩ IQn+1 so that mak

> Mak−1
, the separating integer sk for ak

is greater than sk−1 and

|ak − ak−1| <
δ̄k−1

2
;

(k.2) select 0 < δk < δ̄k−1 so that

λ(Nδk
(Sak

)) <
ε

2k

and
δk ≤ 1

16
min{|x − y| : x, y ∈ {1} ∪ Sak

, x �= y};
(k.3) select a stability constant 0 < δ̄k < δk for the triple (ak, δk, sk).

If (ai)∞i=k+1 is an arbitrary sequence in Λn ∩ IQn+1 such that, for all i = k, k +
1, · · · ,

|ai+1 − ai| <
δ̄k

2i

then, by what was said above, (ai)∞i=1 is not only a convergent sequence but also
its limit a0 belongs to U. Also, by (b2) of Lemma 4 and (k.1)–(k.3), one obtains
that:
(k.4) if p ∈ [0, 1) \ ∪k

i=1Nδi
(Sai

) then
• Bp

1 ≺ Bp
2 < · · · ≺ Bp

k ;
• for all i = 0, 1, 2, · · · , p is of Bp

1−type for Eai
;

• for all i = 0, 2, 3, · · · , p is of Bp
2−type for Eai

;
...

• for all i = 0, k, k + 1, · · · , p is of Bp
k−type for Eai

;
• sk is a separating integer for Ea0 .

(k.5) the following are true
• λ([0, 1) \ ∪k

i=1Nδi
(Sai

)) ≥ 1 − ε/2 − ε/4 − · · · − ε/2k;
• λ([0, 1) \ ∪k

i=2Nδi
(Sai

)) ≥ 1 − ε/4 − · · · − ε/2k;

•
...

• λ([0, 1) \ Nδk
(Sak

)) ≥ 1 − ε/2k.
In this way it is completed the selection of the sequences (ai)∞i=1, (si)∞i=1, (δi)∞i=1

and (δ̄i)∞i=1. Recall that ak → a0 ∈ U and si → ∞. By using properties {(k.4)}∞k=1

– {(k.5)}∞k=1, it follows that, for all p ∈ [0, 1)\∪∞
i=1Nδi

(Sai
) and for all i = 1, 2, · · · ,

• p is of Bp
i -type for Ea0 ;

• Bp
1 ≺ Bp

2 ≺ · · · ≺ Bp
k ≺ · · · ;

• λ([0, 1) \ ∪∞
i=1Nδi

(Sai
)) ≥ 1 − ε;

• if a0 = (α0, α1, · · · , αn), the Ea0 − orbits through α0, α1, · · · , αn−1, are pair-
wise disjoint.

In other words, this proposition is true for a set of points having Lebesgue measure
at least 1 − ε. Notice that by Lemma 1(b) Ea0 is minimal.

Now fix an arbitrary positive integer s. By using properties {(k.4)}∞k=s – {(k.5)}∞k=s,
one gets that, for all p ∈ [0, 1) \ ∪∞

i=sNδi(Sai
) and for all i = s, s + 1, · · · ,

• p is of Bp
i -type for Ea0 ;

• Bp
s ≺ Bp

s+1 ≺ · · · ;
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• λ([0, 1) \ ∪∞
i=sNδi(Sai

)) ≥ 1 − ε/2s−1.

Therefore, this proposition is true for a set of points having Lebesgue measure at
least 1 − ε/2s−1, where s is an arbitrary positive integer. That is, the result holds
for a.e. p ∈ [0, 1].

3. Absence of Absolutely Continuous Spectrum

The absence of absolutely continuous spectrum will be gotten as a combination
of two known results, gathered in what follows in the form of lemmas, and an
observation from Section 2. In summary, ergodicity, minimality, aperiodicity and
finite valued are the key ingredients to exclude absolutely continuous spectrum.
This section aims at concluding:

Propositon 3. Let D be as in Proposition 1. If Ea ∈ D, then Hω has no absolutely
continuous spectrum for all ω ∈ Ωa.

Lemma 7. [11] If µ is an ergodic probability measure over Σn, then the set of
potentials ω for which Hω has no absolutely continuous spectrum has full measure µ,
unless the support of µ is periodic.

Lemma 8. [12] The absolutely continuous spectrum of (1) is constant over minimal
subsets of Σn.

Now the proof of Proposition 3 is immediate. Let D be as in Proposition 1. For
each Ea ∈ D the set Ωa is aperiodic and carries an ergodic measure, so by Lemma 7
there exists ω ∈ Ωa such that Hω has empty absolutely continuous spectrum;
since Ωa is minimal (Proposition 1 and Lemma 2), the conclusion of Proposition 3
follows straight by Lemma 8.

4. Proof of the Main Results

First it will be discussed how Corollary 1 follows from Theorem 1. If U is the
unitary operator representation of the shift in l2(ZZ), i.e., (Uψ)j = ψj−1, then the
operator (1) satisfies the covariance relation

HS(ω) = UHωU∗,

which implies

Lemma 9. The spectrum of (1) is constant over orbits in Σn.

Let D be as in Theorem 1 and for Ea ∈ D let Γa be as in the Corollary, i.e.,
the subset of Ωa for which the operator (1) has pure singular continuous spectrum.
According to Theorem 1(iii), Hφ(x) has pure singular continuous spectrum for a.e.
x ∈ [0, 1); since the Lebesgue measure is a convex sum of finitely many (probability)
ergodic measures, it follows that with respect to at least one of them Hφ(x) has pure
singular continuous spectrum a.e.; to the latter measure corresponds an ergodic
probability measure νa over Ωa, with νa(Γa) = 1, that works for the Corollary.

It remains to show that such set Γa of potentials is a dense Gδ. For this purpose,
another auxiliary result will be used; it belongs to the set of results known as
“Wonderland Theorem.”

Lemma 10. [16] Consider a complete metric space of bounded self-adjoint opera-
tors whose convergence in the metric implies strong operator convergence. Then,
the subset of such operators with empty point spectrum is a Gδ.
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By identifying the metric space Σn with the set of operators {Hω : ω ∈ Σn} one
sees that two operators are at a small distance only if the corresponding potentials
agree for a large block containing the position zero. Then, from

‖Hω(k)ψ − Hωψ‖2 =
∑

j∈ZZ

|ω(k)
j − ωj |2|ψj |2,

if a sequence of potentials ω(k) → ω it follows the strong operator convergence
Hω(k) → Hω. Hence, Lemma 10 is applicable to closed subsets of the metric space
{Hω : ω ∈ Σn}, in particular to Ωa.

By Proposition 3 the set Γa coincides with the set of operators Hω, ω ∈ Ωa, with
empty point spectrum; so, by Lemma 10, Γa is a Gδ, and it is left to show that it
is also dense. By Theorem 1(iii) there is φ(x) ∈ Ωa such that Hφ(x) has no point
spectrum (hence, Γa �= ∅), and by Lemma 9 the spectrum is invariant over Oa(x),
which is dense in Ωa by Theorem 1(i). Corollary 1 is demonstrated.

Proof. (of Theorem 1)
Let D be the dense subset in E(π) constructed in the proof of Proposition 2;

from such construction each element of D is minimal and aperiodic, concluding (i)
in the theorem. The assertion (iii) follows directly from Propositions 1 and 3.

Since the convergence in Σn implies strong operator convergence (as discussed
above), the minimality and Lemma 9 imply (ii), as it is well known that the spec-
trum (as a set) does not increase under strong limits (see Theorem VIII.24 in [15])
and so it is constant over minimal sets of Σn (this last abstract result seems to be
originally appeared in [17]).
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