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Abstract We study the asymptotic behavior of scattering amplitudes for the
scattering of Dirac particles in two dimensions when electromagnetic fields with
small support shrink to point–like fields. The result is strongly affected by per-
turbations of scalar potentials and the asymptotic form changes discontinuously at
half–integer fluxes of magnetic fields even for small perturbations. The analysis re-
lies on the behavior at low energy of resolvents of magnetic Schrödinger operators
with resonance at zero energy. The magnetic scattering of relativistic particles ap-
pears in the interaction of cosmic string with matter. We discuss this closely related
subject as an application of the obtained results.

1. Introduction

We consider the relativistic massless particle moving in the two dimensional
space. We denote by x = (x1, x2) a generic point in R2 and write

D(A, V ) =
2∑
j=1

σj (−i∂j − Aj) + V, ∂j = ∂/∂xj ,

for the Dirac operator, where A = (A1, A2) : R2 → R2 and V : R2 → R are
magnetic and scalar potentials respectively, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are the Pauli spin matrices. The magnetic field b : R2 → R is defined by

b = ∇×A = ∂1A2 − ∂2A1.

The operator D(A, V ) acts on [L2]2 = [L2(R2)]2. If A and V are bounded, then it
is self–adjoint with domain [H1(R2)]2, where Hs(R2) is the Sobolev space of order
s. We also write

L(A, V ) = (−i∇−A)2 + V
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for the Schrödinger operator. If A has further bounded derivatives, then L(A, V )
is self–adjoint with domain H2(R2) in L2. If L(A, V )u = 0 has a bounded but not
square integrable solution, then L(A, V ) is said to have a resonance at zero energy.

Let b and V be given magnetic field and scalar potential. We assume that
b, V ∈ C∞

0 (R2 → R) are smooth functions with compact support. We define A(x)
by

A(x) = (−∂2ϕ(x), ∂1ϕ(x)) , (1.1)

where
ϕ(x) = (2π)−1

∫
log |x− y| b(y) dy (1.2)

and the integration without the domain attached is taken over the whole space. By
definition, A satisfies∇×A = ∆ϕ = b, and hence it becomes the potential associated
with field b. The function ϕ obeys ϕ(x) = α log |x|+O(|x|−1) as |x| → ∞, where

α = (2π)−1
∫
b(x) dx

is called the flux of b. The magnetic effect strongly appears when α �∈ Z is not an
integer. We restrict ourselves to the case

0 < α < 1. (1.3)

We make a brief comment on the the other cases that α < 0 and α > 1 (Remark
8.1 at the end of section 8). The potential A(x) is not necessarily expected to fall
off rapidly and it has the long–range property at infinity even if b is of compact
support. In fact, it behaves like

A(x) = A0α(x) +O(|x|−2), (1.4)

where A0α is defined by

A0α(x) = α(−x2/|x|2, x1/|x|2) = α(−∂2 log |x|, ∂1 log |x|) (1.5)

and it is often called the Aharonov–Bohm potential in physical articles.

Let T = D(A, V ) = T0 + V , where

T0 = D(A, 0) = σ1ν1 + σ2ν2, (ν1, ν2) = −i∇− A,
is the Dirac operator without scalar potential V . We sometimes identify the coor-
dinates ω = (ω1, ω2) over the unit circle S with the azimuth angle from the positive
x1 axis. According to this notation, we set

τ(ω) = t(1, eiω), eiω = cosω + i sinω = ω1 + iω2. (1.6)

We denote by f(ω → ω̃;E) the scattering amplitude of T for scattering from initial
direction ω ∈ S to final one ω̃ at energy E > 0. Roughly speaking, it is defined
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through the behavior at infinity of solution ψ = ψ(x;E, ω) to equation Tψ = Eψ,
and the solution takes the asymptotic form

ψ(rω̃) ∼ ψin + f(ω → ω̃;E)τ(ω̃)eiErr−1/2, r = |x| → ∞,

along direction ω̃ �= ω, where the first term ψin = τ(ω)eiEx·ω is the wave incident
from ω and the second term denotes the scattering wave. The precise representation
of it is given in section 4. We study the scattering by electromagnetic fields with
small support. We set

Aε(x) = ε−1A(x/ε), bε(x) = ε−2b(x/ε), Vε(x) = ε−1V (x/ε) (1.7)

for 0 < ε 
 1 small enough. Then Aε satisfies ∇ × Aε = bε. Our aim here
is to analyze the asymptotic behavior as ε → 0 of amplitude fε(ω → ω̃;E) of
Tε = D(Aε, Vε).

The problem is closely related to the resonance state at zero energy of magnetic
Schrödinger operators in a natural way. Let R(z;H) denote the resolvent (H − z)−1

of self–adjoint operator H . We write T0 = σ1ν1 + σ2ν2 as

T0 =

(
0 ν1 − iν2

ν1 + iν2 0

)
=

(
0 ν−
ν+ 0

)
,

where (ν1, ν2) = −i∇ − A with A = (−∂2ϕ(x), ∂1ϕ(x)), ϕ being defined by (1.2).
Since ν1 and ν2 satisfies the commutator relation

[ν1, ν2] = ν1ν2 − ν2ν1 = ib,

a simple computation yields

ν±ν∓ = ν2
1 + ν

2
2 ± b = L(A,±b),

so that T 2
0 is diagonalized as

T 2
0 =

(
L(A,−b) 0

0 L(A, b)

)
.

The two Schrödinger operators L(A,±b) = ν∗∓ν∓ ≥ 0 are non–negative, but the
spectral structure at zero energy is different. By (1.1), we have

ν+ = ν1 + iν2 = −i∂1 + ∂2ϕ+ i(−∂2 − ∂1ϕ)

= −i ((∂1 + ∂1ϕ) + i(∂2 + ∂2ϕ)) = −ie−ϕ ( ∂1 + i∂2) e
ϕ. (1.8)

Hence L(A,−b)u = 0 has a bounded solution behaving like

ρ(x) = e−ϕ(x) = |x|−α(1 +O(|x|−1)), |x| → ∞. (1.9)
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By assumption (1.3), ρ is not in L2, and hence L(A,−b) has a resonance state at zero
energy. On the other hand, L(A, b) does not have a resonance state. The amplitude
fε is represented in terms of the boundary values

R(E + i0;Tε) = lim
δ↓0
R(E + iδ;Tε)

to the real axis of resolvent R(E + iδ;Tε). We now define the unitary operator
Jε : [L

2]2 → [L2]2 by
(Jεu)(x) = ε−1u(x/ε), (1.10)

then we have Tε = ε−1JεTJ
∗
ε for T = D(A, V ), and hence

R(E + i0;Tε) = εJεR(k + i0;T )J
∗
ε , k = εE. (1.11)

Thus the analysis relies on the behavior at low energy of resolvents

R(k + i0;T0) = (T0 + k)R(k
2 + i0;T0)

and R(k + i0;T ), and a basic role is played by the zero energy resonance of the
magnetic Schrödinger operator L(A,−b). We note that there is no fear of our
confusing the operator Jε with the Bessel function Jν(x) in the argument below.

We take the limit ε → 0 in a formal way. It follows from (1.4) that Aε is
convergent to the Aharonov–Bohm potential A0α(x), and hence

Tε = D(Aε, Vε) → Dα = D(A0α, 0) (1.12)

on [C∞
0 (R2 \ {0})]2. However A0α is strongly singular at the origin, and it has

the δ–like field 2παδ(x) as a magnetic field. We know ([14, 19, 21]) that Dα is
not essentially self–adjoint and it has the deficiency indices (1,1). According to the
Krein theory, we can obtain a family of self–adjoint extensions {Hκ} with one real
parameter κ, − ∞ < κ ≤ ∞. The element u = t(u1, u2) in the domain D(Hκ) is
specified by the boundary condition

u−1 + iκ u−2 = 0 (1.13)

at the origin under assumption (1.3), where

u−1 = lim
r→0

rαu1(x), u−2 = lim
r→0

r1−αe−iθu2(x) (1.14)

in the polar coordinate system (r, θ). If κ = ∞, then u−2 = 0 and the second
component u2(x) has a weak singularity near the origin for u ∈ D(H∞), while the
first component u1(x) has a weak singularity for κ = 0. The boundary condition
in which both components remain bounded is not in general allowed ([14, 19]). In
section 2, we explicitly calculate the amplitude of Hκ after discussing the problem
of self–adjoint extension in some detail.
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The amplitude fε in question is expected to converge to that of Hκ for some
κ. We state the obtained results somewhat loosely. All the main theorems are
formulated in section 5. We denote by gκ(ω → ω̃;E) the scattering amplitude of
Hκ. As stated above, gκ can be calculated explicitly. If the scalar potential V (x)
vanishes identically, then fε is shown to converge to g∞ (Theorem 5.1). However
the situation changes as soon as V is added as a perturbation (Theorem 5.2). It is
interesting that this occurs even for small perturbations. We here deal with only the
simple but generic case that T has neither bound state nor resonance state at zero
energy. The definition of resonance state is given in section 5. Roughly speaking, it
means that the equation Tu = 0 admits a bounded solution. We note that T does
not have a resonance state for V small enough. The obtained result depends on the
flux α of field b. The amplitude fε is proved to converge to g∞ for 0 < α < 1/2
and to g0 for 1/2 < α < 1. If α = 1/2, then fε is convergent to gκ for some κ
determined from the resonance state ρ = e−ϕ of L(A,−b). A similar problem has
been studied by the physical literature [2, section 7.10] for the scattering outside the
small disk {|x| < ε}, and it has shown that the limit takes a different form according
as 0 < α < 1/2, α = 1/2 or 1/2 < α < 1. However the argument there is based
on the explicit calculation using the Bessel functions, and the connection with zero
energy resonance has not been recognized.

As stated in the beginning, another motivation of this work comes from the study
on the scattering of Dirac particles in the interaction of cosmic string with matter.
This problem is mathematically formulated as follows (see [7] for the detail on the
physical background). Let Aε, bε = ∇×Aε and Vε be defined by (1.7). We consider
two kinds of particles (for example, lepton and quark) moving in the magnetic field
bε and interacting with each other through the scalar potential Vε. If we denote by
w = t(u, v) = t(u1, u2, v1, v2) the wave function of these two particles, then w obeys
the equation

Tεw = T0εw +Vεw = Ew (1.15)

at energy E > 0, where

T0ε =

(
T0ε 0
0 T0ε

)
, Vε =

(
0 Vε
Vε 0

)
, T0ε = D(Aε, 0).

We assume that the wave function w has only u–wave as an incident wave. Then w
behaves like

w ∼ t(τ(ω), 0)eiEx·ω + wscat + o(r
−1/2), r → ∞,

where τ(ω) is defined by (1.6), and the scattering wave wscat takes the form

wscat =
(
f1ε(ω → ω̃;E)t(τ(ω̃), 0) + f2ε(ω → ω̃;E)t(0, τ(ω̃))

)
eiErr−1/2 (1.16)

along direction ω̃. The amplitude f2ε(ω → ω̃;E) describes the v–wave produced by
incident u–wave, and it is an important physical quantity in the interaction of cosmic
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string with matter. We analyze the asymptotic behavior as ε→ 0 of f2ε(ω → ω̃;E).
The asymptotic form is shown to take the form

f2ε(ω → ω̃;E) = Cαε
|2α−1| (1 + o(1)) , ε→ 0,

for some constant Cα (Theorem 5.3). The constant is independent of incident and
final directions ω and ω̃, but is different according as 0 < α < 1/2, α = 1/2 or
1/2 < α < 1. A similar asymptotic form has been derived by the earlier work [7] in
the special case that A(x) = A0α(x) is the Aharonov–Bohm potential and V (x) is
the characteristic function of the unit disk. However the calculation there is again
based on the explicit calculation using the Bessel functions, and the important role
of zero energy resonance seems to have been completely hidden behind this explicit
calculation. In this work we make clear from a mathematical point of view how the
leading coefficient Cα is determined and how it is related to the resonance state ρ
of L(A,−b) at zero energy.

We confine ourselves to the positive energy case E > 0 for notational brevity,
and we fix E > 0 throughout the whole exposition. The dependence on E does not
matter. We end the section by noting that the obtained results easily extend to the
operator σ1ν1 + σ2ν2 +mσ3 + V with mass m > 0.

2. Dirac operators with point–like fields

In this section we calculate the scattering amplitude gκ(ω → ω̃;E) of self–adjoint
extension Hκ obtained from Dα defined by (1.12) after explaining briefly the Krein
theory on the problem of self–adjoint extension. The problem of self–adjoint exten-
sion for two dimensional Dirac operators with singular magnetic fields has already
been studied by several authors. We refer to [14, 19, 21] for details, and, in partic-
ular, to [21] for the recent references. The argument here follows [23].

The operator

Dα = D(A0α, 0) =

(
0 π−
π+ 0

)
, π± = π1 ± i π2, (2.1)

defined over
[
C∞

0 (R2 \ {0})
]2

is symmetric, where (π1, π2) = −i∇ − A0α. The two
operators π± are represented as

π+ = eiθ
(
−i∂r + r−1(∂θ − iα)

)
, π− = e−iθ

(
−i∂r − r−1(∂θ − iα)

)
(2.2)

in terms of polar coordinates (r, θ), and we have

π+π− = π2
1 + π

2
2 = −∂2

r − r−1∂r + r
−2 (−i∂θ − α)2

for r = |x| > 0, and similarly for π−π+. We denote by Dα and D∗
α the closure and

adjoint of Dα respectively, and we set

Σ± = {u ∈ [L2]2 : (D∗
α ∓ i) u = 0}.
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The pair (n+, n−), n± = dimΣ±, is called the deficiency indices of Dα. As is well
known, Dα has self–adjoint extensions if and only if n+ = n−.

We show that n+ = n− = 1. We denote by Hµ(z) = H(1)
µ (z) the Hankel function

of first kind, and all the Hankel functions are understood to be of first kind through-
out. If u = t(u1, u2) ∈ [L2]2 solves (Dα − i)u = 0, then u2 satisfies (π+π− + 1)u2 = 0
in R2 \ {0}, and u1 is given by u1 = −iπ−u2. By formula, Hµ(z) satisfies

(d/dz)
[
z±µHµ(az)

]
= ±az±µHµ∓1(az). (2.3)

The same formula is still true for Jµ(z). This formula yields

π−
(
H1−α(ir)eiθ

)
= H−α(ir) = eiαπHα(ir).

Hence we see that Σ+ is the one dimensional space spanned by

u+ = Nα
t(−ieiαπHα(ir), H1−α(ir)eiθ),

where u+ is normalized as ‖u+‖L2 = 1. Similarly Σ− is also the one dimensional
space spanned by

u− = Nα
t(ieiαπHα(ir), H1−α(ir)eiθ), ‖u−‖L2 = 1.

All the possible self–adjoint extensions are determined by the Krein theory
([8, 20]). Let U : Σ+ → Σ− be the unitary mapping defined by multiplication
Uu+ = eiζu− with −π < ζ ≤ π. Then the self–adjoint extension HU associated with
U is realized as the operator

HUu = Dαv + icu+ − iceiζu−
acting on the domain

D(HU) = {u ∈ [L2]2 : u = v + cu+ + ceiζu−, v ∈ D(Dα), c ∈ C}.
We examine which boundary condition u ∈ D(HU) satisfies at the origin. The
Hankel function Hµ(z) with non–integer µ > 0 is represented as

Hµ(z) = (i/ sinµπ)
(
e−iµπJµ(z)− J−µ(z)

)
(2.4)

in terms of Bessel functions, and it behaves like

Hµ(z) = (−i/ sinµπ) (2µ/Γ(1− µ)) z−µ
(
1 +O(|z|2µ) +O(|z|2)

)
(2.5)

as |z| → 0. If v = t(v1, v2) ∈ D(Dα), then v obeys v1 = o(|x|−α) and v2 = o(|x|−(1−α))
as |x| → 0, so that u = t(u1, u2) ∈ D(HU) has the limits u−1 and u−2 in (1.14). If
we take account of the above asymptotic formula of Hankel functions, then the ratio

κ = iu−1/u−2 =
(
22α−1Γ(α)/Γ(1− α)

)
tan(ζ/2)
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is calculated as a quantity independent of u. Thus we obtain the family of self–
adjoint extensions {Hκ} parameterized by real number κ, −∞ < κ ≤ ∞, and the
operator has the domain

D(Hκ) = {u = (u1, u2) ∈ [L2]2 : Dαu ∈ [L2]2, u−1 + iκu−2 = 0}, (2.6)

where Dαu is understood in the distribution sense, and u−1 and u−2 are defined by
(1.14).

We move to calculating the scattering amplitude of Hκ. It has already been
calculated in the physical articles ([17]) for the special case κ = 0 or κ = ∞. We
again note that ω ∈ S is often identified with the azimuth angle from the positive
x1 axis.

Proposition 2.1 Let gκ(ω → ω̃;E), ω̃ �= ω, denote the scattering amplitude of Hκ
for the scattering from initial direction ω into final one ω̃ at energy E > 0. Then

gκ = − (2πiE)−1/2 sinαπ

(
ei(ω̃−ω)/2

sin((ω̃ − ω)/2) +
2κταE

2α−1

i(κταE2α−1 − eiαπ)
)
, (2.7)

where
τα = 21−2αΓ(1− α)/Γ(α). (2.8)

If, in particular, κ = 0 or κ = ∞, then

g0 = − (2πiE)−1/2 sinαπ
ei(ω̃−ω)/2

sin((ω̃ − ω)/2) ,

g∞ = − (2πiE)−1/2 sinαπ
e−i(ω̃−ω)/2

sin((ω̃ − ω)/2) ,

and if α = 1/2, then

gκ = − (2πiE)−1/2

(
ei(ω̃−ω)/2

sin((ω̃ − ω)/2) +
2κ

1 + iκ

)
.

We need two lemmas to prove the proposition. Before stating the lemmas, we
briefly discuss the problem of self–adjoint extensions for magnetic Schrödinger op-
erator

Lα = L(A0α, 0) = (−i∇− A0α)
2 (2.9)

with Aharonov–Bohm potential A0α. We know ([1, 13]) that Lα has the deficiency
indices (2,2) as a symmetric operator on C∞

0 (R2 \ {0}), and the Krein theory again
yields the family of all possible self–adjoint extensions {LU} parameterized by 2× 2
unitary mapping U from one deficiency subspace to the other one. The self–adjoint
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operator LU is realized as a differential operator with some boundary conditions at
the origin. If w is in the domain D(LU), then w behaves like

w =
(
w−0r

−α + w+0r
α + o(rα)

)
+
(
w−1r

−(1−α) + w+1r
1−α + o(r1−α)

)
eiθ + o(r)

for some coefficients w±k, k = 0, 1, and there exist 2× 2 matrices B± for which the
boundary condition is described as the relation

B−

(
w−0

w−1

)
+B+

(
w+0

w+1

)
= 0

between these four coefficients. We distinguish the two operators by the following
special notation :

D(LAB) = {w ∈ L2 : Lw ∈ L2, w−0 = w−1 = 0}
D(LZ) = {w ∈ L2 : Lw ∈ L2, w+0 = w−1 = 0} (2.10)

among admissible self–adjoint extensions. The first operator LAB is known as the
Aharonov–Bohm Hamiltonian ([3]).

We denote by γ(x;ω) the azimuth angle from ω. The operator Lα defined by
(2.9) admits the polar coordinate decomposition

Lα �∑
l∈Z

⊕hl,

where hl = −(d/dr)2 + (ν2 − 1/4)r−2 with ν = |l − α|. If we define

ϕ±(x;E, ω) =
∑
l∈Z
e∓iνπ/2eilγ(x;∓ω)Jν(Er) (2.11)

for ν = |l−α|, then ϕ± vanishes at the origin and solves (Lα − E2)ϕ± = 0. Thus ϕ±
becomes the generalized eigenfunction of LAB with eigenvalue E2. The first lemma
is due to [16] (see [3, 10] also).

Lemma 2.1 Let ϕ+(x;E, ω) be as above. Define

ϕin(x;E, ω) = eiEx·ωeiα(γ(x;ω)−π) (2.12)

for x = rθ, θ �= ω. Then ϕ+(x;E, ω) obeys

ϕ+(rθ;E, ω) = ϕin(rθ;E, ω) + g+(ω → θ;E)eiErr−1/2 (1 + o(1)) , r → ∞,

along direction θ, where

g+(ω → θ;E) = − (2πiE)−1/2 sinαπ
ei(θ−ω)/2

sin((θ − ω)/2) . (2.13)
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This lemma implies that ϕ+(x;E, ω) is the outgoing eigenfunction of LAB, and
g+(ω → θ;E) defines the scattering amplitude. This is known as the Aharonov–
Bohm scattering amplitude ([3]). On the other hand, ϕ−(x;E, ω) is shown to be
the incoming eigenfunction, but its asymptotic form is not required in the argument
below. We move to the second lemma. The proof of this lemma uses the following
formula for the Bessel functions :

π±
(
Jν(Er)e

ilθ
)
=

{ ±iEJν±1(Er)e
i(l±1)θ (l ≥ 1)

∓iEJν∓1(Er)e
i(l±1)θ (l ≤ 0)

(2.14)

for ν = |l − α| with 0 < α < 1. This follows from (2.3) after a direct computation.
The same formula remains true for the Hankel Hν(Er).

Lemma 2.2 Let π+ be as in (2.2) and let g+ be as in Lemma 2.1. Then

(π+ϕ+) (rθ;E, ω) = Eeiωϕin(rθ;E, ω) + Ee
iθg+(ω → θ;E)eiErr−1/2 (1 + o(1))

as r → ∞ along direction θ, θ �= ω.

Proof. We calculate I = (π+ϕ+)(x;E, ω)/E. Since eilγ(x;−ω) = eilθeil(π−ω) for x =
rθ, we obtain

I =
∑
l≥1

ie−iνπ/2Jν+1(Er)e
i(l+1)θeil(π−ω) −∑

l≤0

ie−iνπ/2Jν−1(Er)e
i(l+1)θeil(π−ω)

by use of formula (2.14). We use the simple relation

ei(l+1)θeil(π−ω) = −ei(l+1)γ(x;−ω)eiω.

If l ≥ 1, then ν + 1 = |l + 1− α| and ie−iνπ/2 = −e−i|l+1−α|π/2, and if l ≤ −1, then
ν − 1 = |l+1−α| and ie−iνπ/2 = e−i|l+1−α|π/2. If we take account of these relations,
then we make a change of variables l + 1 → l to obtain that

I = eiω
∑
l =1

e−iνπ/2eilγ(x;−ω)Jν(Er)− e−i(α−1)π/2Jα−1(Er)e
iθ,

so that it equals

I = eiωϕ+(x;E, ω) +
(
e−i(1−α)π/2J1−α(Er)− e−i(α−1)π/2Jα−1(Er)

)
eiθ.

Hence it follows from (2.4) that

I = eiωϕ+(x;E, ω) + e
−iαπ/2 sinαπH1−α(Er)eiθ. (2.15)

The Hankel function Hµ(z), µ > 0, is known to behave like

Hµ(z) = (2/iπ)1/2 e−iµπ/2eizz−1/2
(
1 +O(|z|−1)

)
(2.16)
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as |z| → ∞. This, together with Lemma 2.1, implies that

I = eiωϕin(x;E, ω) + g̃(ω → θ;E)eiErr−1/2 (1 + o(1)) ,

where
g̃ = eiωg+(ω → θ;E)− 2i (2πiE)−1/2 sinαπeiθ.

A simple computation yields

g̃ = (2πiE)−1/2 sinαπ
(
−e−i(θ−ω)/2/ sin((θ − ω)/2) + 2/i

)
eiθ = g+(ω → θ;E)eiθ.

This proves the lemma. ✷

Proof of Proposition 2.1. Let Dα = D(A0α, 0) be as in (2.1). We look for the
solution ψ = (ψ1, ψ2) to equation (Dα − E)ψ = 0 in the form

ψ1 = ϕ+(x;E, ω) + βκHα(Er), ψ2 = (1/E) (π+ψ1) (x;E, ω) (2.17)

with some constant βκ. If ψ takes the above form, then it is easy to see that ψ solves
the equation. The coefficient βκ is determined so as to satisfy the boundary condition
(1.13) at the origin. Then ψ = ψ(x;E, ω) becomes the eigenfunction of self–adjoint
operator Hκ and the amplitude gκ is determined through the asymptotic form of
ψ(x;E, ω). We calculate the limits u−1 and u−2 defined by (1.14). The eigenfunction
ϕ+ of LAB vanishes at the origin, so that

u−1 = lim
r→0

rαψ1 = βκ (−i/ sinαπ) (2α/Γ(1− α))E−α

by (2.5). Since

π+Hα(Er) = −iEHα−1(Er)e
iθ = iEe−iαπH1−α(Er)eiθ

by (2.14), it follows from (2.15) that

ψ2 = eiωϕ+(x;E, ω) +
(
e−iαπ/2 sinαπ + ie−iαπβκ

)
H1−α(Er)eiθ (2.18)

and hence

u−2 = (−i/ sinαπ)
(
e−iαπ/2 sinαπ + ie−iαπβκ

) (
21−α/Γ(α)

)
E−1+α.

Thus βκ is determined as

βκ = ieiαπ/2 sinαπ
(
κταE

2α−1/(κταE
2α−1 − eiαπ)

)
, (2.19)

where τα is defined in (2.8). By Lemmas 2.1 and 2.2 and by (2.16), ψ(x;E, ω)
behaves like

ψ = τ(ω)ϕin(x;E, ω) + gκ(ω → ω̃;E)τ(ω̃)eiErr−1/2 + o(r−1/2) (2.20)
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as r → ∞ along direction ω̃ �= ω, where τ(ω) is in (1.6), and

gκ = g+(ω → ω̃;E) + 2(2πiE)−1/2e−iαπ/2βκ.

This determines the desired amplitude and the proof is complete. ✷

We end the section by making some additional comments on the outgoing eigen-
function ψ+(x;E, ω) and the incoming one ψ−(x;E, ω) of H∞. These eigenfunc-
tions are used to represent the amplitude f(ω → ω̃;E) of T = D(A, V ) in sec-
tion 4. The outgoing eigenfunction ψ+ = t(ψ+1, ψ+2) is defined by (2.17) with
β∞ = ieiαπ/2 sinαπ, and we have

ψ+1 = ϕ+(x;E, ω) + β∞Hα(Er), ψ+2 = eiωϕ+(x;E, ω)

by (2.18). This is expanded as

ψ+1(x;E, ω) =
∑
l =0

e−iνπ/2eilγ(x;−ω)Jν(Er) + e
iαπ/2J−α(Er),

ψ+2(x;E, ω) = eiω
∑
l∈Z
e−iνπ/2eilγ(x;−ω)Jν(Er). (2.21)

The Hankel function H(2)
µ (z) of second kind is related to Hµ(z) through H

(2)
µ (z) =

Hµ(z) for z ∈ R, and it satisfies H
(2)
−µ(z) = e−iµπH(2)

µ (z). If we make use of these
relations, a similar argument enables us to construct the incoming eigenfunction
ψ−(x;E, ω) = t(ψ−1, ψ−2) as

ψ−1 = ϕ−(x;E, ω) + β∞Hα(Er), ψ−2 = eiωϕ−(x;E, ω)

with ϕ− defined by (2.11), and it admits the expansion

ψ−1(x;E, ω) =
∑
l =0

eiνπ/2eilγ(x;ω)Jν(Er) + e
−iαπ/2J−α(Er),

ψ−2(x;E, ω) = eiω
∑
l∈Z
eiνπ/2eilγ(x;ω)Jν(Er). (2.22)

3. Resolvent of self–adjoint extensions

We here establish the relation between the two resolvents R(E + i0;Hκ) and
R(E + i0;H∞). We fix several new notation. We denote by ( , ) the scalar
product in L2 or [L2]

2
, and write f ⊗ g = ( · , g)f for the integral operator with

kernel f(x) g(y). This acts as (f ⊗ g)u = (u, g)f on u ∈ L2. We also use a similar
notation

u⊗ v = (uj ⊗ vk)1≤j,k≤2 , u = t(u1, u2), v = t(v1, v2),

for a vector version over [L2]2. We further define the two basic functions

ξ+(x;E) = t
(
−ieiαπHα(Er), H1−α(Er)eiθ

)
,

ξ−(x;E) = t
(
−ie−iαπHα(Er), H1−α(Er)eiθ

)
(3.1)
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for E > 0. The second function may be written as

ξ−(x;E) = t
(
−ie−iαπH(2)

α (Er), H
(2)
1−α(Er)e

iθ
)
.

If we repeat almost the same argument as in the previous section, then it is easy
to see that these two functions solve (Dα − E)u = 0, and form a pair of linearly
independent solutions. The aim here is to prove the following proposition.

Proposition 3.1 Let ξ± = ξ±(x;E) be as above. Then

R(E + i0;Hκ) = R(E + i0;H∞)− cκE (ξ+ ⊗ ξ−) ,

where
cκ = sinαπ/(4(κταE

2α−1 − eiαπ))
with τα defined by (2.8). If, in particular, α = 1/2, then cκ = −1/(4(i− κ)).

The proposition is proved at the end of this section. Let LAB and LZ be defined
in (2.10), and let Aε and bε = ∇× Aε be as in (1.9). We again set T0ε = D(Aε, 0),
which is convergent to Dα = D(A0α, 0) as ε→ 0 on [C∞

0 (R2 \ {0})]2 by (1.12). We
represent R(E + i0;H∞) in terms of resolvents of LAB and LZ . We repeat the same
argument as used in section 1 to obtain

R(z;T0ε) = (T0ε + z)

(
R(z2;L−ε) 0

0 R(z2;L+ε)

)
, L±ε = L(Aε,±bε),

for z, Im z �= 0. According to the results in [23, section 3], we have R(z;T0ε) →
R(z;H∞) and

R(z;L+ε) → R(z;LAB), R(z;L−ε) → R(z;LZ),

as ε→ 0 in norm (in norm resolvent sense). We also have

R(E + i0;H∞) =

(
ER(E2 + i0;LZ) π−R(E2 + i0;LAB)
π+R(E

2 + i0;LZ) ER(E2 + i0;LAB)

)
. (3.2)

We now calculate the Green kernels of R(E2 + i0;LAB) and R(E
2 + i0;LZ). To do

this, we decompose L2 = L2(0,∞)⊗ L2(S), and we define the mapping Ul by

(Ulf)(r) = (2π)−1/2r1/2
∫ 2π

0
f(rθ)e−ilθ dθ : L2 → L2(0,∞)

for l ∈ Z. Then

(U∗
l g)(x) = (2π)−1/2r−1/2g(r)eilθ : L2(0,∞) → L2,
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and R(E2 + i0;LAB) admits the decomposition

R(E2 + i0;LAB) =
∑
l∈Z

⊕Rl, Rl = U∗
l R(E

2 + i0;hl)Ul, (3.3)

where the domain of self–adjoint operator

hl = −(d/dr)2 + (ν2 − 1/4)r−2, ν = |l − α|,
is specified by the boundary condition lim

r→0
r−(1/2−α)g(r) = 0 at the origin. Similarly

we have

R(E2 + i0;LZ) = R̃0 ⊕ ∑
l =0

⊕Rl, R̃0 = U∗
0R(E

2 + i0; h̃0)U0, (3.4)

and the domain of self–adjoint operator

h̃0 = −(d/dr)2 + (α2 − 1/4)r−2

is specified by the condition

lim
r→0

r−(1/2+α)(g(r)− g0r1/2−α) = 0

with g0 = lim
r→0

r−(1/2−α)g(r). The two functions r1/2Jν(Er) and r
1/2Hν(Er) are lin-

early independent solutions to (hl − E2)g = 0 for E > 0. By formula, we know

W (Jµ, J−µ)(z) = −2 sinµπ/(πz)

for the Wronskian of Bessel functions, so that

W (Hµ, Jµ)(z) = −2i/(πz), W (Hµ, J−µ)(z) = −2ie−iµπ/(πz)

by (2.4). Thus we can construct the Green kernels

Rl(x, y) = (i/4)Hν(E(r ∨ ρ))Jν(E(r ∧ ρ))eil(θ−ϕ),

R̃0(x, y) =
(
ieiαπ/4

)
Hα(E(r ∨ ρ))J−α(E(r ∧ ρ)) (3.5)

in the standard way, where r ∨ ρ = max (r, ρ) and r ∧ ρ = min (r, ρ) for (x, y) =
(reiθ, ρeiϕ). We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. According to the Krein theory ([8]), the two resolvents
are related to each other through the relation in the proposition. We have only to
calculate the constant cκ. We set

t(u1, u2) = R(E + i0;Hκ)F

for F = t(f, 0) with f ∈ C∞
0 (R2 \ {0}). Then

u1 = v1 − ieiαπcσHα(Er), u2 = v2 + cσH1−α(Er)eiθ, c = −cκE,
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where

t(v1, v2) = R(E + i0;H∞)F = t(ER(E2 + i0;LZ)f, π+R(E
2 + i0;LZ)f)

by (3.2), and σ = (F, ξ−) is the scalar product between F = t(f, 0) and ξ−. The
constant cκ is determined by boundary condition u−1 + iκu−2 = 0, where u−1 and
u−2 are defined by (1.14). We calculate the limits u−1 and u−2. Since t(v1, v2) =
R(E + i0;H∞)F , v2 obeys v2 = o(r−(1−α))eiθ, and hence it follows from (2.5) that

u−2 = cσ (−i/ sinαπ)
(
21−α/Γ(α)

)
Eα−1.

If we use (3.5) and (3.1), then v1 behaves like

v1 = ER̃0f + o(1) = (σE/4)J−α(Er) + o(1), r → 0,

and hence
u−1 = σ

(
E/4− ceiαπ/ sinαπ

)
(2α/Γ(1− α))E−α

by (2.5). Then cκ is determined as in the proposition. ✷

4. Scattering amplitudes in the presence of scalar potentials

The aim here is to derive the representation (4.6) below for the scattering ampli-
tude f(ω → ω̃;E) of T = D(A, V ) with scalar potential V ∈ C∞

0 (R2 → R), where
A ∈ C∞(R2 → R2) is defined by (1.1). The derivation requires two lemmas.

Lemma 4.1 Write ψ−(ω) for the incoming eigenfunction ψ−(x;E, ω), defined by
(2.22), of H∞. Let

F (x) = t(f1(r)e
imθ, f2(r)e

i(m+1)θ), m ∈ Z,

for f1, f2 ∈ C∞
0 [0,∞). Then

(R(E + i0;H∞)F )(rω̃) = (iE/8π)1/2 (F, ψ−(ω̃)) τ(ω̃)eiErr−1/2 + o(r−1/2)

as r → ∞ uniformly in ω̃ ∈ S, where (F, ψ−(ω)) is the scalar product in [L2]2

between F and ψ−(ω).

Proof. We prove the lemma for the case m = 0 only. A similar argument applies
to the other cases. Set t(u1, u2) = R(E + i0;H∞)F for F as in the lemma. Then

u1 = Ev1 + π−v2, u2 = π+v1 + Ev2

by (3.2), where

v1 = R(E2 + i0;LZ)f1, v2 = R(E2 + i0;LAB)(f2e
iθ).
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It follows from (3.3) and (3.4) that v1 = R̃0f1 and v2 = R1(f2e
iθ). The two operators

R̃0 and R1 have the kernels (3.5). By assumption, f1 and f2 have compact support.
Hence we have

v1 = (ieiαπ/4)(f1, J−α)Hα(Er), v2 = (i/4)(f2, J1−α)H1−α(Er)eiθ

for |x| � 1. Since

π−
(
H1−α(Er)eiθ

)
= −iEH−α(Er) = −iEeiαπHα(Er)

by (2.14), it follows from (2.16) that

u1 = (iE/4) eiαπ ((f1, J−α)− i(f2, J1−α))Hα(Er)

= (iE/8π)1/2 eiαπ/2((f1, J−α)− i(f2, J1−α))eiErr−1/2 + o(r−1/2)

as r → ∞. The eigenfunction ψ− has the expansion (2.22), and we have

(F, ψ−(ω̃)) = (f1, ψ−1(ω̃)) + (f2e
iθ, ψ−2(ω̃)) = eiαπ/2 ((f1, J−α)− i(f2, J1−α)) .

This yields the desired asymptotic form for u1. We can show in a similar way that
u2 also takes the asymptotic form in the theorem. Thus the proof is complete. ✷

We now introduce the Banach spaces B and B∗ with norms

‖u‖B =
∞∑
j=0

(
2j
∫
Ωj

|u(x)|2 dx
)1/2

, ‖u‖B∗ = sup
R>0

(
1

R

∫
|x|<R

|u(x)|2 dx
)1/2

,

where Ω0 = {|x| ≤ 1} and Ωj = {2j−1 < |x| ≤ 2j} for j ≥ 1. The two spaces fulfill
the inclusion relations

L2
s ⊂ B ⊂ L2

1/2, L2
−1/2 ⊂ B∗ ⊂ L2

−s

for s > 1/2, where L2
s = L2(R2; 〈x〉2s dx) with 〈x〉 = (1 + |x|2)1/2. We use the

notation o∗(r−1/2) as r = |x| → ∞ to denote functions u obeying the bound

1

R

∫
|x|<R

|u(x)|2 dx→ 0, R→ ∞.

We use the same notation for vector–valued functions. If u(x) = o(r−1/2) at infinity,
then u is of class o∗(r−1/2).

Lemma 4.2 Assume that F ∈ [C∞
0 (R2)]2. Then

(R(E + i0;H∞)F )(x) = (iE/8π)1/2 (F, ψ−(ω̃)) τ(ω̃)eiErr−1/2 + o∗(r−1/2),

where the leading term on the right side is regarded as a function of x = rω̃.
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Proof. According to [5], we know that R(E + i0;H∞) : [B]2 → [B∗]2 is bounded.
If we expand F as the Fourier series, then the lemma is obtained as a consequence
of Lemma 4.1. ✷

We proceed to calculating the amplitude f(ω → ω̃;E) of T = D(A, V ). We
assume that b and V have support in {|x| < 1}. According to Lemma 2.1 of [22]
(see (2.2) there), we can construct a smooth magnetic potential a(x) : R2 → R2

associated with field b such that

a(x) = (a1, a2) = A0α = α
(
−x2/|x|2, x1/|x|2

)
, |x| > 2. (4.1)

We define the auxiliary operator K as

K = D(a, V ). (4.2)

This is self–adjoint with domain D(K) = [H1(R2)]2, and we know ([11, 15]) that
the boundary value R(E + i0;K) to the real axis exists as a bounded operator
from [L2

s]
2 into [L2

−s]
2 for s > 1/2. We further introduce a basic cut–off function

χ0 ∈ C∞
0 (R2 → R) with the properties

suppχ0 ⊂ {|x| < 2}, χ0 = 1 on {|x| < 1}. (4.3)

We set χ+(x) = χ0(x/2) and χ−(x) = χ0(x/4).

We study the behavior at infinity of eigenfunction ψ(x;E, ω) of K. Since K =
D(A0α, 0) = Dα over {|x| > 2} by (4.1), we have (1 − χ+) (K − E)ψ+ = 0 for
the outgoing eigenfunction ψ+(ω) = ψ+(x;E, ω) of H∞. Hence the eigenfunction
ψ = ψ(x;E, ω) with incident wave ϕin(x;E, ω) as in Lemma 2.2 is written as

ψ = (1− χ+)ψ+ +R(E + i0;K)Π+ψ+. (4.4)

where Π+ = [Dα, χ+]. Similarly ψ+(x;E, ω) is represented as

ψ+ = (1− χ−)ψ +R(E + i0;H∞)Π−ψ

with Π− = [Dα, χ−]. Hence it follows from Lemma 4.2 that

ψ = ψ+ − (iE/8π)1/2 (Π−ψ, ψ−(ω̃)) τ(ω̃)eiErr−1/2 + o∗(r−1/2). (4.5)

We insert (4.4) into ψ on the right side of (4.5). Since Π−(1 − χ+) = 0 and Π∗
− =

−Π−, we obtain

(Π−ψ, ψ−(ω̃)) = −(R(E + i0;K)Π+ψ+(ω),Π−ψ−(ω̃)).

We recall that ψ+ obeys (2.20) with κ = ∞. Hence the amplitude f(ω → ω̃;E) of
K is given by

f = g∞(ω → ω̃;E) + (iE/8π)1/2(R(E + i0;K)Π+ψ+(ω),Π−ψ−(ω̃)), (4.6)
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where g∞ is the amplitude of H∞. The amplitude of T = D(A, V ) is shown to be
represented in the same way. Since A and a have the same field b, we have the
relation

A = a +∇ h (4.7)

for some function h ∈ C∞(R2 → R), and T = eihKe−ih. The difference obeys
A − a = O(|x|−2) at infinity, so that h falls off with h = O(|x|−1) and eih(x) =
1+O(|x|−1). Thus T has the same scattering operator asK and hence the scattering
amplitude of T is also represented as (4.6).

To sum up, the amplitude f(ω → ω̃;E) of T = D(A, V ) is defined through the
asymptotic form

ψ = τ(ω)ϕin(x;E, ω) + f(ω → ω̃;E)τ(ω̃)eiErr−1/2 + o∗(r−1/2)

as r = |x| → ∞ of solution ψ to equation Tψ = (T0 + V )ψ = Eψ, and it has the
representation (4.6). In the mathematical scattering theory, it is standard to define
the scattering amplitudes through integral kernels of scattering matrices after estab-
lishing the basic problems such as the existence and completeness of wave operators
and the limiting absorption principle [9, 15, 18, 24, 25]. However, K has the special
property that it admits the polar coordinate decomposition on {|x| > 2}. If we
make use of this property, the Agmon–Hörmander theory ([5]) enables us to define
directly the scattering amplitude through the asymptotic form of eigenfunction. We
can show that these two representations defined in a different way coincide with
each other, but we do not go into the details here.

5. Scattering by electromagnetic fields with small support

In this section we formulate the results on the asymptotic behavior of amplitudes
for the scattering by electromagnetic fields with small support. We obtain the three
main theorems and the remaining four sections (sections 6,7,8 and 9) are devoted
to the proof of these theorems.

Let Aε and Vε be defined by (1.7). We denote by fε(ω → ω̃;E) the scattering
amplitude of Tε = D(Aε, Vε). If we set

Kε = D(aε, Vε), aε = ε−1a(x/ε), (5.1)

then aε(x) = A0α(x) over |x| > 2ε, and the amplitude fε has the representation

fε = g∞(ω → ω̃;E) + (iE/8π)1/2(R(E + i0;Kε)Π+ψ+(ω),Π−ψ−(ω̃)), (5.2)

where Π± = [Dα, χ±] with χ+ = χ0(x/2) and χ− = χ0(x/4) again. We have
explicitly calculated the scattering amplitude gκ(ω → ω̃;E) of Hκ in Proposition
2.1. It admits the representation

gκ = g∞(ω → ω̃;E) + (iE/8π)1/2(R(E + i0;Hκ)Π+ψ+(ω),Π−ψ−(ω̃)) (5.3)
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in terms of resolvent R(E+ i0;Hκ). In fact, this is obtained by repeating almost the
same argument as used to derive (4.6). We first deal with the case without electric
fields.

Theorem 5.1 Assume that V = 0 identically. Then

fε(ω → ω̃;E) → g∞(ω → ω̃;E), ε→ 0,

for ω �= ω̃.

Next we discuss the case when V ∈ C∞
0 (R2 → R) does not vanish identically.

We assume that
V (x) ≥ 0, (5.4)

so that the scalar product
λ0 = (V ρ, ρ) > 0 (5.5)

is strictly positive for the resonance function ρ(x) = e−ϕ(x) defined by (1.9). The
assumption (5.4) does not matter, but λ0 �= 0 is important to the future argument.
Before stating the second theorem, we define the resonance state of Dirac operator
T = D(A, V ) at zero energy. The definition is different according as 0 < α ≤ 1/2
or 1/2 < α < 1.

Definition 5.1. (1) Let 0 < α ≤ 1/2. Assume that the equation Tv = 0 has a
non–trivial solution such that v = t(v1, v2) ∈ L2 × L∞ and v2(x) = O(|x|−1+α) at
infinity. If v2 �∈ L2, then T is said to admit a resonance state at zero energy, and if
v2 ∈ L2, then T has an eigenvalue at zero energy.

(2) Let 1/2 < α < 1. Assume that Tv = 0 has a non–trivial solution such that
v = t(v1, v2) ∈ L∞ × L2 and v1(x) = O(|x|−α) at infinity. If v1 �∈ L2, then T is said
to admit a resonance state at zero energy, and if v1 ∈ L2, then T has an eigenvalue
at zero energy.

In the present work, we deal with only the case that T has neither eigenstates
nor resonance states at zero energy. This case is simple but generic. Thus we always
assume that

T has neither eigenstates nor resonance states at zero energy. (5.6)

If |V | 
 1 is small enough, then it can be shown that T fulfills (5.6). The lemma
below plays an important role in proving the remaining two main theorems. This
basic lemma is proved in section 7.

Lemma 5.1 Assume that (5.6) is fulfilled. Then :

(1) Let 0 < α ≤ 1/2. Then there exists a unique solution e ∈ L∞ × L∞ to
equation Te = 0 such that e = t(e1, e2) obeys

e1 = r−α +O(|x|−1−α), e2 = O(|x|−1+α) (5.7)
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at infinity, and e2(x) behaves like

e2(x) = iλ2r
−1+αeiθ +O(|x|−2+α), |x| → ∞, (5.8)

for some real constant λ2.
(2) Let 1/2 < α < 1. Then there exists a unique solution e ∈ L∞ × L∞ to

Te = 0 such that e = t(e1, e2) obeys

e1 = O(|x|−α), e2 = ir−1+αeiθ +O(|x|−2+α) (5.9)

at infinity, and e1(x) behaves like

e1(x) = λ1r
−α +O(|x|−1−α), |x| → ∞, (5.10)

for some real constant λ1.

We are now in a position to state the second theorem. When the scalar potential
V is added as a perturbation, the situation changes even for small perturbation.
The limit heavily depends on the values α of fluxes and it changes discontinuously
at half–integer flux α = 1/2.

Theorem 5.2 Let V ∈ C∞
0 (R2) satisfy (5.4), and assume that T fulfills (5.6).

If ω �= ω̃ for incident and final directions w and ω̃, then one has the following
asymptotic form as ε→ 0 :

(1) Let 0 < α < 1/2. Then

fε(ω → ω̃;E) → g∞(ω → ω̃;E).

(2) Let α = 1/2 and let λ2 be as in (5.8) of Lemma 5.1. Then

fε(ω → ω̃;E) → gκ(ω → ω̃;E)

for κ = 1/λ2 (κ = ∞ provided that λ2 = 0).

(3) Let 1/2 < α < 1. Then

fε(ω → ω̃;E) → g0(ω → ω̃;E).

The third theorem is concerned with the scattering of Dirac particles appearing
in the interaction of cosmic string with matter. We now consider the 2× 2 system
(1.15) of Dirac equations. The amplitude f2ε(ω → ω̃) in question is defined through
the asymptotic form of solution w to equation (1.15). The solution behaves like

w = t(τ(ω), 0)ϕin(x;E, ω) + f1ε(ω → ω̃;E)t(τ(ω̃), 0)eiErr−1/2

+ f2ε(ω → ω̃;E)t(0, τ(ω̃))eiErr−1/2 + o∗(r−1/2), r → ∞,
for incident wave t(τ(ω), 0)ϕin(x;E, ω). The aim of the third theorem is to analyze
the asymptotic behavior as ε→ 0 of f2ε(ω → ω̃;E).
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Theorem 5.3 Let V ∈ C∞
0 (R2 → R) satisfy (5.4), and assume that T fulfills (5.6).

Then the amplitude f2ε(ω → ω̃;E) behaves like

f2ε =
(
iE

8π

)1/2

Cαε
|2α−1| + o(ε|2α−1|), ε→ 0,

where

Cα =




(2αE−αiα/Γ(1− α))2 2πλ2, 0 < α < 1/2,
4E−1iλ2(1 + λ

2
2)

−1, α = 1/2,

(21−αEα−1i1−α/Γ(α))2 2πλ1, 1/2 < α < 1.

We end the section by making some comments on Theorems 5.2 and 5.3.

(1) As stated in section 1, a result similar to Theorem 5.2 has been obtained by
Afanasiev [2, section 7.10], where the behavior of amplitude has been analyzed for
the scattering by the small obstacle {|x| < ε} under a certain impenetrable boundary
condition in the background of the δ–like field 2παδ(x). As ε → 0, the amplitude
fε is convergent to g∞, gκ with κ = −1 or g0 according as 0 < α < 1/2, α = 1/2 or
1/2 < α < 1.

(2) The assumption that A(x) and V (x) are smooth is not essential. The two
theorems extend to the case of bounded electromagnetic fields, and the extension
is possible even for singular magnetic potentials. For example, the theorems apply
to the case that A(x) = A0α(x) is the Aharonov–Bohm potential and V (x) is the
characteristic function of unit disk {|x| < 1}. If we consider (1.13) with κ = ∞ as
the boundary condition at the origin, we can calculate λ1 and λ2 explicitly. In fact,
if we set e(x) = t(e1(r), e2(r)e

iθ), then it follows from (2.2) that e solves

e′1 + α r
−1e1 + iV e2 = 0, e′2 + (1− α)r−1e2 + iV e1 = 0,

where e′ = (d/dr)e. We use the formula (2.14) to solve the equation above. If we take
account of (5.7), then λ2 is determined as λ2 = −J1−α(1)/J−α(1) for 0 < α ≤ 1/2,
while (5.9) yields λ1 = −J−α(1)/J1−α(1) for 1/2 < α < 1.

(3) As a work related to Theorem 5.3, [7] has dealt with the case that the electric
potential is λV (x) and A(x) is the Aharonov–Bohm potential A0α(x) with boundary
condition (1.13) with κ = ∞ or κ = 0, where λ > 0 is a small coupling constant and
V still denotes the characteristic function of the unit disk.

6. Behavior of resolvent at low energy

The proof of all the theorems in the previous section is based on the behavior as
ε→ 0 of resolvent R(E + i0;Kε). We first follow the idea from [6, chapter I.1.2] to
derive the basic representation for R(E+i0;Kε). The derivation is done by repeated
use of the resolvent identity. If we set K0ε = D(aε, 0), then Kε = K0ε + Vε, and we
have

R(E + i0;Kε) = R(E + i0;K0ε)−R(E + i0;Kε)VεR(E + i0;K0ε)
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by the resolvent identity. We have assumed that V (x) ≥ 0. If we further define

Yε = V 1/2
ε R(E + i0;K0ε)V

1/2
ε : [L2]2 → [L2]2, (6.1)

then the resolvent identity yields the relation

R(E + i0;Kε)V
1/2
ε (1 + Yε) = R(E + i0;K0ε)V

1/2
ε .

The operator 1+Yε has the bounded inverse (1+Yε)
−1 : [L2]2 → [L2]2, which follows

from the fact that the outgoing solution to equation (Kε − E)u = 0 identically
vanishes. Thus R(E + i0;Kε) is represented as

R(E + i0;K0ε)− R(E + i0;K0ε)V
1/2
ε (1 + Yε)

−1V 1/2
ε R(E + i0;K0ε)

by the resolvent identity. Let Jε : [L2]2 → [L2]2 be again the unitary operator
defined by (Jεu) (x) = ε−1u(x/ε). We set Xε = J∗

εYεJε. Since K0ε = ε−1JεK0J
∗
ε for

K0 = D(a, 0), we have

Xε = J∗
εYεJε = V 1/2R(k + i0;K0)V

1/2, k = εE > 0, (6.2)

and hence

R(E + i0;Kε) = R(E + i0;K0ε)− ε−1Γε(E + i0)(1 +Xε)
−1Γε(E − i0)∗, (6.3)

where
Γε(E ± i0) = R(E ± i0;K0ε)JεV

1/2. (6.4)

This is a basic representation. This section is devoted to the analysis on the behavior
as ε→ 0 of Xε as the first step towards proving the three theorems.

By (4.7), the potential a : R2 → R2 takes the form

a = (−∂2ϕ(x), ∂1ϕ(x)) +∇h = A+∇h

for some h ∈ C∞(R2 → R) falling off like h = O(|x|−1) at infinity, and the field
b = ∇× a has support in {|x| < 1}. We set p = (p1, p2) = −i∇− a and write K0 as

K0 = σ1p1 + σ2p2 =

(
0 p−
p+ 0

)

in the matrix form, where p± = p1 ± ip2. We define the Schrödinger operators L±
by

L± = L(a,±b) = p2
1 + p

2
2 ± b = (−i∇− a)2 ± b. (6.5)

These are self–adjoint with domain D(L±) = H2(R2) in L2. Since

i[p1, p2] = i(p1p2 − p2p1) = −b,
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we have L± = p±p∓ = p∗∓p∓, and R(k + i0;K0) is represented as

R(k + i0;K0) =

(
kR(k2 + i0;L−) p−R(k2 + i0;L+)
p+R(k

2 + i0;L−) kR(k2 + i0;L+)

)
. (6.6)

Thus the problem is reduced to the study on the behavior of R(k2+i0;L±) as k → 0.

The two operators L± = p∗∓p∓ ≥ 0 are non–negative, and since 0 < α < 1 by
assumption (1.3), it follows by the Aharonov–Casher theorem ([4]) that L± have
no bound states at zero energy. However, the spectral structure at zero energy is
different in the sense that L− has a resonance state. The resonance state is defined
as a bounded solution u to equation L−u = p−p+u = 0. If u is such a solution, then
a simple calculation using integral by parts shows that p1u and p2u are in L2, so
that p+u = 0. By (4.7) (see also (1.8)), we have

p+ = −ieihe−ϕ ( ∂1 + i∂2) e
ϕe−ih. (6.7)

Thus L− has the resonance state behaving like

u(x) = e−ϕeih = |x|−α
(
1 +O(|x|−1)

)
at infinity. On the other hand, L+ = p+p− does not have a resonance state. We
note that if α > 1, L− has bound states at zero energy with multiplicity [α] by the
Aharonov–Casher theorem again.

We now introduce the following notation : η ∈ C0(R
2) is a continuous function

with compact support and η0 ∈ C0(R
2) is a function compactly supported away from

the origin. We further use the notation Op(εσ) and op(εσ) to denote the classes of
bounded operators obeying the bound O(εσ) and o(εσ) in norm respectively.

We make a brief review on the behavior at low energy of R(k2+ i0;L±) obtained
by ([23, Propositions 4.2 and 4.3]). We first consider L−. Let h(x) be as in (6.7).
Then

ρ0(x) = e−ϕeih, (6.8)

solves L−ρ0 = 0 and behaves like

ρ0(x) = |x|−α
(
1 +O(|x|−1)

)
(6.9)

at infinity. We know ([23]) that L− has the one dimensional resonance space spanned
by ρ0 at zero energy.

Proposition 6.1 Let ρ0 be as above and let γ0 be the constant defined by

γ0 = −22(1−α)πΓ(1− α)/Γ(α). (6.10)

Then
ηR(k2 + i0;L−)η = γ−(k)i2αk−2αη(ρ0 ⊗ ρ0)η +Op(ε

0)

for some coefficient γ−(k) obeying γ−(k) = −1/γ0 + o(1) as k → 0.
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Remark 6.1. (1) The proposition above corresponds to Proposition 4.3 in [23],
where the resonance function ρ0(x) is normalized as ρ0(x) = (2πα)−1/2e−ϕeih, so that
the constant γ−(k) undergoes a suitable change. (2) By elliptic estimate, ∇ηR(k2 +
i0;L−)η admits a similar asymptotic form under a natural modification.

Next we move to L+ which has neither bound states nor resonance states at zero
energy. We set

L2
com = {u ∈ L2(R2) : supp u ⊂ BM}, BM = {|x| < M},

for M � 1 fixed arbitrarily but sufficiently large. We have shown in [23] that there
exists a limit

G+ = lim
k→0

R(k2 + i0;L+) : L
2
com → L2

−1 (6.11)

as a bounded operator from L2
com to L2

−1 = L2(R2; 〈x〉−2 dx). We further know that
the equation L+ = p+p−u = 0 has a unique solution behaving like

ω+l = rνeilθ +O(1), |x| → ∞, (6.12)

for l = 0, 1, where ν = |l − α| again.

Proposition 6.2 Let the notation be as above. Then there exists γ+l(k) such that

ηR(k2 + i0;L+)η = ηG+η +
∑
l=0,1

γ+l(k)i
−2νk2νη(ω+l ⊗ ω+l)η +Op(ε

2),

where the two constants γ+l(k), l = 0, 1, are bounded uniformly in k = εE > 0.

This proposition has been obtained as Proposition 4.2 in [23]. We can make
precise the behavior as k → 0 of the constant γ+l(k), but the argument below does
not require such an asymptotic form.

By (6.7), p+ = −2i eihe−ϕ∂eϕe−ih with ∂ = (1/2) (∂1 + i∂2). The Cauchy–
Riemann operator ∂ has the fundamental solution (1/π) (x1 + ix2)

−1. We denote by

∂
−1

the convolution operator

∂
−1

= (1/π) (x1 + ix2)
−1 ∗

and we define
p−1

+ = −(2i)−1eihe−ϕ∂
−1
eϕe−ih

and p−1
− =

(
p−1

+

)∗
. By definition, we have p±p−1

± = 1.

Lemma 6.1 One has the relations

p−G+f = p−1
+ f, G+p+f = p−1

− f

for any bounded function f with compact support.

24



Proof. We prove only the first relation. The second one follows by taking the
adjoint of both sides. Let f be as in the lemma, and set w1 = p−1

+ f . Then w1 ∈ L2

and it solves p+w1 = f . If, on the other hand, we set w2 = p−G+f , then w2 satisfies

p+w2 = p+p−G+f = L+G+f = f.

Since w2 ∈ L2
−1 by (6.11), it follows that w2 ∈ L2. In fact, we have ‖p−G+f‖L2 <∞

by a simple use of partial integration. Set w = eϕe−ih (w1 − w2). Then ∂w = 0, so
that w is an entire function. Note that eϕ = O(|x|α) at infinity for 0 < α < 1. Since
w1 −w2 ∈ L2, we can easily show that w = 0, and hence w1 = w2. Thus the lemma
is obtained. ✷

Lemma 6.2 Let ω+0 be as in (6.12). Then one has p−ω+0 = 0.

Proof. Set v0 = e−iheϕ. Then p−v0 = 0 and the difference u = ω+0−v0 is bounded.
The function u solves

p+p−u = L+u = L+ω+0 − p+p−v0 = 0.

Hence it follows from Lemma 4.3 of [22] (or by the argument used in its proof) that
p−u = 0. This implies that p−ω+0 = 0, and the proof is complete. ✷

Lemma 6.3 Let ω+1 be also as in (6.12). Then one has p−ω+1 = cρ0 for some c.

Proof. Set u = p−ω+1. Then u obeys the bound u = O(|x|−α) at infinity, and it
solves the equation L−u = p−L+ω+1 = 0. This implies that u is in the resonance
space of L− at zero energy. Since the resonance space is one dimensional, the lemma
follows at once. ✷

If we make use of the simple relation

p+R(k
2 ± i0;L−) = R(k2 ± i0;L+)p+,

then we obtain from (6.6) that

R(k + i0;K0) =

(
kR(k2 + i0, L−) p−R(k2 + i0;L+)
R(k2 + i0;L+)p+ kR(k2 + i0, L+)

)

for k = εE > 0. Thus we combine Propositions 6.1, 6.2 and Lemmas 6.1, 6.2 and
6.3 to get the following proposition.

25



Proposition 6.3 As ε→ 0, ηR(k + i0;K0)η takes the form

ηR(k + i0;K0)η = η
{
γ(ε) (ρ̃0 ⊗ ρ̃0) ε

1−2α +G0 +O(ε
2(1−α))G1

}
η +Op(ε),

where ρ̃0 =
t(ρ0, 0) and

G0 =

(
0 p−1

+

p−1
− 0

)
, G1 =

(
0 cρ0 ⊗ ω+1

ω+1 ⊗ cρ0 0

)
,

c being as in Lemma 6.3, and

γ(ε) = i2αE1−2αγ−(εE) = −i2αE1−2α (1/γ0 + o(1)) , ε→ 0. (6.13)

In particular, Xε defined by (6.2) takes the form

Xε = γ(ε) (q0 ⊗ q0) ε1−2α + Z0 +O(ε
2(1−α))Z1 +Op(ε), (6.14)

where
q0 = V 1/2ρ̃0, ρ̃0 =

t(ρ0, 0), (6.15)

and Z0 = V 1/2G0V
1/2 and Z1 = V 1/2G1V

1/2.

7. Resonance at zero energy: proof of Lemma 5.1

The second step is to analyze the inversion of (1 + Xε)
−1 which appears in

representation (6.3) for the resolvent R(E + i0;Kε) under consideration. We also
prove Lemma 5.1 at the end of the section. As is easily seen from assumption (5.6),
K = D(a, V ) = K0 + V has neither eigenstates nor resonance states at zero energy.

Lemma 7.1 Assume that 0 < α ≤ 1/2. Let Z0 be as in Proposition 6.3. If (5.6) is
fulfilled, then Z0 : [L

2]2 → [L2]2 has the bounded inverse (1 + Z0)
−1 on [L2]2.

Proof. The operator Z0 is compact. Set Φ = ker (1 + Z0). It suffices to show that
dimΦ = 0. The proof is done by contradiction. Assume that u = t(u1, u2) ∈ Φ
does not vanish identically. If we set v = t(v1, v2) = G0V

1/2u for u as above, then
V 1/2v = Z0u = −u, and v satisfies

K0v = V 1/2u = −V v,

so that v solves Kv = 0. We can easily see that v is not identically zero. The first

component v1 = p−1
+ V

1/2u2 is in L2. Since p−1
− =

(
p−1

+

)∗
is the integral operator

with kernel
−(2πi)−1eϕeih

(
(x1 − ix2)

−1 ∗
)
e−ϕe−ih,
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the second component v2 = p−1
− V

1/2u1 behaves like

v2(x) = −(2πi)−1(u1, V
1/2ρ0)e

ϕeih(x1 − ix2)
−1 +O(|x|−2+α) = O(|x|−1+α) (7.1)

as |x| → ∞. This implies that K has either eigenstates or resonance states at zero
energy. This contradicts the assumption and the proof is complete. ✷

By assumption (5.5), λ0 = (V ρ0, ρ0) �= 0. This enables us to define

P = λ−1
0 (q0 ⊗ q0), q0 = V 1/2ρ̃0, (7.2)

as a projection on [L2]2.

Lemma 7.2 Assume that 1/2 < α < 1. Let Q = 1− P and Σ = RanQ. If (5.6) is
fulfilled, then QZ0Q : Σ → Σ has the bounded inverse (1 +QZ0Q)

−1 on Σ.

Proof. We again show by contradiction that dimΨ = 0, where Ψ = {u ∈ Σ :
QZ0Qu = −u}. Assume that u not vanishing identically belongs to Ψ. We set

v = t(v1, v2) = G0V
1/2u− dρ̃0,

where d = λ−1
0 (Z0u, V

1/2ρ̃0) = λ−1
0 (Z0u, q0). Since K0ρ̃0 = 0 and since

V 1/2v = Z0u− PZ0u = QZ0u = −u,

we see that v satisfies K0v = V 1/2u = −V v, and hence v solves Kv = 0. We also
have that v �= 0. The first component v1 behaves like

v1(x) = −dρ0(x) +O(|x|−1−α) = O(|x|−α)

at infinity. We claim that v2 ∈ L2, which follows from (7.1). In fact, we have only
to note that

(u1, V
1/2ρ0) = (u, V 1/2ρ̃0) = −(V v, ρ̃0) = −(V 1/2Z0u− dV ρ̃0, ρ̃0) = 0

by the choice of constant d. Thus v ∈ L∞×L2 becomes either eigenstate or resonance
state. This proves the lemma. ✷

Remark 7.1. The converse statements of the two lemmas above are also true,
although we do not prove it here. The proof is easy. Hence, if |V | 
 1 is small
enough, then (5.6) is fulfilled.

Lemma 7.3 (1) Let 0 < α ≤ 1/2 and set

q = (1 + Z0)
−1q0 ∈ L2 × L2.
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Then q is represented as q = V 1/2e with e = t(e1, e2) ∈ L∞ × L∞, and e uniquely
solves Ke = 0 under the condition that

e1 = r−α +O(|x|−1−α), e2 = O(|x|−1+α), |x| → ∞. (7.3)

(2) Let 1/2 < α < 1 and set

q = q0 − (1 +QZ0Q)
−1QZ0q0.

Then q = V 1/2e for some e = t(e1, e2) ∈ L∞ × L∞, and e uniquely solves Ke = 0
under the condition that

e1 = O(|x|−α), e2 = −i (λ0/2π) r
−1+αeiθ +O(|x|−2+α), |x| → ∞. (7.4)

Proof. (1) If we set e = ρ̃0 −G0V
1/2q, then it follows that

q = q0 − Z0q = V 1/2e.

We assert that e has the desired properties. By definition, e satisfies

Ke = −V 1/2q + V
(
ρ̃0 −G0V

1/2q
)
= V 1/2 (q0 − q − Z0q) = 0

and obeys (7.3). Since K has neither eigenstates nor resonance states, it is easy to
see that e uniquely solves Ke = 0. This proves (1).

(2) This is verified in almost the same way as (1). We set

r = −(1 +QZ0Q)
−1QZ0q0.

Then we have

r = −QZ0r −QZ0q0 = −Z0r − Z0q0 + PZ0r + PZ0q0

and hence q is represented as q = q0 + r = V 1/2e, where

e = d1ρ̃0 −G0V
1/2r −G0V

1/2q0 (7.5)

with constant d1 = 1 + (Z0(r + q0), q0)/λ0. A simple calculation yields

Ke = V 1/2 (d1q0 − (r + q0)− Z0(r + q0))

= V 1/2 (d1q0 − q0 − PZ0(r + q0)) = 0.

It is easy to see that e1 = O(|x|−α). We look at the second component e2. If we
note that

(V 1/2r, ρ̃0) = (Qr, V 1/2ρ̃0) = (Qr, q0) = 0,
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then it follows from (7.1) that the second component of G0V
1/2r obeys O(|x|−2+α).

The second component −p−1
− V

1/2q0 of the term −G0V
1/2q0 behaves like

−p−1
− V

1/2q0 = (2πi)−1eϕeihr−1eiθλ0 +O(|x|−2+α).

This yields the coefficient −i(λ0/2π) in (7.4). Thus we can show that e has the
desired properties and the lemma is proved. ✷

We end the section by proving Lemma 5.1.

Proof of Lemma 5.1. (1) Assume that 0 < α ≤ 1/2. Let

q = t(q1, q2) = (1 + Z0)
−1q0 = V 1/2e

be as in Lemma 7.3, where e = ρ̃0 − G0V
1/2q. Then the second component e2 =

−p−1
− V

1/2q1 behaves like

e2 = iλ2r
−1+αeiθ +O(|x|−2+α), |x| → ∞,

for some constant λ2. We show that λ2 is real. To to this, we compute

((1 + Z0)
−1q0, q0) = (q, q0) = (V e, ρ̃0) = −(K0e, ρ̃0) = −(p−e2, ρ0).

Recall the representation (2.2) for π− in terms of the polar coordinates. Since
p− = π− on {|x| > 2} and since p+ρ0 = 0, we have

((1 + Z0)
−1q0, q0) = i lim

R→∞

∫
|x|=R

e−iθe2ρ0 ds = −2πλ2

by partial integration. This yields

λ2 = −((1 + Z0)
−1q0, q0)/2π (7.6)

and λ2 is real. This implies that e has all the desired properties.

(2) We proceed to proving (2). Assume that 1/2 < α < 1. Let e be defined by
(7.5) in the proof of Lemma 7.3. We calculate the constant d1 in (7.5). According
to the argument in the proof of Lemma 7.3, we have

d1 = 1 + ((r + q0), Z0q0)/λ0 = 1 + (V 1/2e, Z0q0)/λ0

= 1 + (q, Z0q0)/λ0 = 1 + (q0 − (1 +QZ0Q)
−1QZ0q0, Z0q0)/λ0

= 1 +
(
(q0, Z0q0)− ((1 +QZ0Q)

−1QZ0q0, QZ0q0)
)
/λ0.

Thus d1 is real, and e1 behaves like e1(x) = d1r
−α+O(|x|−1−α). The desired solution

is obtained as −(2π/λ0)e, and then

λ1 = −(2π/λ0)d1 (7.7)
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is also determined as a real number. This completes the proof. ✷

8. Convergence of resolvent: proof of Theorems 5.1 and 5.2

In this section we prove Theorems 5.1 and 5.2 through a series lemmas. We recall
that η0 ∈ C0(R

2) has support away from the origin. We also use the notation o2(1)
to denote remainder terms of which the L2 norm obeys the bound o(1) as ε → 0.
We start by the following two lemmas.

Lemma 8.1 Let ξ± = ξ±(x;E) be defined by (3.1). Then

η0R(E ± i0;H∞)Jεη = β±η0 (ξ± ⊗ r̃0) ηε1−α +Op(ε),
where r̃0(x) =

t(r0(x), 0) with r0(x) = |x|−α, and

β± = ∓
(
2α−2/Γ(1− α)

)
E1−α. (8.1)

Lemma 8.2 Let the notation be as in Lemma 8.1. Then

η0R(E ± i0;K0ε)Jεη = β± ((η0ξ± + o2(1))⊗ ρ̃0) ηε
1−α +Op(ε)

and, in particular, Γε(E ± i0) defined by (6,4) takes the form

η0Γε(E ± i0) = β± ((η0ξ± + o2(1))⊗ q0) ε1−α +Op(ε),
where q0 =

t(V 1/2ρ0, 0) ∈ [L2]2 is defined by (6.15).

Proof of Lemma 8.1. We prove the lemma for the + case only. For brevity, we
write

ξ+ = t(ξ1, ξ2), ξ1 = −ieiαπHα(Er), ξ2 = H1−α(Er)eiθ.

The resolvent R(E+ i0;H∞) is represented in terms of R(E2+ i0;LAB) and R(E
2+

i0;LZ) by (3.2). We first consider R(E2 + i0;LZ). This admits the decomposition

R(E2 + i0;LZ) = R̃0 ⊕ ∑
l =0

⊕Rl

with respect to angular momentum (see (3.4)), and the Green kernels of R̃0 and Rl
are defined by (3.5). Since η0 has support away from the origin, we can take ε so
small that |x| > ε|y| when x ∈ supp η0 and y ∈ supp η, and hence η0R̃0Jεη has the
kernel

G(x, y) = ε(ieiαπ/4)η0(x)Hα(E|x|)J−α(εE|y|)η(y)
by a change of variables. This implies that

Eη0R̃0Jεη = β+η0(ξ1 ⊗ r0)ηε1−α +Op(ε).
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A similar argument applies to Rl, l �= 0, and we obtain η0RlJεη = Op(ε) uniformly
in l. Thus we have

Eη0R(E
2 + i0;LZ)Jεη = β+η0(ξ1 ⊗ r0)ηε1−α +Op(ε).

Since π+ξ1 = Eξ2 by (2.14), we make use of this relation to obtain that

η0π+R(E
2 + i0;LZ)Jεη = β+η0(ξ2 ⊗ r0)ηε1−α +Op(ε).

Similarly R(E2 + i0;LAB) is shown to obey

η0R(E
2 + i0;LAB)Jεη = Op(ε), η0π−R(E2 + i0;LAB)Jεη = Op(ε).

This proves the lemma. ✷

Proof of Lemma 8.2. We again prove the lemma for the + case only. Set

ζε(x) = ζ(x/ε), ζ(x) = 1− χ0(x/2), (8.2)

for the basic cut–off function χ0(x) with property (4.3). Then we have

supp ζε ⊂ {|x| > 2ε}, ζε = 1 on {|x| > 4ε}.
We may assume that ζεη0 = η0 for ε small enough, and we have

η0R(E + i0;K0ε)Jεη = η0R(E + i0;H∞)ζεJεη

+ η0R(E + i0;H∞)WεR(E + i0;K0ε)Jεη

by the resolvent identity, whereWε = H∞ζε−ζεK0ε. By (4.1), H∞ = K0ε = Dα over
|x| > 2ε. If we make use of relations ζε = JεζJ

∗
ε and Dα = ε−1JεDαJ

∗
ε , Wε equals

the commutator Wε = [Dα, ζε] = ε−1Jε[Dα, ζ ]J
∗
ε . If we further use the relation

J∗
εR(E + i0;K0ε)Jε = εR(k + i0;K0)

with k = εE, then we obtain

η0R(E + i0;K0ε)Jεη = η0R(E + i0;H∞)Jεζη + FεR(k + i0;K0)η, (8.3)

where Fε = η0R(E + i0;H∞)Jε[Dα, ζ ]. It follows from Lemma 8.1 that Fε is of the
form

Fε =

(
0 β+η0 (ξ1 ⊗ r0) [π−, ζ ]ε1−α
0 β+η0 (ξ2 ⊗ r0) [π−, ζ ]ε1−α

)
+Op(ε)

with ξ+ = t(ξ1, ξ2) as in the proof of Lemma 8.1. Next we evaluate FεR(k+ i0;K0)η.
The operator ηR(k + i0;K0)η admits the decomposition in Proposition 6.3 for η ∈
C0(R

2). We calculate :

Fε (ρ̃0 ⊗ ρ̃0) ηε
1−2α = (o2(1)⊗ ρ̃0) η,

FεG0η = β+η0 (ξ+ ⊗ r̃0)[ π−, ζ ]p−1
− ηε

1−α +Op(ε),

O(ε2(1−α))FεG1η = (o2(1)⊗ ρ̃0) η +Op(ε)
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for G0 and G1 as in Proposition 6.3. We combine these relations with Lemma 8.1.
Then

η0(E + i0;K0ε)Jεη = β+ ((η0ξ+ + o2(1))⊗ r̃1) ηε1−α +Op(ε)
with r̃1 =

t(r1, 0), where

r1 = ζr0 + p
−1
+ [ζ, π+]r0, r0(x) = |x|−α.

Since ζπ+r0 = 0, it is easy to see that p+r1 = 0, and also r1(x) behaves like

r1(x) = |x|−α +O(|x|−1−α)

at infinity. By uniqueness, this implies that r1 = ρ0, and the proof is complete. ✷

Theorem 5.1 is obtained as an immediate consequence of the lemma below.

Lemma 8.3 One has

η0R(E ± i0;K0ε)η0 → η0R(E ± i0;H∞)η0, ε→ 0,

in norm.

Proof. We deal with the + case only. Let ζε be defined by (8.2). Since ζεη0 = η0

for ε small enough, we have

η0R(E + i0;K0ε)η0 = η0R(E + i0;H∞)η0

+ η0R(E + i0;K0ε)W
∗
εR(E + i0;H∞)η0 (8.4)

by the resolvent identity, where

W ∗
ε = (H∞ζε − ζεK0ε)

∗ = ζεH∞ −K0εζε = ε−1Jε[ζ,Dα]J
∗
ε .

We decompose the second term on the right side of (8.4) into the product F1εF0εF2ε

of three operators, where

F1ε = η0R(E + i0;K0ε)Jεη, F2ε = ηJ∗
εR(E + i0;H∞)η0 = (η0R(E − i0;H∞)Jεη)

∗

for some η ∈ C0(R
2), and F0ε = ε−1[ζ,Dα]. By Lemmas 8.1 and 8.2, F1ε and F2ε

take the form

F1ε =

(
Op(ε1−α) Op(ε)
Op(ε1−α) Op(ε)

)
, F2ε =

(
Op(ε1−α) Op(ε1−α)
Op(ε) Op(ε)

)

and F0ε equals

F0ε =

(
0 ε−1[ζ, π−]

ε−1[ζ, π+] 0

)
.
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A simple computation yields F1εF0εF2ε = Op(ε1−α). This proves the lemma. ✷

Proof of Theorem 5.1. If we recall that fε and g∞ are represented by (5.2) and
(5.3) respectively, then the theorem follows from Lemma 8.3 at once. ✷

We proceed to the proof of Theorem 5.2. We first accept the lemma below as
proved to complete the proof of the theorem.

Lemma 8.4 Assume that (5.6) is fulfilled. Recall that P : [L2]2 → [L2]2 is the
projection defined by (7.2), and set Q = 1−P . Then (1+Xε)

−1 obeys the following
asymptotic form as ε→ 0 :

(1) If 0 < α < 1/2, then

(1 +Xε)
−1 = (1 + Z0)

−1 +Op(ε1−2α).

(2) If α = 1/2, then

(1 +Xε)
−1 = (1 + Z0)

−1 + a (q ⊗ q) + op(ε0),

where
a = −i/(2π + iτ), τ = (q, q0), q = (1 + Z0)

−1q0. (8.5)

(3) If 1/2 < α < 1, then

(1 +Xε)
−1 = δ+(ε)P

(
1 +Op(ε2α−1)

)
P

− δ+(ε)Q
(
(Q+QZ0Q)

−1QZ0 +Op(ε
2α−1) +Op(ε2(1−α))

)
P

− δ+(ε)P
(
Z0Q(Q+QZ0Q)

−1 +Op(ε2α−1) +Op(ε2(1−α))
)
Q

+ Q
(
(Q+QZ0Q)

−1 +Op(ε2α−1)
)
Q,

where
δ+(ε) = 1/µ+(ε), µ+(ε) = 1 + γ−(k)i2αk1−2αλ0, k = εE. (8.6)

Proof of Theorem 5.2. The proof is based on the relation

R(E + i0;Kε) = R(E + i0;K0ε)− ε−1Γε(E + i0)(1 +Xε)
−1Γε(E − i0)∗

derived by (6.3). By Lemma 8.3, we have

η0R(E + i0;K0ε)η0 → η0R(E + i0;H∞)η0, ε→ 0,

in norm for the first operator on the right side.
We analyze the second operator

R(ε) = ε−1η0Γε(E + i0)(1 +Xε)
−1Γε(E − i0)∗η0.
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The behavior as ε→ 0 of R(ε) takes a different form according as 0 < α < 1/2, α =
1/2 or 1/2 < α < 1.

(1) Let 0 < α < 1/2. Then it follows from Lemmas 8.2 and 8.4 that

‖R(ε)‖ = O(ε−1)O(ε2(1−α)) = O(ε1−2α),

so that
η0R(E + i0;K0ε)η0 → η0R(E + i0;H∞)η0, ε→ 0,

and hence fε → g∞. This proves (1).

(2) If α = 1/2, then
β± = ∓2−3/2E1/2/π1/2

by (8.1), so that β+β− = −E/8π. By Lemmas 8.2 and 8.4 again, we have

R(ε) → a0η0(ξ+ ⊗ ξ−)η0,

where
a0 = β+β−

(
τ + aτ2

)
= −(E/4) (i+ 2π/τ)−1 .

Since λ2 = −τ/2π by (7.6), it follows from Proposition 3.1 that

η0R(E + i0;K0ε)η0 → η0R(E + i0;Hκ)η0, κ = 1/λ2.

This proves (2).

(3) The final case is 1/2 < α < 1. Recall that

‖q0‖2 = ‖V 1/2ρ0‖2 = (V ρ0, ρ0) = λ0

by (5.5). Since Pq0 = q0 and Qq0 = 0, we have by Lemmas 8.2 and 8.4 that R(ε)
behaves like

R(ε) = a1(ε)η0(ξ+ ⊗ ξ−)η0 + op(ε
0), a1(ε) = ε−1β+β−ε2(1−α)δ+(ε)λ0.

We calculate β+β− = − (2α−2E1−α/Γ(1− α))2 by (8.1). Since

γ−(k) → −1/γ0 = Γ(α)/
(
22(1−α)πΓ(1− α)

)

in Proposition 6.1, it follows that

ε1−2αδ+(ε) → −γ0i
−2αE2α−1/λ0

and hence

a1(ε) → γ0i
−2αE2α−1

(
2α−2E1−α/Γ(1− α)

)2

= −(E/4) (π/Γ(α)Γ(1− α)) i−2α = −(E/4)
(
sinαπ/eiαπ

)
.
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This, together with Proposition 3.1, implies that fε → g0, and (3) is obtained. Thus
the proof of the theorem is now complete. ✷

Proof of Lemma 8.4. By Proposition 6.3, we have

1 +Xε = 1 + Z0 + γ−(k)i2αk1−2α (q0 ⊗ q0) +O(ε2(1−α))Z1 +Op(ε)

for k = εE > 0, where γ−(k) = −1/γ0 + o(1) as ε→ 0.

(1) Assume that 0 < α < 1/2. If K = K0+V has neither bound nor resonance
state at zero energy, then 1+Z0 : [L

2]2 → [L2]2 admits a bounded inverse by Lemma
7.1, and hence (1 +Xε)

−1 takes the form as in the lemma.

(2) If α = 1/2, we have

1 +Xε = 1 + Z0 + (i/2π) (q0 ⊗ q0) + op(ε0).
Let q = (1 + Z0)

−1q0 and τ = (q, q0) be as in (8.5). Then

1 +Xε = (1 + Z0) (1 + (i/2π) (q ⊗ q0)) + op(ε0).
A simple computation yields

(1 + (i/2π) (q ⊗ q0))−1 = 1 + a (q ⊗ q0)
with a as in the lemma. Hence (1 +Xε)

−1 takes the desired form.

(3) We deal with the case 1/2 < α < 1. We employ the method from [12],
which has been applied to the analysis on the behavior at low energy of resolvents
of Schrödinger operators −∆+ V in two dimensions. We write µ(ε) and

δ(ε) = 1/µ(ε) = O(ε2α−1), ε→ 0,

for µ+(ε) and δ+(ε) respectively. Then

1 +Xε = µ(ε)P +Q+ Z0 + O(ε
2(1−α))Z1 +Op(ε)

by Proposition 6.3. If we use the two simple relations

(µ(ε)P +Q)−1 = δ(ε)P +Q, (1 +QZ0P )
−1 = 1−QZ0P,

then 1 +Xε takes the form

1 +Xε = (µ(ε)P +Q) (1 +QZ0P )Gε,

and hence
(1 +Xε)

−1 = G−1
ε (δ(ε)(P −QZ0P ) +Q) , (8.7)

where Gε is represented in the form

Gε = 1 +QZ0Q+ δ(ε)(1−QZ0)PZ0 +QOp(ε
2(1−α)) +Op(ε).
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We now set Σ0 = RanP and Σ = RanQ. The second factor on the right side of
(8.7) has the matrix representation

δ(ε)(P −QZ0P ) +Q =

(
δ(ε)P 0

−δ(ε)QZ0P Q

)
:

(
Σ0

Σ

)
→
(

Σ0

Σ

)
, (8.8)

while Gε = (Gjk(ε))0≤j,k≤1 has the components

G00 = P (1 +Op(ε2α−1))P, G01 = P (δ(ε)Z0 +Op(ε))Q,

G10 = Q(−δ(ε)Z0PZ0 +Op(ε
2(1−α)))P, G11 = Q(1 + Z0 +Op(ε

2α−1))Q.

By Lema 7.2, Q+QZ0Q : Σ → Σ has a bounded inverse, so that G−1
11 : Σ → Σ exists

for ε small enough. If we take account of this fact, then G−1
ε = Eε = (Ejk(ε))0≤j,k≤1

can be calculated as

E00 =
(
G00 −G01G

−1
11 G10

)−1
, E01 = −

(
G00 −G01G

−1
11 G10

)−1
G01G

−1
11 ,

E10 = −
(
G11 −G10G

−1
00 G01

)−1
G10G

−1
00 , E11 =

(
G11 −G10G

−1
00 G01

)−1
.

Hence (1 +Xε)
−1 takes the form

(1 +Xε)
−1 = δ(ε)(E00P −E01QZ0P ) + E01Q+ δ(ε)(E10P −E11QZ0P ) + E11Q

by use of (8.7) and (8.8). Each component Ejk(ε) behaves like :

E00 = P (1 +Op(ε2α−1))P,

E01 = P (−δ(ε)Z0Q(Q+QZ0Q)
−1 +Op(ε2(2α−1)) +Op(ε))Q,

E10 = Q(δ(ε)(Q+QZ0Q)
−1QZ0PZ0 +Op(ε

2(2α−1)) +Op(ε2(1−α)))P,

E11 = Q((Q+QZ0Q)
−1 +Op(ε2α−1))Q.

If we take account of these relations, (1 +Xε)
−1 can be shown to take the form in

the lemma, and the proof is complete. ✷

We end the section by making a brief comment on the case when α < 0 and
α > 1.
Remark 8.1. If we replace the magnetic potential A(x) by −A(x), the argument
here extends to the case −1 < α < 0 without any essential change. If |α| > 1,
then the magnetic Schrödinger operator L(A,−b) has eigenstates at zero energy
besides the resonance state by the Aharonov–Casher theorem [4], so that the norm
convergence of resolvent η0R(E + i0;Kε)η0 can not be expected ([23]). However
the strong convergence can be expected, and hence Theorems 5.1 and 5.2 seem to
remain true in the case |α| > 1 also.

9. Scattering in the interaction of cosmic string with matter
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The last section is devoted to proving Theorem 5.3. We begin by representing
the amplitude f2ε(ω → ω̃;E) in question in terms of the resolvent R(E + i0;Kε) of

Kε = K0ε +Vε =

(
K0ε 0
0 K0ε

)
+

(
0 Vε
Vε 0

)
.

If we decompose V into the product

V =

(
0 V
V 0

)
=

(
V 1/2 0
0 V 1/2

)(
0 V 1/2

V 1/2 0

)
= V1V2,

then almost the same argument as used to derive (6.3) enables us to obtain

R(E + i0;Kε) = R(E + i0;K0ε)− ε−1Γ1ε(E + i0) (1 +Xε)
−1 Γ2ε(E − i0)∗, (9.1)

where Xε = V2R(k + i0;K0)V1 with k = εE > 0, and

Γ1ε(E + i0) = R(E + i0;K0ε)JεV1, Γ2ε(E − i0) = R(E − i0;K0ε)JεV2.

A direct computation yields

Γ1ε =

(
Γε(E + i0) 0

0 Γε(E + i0)

)
, Γ2ε =

(
0 Γε(E − i0)

Γε(E − i0) 0

)
,

where Γε(E ± i0) is defined by (6.4). We further have

Xε =

(
0 Xε
Xε 0

)
, (1 +Xε)

−1 =

(
(1−X2

ε )
−1 −Xε(1−X2

ε )
−1

−Xε(1−X2
ε )

−1 (1−X2
ε )

−1

)
.

We divide R(E + i0;Kε) into the block form

R(E + i0;Kε) = (Rjk(E + i0;Kε))1≤j,k≤2 ,

where Rjk(E + i0;Kε) acts on [L2]2. In particular, we have

R21(E + i0;Kε) = −ε−1Γε(E + i0)(1−X2
ε )

−1Γε(E − i0)∗.

We can represent f2ε(ω → ω̃;E) as

f2ε(ω → ω̃;E) = (iE/8π)1/2(R21(E + i0;Kε)Π+ψ+(ω),Π−ψ−(ω̃))

by repeating the same argument as in section 4, and hence we have

f2ε = −ε−1(iE/8π)1/2(Γε(E+ i0)(1−X2
ε )

−1Γε(E− i0)∗Π+ψ+(ω),Π−ψ−(ω̃)). (9.2)

The argument here is based on this representation.
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Lemma 9.1 The operator K0 − V has a resonance at zero energy if and only if so
does K = K0 + V , and the same statement is also true for an eigenstate.

Proof. The lemma is easy to prove. For brevity, we consider the case 0 < α ≤ 1/2
only. A similar argument applies to the case 1/2 < α < 1. Let v+ = (v1, v2) ∈
L2 × L∞ be a resonance state of K0 + V . If we set v− = (v1,−v2), then v− solves
(K0 − V ) v− = 0, and it becomes a resonance by Definition 5.1. The case of eigen-
state is also shown in the same way. ✷

We keep the same notation as in the previous sections. The lemma above implies
the existence of bounded inverses (1 − Z0)

−1 : [L2]2 → [L2]2 and (1 − QZ0Q)
−1 :

Σ → Σ. The following lemma is verified in exactly the same way as in the proof of
Lemmas 8.4. We skip the proof.

Lemma 9.2 If (5.6) is fulfilled, then (1−Xε)−1 has the following asymptotic form
as ε→ 0 :

(1) If 0 < α < 1/2, then

(1−Xε)−1 = (1− Z0)
−1 +Op(ε1−2α).

(2) If α = 1/2, then

(1−Xε)−1 = (1− Z0)
−1 + a′ (q′ ⊗ q′) + op(ε0),

where
a′ = i/(2π − iτ ′), τ ′ = (q′, q0), q′ = (1− Z0)

−1q0. (9.3)

(3) If 1/2 < α < 1, then

(1−Xε)−1 = δ−(ε)P
(
1 +Op(ε2α−1)

)
P

+ δ−(ε)Q
(
(Q−QZ0Q)

−1QZ0 +Op(ε
2α−1) +Op(ε2(1−α))

)
P

+ δ−(ε)P
(
Z0Q(Q−QZ0Q)

−1 +Op(ε2α−1) +Op(ε2(1−α))
)
Q

+ Q
(
(Q−QZ0Q)

−1 +Op(ε2α−1)
)
Q,

where
δ−(ε) = 1/µ−(ε), µ−(ε) = 1− γ−(k)i2αk1−2αλ0, k = εE. (9.4)

Lemma 9.3 Let ξ± be defined by (3.1). Set

I+ = (ξ+,Π−ψ−(ω̃)) , I− = (ξ−,Π+ψ+(ω)) .

Then
I+ = −4eiαπ/2/E, I− = 4e−iαπ/2/E.
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Proof. We calculate I+ only. A similar computation applies to I−. For brevity, we
write

ξ+ = ξ = t(ξ1, ξ2), ψ− = ψ = t(ψ1, ψ2), χ−(x) = χ0(x/4) = χ(x).

By (4.3), χ has support in {|x| < 8} and χ = 1 on {|x| < 4}. Since
Π−ψ = [Dα, χ]ψ = [Dα − E, χ]ψ = (Dα −E)χψ

for x �= 0, I+ equals

I+ = lim
δ→0

∫
|x|>δ

(
ξ1(π−χψ2 −Eχψ1) + ξ2(π+χψ1 − Eχψ2)

)
dx.

Note that (Dα −E) ξ = 0, and π+ and π− take the form

π+ = eiθ (−i∂r + . . .) , π− = e−iθ (−i∂r + . . .)
by (2.2). We integrate by parts to calculate I+. Since χ = 1 on {|x| = δ}, we have

I+ = −i lim
δ→0

∫
|x|=δ

(
eiθξ1ψ2 + e

−iθξ2ψ1

)
ds, ds = δ dθ.

By (2.5) and (2.22), the first term in the integrand obeys

eiθξ1(x)ψ2(x) = O(r1−2α) +O(1), r = |x| → 0,

and hence
lim
δ→0

∫
|x|=δ

eiθξ1ψ2 ds = 0,

because 0 < α < 1. On the other hand, the second term behaves like

e−iθξ2ψ1 = (−i/ sinαπ) (1/Γ(α)Γ(1− α)) (Er/2)−1 eiαπ/2 (1 + o(1))

as |x| → 0. Since Γ(α)Γ(1− α) = π/ sinαπ by formula, we have

−i lim
δ→0

∫
|x|=δ

e−iθξ2(x)ψ1(x) ds = −4eiαπ/2/E.

This yields the desired value. ✷

We now define Iε by

Iε =
(
(1−X2

ε )
−1q0, q0

)
=
(
(1 +Xε)

−1q0, (1−X∗
ε )

−1q0
)
.

Lemma 9.4 Let λ1 and λ2 be as in Lemma 5.1. Then one has the following state-
ments :

(1) If 0 < α < 1/2, then

Iε = −2πλ2 + o(1), ε→ 0.

(2) If α = 1/2, then

Iε = −2πλ2(1 + λ
2
2)

−1 + o(1), ε→ 0.

(3) If 1/2 < α < 1, then

Iε = −γ2
0(λ1/2π)i

−4αE2(2α−1)ε2(2α−1) (1 + o(1)) , ε→ 0.
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We complete the proof Theorem 5.3, accepting this lemma as proved. Through-
out the proof of the theorem, we use the notation O2(ε) to denote remainder terms
of which the L2 norm obeys O(ε).

Proof of Theorem 5.3. We set η± = η0ξ± + o2(1) in Lemma 8.2. The amplitude
f2ε(ω → ω̃;E) is represented as (9.2). If we use Lemma 8.2, then a simple compu-
tation enables us to evaluate the amplitude as follows :

f2ε = −(iE/8π)1/2β−β+(Π+ψ+(ω), η−)(η+,Π−ψ−(ω̃))Iεε1−2α

+ O(ε−α)((1−X2
ε )

−1O2(ε), q0)

+ O(ε−α)((1−X2
ε )

−1q0, O2(ε)) +O(ε). (9.5)

The leading term comes from the first term on the right side of (9.5).

We first consider the case 1/2 < α < 1. If 1/2 < α < 1, then it follows from
Lemmas 8.4 and 9.2 that (1−X2

ε )
−1 takes the form

(1−X2
ε )

−1 = P Op(ε2(2α−1))P +QOp(ε0)Q

+ P Op(ε2α−1)Q+QOp(ε2α−1)P

and hence we have

|((1−X2
ε )

−1O2(ε), q0)|+ |((1−X2
ε )

−1q0, O2(ε))| = O(ε2α),

because Qq0 = 0. This implies that the three remainder terms on the right side of
(9.5) obey O(εα) = O(ε2α−1)O(ε1−α) = o(ε2α−1). Thus we have

f2ε = −(iE/8π)1/2β−β+(Π+ψ+(ω), η−)(η+,Π−ψ−(ω̃))Iεε1−2α + o(ε2α−1).

If we combine Lemmas 9.3 and 9.4, the desired asymptotic form is obtained after a
little tedious computation of the leading constant Cα.

Next we move to the case 0 < α ≤ 1/2. By Lemmas 8.4 and 9.2 again, (1−X2
ε )

−1

is bounded uniformly in ε, so that

|((1−X2
ε )

−1O2(ε), q0)|+ |((1−X2
ε )

−1q0, O2(ε))| = O(ε).

Then the remainder terms on the right side of (9.5) obey O(ε1−α) = o(ε1−2α). Thus
we have

f2ε = −(iE/8π)1/2β−β+(Π+ψ+(ω), η−)(η+,Π−ψ−(ω̃))Iεε1−2α + o(ε1−2α).

We again combine Lemmas 9.3 and 9.4 to obtain the desired asymptotic form for
the case 0 < α ≤ 1/2, and the proof is complete. ✷

It remains to prove Lemma 9.4. The proof requires two auxiliary lemmas. The
first lemma below is proved in the same way as Lemma 7.3. We skip the proof.
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Lemma 9.5 (1) If 0 < α ≤ 1/2, then

q′ = (1− Z0)
−1q0 = V 1/2e

for some e = t(e1, e2) ∈ L∞ × L∞, and e uniquely solves (K0 − V ) e = 0 under the
condition that

e1 = r−α +O(|x|−1−α), e2 = O(|x|−1+α), |x| → ∞.

(2) If 1/2 < α < 1, then

q′ = q0 + (Q−QZ0Q)
−1QZ0q0 = V 1/2e

for some e = t(e1, e2) ∈ L∞ × L∞, and e uniquely solves (K0 − V ) e = 0 under the
condition that

e1 = O(|x|−α), e2 = i(λ0/2π)r
−1+αeiθ +O(|x|−2+α), |x| → ∞.

Lemma 9.6 Assume that 0 < α ≤ 1/2. Let τ and τ ′ be the real numbers as in
(8.5) and (9.3) respectively. Then one has

τ = (q, q0) =
(
(1 + Z0)

−1q0, q0
)
= −2πλ2,

τ ′ = (q′, q0) =
(
(1− Z0)

−1q0, q0
)
= −2πλ2.

Proof. We write e+ = t(e1, e2) for e in Lemma 7.3 and e− for e in Lemma 9.5.
Then it follows by uniqueness that e− is given as e− = t(e1,−e2) for 0 < α ≤ 1/2.
We prove the first relation only. The second relation is obtained in a similar way.
By Lemma 7.3, τ = (V e, ρ̃0) and e solves Ke = (K0 + V ) e = 0. Hence

τ = −(K0e, ρ̃0) = −(p−e2, ρ0).

Note that p∗−ρ0 = p+ρ0 = 0, and p− takes the form p− = e−iθ (−i∂r . . .). Hence we
have

τ = i lim
R→∞

∫
|x|=R

e−iθe2ρ0 ds, ds = Rdθ,

by partial integration. Since ρ0(x) = r−α +O(r−1−α) as |x| → ∞ and since

e2(x) = iλ2e
iθr−1+α +O(r−2+α)

by Lemma 5.1, the desired relation follows from (7.6). ✷

Proof of Lemma 9.4. We again write e+ = t(e1, e2) for e in Lemma 7.3 and e− for
e in Lemma 9.5. If 0 < α ≤ 1/2, then e− = t(e1,−e2), and if 1/2 < α < 1, then
e− = t(−e1, e2).
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(1) Assume that 0 < α < 1/2. By Lemmas 8.4 and 9.2, it follows that

Iε = ((1 + Z0)
−1q0, (1− Z0)

−1q0) + o(1), ε→ 0.

We further obtain Iε = (V e+, e−) + o(1) by Lemmas 7.3 and 9.5. The leading term
on the right side equals

(V e+, e−) = −((K0 − V )e+, e−)/2, (9.6)

because (K0 ± V )e± = 0. We assert that

((K0 − V )e+, e−) = 4πλ2, (9.7)

which implies that Iε = −2πλ2 + o(1). We shall show (9.7). By definition,

((K0 − V )e+, e−) = ((p−e2 − V e1), e1)− ((p+e1 − V e2), e2).
We recall that p± = e±iθ (−i∂r . . .) for |x| � 1. Hence we have

((K0 − V )e+, e−) = −i lim
R→∞

∫
|x|=R

(
e−iθe2e1 − eiθe1e2

)
ds, ds = Rdθ,

by integration by parts. Thus Lemma 5.1 yields (9.7).

(2) Assume that α = 1/2. According to Lemmas 8.4 and 9.2, we have

(1 +Xε)
−1 q0 = (1 + aτ)q + o2(1), (1−X∗

ε )
−1 q0 = (1 + a′τ ′)q′ + o2(1).

Hence
Iε = (1 + aτ)(1 + a′τ ′)(q, q′) + o(1), ε→ 0.

We repeat the same argument as used in proving (1) to obtain that

(q, q′) = ((1 + Z0)
−1q0, (1− Z0)

−1q0) = −2πλ2.

On the other hand, Lemma 9.6, together with (8.5), implies that

1 + aτ = 1− iτ/(2π + iτ) = 2π/(2π + iτ) = (1− iλ2)
−1,

and similarly 1 + a′τ ′ = (1 + iλ2)
−1 (see (9.3)). This proves (2).

(3) Let 1/2 < α < 1. (3) is verified in almost the same way as (1). Since
Qq0 = 0 and Pq0 = q0, it follows from Lemmas 8.4 and 9.2 that

(1 +Xε)
−1q0 ∼ δ+(ε)

(
q0 −Q(Q+QZ0Q)

−1QZ0q0
)
,

(1−X∗
ε )

−1q0 ∼ δ−(ε)
(
q0 +Q(Q−QZ0Q)

−1QZ0q0
)
,

and hence we have

Iε = δ+(ε)δ−(ε)(V e+, e−) + o(ε2(2α−1))

= −δ+(ε)δ−(ε)((K0 − V )e+, e−)/2 + o(ε2(2α−1))
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by Lemmas 7.3 and 9.5. Note that e1 behaves like

e1(x) = −(λ1λ0/2π)r
−α +O(|x|−1−α), |x| → ∞,

for the real number λ1 as in Lemma 5.1. Hence the scalar product ((K0 −V )e+, e−)
is calculated as

((K0 − V )e+, e−) = −i lim
R→∞

∫
|x|=R

(
−e−iθe2e1 + eiθe1e2

)
ds = −λ1λ

2
0/π (9.8)

by use of partial integration. As is seen from (8.6) and (9.4),

δ±(ε) = 1/µ±(ε) = ∓(γ0/λ0)i
−2αE2α−1ε2α−1(1 + o(1)),

because γ−(k) → −1/γ0 as k = εE → 0. This, together with (9.8), yields the desired
asymptotic form. ✷
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[13] L. Dabrowski and P. Stovicek, Aharonov–Bohm effect with δ–type interaction,
J. Math. Phys., 39 (1998) 47–62.

[14] Ph. de Sousa Gerbert, Fermions in an Aharonov–Bohm field and cosmic
strings, Phys. Rev. D 40 (1989) 1346–1349.

[15] Y. Gâtel and D. Yafaev, Scattering theory for the Dirac operator with a long–
range electromagnetic potential, J. Func. Anal., 184 (2001) 136–176.

[16] C. R. Hagen, Aharonov–Bohm scattering amplitude, Phys. Rev. D 41 (1990)
2015–2017.

[17] C. R. Hagen, Aharonov–Bohm scattering amplitude with spin, Phys. Rev.
Lett., 64 (1990) 503–506.

[18] H. T. Ito, High–energy behavior of the scattering amplitude for a Dirac oper-
ator, Publ. RIMS. Kyoto Univ., 31 (1995) 1107–1133.

[19] U. Percoco and V. M. Villalba, Aharonov–Bohm effect for a relativistic Dirac
electron, Phys. Lett. A 140 (1989) 105–107.

[20] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol II,
Fourier Analysis, Self–Adjointness, Academic Press (1975).

[21] Y. A. Sitenko, Self–adjointness of the two–dimensional massless Dirac Hamilto-
nian and vacuum polarization effects in the background of a singular magnetic
vortex, Ann. Phys., 282 (2000) 167–217.

[22] H. Tamura, Norm resolvent convergence to magnetic Schrödinger operators
with point interactions, Rev. Math. Phys., 13 (2001) 465–512.

[23] H. Tamura, Resolvent convergence in norm for Dirac operator with Aharonov–
Bohm field, To be published in J. Math. Phys., (mp-arc 03-199).

[24] B. Thaller, Dirac Equations, Texts and Monographs in Physics, Springer
(1992).

[25] O. Yamada, On the principle of limiting absorption for the Dirac operator,
Publ. RIMS. Kyoto Univ., 8 (1972/73) 557–577.

44


