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Abstract

We consider the Choquard-Pekar equation

−1u + V u = (W ∗ u2)u u ∈ H1(R3)

and focus on the case of periodic potentialV . For a large class of even functionsW we
show existence and multiplicity of solutions. Essentially the conditions are that 0 is not
in the spectrum of the linear part−1 + V and thatW does not change sign. Our results
carry over to more general nonlinear terms in arbitrary space dimensionN ≥ 2.

1. Introduction

We consider the problem

(P) −1u + V u = (W ∗ u2)u u ∈ H1(R3)

whereV andW are real functions onR3, W is even, andu assumes real values. Here, for two
functionsu, v onR3, u ∗ v denotes convolution ofu andv. Let us define

9(u) =
1

4

∫
R3
(W ∗ u2)u2 dx

for u ∈ H1(R3). Finding weak solutions of (P) is equivalent to finding critical points of the
energy functional

8(u) =
1

2

∫
R3
(|∇u|

2
+ V u2)dx −9(u)

defined onH1(R3).
This type of problem is often referred to asChoquard-Pekar equationwhenW ≥ 0. It

comes up as an approximation to Hartree-Fock theory of a Plasma or in the Hartree theory
of bosonic systems (cf. [3, 10, 11]). The caseW ≤ 0 appears as aHartree equationfor the
Helium atom.
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Associated with (P) is the eigenvalue problem

(EP) −1u + V u − (W ∗ u2)u = λu u ∈ H1(R3)

that is usually calledChoquard equationif W ≥ 0. Here one is interested in solutions with
prescribedL2-norm |u|

2
2 = M , λ ∈ R being a free parameter. Solutions are the critical points

of the energy8 restricted to theL2-sphere

SM = { u ∈ H1(R3) | |u|
2
2 = M } .

For physical reasons let us callV the exterior potentialandW the potential of particle
interaction. In the sequel we speak of theradial case ifV andW are radial functions and
existence of radial solutions is investigated. Theperiodiccase refers toV being periodic and
nonconstant. Moreover, we assume for the whole discussion thatW does not change sign.

Both problems have been investigated in the nonperiodic case by many authors, cf. [6,13–
15, 18, 19, 21, 25, 27] and the references therein. Here relative compactness of Palais-Smale
(PS) sequences of8 or of the restriction of8 to SM is achieved by exploiting radial symmetry
and Strauss’ Lemma [24, 28], or the fact that the spectrum ofL = −1 + V is discrete at the
bottom.

In contrast, the compactness issue in the periodic case is much more difficult to handle
due to the invariance of (P) and (EP) under the action of the noncompact groupZN induced
by translation by integer values in the coordinate directions. Minimizers for8 over SM have
been constructed in the periodic case in [2, 8]. Additional difficulties are encountered when
considering excited states, i.e. solutions of (EP) at higher energy levels, or solutions of (EP)
with λ in a gap of the spectrum ofL.

Even though problem (EP) seems to be more relevant in physics, we concentrate on prob-
lem (P). Our assumptions are thatV is periodic and thatW does not change sign. We believe
that the techniques we develop will be useful in studying (EP) as well.

To summarize our results, let us introduce the following notion: Two elementsu, v ∈

H1(R3) are calledgeometrically distinctif u is not contained in the orbit ofv under the
action ofZN . The elements of a subset ofH1(R3) are called geometrically distinct if they are
pairwise geometrically distinct.

In the case of periodicV > 0 (the positive definite case) withW ≥ 0, the existence of
onenontrivial solution is relatively easy to prove. One can obtain a (PS)-sequence with the
Mountain Pass Theorem. Invariance of8with respect to the action ofZN and weak sequential
continuity of8′ then yield existence. We prove existence ofinfinitelymany geometrically dis-
tinct solutions for (P) using a theorem of Bartsch and Ding. A multiplicity result for periodic
Schr̈odinger equations was known before only forlocal nonlinear terms, and it was achieved
by a multibump construction in [9]. The method of proof used in the latter reference does not
apply to the nonlocal problem (P).

The main novelty in our proof is a lemma about decomposition of8 along (PS)-sequences
(cf. Lemma 4.5 below). To show this we prove a variant of Brezis-Lieb’s Lemma that should
be of independent interest since little regularity is assumed. Results about decomposition were
known before in this generality only for local right hand sides in (P), see [9] for example.
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Nevertheless, partial results about decomposition for nonlocal functionals are already present
in [7,8].

Now we turn to the case of a periodic exterior potentialV that changes sign. Here it may
happen that the Schrödinger operatorL, which has purely continuous spectrum that consists
of a union of closed intervals, has essential spectrum below 0. As a consequence the quadratic
part of8 is strongly indefinite and one needs subtle arguments to construct (PS)-sequences. In
contrast to the positive definite case, mere existence ofonesolution is hard to prove. This was
first achived in [7], assuming that 0 is in a gap of the spectrum ofL and thatW(x) = 1/|x|.
The proof makes substantial use of the specific form of9. In fact, consider the symmetric
bilinear form sending functionsu, v to

(1.1) I (u, v) =

∫
R3

∫
R3

1

|x − y|
u(y)v(x)dy dx .

Since the Fourier transform of 1/|x| is known to be positive,I is positive definite on an appro-
priate function space. From this it follows that9 is convex, a fact that lies at the heart of the
proof in [7]. Moreover, positive definiteness ofI is used there to show boundedness of (PS)-
sequences. The proof extends to more generalW that have nonnegative Fourier transform, but
no general criterion is known to decide whether this is the case for a particular choice ofW.

For physical reasons it is desirable to treat potentialsW without being restricted by the
assumption on the Fourier transform ofW. Indeed, in work of Fr̈ohlich, Tsai and Yau [10,11]
on the Hartree equation for the thermodynamic limit of systems of non-relativistic bosons, the
authors propose to model particle interaction with a potentialW that behaves as

(1.2) W(x) ∼
1

|x|6
+

C

|x|

for |x| large (see also the discussion in [3]). Here the first term describes van der Waals,
the second gravitational attraction between atoms. Near 0 this function must be modified
in an appropriate way to be able to work in a variational setting. It is not at all clear how
to do this modification such that the Fourier transform ofW is nonnegative. Therefore we
take a different approach to show existence of solutions to (P) in the periodic and indefinite
case, applying generalized linking theorems of Kryszewski-Szulkin and Bartsch-Ding. No
convexity of9 is required, and we prove boundedness of (PS)-sequences by using a Cauchy-
Schwarz type inequality for the bilinear form associated withW as in (1.1), see condition
(W3) below. In [1] we give conditions onW that imply (W3), allowing for a lot of freedom in
choosing the regularization ofW described above. Hence we prove the existence of infinitely
many geometrically distinct solutions also in this case.

Our method of proof carries over to arbitrary space dimensionN ≥ 2, replacingu2 by
f (u) andu by f ′(u) on the right hand side of (P), with suitable growth restrictions onf .
Moreover, no radial symmetry ofW is assumed, and we treat the cases ofW ≥ 0 andW ≤ 0,
i.e. attractive and repulsive particle interaction.

The organization of the paper is as follows: The next section contains a precise formulation
of our results and a discussion of the conditions onW and f . Section 3 deals with mapping
properties and regularity of9. It is split into two subsections for simplicity to account for the
possibility ofW and f being sums of functions with different growth rates. Finally in Sect. 4
we show how to apply the abstract critical point theorems in this setting.
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1.1. General notation

We setE = H1(RN), E∗
= H−1(RN) (the dual space ofE). Denote by‖u‖E the standard

norm foru ∈ E. For any measure space� andu ∈ L p(�) let |u|p,� be the corresponding
norm, and set|u|p = |u|p,RN .

If X is a metric space,A is a point or a subset ofX, andρ > 0, then we set

Uρ(A, X) = { x ∈ X | distX(x, A) < ρ }

Bρ(A, X) = { x ∈ X | distX(x, A) ≤ ρ }

Sρ(A, X) = { x ∈ X | distX(x, A) = ρ } .

When there is no confusion possible we sometimes omit theX-dependency. If(X, ‖·‖) is a
normed vector space andA = 0, we often writeUρX instead ofUρ(0, X), and so forth.

Acknowledgements.The author wishes to thank A. Pankov for suggesting the nonlocal prob-
lem, and for many helpful discussions concerning [10, 11] and [23]. Moreover the author
thanks T. Bartsch for communicating the theorem used to obtain the multiplicity result.

2. Main Results

To be more explicit, consider the following problems:

(P+) −1u + V u = (W ∗ f (u)) f ′(u) u ∈ H1(RN)

and

(P−) −1u + V u = −(W ∗ f (u)) f ′(u) u ∈ H1(RN) .

We define as usual the critical Sobolev exponent 2∗
= ∞ for N = 2 and 2∗ = 2N/(N − 2)

for N ≥ 3 and consider the following conditions:

(V1) V ∈ L∞(RN,R), andV is 1-periodic inxi for i = 1,2, . . . , N.

(V1
2) σ(−1+ V) ⊆ (0,∞).

(V2
2) 0 /∈ σ(−1+ V) andσ(−1+ V) ∩ (−∞,0) 6= ∅.

(W1) There are 1≤ r1 ≤ r2 < ∞ such thatW ∈ Lr1(RN) + Lr2(RN), andW is an even
function.

(W2) W ≥ 0, and on a neighborhood of 0 we haveW > 0.

(W3) There isC ≥ 0 such that for all nonnegativeϕ,ψ ∈ L1
loc(R

N)

(2.1)
∫

RN
(W ∗ ϕ)ψ dx ≤ C

√∫
RN
(W ∗ ϕ)ϕ dx

∫
RN
(W ∗ ψ)ψ dx .
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(F1) f ∈ C1(R,R), f (0) = 0, and there areC > 0 andp1, p2 > 1 with 2− 1/r2 < p1 ≤

p2 < (2 − 1/r1)2∗/2 such that for allu ∈ R

| f ′(u)| ≤ C(|u|
p1−1

+ |u|
p2−1) .

(F2) There isθ > 2 such that for allu ∈ R \ {0}

2 f ′(u)u ≥ θ f (u) > 0 .

(F3) f is an even function.

We can now state for the positive definite case

2.1 Theorem.If (V1), (V1
2), (W1), (W2), (F1) and(F2) are satisfied, then(P+) has a nontrivial

weak solution. Problem(P−) admits no nontrivial solution. If additionally(F3) holds, then
there are infinitely many geometrically distinct weak solutions for(P+).

For the strongly indefinite case we have

2.2 Theorem. If (V1), (V2
2), (W1), (W2), (W3), (F1) and(F2) are satisfied, then both(P+) and

(P−) have a nontrivial weak solution. If additionally(F3) holds, then there are infinitely many
geometrically distinct weak solutions for both of these problems.

Some comments on the conditions given above are in order. First, forN = 3 we have
2∗

= 6, so that for any 1≤ r1 ≤ r2 < ∞ and for f (u) = u2 (F1)–(F3) are satisfied with
p1 = p2 = 2 andθ = 4. Therefore our results apply to the special case of (P).

If r1 < N/4 we must require thatr2 < r1(N − 2)/(N − 4r1) for (F1) to be meaningful. A
general model forf is the function|u|

p1 +|u|
p2 with suitable exponentsp1 andp2. It satisfies

all requirements (usingθ = 2p1). To see that the condition onp1, p2 is quite natural, suppose
that N ≥ 3, W ∈ Lr for somer ∈ [1,∞] and f (u) = |u|

p for somep > 0. By Young’s
theorem on convolutions ∫

RN
(W ∗ f (u)) f (u)dx

is well defined if f (u) ∈ Ls for s ≥ 1 defined by

1

r
+

2

s
= 2 .

Sinceu ∈ H1(RN) we must therefore require thatsp∈ [2,2∗] and hence

2

s
= 2 −

1

r
≤ p ≤

2∗

s
=

2∗

2

(
2 −

1

r

)
.

Moreover, for the concentration compactness arguments to work, here we need strict inequal-
ities. For the same reason we needr < ∞, while in the radial caser = ∞ is allowed. In that
case compactness is achieved by a different means, as mentioned in the introduction.
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To state criteria for checking (W3), we introduce some more quantities. For any nonempty
X ⊆ RN let α(X) denote the least positive integerm such that there is a closed convex set
A ⊆ X of dimensionN, A being symmetric (i.e.−A = A), with the property thatX can be
covered bym translates ofA. If X = ∅ putα(X) = 0. If W is a nonnegative Borel function
on RN put X(t) = { x ∈ RN

| W(x) ≥ t } for t ≥ 0. The results in [1] yield thatW satisfies
(W3) if

(2.2) lim sup
t→0

α(X(t))+ lim sup
t→∞

α(X(t)) < ∞ .

In that paper we also give examples that demonstrate that the class ofW ≥ 0 with (W3) is
larger than the class ofW ≥ 0 with nonnegative Fourier transform. In particular,W need not
be radially symmetric.

There is a simpler criterion ifW(x) = h(p(x)) for some seminormp on RN and some
nonnegative Borel functionh on [0,∞). For anyY ⊆ [0,∞) putλ(Y) = sup{ t > 0 | [0, t ] ⊆

Y } and

β(Y) =


0 Y = ∅
∞ λ(Y) = −∞ andY 6= ∅
sup(Y)/λ(Y) otherwise.

Here we set∞/a = ∞ if a > 0, and∞/∞ = 1. Now putY(t) = { s ∈ [0,∞) | h(s) ≥ t }

for t ≥ 0. By [1] W satisfies (W3) if

(2.3) lim sup
t→0

β(Y(t))+ lim sup
t→∞

β(Y(t)) < ∞ .

The last statement applies in particular to nonnegative radial decreasing functionsW (this
case was also studied in [20]). ForW as in (1.2) we can thus use a simple regularization near
0 as was mentioned in the introduction.

It is clear that any nontrivial even functionW ≥ 0 that satisfies either (2.2) or (2.3) is
positive on a neighborhood of 0, so that (W2) holds.

3. Regularity Properties of the Nonlinearity

Here we collect properties of the superquadratic part of8. Throughout this section we will
assume (W1) and (F1). Instead of dealing directly with the different exponentsr1, r2, p1, p2 it
seems simpler to first consider the case of just two exponentsr and p. This is justified by the
splitting ofW = W1+W2 into a sum of functions belonging toLr1 respectivelyLr2. Similarly
f can be split: Choose a functionζ ∈ C∞(R,R) such thatζ(t) = 0 for |t | ≥ 2, ζ(t) = 1 for
|t | ≤ 1 andζ(t) ∈ [0,1] for all t . Then set

f1(u) =

∫ u

0
ζ(t) f ′(t)dt and f2 = f − f1 .

Clearly we have

(3.1) | f ′

1(u)| ≤ C|u|
p1−1 and | f ′

2(u)| ≤ C|u|
p2−1
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whereC only depends onf . Now∫
RN
(W ∗ f (u)) f (u)dx

can be written as a sum of integrals of the form∫
RN
(U ∗ g(u))h(u)dx ,

whereU stands forW1 or W2, andg, h each stand for eitherf1 or f2.

3.1. The Simple Case

In this subsection we assumeU ∈ Lr (RN) for somer ∈ [1,∞), g, h ∈ C1(R,R), g(0) =

h(0) = 0, and that there existp,q > 1 and a constantC > 0 such that

|g′(u)| ≤ C|u|
p−1 and |h′(u)| ≤ C|u|

q−1 .

Moreover, fors = 2r/(2r − 1) we assumesp, sq ∈ [2,2∗).

3.1 Lemma. Let s′ be the conjugate exponent for s, let t∈ [s,∞), and letµ be given by
1/s′

+ 1/t = 1/µ. Then the bilinear map Ls × L t
→ Lµ, sending(u, v) to (U ∗ u)v, is well

defined and continuous, with

|(U ∗ u)v|µ ≤ |U ∗ u|s′|v|t ≤ |U |r |u|s|v|t .

If (un) ⊆ Ls and (vn) ⊆ L t are bounded and either un → u in Ls andvn → v in L t
loc or

un → u in Ls
loc andvn → v in L t , then(U ∗ un)vn → (U ∗ u)v in Lµ.

Proof. If u ∈ Ls andv ∈ L t , by Young’s Convolution TheoremU ∗ u is in Ls′

since 1/r +

1/s = 1 + 1/s′, and
|U ∗ u|s′ ≤ |U |r |u|s .

From t ≥ s we obtainµ ≥ 1. Hölder’s inequality then yields the continuity of the bilinear
map(u, v) 7→ (U ∗ u)v.

Now let (un) and(vn) be given as in the statement of this lemma. In the case thatun → u
in Ls we can assumevn → 0 in L t

loc, and, since(vn) is bounded, it suffices to show that

(3.2) (U ∗ u)vn → 0 in Lµ.

Let ε > 0. Sinces′ < ∞ there isR> 0 such that

|U ∗ u|s′,RN\BR
≤ ε .

We have ∫
RN

|(U ∗ u)vn|
µ dx =

∫
BR

|(U ∗ u)vn|
µ dx +

∫
RN\BR

|(U ∗ u)vn|
µ dx

≤ |U ∗ u|
µ

s′|vn|
µ
t,BR

+ |U ∗ u|
µ

s′,RN\BR
|vn|

µ
t

≤ C1|vn|
µ
t,BR

+ C2ε
µ .
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Lettingn → ∞ and thenε → 0 (3.2) follows.
In the case thatvn → v in L t , again we can assume thatun → 0 in Ls

loc, and it suffices to
show

(3.3) (U ∗ un)v → 0 in Lµ

sinceU ∗ un is bounded inLs′

. We claim that

(3.4) U ∗ un → 0 in Ls′

loc.

Fix R1 > 0. For anyε > 0 there isR2 > 0 such that

|U |r,RN\BR2
≤ ε .

PutU1 = χBR2
U andU2 = U − U1 (hereχBR2

denotes the characteristic function ofBR2).
We have

|U1 ∗ un|
s′

s′,BR1
≤

∫
BR1

(∫
RN

|U1(x − y)un(y)| dy

)s′

dx

=

∫
BR1

(∫
BR1+R2

|U1(x − y)un(y)| dy

)s′

dx

≤ |U1|
s′

r |un|
s′

s,BR1+R2
.

The last inequality follows from [22, Thm. 3.1], a generalized form of Young’s Theorem on
convolutions. It follows that

|U ∗ un|s′,BR1
≤ |U1 ∗ un|s′,BR1

+ |U2 ∗ un|s′,BR1

≤ |U1|r |un|s,BR1+R2
+ |U2|r |un|s

≤ |U1|r |un|s,BR1+R2
+ Cε .

Letting n → ∞ and thenε → 0 we have proved (3.4) sinceR1 was arbitrary. Now (3.3)
follows from (3.4) as for the first case. �

The following is a variant of Brezis-Lieb’s lemma, as already mentioned in the introduc-
tion.

3.2 Lemma. Suppose that un ⇀ v in E. Then, after extraction of a subsequence, there is a
sequence(vn) ⊆ E with vn → v in E, such that for any t≥ 1, µ > 0 with tµ ∈ [2,2∗) and
any continuous f: R → R with

| f (u)| ≤ C|u|
µ

for some C> 0 we have

f (un)− f (un − vn) → f (v) in L t .
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Proof. Define functionsQn : [0,∞) → [0,∞) by

Qn(R) =

∫
BR

(|∇un|
2
+ u2

n)dx .

Then theQn are uniformly bounded and nondecreasing. There is a subsequence converging
almost everywhere to a bounded nondecreasing functionQ (cf. [16]). It is easy, extracting
another subsequence, to build a sequenceRn → ∞ such that for anyε > 0 there isR > 0,
arbitrarily large, with

lim sup
n→∞

(Qn(Rn)− Qn(R)) ≤ ε

or, stated differently,

(3.5) lim sup
n→∞

∫
BRn\BR

(|∇un|
2
+ u2

n)dx ≤ ε .

Here all ballsB are taken to have center at 0. Fix a smooth functionη : [0,∞) → [0,1] with
η(t) = 1 for |t | ≤ 1 andη(t) = 0 for |t | ≥ 2. Putvn(x) = η(2|x|/Rn)v(x) for x ∈ RN and
n ∈ N.

Given f as in the statement of this lemma, fixε > 0 and chooseR > 0 such that (3.5)
holds and such that ∫

RN\BR

(|∇v|2 + v2)dx ≤ ε .

Now un → v in L tµ(BR) by the compactness of Sobolev embeddings, so that by continuity
of the Nemyckii operator induced byf on L tµ we have

lim
n→∞

∫
BR

| f (un)− f (un − vn)− f (vn)|
t dx

= lim
n→∞

∫
BR

| f (un)− f (un − v)− f (v)|t dx = 0 .

As n → ∞ there is a uniform constant for the continuous embeddingsH1(BRn \ BR) →

L tµ(BRn \ BR). It follows that

lim sup
n→∞

|un|tµ,BRn\BR ≤ C
√
ε

lim sup
n→∞

|vn|tµ,BRn\BR ≤ |v|tµ,RN\BR
≤ C

√
ε .
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From this we obtain

lim sup
n→∞

∫
RN

| f (un)− f (un − vn)− f (vn)|
t dx

= lim sup
n→∞

∫
BRn\BR

| f (un)− f (un − vn)− f (vn)|
t dx

≤ C lim sup
n→∞

∫
BRn\BR

(|un|
µ

+ |un − vn|
µ

+ |vn|
µ)t dx

= C lim sup
n→∞

∣∣|un|
µ

+ |un − vn|
µ

+ |vn|
µ
∣∣t
t

≤ C lim sup
n→∞

(|un|
µ
tµ + |un − vn|

µ
tµ + |vn|

µ
tµ)

t

≤ C lim sup
n→∞

(2εµ/2 + (|un|tµ + |vn|tµ)
µ)t

≤ Cεtµ/2 .

Here theL tµ and L t norms in rows 2–4 counted from the bottom are taken with respect to
BRn \ BR, and we have used thattµ ≥ 1 andt ≥ 1. Lettingε tend to 0 we find that

f (un)− f (un − vn)− f (vn) → 0 in L t .

By noting thatvn → v in E and thusf (vn) → f (v) in L t we finish the proof. �

3.3 Remark. The preceding lemma can easily be extended to the case of an open subset
� ⊆ RN . Here all is needed is that� ∩ BR(0) satisfies a uniform cone condition for large
R, so that we have uniform constants from the Sobolev embeddings. Also the case off
depending onx ∈ RN can be treated with the same proof.

ConsiderF : E → R andG : E → E∗ given by

F(u) =

∫
RN
(U ∗ g(u))h(u)dx

G(u)[v] =

∫
RN
(U ∗ g(u))h′(u)v dx

for u, v ∈ E.

3.4 Lemma. The maps F and G are well defined and continuous. For u, v ∈ E we have

|F(u)| ≤ |U |r |u|
p
sp|u|

q
sq

‖G(u)‖E∗ ≤ C|U |r |u|
p
sp|u|

q−1
sq .

G is weakly sequentially continuous. If un ⇀ v in E there is(after extraction of a subse-
quence) a sequencevn → v in E, independent of g and h, such that

F(un)− F(un − vn) → F(v) in R
G(un)− G(un − vn) → G(v) in E∗.
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Proof. We have continuous Nemyckii operatorsLsp
→ Ls, Lsq

→ Ls, andLsq
→ Lsq/(q−1)

induced byg, h, andh′ respectively. Thus the inequality forF follows from Lemma 3.1 with
t = s andµ = 1. Continuity ofF is then a consequence of continuous Sobolev embeddings
E → Lsp and E → Lsq. The inequality for and continuity ofG follows from Lemma 3.1
with t = sq/(q − 1) andµ = (sq)′ (the conjugate exponent forsq), and from the continuous
embeddingL(sq)′

→ E∗.
If un ⇀ v in E, thenun → v in Lsp

loc and inLsq
loc, by the compactness of Sobolev embed-

dings. Thus

(3.6)

g(un) → g(v) in Ls
loc

h(un) → h(v) in Ls
loc

h′(un) → h′(v) in Lsq/(q−1)
loc ,

and these sequences are bounded. Clearly (as in the proof of Lemma 3.1) for anyw ∈ E
we haveh′(un)w → h′(v)w in Ls, so that again by Lemma 3.1 witht = s andµ = 1
G(un)[w] → G(v)[w] in R. ThereforeG is weakly sequentially continuous.

By Lemma 3.2 we can, for a subsequence of(un), build vn, independent ofg andh, such
thatvn → v in E, un − vn ⇀ 0 in E, and (as above)

g(un − vn) → 0 in Ls
loc

h(un − vn) → 0 in Ls
loc

h′(un − vn) → 0 in Lsq/(q−1)
loc

g(un)− g(un − vn) → g(v) in Ls

h(un)− h(un − vn) → h(v) in Ls

h′(un)− h′(un − vn) → h(v) in Lsq/(q−1) .

Using this, Lemma 3.1, (3.6), and bilinearity, the last two claims follow easily. �

3.2. The Combined Case

Let us denote

9(u) =
1

2

∫
RN
(W ∗ f (u)) f (u)dx

for u ∈ E. We consider the splitting ofW and f discussed above. This yields a splitting of9

into a sum of at most six terms. We setsi = 2r i /(2r i − 1) for i = 1,2. From (F1) it follows
that

(3.7) si p j ∈ (2,2∗)

for i, j ∈ {1,2}, so that we can apply the results of Section 3.1.

3.5 Lemma. 9 is a C1-functional where9 and9 ′ map bounded sets into bounded sets.
9 is weakly sequentially lower semicontinuous and9 ′ is weakly sequentially continuous. If
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un ⇀ v in E, there exists(after extraction of a subsequence) a sequencevn → v in E such
that

9(un)−9(un − vn) → 9(v) in R
9 ′(un)−9 ′(un − vn) → 9 ′(v) in E∗.

Proof. By Lemma 3.49 is well defined and continuous. Letun ⇀ u in E. We can assume
(after extraction of a subsequence) thatun → u pointwise a.e. SinceW, f ≥ 0 Fatou’s
Lemma yields

9(u) =

∫
RN

∫
RN

lim
n→∞

W(x − y) f (un(y)) f (un(x))dy dx≤ lim inf
n→∞

9(un) .

Thus9 is weakly sequentially lower semicontinuous.
Consider the mapG : E → E∗ given by

G(u)[v] =

∫
RN
(W ∗ f (u)) f ′(u)v dx

for u, v ∈ E. G is well defined, continuous and weakly sequentially continuous by
Lemma 3.4. We show that foru, h ∈ E

(3.8) 9(u + h)−9(u) =

∫ 1

0
G(u + sh)[h] ds .

Clearly from this and the continuity ofG it follows that9 is differentiable everywhere and
9 ′

= G. To show (3.8) recall thatW is even. We calculate

2
∫ 1

0
G(u + sh)[h] ds

= 2
∫ 1

0

∫
RN

∫
RN

[
W(x − y) f (u(y)+ sh(y))

× f ′(u(x)+ sh(x))h(x)
]

dy dx ds

=

∫
RN

∫
RN

W(x − y)
∫ 1

0

[
f ′(u(y)+ sh(y))h(y) f (u(x)+ sh(x))

+ f (u(y)+ sh(y)) f ′(u(x)+ sh(x))h(x)
]

ds dy dx

=

∫
RN

∫
RN

W(x − y)
[

f (u(y)+ h(y)) f (u(x)+ h(x))

− f (u(y)) f (u(x))
]

dy dx

= 2(9(u + h)−9(u)) .

The integrand in the second row is easily seen to be inL1([0,1] × RN
× RN) by using the

splitting of W and f , and the estimates in Section 3.1. This allows us to change the order of
integration and (3.8) is proved. The remaining properties of9 are clear from Lemma 3.4.�
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3.6 Lemma. If (W2) and (F2) hold, then for all u∈ E \ {0} we have

9 ′(u)[u] ≥ θ9(u) > 0 .

If in addition (W3) holds, then for all u∈ E we have

‖9 ′(u)‖E∗ ≤ C(
√
9 ′(u)[u] +9 ′(u)[u]) .

Proof. From (F2) andW, f ≥ 0 it follows that9 ′(u)[u] ≥ θ9(u) for all u ∈ E. If u 6= 0
then also9(u) > 0 sinceW > 0 on a neighborhood of 0.

For the proof of the second assertion consider again the splitting off = f1 + f2. Let p′

1
and p′

2 be the conjugate exponents forp1 and p2 respectively. From (3.1) we obtain

| f ′

1(u)|
p′

1 ≤ C f ′(u)u

| f ′

2(u)|
p′

2 ≤ C f ′(u)u .

Using this, (F2), (W3), and Ḧolder’s inequality we can compute for anyu, v ∈ E∫
RN
(W ∗ f (u))| f ′

1(u)v| dx

≤

(∫
(W ∗ f (u))| f ′

1(u)|
p′

1

) 1
p′
1

(∫
(W ∗ f (u))|v|p1

) 1
p1

≤ C

(∫
(W ∗ f (u)) f ′(u)u

) 1
p′
1

(∫
(W ∗ f (u))|v|p1

) 1
p1

≤ C

(∫
(W ∗ f (u)) f ′(u)u

) 1
p′
1

(∫
(W ∗ f (u)) f (u)

) 1
2p1

×

(∫
(W ∗ |v|p1)|v|p1

) 1
2p1

≤ C

(∫
(W ∗ f (u)) f ′(u)u

) 1
p′
1

(∫
(W ∗ f (u)) f ′(u)u

) 1
2p1

×

(∫
(W ∗ |v|p1)|v|p1

) 1
2p1

≤ C(9 ′(u)[u])
1
p′
1
+

1
2p1 ‖v‖E

and a similar estimate forf2 in place of f1. This, together with

|9 ′(u)[v]| ≤

∫
RN
(W ∗ f (u))| f ′

1(u)v| dx +

∫
RN
(W ∗ f (u))| f ′

2(u)v| dx

and 1/p′

i + 1/(2pi ) ∈ (1/2,1) for i = 1,2 yields the desired inequality. �
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4. Abstract Critical Point Theory

In this section we assume (V1), (W1), (W2), (F1) and (F2) throughout. We also assume that
0 /∈ σ(−1+ V).

By Lemma 3.5 the functional

8(u) =
1

2

∫
RN
(|∇u|

2
+ V u2)dx −9(u)

is of classC1. Weak solutions of (P+) correspond to critical points of8. We have a splitting
E = E−

⊕ E+ with orthogonal projectionsP− andP+ corresponding to the decomposition
of σ(−1+ V) in the negative and positive part. Let us define a new norm‖·‖ on E by setting

‖u+
‖

2
=

∫
RN

|∇u+
|
2
+ V |u+

|
2 dx

‖u−
‖

2
= −

∫
RN

|∇u−
|
2
+ V |u−

|
2 dx

whereu±
= P±u. Since 0/∈ σ(−1 + V) the norms‖·‖ and‖·‖E are equivalent. The norm

‖·‖ is induced by a scalar product〈·, ·〉, and the projectionsP± are orthogonal with respect to
this new scalar product. For these statements see for example [26]. Note that if (V1

2) holds we
haveE−

= {0} and‖u+
‖ = ‖u‖. Let ‖·‖ also denote the induced norm onE∗. Now we can

write

8(u) =
1

2
(‖u+

‖
2
− ‖u−

‖
2)−9(u) .

4.1. The Geometry of 8

4.1 Lemma. There isρ > 0 such thatinf8(SρE+) > 0.

Proof. Suppose thatz ∈ E+ with ‖z‖ ≤ 1. Using Lemma 3.4 we see that

8(z) =
1

2
‖z‖2

−9(z) ≥
1

2
‖z‖2

− C‖z‖2p1

where 2p1 > 2, and the claim follows if we chooseρ small enough. �

4.2 Lemma. Let Z be a finite dimensional subspace of E+. Then8(u) → −∞ as‖u‖ → ∞

in E−
⊕ Z.

Proof. For anyu ∈ E with ‖u‖ ≥ 1 and for anyt > 0 put g(t) = 9(tu/‖u‖) > 0. By
Lemma 3.6 we have

g′(t)

g(t)
≥
θ

t

for t > 0. Integrating this expression over [1, ‖u‖] we find

(4.1) 9(u) ≥ 9(u/‖u‖)‖u‖
θ .
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Chooseβ ∈ (0,1) and setγ = sin(arctanβ) ∈ (0,1). Consider the set

K = { u ∈ E | u+
∈ Z, ‖u+

‖ ≥ γ, ‖u‖ = 1} .

If E+
= {0} there is nothing to prove. If dimE+

≥ 1 there is(un) ⊆ K with
limn→∞9(un) = inf9(K ) =: δ ≥ 0. SinceK is bounded we may assume thatun ⇀ u ∈ E
such thatu+

n → u+ in Z. Clearly‖u+
‖ ≥ γ andu 6= 0. Now9 is weakly sequentially lower

semicontinuous. By Lemma 3.6 thereforeδ ≥ 9(u) > 0.
Let u ∈ E−

⊕ Z satisfy‖u‖ ≥ 1 and let us distinguish two cases: If‖u+
‖/‖u−

‖ ≥ β we
have

‖u+
‖

‖u‖
= sin

(
arctan

‖u+
‖

‖u−‖

)
≥ γ

and thereforeu/‖u‖ ∈ K . In view of (4.1) and the definition ofδ we obtain9(u) ≥ δ‖u‖
θ

and

8(u) ≤
1

2
‖u‖

2
− δ‖u‖

θ .

If ‖u+
‖/‖u−

‖ ≤ β we have

(4.2) 8(u) ≤
1

2
(‖u+

‖
2
− ‖u−

‖
2) ≤ −

1 − β2

2(1 + β2)
‖u‖

2 .

For ‖u‖ large we find in either case that (4.2) is satisfied, and the claim is proved sinceβ2 <

1. �

LetK be the set of critical points of8.

4.3 Lemma. If either (V1
2) or (W3) holds, then there isα > 0 such that for any u∈ K \ {0}

we have8(u) ≥ α.

Proof. First we show that‖·‖ is bounded away from 0 onK \ {0}. Let u ∈ E \ {0} with
8′(u) = 0. If ‖u‖ ≤ 1, using Lemma 3.4 we find

‖u+
‖

2
= 9 ′(u)[u+] ≤ C‖u‖

2p1−1
‖u+

‖

‖u−
‖

2
= −9 ′(u)[u−] ≤ C‖u‖

2p1−1
‖u−

‖

and therefore
‖u‖ ≤ C‖u‖

2p1−1

where 2p1 − 1> 1. This shows that‖u‖ ≥ C > 0 for some independent constantC.
Next, from Lemma 3.6 we see that

8(u) =
1

2
8′(u)[u] +

1

2
9 ′(u)[u] −9(u)

≥

(
1

2
−

1

θ

)
9 ′(u)[u] .
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In the case of (V12) we also have‖u‖
2

= 9 ′(u)[u] and thus‖u‖ ≤ C
√
8(u) for some inde-

pendentC.
In the case of (W3) we argue as follows: If9 ′(u)[u] ≥ 1 we have an independent positive

lower bound for8(u). If 9 ′(u)[u] ≤ 1, by Lemma 3.6 it follows that

‖9 ′(u)‖ ≤ C
√
9 ′(u)[u] ≤ C

√
8(u) ,

leading to

‖u+
‖

2
= 9 ′(u)[u+] ≤ C

√
8(u)‖u+

‖

‖u−
‖

2
= −9 ′(u)[u−] ≤ C

√
8(u)‖u−

‖ .

Again it follows that‖u‖ ≤ C
√
8(u). In either case8(u) ≥ C > 0 for some independentC

since‖u‖ is bounded away from 0 onK \ {0} as shown above. �

4.2. Palais-Smale-Sequences

4.4 Lemma. Assume(V1
2) or (W3). If (un) ⊆ E is a (PS)c-sequence for8, then c≥ 0 and

(un) is bounded.

Proof. Suppose that(un) ⊆ E with 8(un) ≤ C and‖8′(un)‖ ≤
1
n . From

(4.3)
8(un) =

1

2
8′(un)[un] +

1

2
9 ′(un)[un] −9(un)

≥ −
‖un‖

2n
+

(
1

2
−

1

θ

)
9 ′(un)[un]

we obtain

(4.4) 9 ′(un)[un] ≤ C

(
1 +

‖un‖

n

)
.

If (V 1
2) holds then9 ′(un)[un] = ‖un‖

2
+ O(1/n)‖un‖, and (4.4) yields‖un‖

2
≤ C(1 +

‖un‖/n). Consequently‖un‖ must be bounded.
If (W3) holds, by Lemma 3.6

‖9 ′(un)‖ ≤ C(1 +9 ′(un)[un]) ,

and together with (4.4)

‖9 ′(un)‖ ≤ C

(
1 +

‖un‖

n

)
.

Therefore

‖u+

n ‖
2

= 8′(un)[u
+

n ] +9 ′(un)[u
+

n ] ≤ C

(
1 +

‖un‖

n

)
‖u+

n ‖

‖u−

n ‖
2

= −8′(un)[u
−

n ] −9 ′(un)[u
−

n ] ≤ C

(
1 +

‖un‖

n

)
‖u−

n ‖ .

We conclude that‖un‖ ≤ C(1+‖un‖/n) and that‖un‖ must be bounded. In either case, from
(4.3) and Lemma 3.6 we find that alsoc ≥ 0. �

16



Consider the action ofZN on E given as follows: Ifm ∈ ZN andu ∈ E set(τmu)(x) =

u(x − m). From (V1) it follows that‖·‖ is invariant under this action, and the same holds for
8.

4.5 Lemma. Assume(V1
2) or (W3). For c ∈ R let (un) ⊆ E be a(PS)c-sequence for8.

Then either c= 0 and un → 0 or c ≥ α and there are k∈ N, k ≤ [c/α], and for each
1 ≤ i ≤ k a sequence(mi,n)n ⊆ ZN and a functionvi ∈ E \ {0} such that, after extraction of
a subsequence of(un), ∥∥∥∥un −

k∑
i =1

τmi,nvi

∥∥∥∥ → 0

8

( k∑
i =1

τmi,nvi

)
→

k∑
i =1

8(vi ) = c

|mi,n − m j,n| → ∞ for i 6= j

8′(vi ) = 0 for all i .

Proof. By Lemma 4.4(un) is bounded inE. If

(4.5) lim
n→∞

sup
x∈RN

|un|2,BR(x) = 0

for someR > 0 then by the well known Lemma I.1 in [17]un → 0 in L p for p ∈ (2,2∗).
Using the splittings ofW and f as in Sect. 3, from Lemma 3.4 and (3.7) it follows that
‖9 ′(un)‖ → 0, and it is easily seen from‖8′(un)‖ → 0 that then also‖un‖ → 0 and thus
c = 0.

If, on the other hand, (4.5) does not hold, extracting a subsequence there areR, β > 0
and a sequence(xn) ⊆ RN such that|un|2,BR(xn) ≥ β. SubstitutingR by R +

√
N/2 we can

choose a sequence(m1,n) ⊆ ZN such that|un|2,BR(m1,n) ≥ β. Thenτ−m1,nun ⇀ v1 ∈ E \ {0}

for a subsequence. From weak sequential continuity and invariance of8 under the action of
ZN we obtain that8′(v1) = 0. Moreover

lim
n→∞

(‖u±

n ‖
2
− ‖u±

n − τm1,nv
±

1 ‖
2) = lim

n→∞
(‖τ−m1,nu±

n ‖
2
− ‖τ−m1,nu±

n − v±

1 ‖
2)

= lim
n→∞

2〈τ−m1,nu±

n , v
±

1 〉 − ‖v±

1 ‖
2

= ‖v±

1 ‖
2 .

Here we have used thatτm1,n commutes with the projectionsP±. Extracting subsequences as
we go along, by Lemma 3.5 and the last calculation there is a sequencev1,n → v1 in E such
that

8(τ−m1,nun)−8(τ−m1,nun − v1,n) → 8(v1)

8′(τ−m1,nun)−8′(τ−m1,nun − v1,n) → 8′(v1) = 0
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and thus, settingu2,n = un − τm1,nv1,n

8(u2,n) → c −8(v1)

8′(u2,n) → 0

asn → ∞. By Lemma 4.3 and Lemma 4.4c ≥ 8(v1) ≥ α. We can repeat this process
for (u2,n). After at mostk ≤ [c/α] iterations we finduk+1,n = un −

∑k
i =1 τmi,nvi,n → 0 as

n → ∞. Here we can replacevi,n by vi . Also we see that
∑k

i =18(vi ) = c. Noting that(un)

is bounded and that8′ maps bounded sets into bounded sets, clearly

8(un)−8

( k∑
i =1

τmi,nvi

)
→ 0 .

To show the remaining assertion, assume that|mi,n−m j,n| is bounded asn → ∞ for some
1 ≤ i < j ≤ k. We can assume that|mi,n − ml ,n| → ∞ for any i < l < j . Suppose that(un)

is the final extracted subsequence. Putm∗
n = mi,n −m j,n. By constructionτ−mi,nu j,n ⇀ 0 and

thusτm∗
n
τ−mi,nu j,n ⇀ 0. But we also haveτ−m j,nu j,n ⇀ v j andτm∗

n
τ−mi,n = τ−m j,n, leading

to v j = 0. Contradiction. �

4.3. Proof of the Main Theorems

Now we can prove Theorem 2.1 and Theorem 2.2. If (V1
2) or (W3) is satisfied, fixz ∈ E+

with ‖z‖ = 1. By Lemma 4.2 there isr > ρ such that8(u) ≤ 0 for all u ∈ E−
⊕ [z] with

‖u‖ ≥ r . Here [z] denotes the span of{z}. Consider

M = { y + tz | y ∈ E−, ‖y + tz‖ ≤ r, t ≥ 0}

and letM0 be the boundary ofM in E−
⊕ [z]. Then sup8(M) < ∞ by Lemma 3.5 sinceM

is bounded, and sup8(M0) ≤ 0 < inf8(SρE+) from the choice ofr , since8 ≤ 0 on E−,
and by Lemma 4.1. In view of Lemma 3.5 and [28, Cor. 6.11] we can apply the theorem of
Kryszewski and Szulkin (cf. [28, Thm. 6.10] or [12]) to obtain a(PS)c-sequence(un) ⊆ E for
8, with c > 0. ForE−

= {0} this is of course the same as constructing a (PS)-sequence from
the Mountain Pass Theorem. By Lemma 4.5 there exists a nontrivial weak solution for (P+).

The proof of the multiplicity results for (P+) follows the proof of [4, Thm. 1.2]. It rests
on [5, Thm. 5.2]. For the convenience of the reader we state the latter theorem here.

Let us writeE−
w for the subspaceE− with the weak topology. Set8b

a = { u ∈ E | a ≤

8(u) ≤ b }. Given an intervalI ⊂ R, call a setA ⊂ E a (PS)I -attractor if for any (PS)c-
sequence(un) with c ∈ I , and anyε, δ > 0 one hasun ∈ Uε(A ∩ 8c+δ

c−δ) providedn is large
enough. Consider the following hypotheses on8:

(81) 8 ∈ C1(E,R) is even and8(0) = 0.

(82) There existκ, ρ > 0 such that8(z) ≥ κ for everyz ∈ E+ with ‖z‖ = ρ.

(83) There exists a strictly increasing sequence of finite-dimensional subspacesZn ⊂ E+

such that sup8(En) < ∞ whereEn := E−
⊕ Zn, and an increasing sequence of real

numbersrn > 0 with8(En \ Brn) < inf8(Bρ).
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(84) 8(u) → −∞ as‖u−
‖ → ∞ and‖u+

‖ bounded.

(85) 8′ : E−
w ⊕ E+

→ E∗
w is sequentially continuous, and8 : E−

w ⊕ E+
→ R is sequentially

upper semicontinuous.

(86) For any compact intervalI ⊂ (0,∞) there exists a(PS)I -attractorA such that
inf{ ‖u+

− v+
‖ | u, v ∈ A,u+

6= v+
} > 0.

4.6 Theorem (Bartsch-Ding, 1999).If 8 satisfies(81)–(86) then there exists an unbounded
sequence(cn) of positive critical values.

Now we assume that either (V1
2) or (W3) holds and that (F3) is satisfied. LetF consist of

arbitrarily chosen representatives of the orbits inK under the action ofZN . By the evenness of
8 we can also assume thatF = −F . Suppose that there are only finitely many geometrically
distinct solutions of (P+) or, equivalently, thatF is finite. To reach a contradiction we want
to apply Theorem 4.6 and have to show that hypotheses (81)–(86) are satisfied for8. From
(F3) it follows that8 is even and thus(81). (82) is stated in Lemma 4.1. (83) follows from
Lemma 3.5 and Lemma 4.2. Condition (84) holds since9 ≥ 0.

The embeddingE−
w ⊕ E+ ↪→ Ew is sequentially continuous. Therefore, by Lemma 3.5,

9 ′ is sequentially continuous onE−
w ⊕ E+, and the same holds for8′. For the same reason

9 is sequentially lower semicontinuous onE−
w ⊕ E+. Moreover‖·‖ is sequentially lower

semicontinuous onE−
w . These facts together give (85).

Given any compact intervalI ⊆ (0,∞) with d = maxI we setk = [d/α] and

[F, k] =

{ j∑
i =1

τmi vi

∣∣∣∣ 1 ≤ j ≤ k,mi ∈ ZN, vi ∈ F
}
.

By Lemma 4.5 [F, k] is a (PS)I -attractor. Since the projectionsP± commute with the action
of ZN on E, it is clear from [9, Prop. 2.57] that (86) is also satisfied. We reach a contradiction,
because now Theorem 4.6 provides us with infinitely many geometrically distinct solutions.

It remains to prove the assertions pertaining to problem (P−). Consider the functional

8−(u) =
1

2
(‖u+

‖
2
− ‖u−

‖
2)+9(u) .

Critical points of8− are in correspondence with solutions to (P−). If (V 1
2) is satisfied, for any

critical pointu of 8− we have

‖u‖
2

= −9 ′(u)[u] ≤ 0

by Lemma 3.6, so there is no nontrivial solution in this case.
Note that we have nowhere used thatσ(−1+ V) is bounded below. So if (W3) and (V2

2)
hold, for our discussion the subspacesE− andE+, both being infinite dimensional separable
Hilbert spaces, are equivalent. By this we mean that we can apply the arguments from the
existence proofs above to the functional8− by interchanging the roles ofE− and E+. The
proof of the theorems is complete.
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