
MULTISCALE ANALYSIS AND LOCALIZATION OF
RANDOM OPERATORS

by

Abel Klein
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1. Introduction

In his seminal 1958 article [An1], Anderson argued that for a simple Schrödinger
operator in a disordered medium,“at sufficiently low densities transport does not
take place; the exact wave functions are localized in a small region of space.” This
phenomenon, known as Anderson localization, originally studied in the context of
quantum mechanical electrons in random media (e.g., [T]), was later found relevant
also in the context of classical waves in random media (e.g., [An2, Ma, Jo1, Jo2]),
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where it was observed in light waves in an experiment conducted by Wiersma et al
[WiBLR].

Anderson localization was initially given a spectral interpretation: pure point spec-
trum with exponentially decaying eigenstates (exponential localization). But the intu-
itive physical notion of localization has also a dynamical interpretation: the moments
of a wave packet, initially localized both in space and in energy, should remain uni-
formly bounded under time evolution. (Dynamical localization implies pure point
spectrum, but the converse is not true.) Although exponential localization has some-
times been called Anderson localization, we will use Anderson localization in a broader
sense, since it can be argued the circle of ideas regarding localization, originating from
[An1], include the physical notion of dynamical localization.

Localization for random operators was first established in the celebrated paper
by Gol’dsheid, Molchanov and Pastur [GoMP] for a one dimensional continuous
random Schrödinger operator. Their method was extended to other one and quasi-
one (the strip) dimensional random Schrödinger operators [KuS, C, L]. But the
multi-dimensional case required new methods.

The method with the wider applicability has been the multiscale analysis, a tech-
nique initially developed by Fröhlich and Spencer [FrS] and Fröhlich, Martinelli,
Spencer and Scoppolla [FrMSS], and simplified by von Dreifus [Dr] and von Dreifus
and Klein [DrK]. (For the multiscale analysis per se, see also [HoM, Sp, DrK2,
Kl1, Gr, Klo1, CoH1, FK3, KSS1, KSS2, Kr, St, GK1, GK4], for appli-
cations see also [CKM, KlMP, KlLS, Klo2, Klo3, FK1, FK2, CoH2, FK4,
W1, BCH1, BCH2, SVW, CoHT, Kl4, DeG, FiLM, Klo5, Z, DSS, U,
KlK2, GK3, GK5, GK6].) Although it originally only gave exponential localiza-
tion [FrMSS, DelyLS, SiW, DrK, CoH1], it was later shown to also yield dy-
namical localization by Germinet and De Bièvre [GD], strong dynamical localization
for moments up to some finite order by Damanik and Stollman [DSt], and strong dy-
namical localization (up to all orders) in the Hilbert-Schmidt norm by Germinet and
Klein [GK1]. The latest version of the multiscale analysis, the bootstrap multiscale
analysis of Germinet and Klein [GK1], built out of four different multiscale analyses,
yields exponential localization, semi-uniformly localized eigenfunctions (SULE), and
sub-exponential decay of the expectation of the kernel of the evolution operator.

The other successful method for proving localization in the multi-dimensional case
is the fractional moment method introduced by Aizenman and Molchanov [AM, A,
ASFH], which has just been extended to the continuum by Aizenman et al [AENSS].
It yields exponential decay for the expectation of the kernel of the evolution operator,
but it requires that the conditional expectation of certain random variables have
bounded densities.

In these lectures we discuss the method of multiscale analysis in the study of
localization of random operators. A random medium will be modeled by a ergodic
random self-adjoint operator. In Section 2 we discuss the most important random
operators: random Schrödinger operators, random Landau Hamiltonians, and random
classical wave operators (Maxwell, acoustic, elastic). In Section 3 we discuss several
definitions of localization from both the spectral and dynamical points of view. In
Section 4 we describe the properties of random operators required by the multiscale
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analysis. In Section 5 we state and discuss the bootstrap multiscale analysis plus
the four multiscale analyses used in its proof. In Section 6 we prove exponential
and dynamical localization from the multiscale analysis. In Section 7 we show how to
perform a multiscale analysis; we give a complete proof of the Dreifus-Klein multiscale
analysis in the continuum.

2. Random operators

Quantum and classical waves in random media are modeled by random self-adjoint
operators on either L2(Rd, dx;Cn) or `2(Zd;Cn). Examples include:

• Random Schrödinger operators:
? The Anderson model:

Hω = −∆ + Vω on `2(Zd) , (2.1)

where ∆ is the finite difference Laplacian and {Vω(x); x ∈ Zd} are inde-
pendent identically distributed bounded random variables. (E.g., [KuS,
FrS, L, FrMSS, CKM, MS, KlMP, CyFKS, DrK, Sp, KlLS, Kl1,
Gr, AM, A, FK1, Kl2, Kl3, SVW, ASFH, W2, Klo4].)

? Anderson Hamiltonians on the continuum:

Hω = −∆ + Vper + Vω on L2(Rd, dx), (2.2)

where ∆ is the Laplacian operator, Vper is a periodic potential (by rescal-
ing we take the period to be one) of the form Vper = V

(1)
per + V

(2)
per , with

V
(i)
per, i = 1, 2, periodic with period one, 0 ≤ V

(1)
per ∈ L1

loc(Rd,dx), V
(2)
per rel-

atively form-bounded with respect to −∆ with relative bound < 1, and
Vω a random potential of the form

Vω(x) =
∑

i∈ 1
q Zd

ωi u(x − i), (2.3)

where q ∈ N, ω = {ωi; i ∈ 1
q Zd} are independent identically distributed

bounded random variables, u is a real valued measurable function with
compact support, u ∈ Lp(Rd,dx) with p > d

2 if d ≥ 2 and p = 2 if d = 1.
(E.g., [HoM, Klo1, Klo2, CoH1, Klo3, BCH1, KSS1, KSS2, GD,
St, GK1, DSt, DSS, Klo5, Z, GK3, GK4, GK5, GK6, AENSS].)

• Random Landau Hamiltonians:

Hω = H0 + Vω on L2(R2, dx), (2.4)

where H0 = (−i∇−A)2, A = B
2 (x2,−x1) with B > 0, and the random potential

Vω is as in (2.3) with q = 1 and u(x) bounded. (See [CoH2, W1, BCH2,
GK4].)

• Random classical wave operators:
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? Maxwell operators in random media:

Hω =
1√

µω(x)
∇× 1

εω(x)
∇× 1√

µω(x)
on L2 (

R3, dx;C3) (2.5)

where ∇× is the operator given by the curl, εω(x) is the random dielectric
constant and µω(x) is the random magnetic permeability. We take

εω(x) = ε0(x)γω(x) , with γω(x) = 1 +
∑

i∈ 1
q Z3

ωiu(x − i), (2.6)

µω(x) = µ0(x)βω(x) , with βω(x) = 1 +
∑

i∈ 1
q Z3

ωiv(x − i), (2.7)

where q ∈ N, ω = {ωi; i ∈ 1
q Zd} are independent identically distributed

bounded random variables taking values in the interval [−1, 1], ε0(x) and
µ0(x) are periodic measurable functions (by rescaling we take the period
to be one), such that 0 < ε− ≤ ε (x) ≤ ε+ < ∞ and 0 < µ− ≤ µ (x) ≤
µ+ < ∞ for some constants ε± and µ±, u(x) and v(x) are nonnegative
measurable real valued functions with compact support, such that

0 ≤ U− ≤ U(x) ≡
∑

i∈ 1
q Z3

ui(x) ≤ U+ < ∞, (2.8)

0 ≤ V− ≤ V (x) ≡
∑

i∈ 1
q Z3

vi(x) ≤ V+ < ∞, (2.9)

for some constants U± and V±, with U− +V− > 0 and max{U+, V+} < 1.
(See [FK2, FK4, Kl4, CoHT, KlK1, KlK2].)

? Acoustic operators in random media:

Hω =
1√

κω(x)
∇∗ 1

ρω(x)
∇ 1√

κω(x)
on L2(Rd, dx), (2.10)

where ∇ is the gradient operator, and the random compressibility κω(x)
and the random mass density %ω(x) are of the same form as εω(x) and
µω(x) in (2.6) and (2.7). (See [FK2, FK3, CoHT, KlK1, KlK2]).

? Elastic operators in random media:

Hω = (2.11)
1√

ρω(x)
{∇ (λω(x) + 2µω(x))∇∗ + ∇ × µω(x)∇×} 1√

ρω(x)

on L2
(
R3, dx; C3

)
, where the mass density ρω(x), and the Lamé moduli

λω(x) and µω(x) are of the same form as εω(x) and µω(x) in (2.6) and
(2.7). (See [KlK1, KlK2]).

In all these examples the random operator Hω is a Zd-ergodic random self-adjoint
operator Hω on a Hilbert space H, where ω belongs to a set Ω with a probability
measure P and expectation E, and either H = L2(Rd,dx; Cn) (“on the continuum”)
or H = `2(Zd;Cn) (“on the lattice”). They all satisfy the following definition.
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Definition 2.1. — A random operator is a Zd-ergodic measurable map Hω from
a probability space (Ω,F , P) (with expectation E) to self-adjoint operators on either
L2(Rd, dx; Cn) or `2(Zd; Cn).

By measurability of Hω we mean that the mappings ω → f(Hω) are weakly (and
hence strongly) measurable for all bounded Borel measurable functions f on R. (See
[KM], [CL, Section V.1] for more details.) Random operators may be defined without
any ergodicity requirement, ergodicity being an extra requirement, but since we will
be dealing only with Zd-ergodic random operators, we included it in the definition for
convenience. We recall that Hω is Zd-ergodic if there exists a group representation
of Zd by an ergodic family {τy; y ∈ Zd} of measure preserving transformations on
(Ω, F , P) such that

U (y)HωU(y)∗ = Hτy(ω) for all y ∈ Zd, (2.12)

where U (y) is the unitary operator given by translation: (U (y)f)(x) = f(x−y). (Note
that for Landau Hamiltonians translations are replaced by magnetic translations.)

An important consequence of ergodicity is that there exists a nonrandom set Σ
such that σ(Hω) = Σ with probability one, where σ(A) denotes the spectrum of
the operator A. In addition, the decomposition of σ(Hω) into pure point spectrum
σpp(Hω), absolutely continuous spectrum σac(Hω), and singular continuous spectrum
σsc(Hω) is also independent of the choice of ω with probability one, i.e., there are
nonrandom sets Σpp, Σac and Σsc, such that σpp(Hω) = Σpp, σac(Hω) = Σac, and
σsc(Hω) = Σsc with probability one. (See [P, KuS, KM, PF, CL, CyFKS].)

3. Spectral and dynamical localization

Localization can interpreted from either the spectral or the dynamical point of
views. We give selected definitions from each point of view.

By χB we denote the characteristic function of the set B ⊂ Rd (or Zd). By χx

we denote the characteristic function of the cube of side 1 centered at x ∈ Zd. We
write 〈x〉 =

√
1 + |x|2. The spectral projection of Hω is denoted by Eω(·). The

Hilbert-Schmidt norm of an operator A is written as ‖A‖2.

Definition 3.1. — Let Hω be a random operator and I an open interval. Then
(i): Hω exhibits spectral localization (SL) in I if it has pure point spectrum in I,

i.e., Σ ∩ I = Σpp ∩ I 6= ∅ and Σac ∩ I = Σsc ∩ I = ∅.
(ii): Hω exhibits exponential localization (EL) in I if it exhibits spectral localization

in I and for P-almost every ω the eigenfunctions of Hω with eigenvalue in I
decay exponentially in the L2-sense. (A function ψ decays exponentially in the
L2-sense if ‖χxψ‖ decays exponentially.)

(iii): Hω exhibits dynamical localization (DL) in I if Σ ∩ I 6= ∅ and, for P-almost
every ω, each compact interval I ⊂ I, and ψ ∈ H with compact support, we
have

sup
t∈R

∥∥∥〈x〉
n
2 Eω(I)e−itHω ψ

∥∥∥ < ∞ for all n ≥ 0 . (3.1)
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(iv): Hω exhibits strong dynamical localization (SDL) in I if Σ ∩ I 6= ∅ and for
each compact interval I ⊂ I and ψ ∈ H with compact support, we have

E
{

sup
t∈R

∥∥∥〈x〉
n
2 Eω(I)e−itHωψ

∥∥∥
2
}

< ∞ for all n ≥ 0 . (3.2)

(v): Hω exhibits strong HS-dynamical localization (SHSDL) in I if Σ ∩I 6= ∅ and
for each compact interval I ⊂ I and bounded Borel set B we have

E
{

sup
t∈R

∥∥∥〈x〉
n
2 Eω(I)e−itHωχB

∥∥∥
2

2

}
< ∞ for all n ≥ 0 . (3.3)

(vi): Hω exhibits strong full HS-dynamical localization (SFHSDL) in I if Σ∩I 6= ∅
and for each compact interval I ⊂ I and bounded Borel set B we have

E

{
sup

|||f |||≤1

∥∥∥〈x〉
n
2 Eω(I)f(Hω)χB

∥∥∥
2

2

}
< ∞ for all n ≥ 0 , (3.4)

the supremum being taken over all Borel functions f of a real variable, with
|||f ||| = supt∈R |f(t)|

(vii): Hω exhibits strong sub-exponential HS-kernel decay (SSEHSKD) in I if Σ∩
I 6= ∅ and for each compact interval I ⊂ I and 0 < ζ < 1 there is a finite
constant CI,ζ such that

E

{
sup

|||f|||≤1
‖χxEω(I)f(Hω)χy‖2

2

}
≤ CI,ζ e−|x−y|ζ , (3.5)

for all x, y ∈ Zd, the supremum being taken over all Borel functions f of a real
variable, with |||f ||| = supt∈R |f(t)|.

Definition 3.2. — Let Hω be a random operator. The spectral localization region
ΣSL, exponential localization region ΣEL, dynamical localization region ΣDL, strong
dynamical localization region ΣSDL, strong HS-dynamical localization region ΣSHSDL,
strong full HS-dynamical localization region ΣSFHSDL, strong sub-exponential HS-
kernel decay region ΣSSEHSKD, for the random operator Hω , are defined as the set
of E ∈ Σ for which there exists some open interval I 3 E such that Hω exhibits
spectral localization, exponential localization, dynamical localization, strong dynami-
cal localization, strong HS-dynamical localization, strong full HS-dynamical localiza-
tion region, strong sub-exponential HS-kernel decay, respectively, in I.

Remark 3.3. — Note that

ΣSSEHSKD ⊂ ΣSFHSDL ⊂ ΣSHSDL ⊂ ΣSDL ⊂ ΣDL ⊂ ΣSL . (3.6)

That ΣSSEHSKD ⊂ ΣSFHSDL is a simple calculation (see [GK1, Proof of Corollary
3.10]); that ΣSFHSDL ⊂ ΣSHSDL ⊂ ΣSDL ⊂ ΣDL is obvious; that ΣDL ⊂ ΣSL follows
from the RAGE Theorem (e.g., the argument in [CyFKS, Theorem 9.21]). But
dynamical localization is actually a strictly stronger notion than pure point spectrum,
since the latter can take place whereas a quasi-ballistic motion is observed [DelJLS].
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For a random operator with suitable properties, spelled out in the next section, the
original multiscale analyses showed that decay of the resolvent in a finite, but large
enough, volume with high probability (the “starting hypothesis” for the multiscale
analysis)) gave a sufficient condition for E ∈ ΣSL [FrS, FrMSS, Dr, DrK]. Later
that condition was shown to be sufficient for E ∈ ΣDL [GD], E ∈ ΣSDL [DSt]
(more predisely, they show that (3.3) holds with the operator norm substituted for
the Hilbert-Schmidt norm and n ≤ n0 for some n0 < ∞), and finally E ∈ ΣSSEHSKD
[GK1]. Moreover, the converse was found to be true: E ∈ ΣSHSDL implies the starting
hypothesis of the multiscale analysis [GK3].

Remark 3.4. — The multiscale analysis region ΣMSA is given in Definition 5.3 as
the region where the conclusions of the multiscale analysis hold. If the random operator
satisfies the requirements of the multiscale analysis in an open interval I, it will be
shown in Theorem 6.1 that ΣMSA ∩ I ⊂ ΣEL ∩ ΣSSEHSKD ∩ I. If in addition we have
property (4.17) and the kernel decay estimates of [GK2] hold uniformly for P-a.e. ω
(both requirements are usually satisfied), then it is proven in [GK3] that

ΣMSA ∩ I = ΣSSEHSKD ∩ I = ΣSHSDL ∩ I . (3.7)

4. Requirements of the multiscale analysis

We now state the properties of the random operator Hω that are required for
the multiscale analysis and its consequence. We will work on the continuum, but
everything will work on the lattice (easier case) with appropriate modifications. We
fix an open interval I.

4.1. Generalized eigenfunction expansion. — Generalized eigenfunction ex-
pansions were originally developed for elliptic partial differential operators with
smooth coefficients (see Berezanskii [Be] and references therein). These expansions
were extended to Schrödinger operators with singular potentials by Simon [Si] (see
also references therein), and to classical wave operators with nonsmooth coefficients
by Klein, Koines and Seifert [KlKS].

These expansions construct polynomially bounded generalized eigenfunctions for
a set of generalized eigenvalues with full spectral measure. These generalized eigen-
functions were used by Pastur [P] and by Martinelli and Scoppola [MS] to prove
that certain Schrödinger operators with random potentials have no absolutely con-
tinuous spectrum. They played a crucial role in the work by Fröhlich, Martinelli,
Spencer and Scoppola [FrMSS] and by von Dreifus and Klein [DrK] on exponential
localization of random Schrödinger operators, providing the crucial link between the
multiscale analysis and pure point spectrum: the exponential decay of finite volume
Green’s functions (obtained by a multiscale analysis) forces polynomially bounded
generalized eigenfunctions to be bona fide eigenfunctions, so the spectrum is at most
countable and hence pure point.

In [GK1], as in [G, GJ], the generalized eigenfunction expansion itself (not just
the existence of polynomially bounded generalized eigenfunctions) is used to provide
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the link between the multiscale analysis and strong HS-dynamical localization (and
hence pure point spectrum).

We will now state the properties of a random operator that guarantees the exis-
tence of a generalized eigenfunction expansion. We follow the approach in [KlKS,
Section 3].

Let H = L2(Rd, dx;Cn). (We discuss the generalized eigenfunction expansion on
the continuum, but an analogous discussion is valid on the lattice.) Given ν > d/4
(omitted from the notation), we define the weighted spaces H±:

H± = L2(Rd, 〈x〉±4νdx;Cn) . (4.1)

H− is a space of polynomially L2-bounded functions. (Recall 〈x〉 =
√

1 + |x|2.) The
sesquilinear form

〈φ1, φ2〉H+,H− =
∫

φ1(x) · φ2(x)dx, (4.2)

where φ1 ∈ H+ and φ2 ∈ H−, makes H+ and H− conjugate duals to each other.
By O† we will denote the adjoint of an operator O with respect to this duality. By
construction, H+ ⊂ H ⊂ H− , the natural injections ı+ : H+ → H and ı− : H → H−
being continuous with dense range, with ı†+ = ı− .

We set T to be the self-adjoint operator on H given by multiplication by the
function 〈x〉2ν ; note that T −1 is bounded. The operators T+ : H+ → H and T− : H →
H−, defined by T+ = T ı+ , T− = ı−T on D(T ), are unitary with T− = T †

+. The map
τ : B(H) → B(H+, H−), with τ(C) = T−CT+ , is a Banach space isomorphism, as T±
are unitary operators. (B(H1, H2) denotes the Banach space of bounded operators
from H1 to H2, B(H) = B(H, H).) If 1 ≤ q < ∞, we define Tq(H+,H−) = τ (Tq(H)),
where Tq(H) denotes the Banach space of bounded operators S on H with ‖S‖q =
(tr |S|q)

1
q < ∞. By construction, Tq(H+, H−), equipped with the norm ‖B‖q =

‖τ−1(B)‖q , is a Banach space isomorphic to Tq(H), with T2(H+, H−) being the usual
Hilbert space of Hilbert-Schmidt operators from H+ to H−.

Note that

‖χx‖H,H+ = ‖χx‖H−,H ≤
( 3

2

)ν〈x〉2ν (4.3)

for all x ∈ Rd. (Given an operator B : H1 → H2, ‖B‖H1,H2 will denote its operator
norm.)

The following property guarantees the existence of a generalized eigenfunction ex-
pansion (GEE) in the open interval I with the right properties (see [KlKS, Section 3]
for details). We write Eω(B) for the spectral projections of the operator Hω, i.e.,
Eω(J) = χJ (Hω) for any bounded Borel set J ⊂ R. We will fix an appropriate
ν > d/4 and use the corresponding operator T and weighted spaces H± as in (4.1).

(GEE) For some ν > d/4 the set

Dω
+ = {φ ∈ D(Hω) ∩ H+; Hωφ ∈ H+} (4.4)

is dense in H+ and an operator core for Hω with probability one. Moreover, there
exists a bounded, continuous function f on R, strictly positive on the spectrum of Hω,
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such that

trH
(
T −1f(Hω)Eω(I)T−1) < ∞ (4.5)

with probability one.

A measurable function ψ : Rd → Cn is said to be a generalized eigenfunction of
Hω with generalized eigenvalue λ, if ψ ∈ H−\{0} and

〈Hωφ, ψ〉H+,H− = λ〈φ,ψ〉H+,H− for all φ ∈ Dω
+.

It follows from the first part of property (GEE) that if a generalized eigenfunction is
in H, then it is a bona fide eigenfunction.

If (GEE) holds, the following is true for P-almost every ω: For all bounded Borel
sets J we have

trH
(
T −1Eω(J ∩ I)T −1) < +∞ , (4.6)

and hence

µω(J) = trH
(
T−1Eω(J ∩ I)T −1) (4.7)

is a spectral measure for the restriction of Hω to the Hilbert space Eω(I)H, with

µω(J) < ∞ for J bounded. (4.8)

In particular, we have a generalized eigenfunction expansion for Hω: with probabil-
ity one, there exists a µω-locally integrable function Pω(λ) from the real line into
T1(H+,H−), with

Pω(λ) = Pω(λ)† (4.9)

and

trH
(
T−1

− Pω(λ)T −1
+

)
= 1 for µω − a.e. λ , (4.10)

such that

ı−Eω(J ∩ I)ı+ =
∫

J

Pω(λ) dµω(λ) for bounded Borel sets J , (4.11)

where the integral is the Bochner integral of T1(H+, H−)-valued functions. Moreover,
for µω-almost every λ, if φ ∈ H+ and Pω(λ)φ 6= 0, then Pω(λ)φ is a generalized
eigenfunction of Hω with generalized eigenvalue λ. It follows, using (4.11), that µω-
almost every λ is a generalized eigenvalue of Hω.

Lemma 4.1. — If the random operator Hω has property (GEE), then for P-almost
every ω, we have

‖χxPω(λ)χy‖1 ≤
( 3

2

)2ν〈x〉2ν〈y〉2ν (4.12)

for all x, y ∈ Rd and µω-almost every λ. (‖ ‖1 denotes the trace norm in H.)

Proof. — Since

‖χxPω(λ)χy‖1 ≤ ‖χx‖H−,H‖Pω(λ)‖T1(H+,H−)‖χy‖H,H+ , (4.13)

(4.12) follows from (4.3) and (4.10).
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(GEE) suffices for proofs of exponential localization [FrMSS, DrK] and dynamical
localization [GD, G]. But for strong dynamical localization we need to strengthen
(4.5).

(SGEE) Property (GEE) holds with

E
{[

trH
(
T −1f(Hω)Eω(I)T−1)]2

}
< ∞ . (4.14)

It follows that

E
{[

trH
(
T −1Eω(J ∩ I)T −1)]2

}
< ∞ (4.15)

for all bounded Borel sets J , so we have a stronger version of (4.8):

E
{

[µω(J)]2
}

< ∞ for J bounded. (4.16)

Remark 4.2. — Estimate (4.14) is true for the usual random operators. In fact one
usually proves the stronger

∥∥trH
(
T−1f(Hω)Eω(I)T −1)∥∥

L∞(Ω,F ,P) < ∞ , (4.17)

which is a hypothesis in [DSt]. For a proof, see [KlKS, Theorem 1.1] for classical
wave operators and [Si],[GK3, Theorem A.1] for Schrödinger operators.

4.2. Finite volume operators and their properties. — Throughout these lec-
tures we use the sup norm in Rd:

|x| = max{|xi|, i = 1, . . . , d} . (4.18)

By ΛL(x) we denote the open box (or cube) of side L > 0 centered at x ∈ Rd:

ΛL(x) =
{
y ∈ Rd; |y − x| < L

2

}
, (4.19)

and by ΛL(x) the closed box. We set

χx,L = χΛL(x), χx = χx,1 = χΛ1(x). (4.20)

We will usually take boxes centered at sites x ∈ Zd with side L ∈ 2N. Given such
a box ΛL(x), we set

ΥL(x) =
{
y ∈ Zd; |y − x| = L

2 − 1
}

, (4.21)

and define its boundary belt by

Υ̃L(x) = ΛL−1(x)\ΛL−3(x) =
⋃

y∈ΥL(x)

Λ1(y) ; (4.22)

it has the characteristic function

Γx,L = χΥ̃L(x) =
∑

y∈ΥL(x)

χy a.e. (4.23)
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Note that

|ΥL(x)| = (L − 1)d − (L − 2)d = d

∫ L−1

L−2
xd−1dx ≤ d(L − 1)d−1 . (4.24)

We shall suppress the dependency of a box on its center when not necessary. When
using boxes Λ` contained in bigger boxes ΛL, we shall need to know that the small
box is inside the belt Υ̃L of the bigger one. If L > ` + 3 and x ∈ Zd, we say that

Λ` @ ΛL(x) if Λ` ⊂ ΛL−3(x) . (4.25)

Very often we will require L ∈ 6N; given K ≥ 6, we set

[K]6N = max{L ∈ 6N; L ≤ K}. (4.26)

The multiscale analysis requires the notion of a finite volume operator, a “restric-
tion” Hω,x,L of Hω to the box ΛL(x) where the “randomness based outside the box
ΛL(x)” is not taken into account. Usually Hω,x,L is defined as the restriction of Hω,
either to the open box ΛL(x) with Dirichlet boundary condition, or to the closed
box ΛL(x) with periodic boundary condition. The operator Hω,x,L then acts on
L2(ΛL(x), dx;Cn). But Hω,x,L may also be defined as acting on the whole space, by
throwing away the random coefficients “based outside the box ΛL(x)”; this is usually
done for random Landau operators [CoH2, W1, GK4]. In all cases the finite vol-
ume operators have either compact resolvent or are relatively compact perturbations
of the free Hamiltonian.

Definition 4.3. — The random operator Hω is called standard if it has a finite vol-
ume restriction, i.e., if for each x ∈ Zd and L ∈ 2N there is a measurable map Hω,x,L

from the probability space (Ω,F , P) to self-adjoint operators on L2(ΛL(x),dx; Cn) (or
all such mappings taking values as self-adjoint operators on L2(Rd,dx; Cn)), such that

U (y)Hω,x,LU(y)∗ = Hτy(ω),x+y,L for all y ∈ Zd, (4.27)

where U(y) is as in (2.12). We write Rω,x,L = (Hω,x,L − z)−1 for the resolvent of the
finite volume operator Hω,x,L and Eω,x,L(·) for its spectral projection.

The multiscale analysis and its consequences require certain properties of the finite
volume restriction of the random operator. These properties are routinely verified
for the usual random operators (e.g., [FrS, FrMSS, DrK, HoM, CoH1, CoH2,
FK3, FK4, W1, St, KlK1, KlK2, GK3, GK4].

The first property is independence at a distance (IAD) for the finite volume op-
erators. It says that if boxes are far apart, events defined by the restrictions of
the random operator Hω to these boxes are independent. This assumption can
be relaxed in some ways by suitable modifications of the multiscale analysis (e.g.,
[DrK2, KSS2, FiLM, Z]).

An event is said to be based on the box ΛL(x) if it is determined by conditions on
the finite volume operator Hω,x,L. Given % > 0, we say that two boxes ΛL(x) and
ΛL′(x′) are %-nonoverlapping if |x − x′| > L+L′

2 + %, i.e., if dist(ΛL(x),ΛL′(x′)) > %.

(IAD) There exists % > 0 such that events based on %-nonoverlapping boxes are
independent.
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The remaining properties are to hold in the fixed open interval I .
The first such property is reminiscent of the Simon-Lieb inequality (SLI) in Clas-

sical Statistical Mechanics. It relates resolvents in different scales. In the lattice it is
an immediate consequence of the resolvent identity, in this context it was originally
used in [FrS]. In the continuum, its proof requires interior estimates, and was proved
in [CoH1] for Schrödinger operators. It was adapted to classical wave operators in
[FK3]. We state it in the form given in [KlK1, Lemma 3.8] for classical wave opera-
tors and [GK3, Theorem A.1] for Schrödinger operators. (The lattice requires slight
modifications.)

(SLI) For any compact interval I ⊂ I there exists a finite constant γI , such that,
given L, `′, `′′ ∈ 2N, x, y, y′ ∈ Zd with Λ`′′(y) @ Λ`′(y′) @ ΛL(x), then for P-almost
every ω, if E ∈ I with E /∈ σ(Hω,x,L) ∪ σ(Hω,y′,`′), we have

‖Γx,LRω,x,L(E)χy,`′′‖ ≤ γI ‖Γy′,`′Rω,y′,`′(E)χy,`′′‖ ‖Γx,LRω,x,L(E)Γy′,`′‖ . (4.28)

Remark 4.4. — Property (SLI) will be used in the following way: We will take
`′′ = `

3 with ` ∈ 6N, and `′ = k `
3 with 3 ≤ k ∈ N. By a cell we will mean a closed

box Λ `
3
(y′′), with y′′ ∈ `

6Zd. We define Zeven and Zodd to be the sets of even and odd
integers. We take y ∈ `

6Zd, so χy, `
3

is the characteristic function of a cell. We want
the closed box Λ`′(y′) to be exactly covered by cells (in effect, by kd cells); thus we
specify y′ ∈ `

3Zd = `
6Zd

even if k is odd, and y′ ∈ `
3Zd + `

6 (1,1, . . . , 1) = `
6Zd

odd if k is
even. We then replace the boundary belt Υ̃`′(y′) (of width 1) by a thicker belt Υ̃`′,`(y′)
of width `

3 . To do so, we set

Υ`′,`(y′) =
{

y′′ ∈ `

3
Zd; |y′′ − y′| =

`′

2
− `

6

}
, (4.29)

and define the boundary `-belt of Λ`′(y′) by

Υ̃`′,`(y′) = Λ`′(y′)\Λ`′− 2`
3
(y′) =

⋃

y′′∈Υ`′,`(y′)

Λ `
3
(y′′) , (4.30)

with characteristic function

Γy′,`′,` = χΥ̃`′,`(y′) =
∑

y′′∈Υ`′,`(y′)

χy′′, `
3

a.e. (4.31)

Note that

|Υ`′,`(y′)| = (kd − (k − 2)d) ≤ kd . (4.32)

Since Γy′,`′,`Γy′,`′ = Γy′,`′, the projection Γ`′ on the belt of Λ`′ can be replaced by the
projection over the thicker belt of width `

3 , which can be decomposed in boxes of side
`
3 . Thus (4.28) yields

‖Γx,LRω,x,L(E)χy, `
3
‖≤kdγI‖Γy′,`′Rω,y′,`′(E)χy, `

3
‖‖Γx,LRω,x,L(E)χy′′, `

3
‖ (4.33)
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for some y′′ ∈ Υ`′,`(y′). Performing the SLI, i.e., using the estimate (4.33), we moved
from the cell center y to the cell center y′′.

Remark 4.5. — While performing a multiscale analysis we will use (4.33) with ei-
ther `′ = ` (for good boxes), or some `′ = k `

3 , k > 3, which will be the side of a bad
box. Note that in the first case, k = 3, and the geometric factor is 3d −1 ≤ 3d. In that
case note also that we must have y = y′ and |y′′ −y| = `

3 , so after performing the SLI
we moved to an adjacent cell center, i.e., by `

3 in the sup norm. (Recall that we are
using the sup norm in Rd, so we may move both sidewise and along the diagonals.)

The second property is an estimate of generalized eigenfunctions in terms of finite
volume resolvents. It is not needed for the multiscale analysis, but it plays an im-
portant role in obtaining localization from the multiscale analysis [FrMSS, DrK,
FK3, GK1]. We call it an eigenfunction decay inequality (EDI), since it translates
decay of finite volume resolvents into decay of generalized eigenfunctions ; we present
it as proved in [KlK1, Lemma 3.9] and [GK3, Theorem A.1]. It is closely related to
property (SLI), the proofs being very similar.

(EDI) For any compact interval I ⊂ I there exists a finite constant γ̃I , such that
for P-almost every ω, given a generalized eigenfunction ψ of Hω with generalized
eigenvalue E ∈ I, we have for any x ∈ Zd and L ∈ 2N with E /∈ σ(Hω,x,L) that

‖χxψ‖ ≤ γ̃I‖Γx,LRω,x,L(E)χx‖‖Γx,Lψ‖ . (4.34)

Typically we have γ̃I = γI , with γI as in (4.28). We will use the following conse-
quence of (4.34):

‖χxψ‖ ≤ dγ̃IL
d−1‖Γx,LRω,x,L(E)χx‖‖χyψ‖ (4.35)

for some y ∈ ΥL(x).
The third property is an “a priori” estimate on the average number of eigenvalues

(NE) of finite volume random operators in a fixed, bounded interval. It is usually
proved by a deterministic argument, using the well known bound for the Laplacian
[CoH1, FK3, FK4, KlK1]. It is, of course, entirely obvious in the lattice.

(NE) For any compact interval I ⊂ I there exists a finite constant CI such that

E (trHEω,x,L(I)) ≤ CIL
d (4.36)

for all x ∈ Zd and L ∈ 2N.

The final property is a form of Wegner’s estimate (W), a probabilistic estimate on
the size of the resolvent. It is a crucial ingredient for the multiscale analysis, where
it is used to control the bad regions.

(W) For some b ≥ 1 there exists a finite constant QI for each compact interval
I ⊂ I, such that

P {dist(σ(Hω,x,L),E) ≤ η} ≤ QIηLbd , (4.37)
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for all E ∈ I, 0 < η ≤ 1, x ∈ Zd, and L ∈ 2N.

Remark 4.6. — In practice we have either b = 1 or b = 2 in the Wegner estimate
(4.37). For some random Schrödinger operators with Anderson potential we may
have b = 1 [CoH1, Klo3] (including the Landau Hamiltonian). For classical waves in
random media, (4.37) has been proven with b = 2 [FK3, FK4, KlK2]. More recently
the correct volume dependency (i.e., b = 1) was obtained in [CoHN, CoHKN, HK]
for random Schrödinger operators, at the price of losing a bit in the η dependency;
more precisely, the right hand side of (4.37) is replaced by Qa,Iη

aLd for any 0 < a < 1.
In these lectures, we shall use (4.37) as stated, the modifications in our methods
required for the other forms of (4.37) being obvious. Our methods may also accomodate
properties (NE) and (W) being valid only for large L, and/or property (W) being valid
only for η < ηL for some appropriate ηL, say ηL = L−r, some r > 0, or ηL = e−Lβ

for some 0 < β < 1. The latter is of importance if one wants to deal with singular
probability measures like Bernoulli [CKM, KlLS, DeG, DSS].

Remark 4.7. — In the continuum one usually proves the stronger estimate [HoM,
CoH1, CoH2, FK3, FK4, KlK2, CoHN]:

E
(
trHEHω,x,L ([E − η, E + η])

)
≤ QIηLbd , (4.38)

from which (4.37) follows by Chebychev’s inequality. The estimate (4.36) is used as
an “a priori” estimate in the proof of (4.38).

5. The bootstrap multiscale analysis

Given a standard random operator Hω, the multiscale analysis looks for localization
by studying the probability of decay of the finite volume resolvent from the center of
a box ΛL(x) to its boundary belt as measured by

‖Γx,LRω,x,L(E)χx, L
3
‖ . (5.1)

We start with three definitions, which characterize “good boxes” in a given scale
by different types of decay relative to the scale.

Definition 5.1. — Given E ∈ R, x ∈ Zd and L ∈ 6N, with E /∈ σ(Hω,x,L), we say
that the box ΛL(x) is

(i): (ω, θ,E)-suitable for a given θ > 0 if

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤ 1

Lθ
. (5.2)

(ii): (ω, ζ, E)-sub-exponentially-suitable for a given ζ ∈ (0, 1) if

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤ e−Lζ

. (5.3)

(iii): (ω,m, E)-regular for a given m > 0 if

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤ e−m L

2 . (5.4)
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Remark 5.2. — Note that a box ΛL(x) is (ω, θ, E)-suitable if and only if it is
(ω, m, E)-regular, where m = 2θ log L

L . Similarly, ΛL(x) is (ω, ζ,E)-sub-exponentially-
suitable if and only if it is (ω,2Lζ−1,E)-regular.

The multiscale analysis converts decay with high probability at a large enough scale
into decay with better probabilities at higher scales. We state the strongest version,
the bootstrap multiscale analysis of Germinet and Klein [GK1, Theorem 3.4].

Definition 5.3. — Let Hω be a standard random operator with property (IAD). The
multiscale analysis region ΣMSA for Hω is the set of E ∈ Σ for which there exists some
open interval I 3 E, such that given any ζ, 0 < ζ < 1, and α, 1 < α < ζ−1, there is
a length scale L0 ∈ 6N and a mass m > 0, so if we set Lk+1 = [Lα

k ]6N, k = 0, 1, . . . ,
we have

P {R (m,Lk, I, x, y)} ≥ 1 − e−Lζ
k (5.5)

for all k = 0, 1, . . . , and x, y ∈ Zd with |x − y| > Lk + %, where

R(m,L, I, x, y) = (5.6)
{ω; for every E′ ∈ I either ΛL(x) or ΛL(y) is (ω, m,E′)-regular} .

Theorem 5.4 ([GK1, Theorem 3.4]). — Let Hω be a standard random operator
with (IAD) and properties (SLI), (NE) and (W) in an open interval I. Given θ > bd,
for each E ∈ I there exists a finite scale Lθ(E) = Lθ(E, b, d, %), bounded on compact
subintervals of I, such that, if for a given E0 ∈ Σ ∩ I we can verify that

P{ΛL0(0) is (ω, θ, E0)-suitable} > 1 − 1
841d

(5.7)

at some scale L0 ∈ 6N with L0 > Lθ(E0), then E0 ∈ ΣMSA.

Remark 5.5. — Explicit estimates on Lθ(E) are given in [GK4].

We call Theorem 5.4 the bootstrap multiscale analysis because its proof uses four
different multiscale analyses, each one bootstrapping into the next. We present them
in the order in which they are used.

Theorem 5.6 ([FK3, Lemma 36], [GK1, Theorem 5.1]). — Let Hω be a standard
random operator with (IAD) and properties (SLI) and (W) in an open interval I. Let
I0 be a compact subinterval of I, E0 ∈ I0, and θ > bd. Given an odd integer Y ≥ 11,
for any p with 0 < p < θ − bd we can find Z = Z(d, %,QI0 , γI0 , b, θ, p, Y ), such that if
for some L0 > Z, L0 ∈ 6N, we have

P{ΛL0(0) is (θ, E0)-suitable} > 1 − (3Y − 4)−2d, (5.8)

then, setting Lk+1 = Y Lk, k = 0, 1,2, . . . , we have that

P{ΛLk(0) is (θ, E0)-suitable} ≥ 1 − 1
L

p
k

(5.9)

for all k ≥ K, where K = K(p, Y, L0) < ∞.
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The value of Theorem 5.6 is that it requires a very weak starting hypothesis, in
which the bound on the probability of the bad event is independent of the scale, and
its conclusion, in view of Remark 5.2, gives the starting hypothesis of a modified
form of the Dreifus–Klein multiscale analysis, Theorem 5.7 below. Theorem 5.6 is an
enhancement of [FK3, Lemma 36], adapted to our assumptions and definitions. It is
proven by a multiscale analysis which combines an idea of Spencer [Sp, Theorem 1]
with the methods of [DrK].

Theorem 5.7 ([FK3, Theorem 32],[GK1, Theorem 5.2]). — Let Hω be a standard
random operator with (IAD) and properties (SLI) and (W) in an open interval I. Let
I0 be a compact subinterval of I, E0 ∈ I0, θ > bd, and 0 < p < θ − bd. Then given
p′ > p and 1 < α < min

{
2p+2d
p+2d , θ

p+bd

}
, there is B = B(d, b, %,QI0 , γI0 , θ, p, p′, α),

such that, if at some finite scale L0 ≥ B we verify that

P{ΛL0(0) is (2θ log L0
L0

, E0)-regular} ≥ 1 − 1

Lp′

0

, (5.10)

then there exists δ1 = δ1(d, b, θ, p, α,L0) > 0, such that if we set I(δ1) = [E0 −δ1,E0 +
δ1] ∩ I0, m0 = 2θ log L0

L0
, and Lk+1 = [Lα

k ]6N, k = 0, 1, . . . , we have

P{ΛLk (0) is (m0
2 , E)-regular} ≥ 1 − 1

Lp
k

for all E ∈ I(δ1) , (5.11)

for all k = 0, 1, . . . .
If in addition Hω has property (NE) in I and we have θ > 2p + (b + 1)d,

then, fixing a compact subinterval Ĩ0 of I with I0 ⊂ Ĩ◦
0 , there is a scale B̃ =

B̃(d, b, %,QĨ0
, CĨ0

, γI0 , dist(I0, I\Ĩ0), θ, p, p′, α), such that, if at some finite scale
L0 ≥ B̃ we verify (5.10), we have

P
{
R

(
m0
2 , Lk, I(δ1), x, y

)}
≥ 1 − 1

L2p
k

for all x, y ∈ Zd , |x − y| > Lk + % , (5.12)

for all k = 0, 1, . . . .

Theorem 5.7 is an enhancement of the Dreifus-Klein multiscale analysis [DrK].
The crucial difference is that Theorem 5.7 allows the mass to go to zero as the inital
scale L0 goes to infinity, which may seem very surprising at the first sight. Indeed, in
the original versions of the MSA ( e.g., [FrS, FrMSS, Dr, DrK, CoH1]), the mass
has to be fixed first in order to know how large L0 has to be chosen. Figotin and Klein
[FK3, Theorem 32] were the first to note that the mass may depend on the scale,
as in (5.10) above, i.e., a mass proportional to log L0

L0
. Thus the starting hypothesis

(5.10) only requires the decay of the resolvent on finite boxes to be polynomially small
in the scale, not exponentially small. Note also that by using the SLI as in (4.33), so
we only move between cells, we only need to require p > 0 as in [KSS1], not p > d

as in [DrK] (we need to consider only the
(
3L

`

)d
cells that are cores of boxes of side

` inside the bigger box of side L, instead of Ld boxes as in [DrK]).
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Only the weaker conclusion (5.11) is needed for the bootstrap multiscale analysis;
we also stated (5.12) because it is the usual conclusion of this multiscale analysis.
Note that for conclusion (5.11) we may take p′ = p with δ1 = 0.

Theorems 5.6 and 5.7 only yield polynomially decaying probabilities for bad events.
Germinet and Klein [GK1] introduced new versions of these multiscale analyses that
give sub-exponential decay for the probabilities of bad events.

Theorem 5.8. — Let Hω be a standard random operator with (IAD) and properties
(SLI) and (W) in an open interval I. Let I0 be a compact subinterval of I, E0 ∈ I0,
and ζ0 ∈ (0, 1). Given an odd integer Y ≥ 11

1
1−ζ0 , for any ζ1 with 0 < ζ1 < ζ0 we

can find Z = Z(d, %, QI0 , γI0 , b, ζ0, ζ1, Y ), such that if for some L0 > Z, L0 ∈ 6N, we
have

P{ΛL0(0) is (ζ0,E0)-sub-exponentially-suitable} > 1 − (3Y − 4)−2d, (5.13)

then, setting Lk+1 = Y Lk, k = 0, 1,2, . . . , we have that

P{ΛLk(0) is (ζ0, E0)-sub-exponentially-suitable} ≥ 1 − e−L
ζ1
k (5.14)

for all k ≥ K, where K = K(ζ0, ζ1, Y, L0) < ∞.

Theorem 5.9. — Let Hω be a standard random operator with (IAD) and properties
(SLI), (NE) and (W) in an open interval I. Let I0 be a compact subinterval of I,
E0 ∈ I0, Ĩ0 a compact subinterval of I with I0 ⊂ Ĩ◦

0 , and 0 < ζ2 < ζ1 < ζ0 < 1. Then,
given 1 < α < ζ0/ζ1, there is C = C(d, b, %,QĨ0

, CĨ0
, γI0 , dist(I0, I\Ĩ0), ζ0, ζ1, ζ2, α),

such that, if at some finite scale L0 ≥ C, L0 ∈ 6N, we verify that

P{ΛL0(0) is (2Lζ0−1
0 ,E0)-regular} ≥ 1 − e−L

ζ1
0 , (5.15)

then there exists δ2 = δ2(ζ0, ζ1, L0) > 0 such that, if we set I(δ2) = [E0 − δ2, E0 +
δ2] ∩ I0, m0 = 2Lζ0−1

0 , and Lk+1 = [Lα
k ]6N, k = 0, 1, . . . , we have

P
{
R

(
m0
2 , Lk, I(δ2), x, y

)}
≥ 1 − e−L

ζ2
k (5.16)

for all k = 0, 1, 2, . . . and x, y ∈ Zd with |x − y| > Lk + %.

The equivalent to (5.11) holds in the context of Theorem 5.9, but it will not be
needed. In order to get sub-exponential decay of probabilities, the proof of Theo-
rem 5.9 allows the number of bad boxes to grow with the scale.

Outline of the proof of Theorem 5.4. — Theorem 5.4 is proven by a bootstrapping
argument, making successive use of Theorems 5.6, 5.7, 5.8, and 5.9. We give here an
outline of the proof, and refer to [GK1] for the full proof.

1. Under the hypotheses of Theorem 5.4, we note that hypothesis (5.8) of Theo-
rem 5.6 is the same as hypothesis (5.7) for appropriate choices of the parameters.

2. We apply Theorem 5.6 obtaining a sequence of length scales satisfying conclusion
(5.9), with its polynomial decay estimate of the probability of bad events.
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3. In view of Remark 5.2, it follows that hypothesis (5.10) of Theorem 5.7 is now
satisfied at suitably large scale. (We have bootstrapped from hypothesis (5.7)
to hypothesis (5.10)!). Thus we can apply Theorem 5.7 with appropriate pa-
rameters, getting δ1 > 0 and a sequence of length scales satisfying conclusion
(5.11) for all E ∈ I(δ1). We set δ0 = δ1.

4. We fix ζ and α as in Theorem 5.4, and pick ζ0, ζ1, ζ2 such that 0 < ζ < ζ2 <
ζ1 < ζ0 < 1 < α < ζ0ζ

−1
1 < ζ−1

2 < ζ−1. We note that we have bootstrapped
again: hypothesis (5.13) of Theorem 5.8 is satisfied at all energies E ∈ I(δ0) at
appropriately large scale (the same for all E). Applying Theorem 5.8, we obtain
a sequence of length scales for which conclusion (5.14) holds for all E ∈ I(δ0),
with its sub-exponential decay estimate of the probability of bad events.

5. Using the last part of Remark 5.2, we can see that we have bootstrapped to
Theorem 5.9: for any 0 < ζ2 < ζ1 < ζ0 < 1, hypothesis (5.15) is satisfied
at all energies E ∈ I(δ1) at sufficiently large scale (depending on ζ0, ζ1, ζ2 but
independent of E). We apply Theorem 5.9, obtaining δ2 > 0 and and an
exponentially growing sequence of length scales, depending on ζ0, ζ1, ζ2, but
independent of E, such that conclusion (5.16) holds for all E ∈ I(δ1).

6. We have constructed in Step 5 a sequence of length scales for which (5.16) holds
for all E ∈ I(δ0). Since the interval I(δ0) (which is independent of ζ) can
be covered by [ δ0

δ2
] + 1 closed intervals of length δ2, we note that the desired

conclusion (5.5) now follows from (5.16), at the energies that are the centers of
the [ δ1

δ2
] + 1 covering intervals, if we take L0 appropriately large.

We will illustrate how to do a multiscale analysis by proving Theorem 5.7 in Sec-
tion 7, and refer to [GK1] for the proofs of Theorems 5.6, 5.8, and 5.9.

6. From the multiscale analysis to localization

The connection between the multiscale analysis and localization is given by the
following theorem.

Theorem 6.1. — Let Hω be a standard random operator with (IAD) and properties
(SGEE) and (EDI) in an open interval I. Then

ΣMSA ∩ I ⊂ ΣEL ∩ ΣSSEHSKD ∩ I . (6.1)

To prove Theorem 6.1 we divide it into Theorems 6.4 and 6.5. Without loss of
generality we assume that if properties (GEE), (SGEE), or (EDI) hold, then they
hold for every ω ∈ Ω.

Lemma 6.2. — Let Hω be a standard random operator with properties (GEE) and
(EDI) in an open interval I. Let us fix m > 0. For every ω, given x ∈ Zd such
that there exists a generalized eigenfunction ψ for Hω with generalized eigenvalue
E ∈ I and ‖χxψ‖ 6= 0, there exists L̃(ω, E, m, x) < ∞, such that the box ΛL(x) is not
(ω, m, E)-regular if L ≥ L̃(ω, E,m, x).
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Proof. — If x ∈ Zd and ψ is a generalized eigenfunction for Hω with generalized
eigenvalue E, and the box ΛL(x) is (ω, m,E)-regular, it follows from (4.34) that for
E ∈ I we have

‖χxψ‖ ≤ γ̃{E} e−m L
2 ‖Γx,Lψ‖ ≤ γ̃{E} e−m L

2 ‖〈x〉2νΓx,L‖∞‖ψ‖H−

≤ dγ̃{E}‖ψ‖H−Ld−1e−m L
2 〈|x| + L

2 − 1〉2ν

≤ 4νdγ̃{E}‖ψ‖H−〈x〉2νLd−1〈L
2 − 1〉2νe−m L

2 . (6.2)

Since the last expression in (6.2) goes to 0 as L → ∞, the lemma follows.

The connection between the multiscale analysis and the generalized eigenfunction
expansion is given by the following lemma [GK1, Lemma 4.1].

Lemma 6.3. — Let Hω be a standard random operator with properties (GEE) and
(EDI) in an open interval I. Given an open interval I with compact Ī ⊂ I, m > 0,
L ∈ 6N, and x, y ∈ Zd, let R(m, L, I, x, y) be as in (5.6). For P-almost every ω ∈
R(m,L, I, x, y), we have

‖χxPω(λ)χy‖2 ≤ Cγ̃Ī e−m L
4 〈x〉2ν〈y〉2ν , (6.3)

for µω-almost all λ ∈ I, with C = C(m,d, ν) < +∞.

Proof. — It follows from (4.9) that

‖χxPω(λ)χy‖2 = ‖χyPω(λ)χx‖2 ,

for µω-almost every λ, so the roles played by x and y are symmetric.
Let ω ∈ R(m, L, I, x, y); then for any λ ∈ I , either ΛL(x) or ΛL(y) is (m, λ)-regular

for Hω , say ΛL(x). If φ ∈ H, for µω-almost all λ and all y ∈ Zd the vector Pω(λ)χyφ
is a generalized eigenfunction of Hω with generalized eigenvalue λ, so for P-almost
every ω it follows from property (EDI) (see (4.34)), using χx = χx, L

3
χx, that

‖χxPω(λ)χyφ‖ ≤ γ̃Ī‖Γx,LRω,x,L(λ)χx, L
3
‖‖Γx,LPω(λ)χyφ‖. (6.4)

Since ΛL(x) is (m, λ)-regular, we have, using also Lemma 4.1 and the definition of
the Hilbert-Schmidt norm, that

‖χxPω(λ)χy‖2 ≤ γ̃Īe
−m L

2 ‖Γx,LPω(λ)χy‖2 (6.5)

≤ γ̃Īd
( 3

2

)2ν
Ld−1e−m L

2 〈|x| + L
2 − 1〉2ν〈y〉2ν (6.6)

≤ γ̃Īd32νLd−1e−m L
2 〈L

2 − 1〉2ν〈x〉2ν〈y〉2ν , (6.7)

so (6.3) follows.

Theorem 6.4. — Let Hω be a standard random operator with (IAD) and properties
(GEE) and (EDI) in an open interval I. Then

ΣMSA ∩ I ⊂ ΣEL ∩ I . (6.8)
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Moreover if E ∈ ΣMSA ∩ I, and we pick an open interval I 3 E and m > 0 as in
Definition 5.3 with compact Ī ⊂ I, then for P-almost every ω, given a generalized
eigenfunction Ψ for Hω with generalized eigenvalue E′ ∈ I, we have

lim sup
|x|→∞

log ‖χxψ‖
|x|

≤ −m. (6.9)

Proof. — Given E ∈ ΣMSA ∩ I, we pick an open interval I 3 E as in Definition 5.3
with compact Ī ⊂ I. We fix ζ and α such that 0 < ζ < 1 and 1 < α < ζ−1. By
Definition 5.3 there is a scale L0 and a mass m > 0, such that, if we set Lk+1 = [Lα

k ]6N,
k = 0, 1, . . . , then for x and y ∈ Zd with |x − y| > Lk + % we have the estimate (5.5)
for k = 0,1, 2, . . . .

We will prove that E ∈ ΣEL by showing that for P-almost every ω each generalized
eigenfunction of Hω with generalized eigenvalue in I is exponentially decaying in the
L2-sense. This suffices since for P-almost every ω we have that µω-almost every E′ ∈ I
is a generalized eigenvalue for Hω, so we can then conclude that Hω has pure point
spectrum in I .

We fix b > 1, to be chosen later. Given x0 ∈ Zd, for each k = 0,1, · · · we define
the discrete annulus

Ak+1(x0) =
{
Λ2bLk+1(x0) \ Λ2Lk

(x0)
}

∩ Zd , (6.10)

and the event

Ek(x0) = {ω; ΛLk
(x0) and ΛLk

(x) are both not (ω,m, E′)-regular
for some E′ ∈ I and x ∈ Ak+1(x0)} . (6.11)

By (5.5),

P {Ek(x0)} ≤ (2bLk+1)d e−2Lζ
k , (6.12)

and hence
∞∑

k=0

P {Ek(x0)} < ∞, (6.13)

so it follows from the Borel-Cantelli Lemma and the countability of Zd that

P{Ek(x0) occurs infinitely often for some x0 ∈ Zd } = 0 . (6.14)

Thus, for P-almost every ω, given x0 ∈ Zd there is k1(ω, x0) ∈ N such that ω /∈ Ek(x0)
for k ≥ k1(ω, x0).

For P-almost every ω, given a generalized eigenfunction Ψ for Hω with generalized
eigenvalue E′ ∈ I , we pick x0 ∈ Zd such that ‖χx0ψ‖ 6= 0. We set k2(ω,E′, x0) =
min{k ∈ N; Lk ≥ L̃(ω, E′, m, x0)}, where L̃(ω,E′, m, x0) is as in Lemma 6.2. Thus, if
k3(ω, E′, x0) = max{k1(ω, x0), k2(ω, E′, x0)}, for k ≥ k3(ω, E′, x0) we conclude that
ΛLk(x) is (ω,m, E′)-regular for all x ∈ Ak+1(x0). We pick ρ, with 1

3 < ρ < 1, and
b > 1+ρ

1−ρ , and set

Ãk+1(x0) =
{

Λ 2b
1+ρ Lk+1

(x0) \ Λ 2
1−ρ Lk

(x0)
}

∩ Zd , (6.15)
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Note that Ãk+1(x0) ⊂ Ak+1(x0) and

dist(x, Zd\Ak+1(x0)) ≥ ρ|x − x0| for all x ∈ Ãk+1(x0) . (6.16)

Thus, if x ∈ Ak+1(x0) with k ≥ k3(ω, I, x0), it follows from (4.35) that

‖χxψ‖ ≤ dγ̃ĪL
d−1
k e−m

Lk
2 ‖χx1ψ‖ (6.17)

for some x1 ∈ ΥL(x). If we take x ∈ Ãk+1(x0), we have x1 ∈ Ak+1(x0) in view
of (6.16), and hence we can apply again (4.35) as in (6.17) to estimate ‖χx1ψ‖ in
terms of some ‖χx2ψ‖ for some x2 ∈ ΥL(x1). In fact, it follows from (6.16) that for
x ∈ Ãk+1(x0) this procedure can be repeated n times, yielding

‖χxψ‖ ≤
(
dγ̃ĪL

d−1
k e−m

Lk
2

)n

‖χxnψ‖ (6.18)

≤
( 3

2

)ν‖ψ‖H−

(
dγ̃ĪL

d−1
k e−m

Lk
2

)n

〈xn〉2ν (6.19)

for some xn ∈ Zd with |xn − x| ≤ n(Lk

2 − 1), as long as n(Lk

2 − 1) < ρ|x − x0|. (We
used (4.3) to obtain (6.19)). We thus have the estimate (6.19)) with

n =
ρ|x − x0|

Lk

2 − 1
− 1 ≥

3ρ−1
2 |x − x0|

Lk

2 − 1
. (6.20)

Note that for all k sufficiently large we have Lk

2 − 1 ≥ Lk

4 and dγ̃ĪL
d−1
k e−m

Lk
2 ≤

e−m
Lk
4 , in which case it follows from (6.18) and (6.20) that for each x ∈ Ãk+1(x0) we

have

‖χxψ‖ ≤
( 3

2

)ν‖ψ‖H−〈|x0| + ρ|x − x0|〉2ν e− 3ρ−1
2 m|x − x0| (6.21)

≤ 3ν‖ψ‖H−〈x0〉2ν〈ρ|x − x0|〉2ν e− 3ρ−1
2 m|x − x0| . (6.22)

Thus there exists k̃, depending only on ρ, d, ν , ‖ψ‖H− , x0, L0, α, γ̃Ī , and m, such
that if x ∈ Ãk+1(x0) with k ≥ k̃ we have (recall 1

3 < ρ < 1)

‖χxψ‖ ≤ e− ρ(3ρ−1)
2 m|x − x0| . (6.23)

Since if x ∈ Zd is such that |x − x0| > L0
1−ρ , we have x ∈ Ãk+1(x0) for some k, we

conclude that there is a finite constant Cψ,ρ such that

‖χxψ‖ ≤ Cψ,ρ e− ρ(3ρ−1)
2 m|x − x0| for all x ∈ Zd , (6.24)

and hence ψ decays exponentially in thre L2-sense. In fact, we proved that for each
1
3 < ρ < 1 we have

lim sup
|x|→∞

log ‖χxψ‖
|x|

≤ − ρ(3ρ−1)
2 m , (6.25)

so letting ρ → 1 we get (6.9).
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We now show that the multiscale analysis imply strong sub-exponential HS-kernel
decay [GK1, Theorem 3.8]. (Note that for smooth functions of Schrödinger and
classical wave operators we always have kernel decay in the deterministic case [GK2,
BoGK].)

Theorem 6.5. — Let Hω be a standard random operator with (IAD) and properties
(SGEE) and (EDI) in an open interval I. Then

ΣMSA ∩ I ⊂ ΣSSEHSDC ∩ I . (6.26)

Proof. — Given E ∈ ΣMSA ∩ I, we pick an open interval I 3 E as in Definition 5.3
with compact Ī ⊂ I . We will use the generalized eigenfunction expansion (4.11) to
show that for any 0 < ξ < 1. there is a finite constant Cξ such that

E

{
sup

|||f |||≤1
‖χxf(Hω)Eω(I)χ0‖2

2

}
≤ Cξ e−|x|ξ , (6.27)

for all x ∈ Zd, the supremum being taken over all Borel functions f of a real variable,
with |||f ||| = supt∈R |f(t)|. Since our random operator is Zd-ergodic, probabilities are
translation invariant, so there is no loss of generality in taking y = 0.

Given 0 < ξ < 1, we pick ζ such that ζ2 < ξ < ζ < 1 (always possible) and set
α = ζ

ξ , note α < ζ−1. By Definition 5.3 there is a scale L0 and a mass mζ > 0, such
that, if we set Lk+1 = [Lα

k ]6N, k = 0, 1, . . . , then for each k we have the estimate (5.5)
with y = 0 and x ∈ Zd such that |x| > Lk + %.

Let us now fix x ∈ Zd and pick k such that Lk+1 + % ≥ |x| > Lk + %. In this case
Lemma 6.3 asserts that if ω ∈ R (mζ , Lk, I, x, 0), then

‖χxPω(λ)χ0‖2 ≤ C1 e−mζ
Lk
4 〈x〉2ν ≤ C1C2 e−Lζ

k , (6.28)

for µω-almost all λ ∈ I , with finite constants C1 = C1(mζ , d, ν, γ̃Ī ) and C2 =
C2(ν, %, ζ, ξ,mζ). We split the expectation in (6.27) in two pieces: where (6.28)
holds, and over the complementary event, which has probability less than e−Lζ

k by
(5.5). From (4.11) we have

sup
|||f |||≤1

‖χxf(Hω)Eω(I)χ0‖2

≤ sup
|||f|||≤1

∫

I

|f(λ)| ‖χxPω(λ)χ0‖2 dµω(λ) (6.29)

≤
∫

I

‖χxPω(λ)χ0‖2 dµω(λ). (6.30)

Thus, it follows from (6.28) that [with E(F (ω); A) ≡ E(F (ω)χA(ω))]

E

{
sup

|||f |||≤1
‖χxf(Hω)Eω(I)χ0‖2

2 ; R(mζ , Lk, I, x, 0)

}

≤ C2
1C2

2 E{(µω(I))2} e−2Lζ
k . (6.31)
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To estimate the second term, note that using (4.7) we have

‖χxf(Hω)Eω(I)χ0‖2
2 ≤ |||f |||2 ‖Eω(I)χ0‖2

2

≤ 4ν |||f |||2µω(I) , (6.32)

so, using the Schwarz’s inequality and (5.5) ,

E

{
sup

|||f |||≤1
‖χxf(Hω)EHω (I)χ0‖2

2 ; ω /∈ R(mζ , Lk, I, x, 0)

}

≤ 4ν [E{(µω(I)2}]
1
2 e−1

2 Lζ
k . (6.33)

Since

C3 = C2
1C2

2 E{(µω(I))2} + 4ν [E{(µω(I)2}]
1
2 < ∞ (6.34)

in view of (4.16), we conclude from (6.31) and (6.33) that (recall α = ζ
ξ )

E

{
sup

|||f |||≤1
‖χxf(Hω)Eω(I)χ0‖2

2

}
(6.35)

≤ C5 e−1
2 Lζ

k ≤ C3 e− 1
2Lξ

k+1 ≤ C3e− 1
2 (|x|−%)ξ

≤ C3e
1
2 %ξ

e−1
2 |x|ξ

for all |x| ≥ L0 + %. Thus (6.27) follows (for a slightly smaller ξ), and Theorem 6.5 is
proved.

7. How to do a multiscale analysis

To exemplify how to perform a multiscale analysis we give the proof of Theorem 5.7,
a modification of the proof of [DrK, Theorem 2.2].

Proof of Theorem 5.7. — Given x ∈ Zd we set

ΞL,`(x) = ΛL(x) ∩
{

x +
`

3
Zd

}
⊂ Zd , ΞL,` = ΞL,`(0) , (7.1)

CL,`(x) = {Λ`(y); y ∈ ΞL,`(x) , Λ`(y) @ ΛL(x)} , CL,` = CL,`(0) . (7.2)

Note |ΞL,`(x)| ≤ (3 L
` + 1)d. By a cell we will mean a closed box Λ`/3(y) with

y ∈ ΞL,`(x), the core of the box Λ`(y). Thus CL,`(x) is the collection of boxes of
side ` whose core is a cell and are inside the boundary belt Υ̃L(x) of the big box
ΛL(x); we have |CL,`(x)| ≤ (3L

` − 2)d. Note that the big box is covered by cells:
ΛL(x) ⊂

⋃
y∈ΞL,`(x) Λ`/3(y).

Given θ, p, p′ such that

0 < p < p′ < θ − bd and 1 < α < min
{

2p + 2d

p + 2d
,

θ

p + bd

}
, (7.3)

we pick s and θ′ such that
θ

2
< θ′ and p + bd < s < αs < θ′ < θ . (7.4)
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Recalling m0 = 2θ log L0
L0

, we have

m0

2
< m′

0 = 2θ′ log L0

L0
< m0 . (7.5)

If ΛL0(x) is (ω, m0, E0)-regular and dist(σ(Hω,x,L0), E0) > L−s
0 , it follows from

the (first) resolvent identity that ΛL0(x) is (ω, m′
0, E)-regular for all E ∈ I = [E0 −

δ,E0 + δ] ∩ I0, where

δ = δ(θ, θ′, s, L0) =
1

2L2s
0

(
e−m′

0
L0
2 − e−m0

L0
2

)
. (7.6)

Using the hypothesis (5.10) with Remark 5.2, plus property (W) at E0 with η = L−s
0

(see (4.37)) , we conclude that

P{ ΛL0(0) is (ω, m′
0, E)-regular for every E ∈ I} (7.7)

≥ 1 − 1

Lp′

0

− QI0

Ls−bd
0

≥ 1 − 1
Lp

0

if L0 ≥ B1 = B1(d, b, QI0 , p, p′, s). Combining with property (IAD), we get that for
L0 ≥ B1 we also have

P {R (m′
0, L0, I, x, y)} ≥ 1 − 1

L2p
0

(7.8)

for all x, y ∈ Zd with |x − y| > L0 + %.
We will first prove the weaker conclusion (5.11) by a single energy multiscale anal-

ysis which is basically the multiscale analysis of von Dreifus [Dr], except that singular
regions are treated as in [DrK]. Let us fix E ∈ I , it obviously follows from (7.7) that

P{ΛL0(0) is (ω, m′
0, E)-regular} ≥ 1 − 1

Lp
0

(7.9)

if L0 ≥ B1. Conclusion (5.11) is proven by induction. Given a scale L ∈ 6N and
m > 0, we let pL(m) be the probability that a box at scale L is (ω, m,E)-singular
(not (ω,m, E)-regular), i.e.,

pL(m) = P{ΛL(0) is (ω,m, E)-singular} . (7.10)

The induction step goes from scale ` ≥ L0 to scale L = [`α]6N : given

p`(m) <
1
`p

with m = m` ≥ 2θ′ log `

`
, (7.11)

we prove

pL(M) <
1
Lp

for some M = mL ≥ 2θ′ log L

L
. (7.12)

To finish the proof of (5.11), we show infk mLk ≥ m0
2 , i.e.,

∞∑

k=0

(mLk
− mLk+1) ≤ m′

0 − m0

2
. (7.13)

The induction step proceeds roughly as in [DrK]. The deterministic part is based
on the SLI, but only boxes in CL,` are allowed. The basic idea is that if all boxes in
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CL,` were (ω, m,E)-regular, then it would follow from applying the estimate (4.33)
repeatedly that the big box ΛL(0) is also (ω, M, E)-regular with the difference m−M
“small”.

To see how this works, for a given x ∈ Zd we fix x0 ∈ ΞL+`
3 ,`(x) and apply the SLI

estimate (4.33) repeatedly with `′ = `, as long as we do not hit the boundary belt
Υ̃L(x) (see (4.22)). Each time the SLI is performed one gains a factor of 3dγI and
moves to an adjacent cell (see Remark 4.5). After N applications we have

‖Γx,LRω,x,L(E)χx0, `
3
‖ (7.14)

≤
(
3dγI

)N
ΠN

i=1‖Γxi,`Rω,xi,`(E)χxi,
`
3
‖‖Γx,LRω,x,L(E)χxN , `

3
‖ ,

where x0, x1, . . . , xN ∈ ΞL,`(x) are centers of adjacent cells which are cores of boxes
in CL,`(x), i.e., |xi − xi−1| = `

3 and Λ`(xi) ∈ CL,`(x) for i = 0, 1, . . . ,N . A moment
of reflection shows that we are always in this situation as long as

(N − 1)
`

3
≤ L − 3

2
− `

2
− L + `

6
. (7.15)

Since N is an integer, we can always take N to be the unique integer satisfying

L

`
− 3 < N ≤ L

`
− 2 . (7.16)

If all boxes in CL,`(x) are (ω, m,E)-regular we conclude from (7.14) and (7.16) that

‖Γx,LRω,x,L(E)χx0, `
3
‖ ≤

(
3dγIe−m `

2

)L
` −3

‖Rω,x,L(E)‖ . (7.17)

Thus,

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤

∑

x0∈Ξ L+`
3 ,`

(x)

‖Γx,LRω,x,L(E)χx0, `
3
‖

≤
(

L

`
+ 2

)d

sup
x0∈ΞL+`

3 ,`
(x)

‖Γx,LRω,x,L(E)χx0, `
3
‖

≤
(

L

`
+ 2

)d (
3dγIe−m `

2

)L
` −3

‖Rω,x,L(E)‖. (7.18)

If ‖Rω,x,L(E)‖ ≤ Ls, which holds outside a set of small probability by the Wegner
estimate (4.37), we get

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤ Ls

(
L

`
+ 2

)d (
3dγIe−m `

2

)L
` −3

≡ e−M L
2 , (7.19)

with

M ≥ m

(
1 − c

log `

)
≥ 2θ′ log L

L
(7.20)

for ` sufficiently large, with c a constant depending only on d, γI , θ
′, s, α and L0. The

desired estimate (7.13) follows if L0 is large enough.
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Unfortunately the probabilistic estimates do not work. We assumed that all boxes
in CL,`(x) are (ω,m, E)-regular and ‖Rx,L(E)‖ ≤ Ls, thus we can only conclude that

pL(M) ≤ (3
L

`
− 2)dp`(m) + QI

1
Ls−bd

≤ (3
L

`
− 2)d 1

`p
+ QI

1
Ls−bd

≤ 3
`p−(α−1) + QI

1
Ls−bd

. (7.21)

To get pL(M) ≤ 1
Lp we would need p − (α − 1) > p, which is impossible since α > 1.

To fix this problem we must relax the condition that all boxes in CL,`(x) are
(ω, m, E)-regular and accept the presence of at least one (ω, m, E)-singular box in
CL,`(x). To exploit the independence of events in nonoverlapping boxes (property
(IAD)) we will forbid the existence of two nonoverlapping singular boxes in CL,`(x).

To see how we obtain the improvement in the probabilities, let us consider the
event

Q(K)
x (E, `, L, m) = (7.22)

{ω; there are K nonoverlapping (ω,m, E)-singular boxes in CL,`(x)}.

Using property (IAD) we get

P{Q(2)
x (E, `, L, m)} ≤ |CL,`(x)|2p`(m)2 ≤

(
3
L

`
− 2

)2d 1
`2p

≤ 9d`2d(α−1) 1
`2p

<
1

2`αp
≤ 1

2Lp
, (7.23)

with (7.23) valid for large ` if α < 2p+2d
p+2d = 1 + p

p+2d , which allows for α > 1.
We may have fixed one problem but we created another: we cannot estimate the

right hand side of (7.14) as before, because we may hit a singular box, i.e., some of
the xi’s in (7.14) may not be the centers of (ω, m, E)-regular boxes. So we must make
changes. Taking ω /∈ Q

(2)
0 (E, `, L, m) we exclude the possibility of two nonoverlapping

bad boxes in CL,`(x), so if there is one singular box, say Λ`(u) (note u depends on
ω, `, m, E), to guarantee that Λ`(u′) ∈ CL,`(x) is a regular box we need |u′−u| > `+%.
Taking ` > 3%, it suffices to have |u′ − u| > 4`

3 . Thus Λ 7`
3
(u) is our “singular region”,

i.e., the region such that boxes in CL,`(x) with cores outside this region are regular.
Given x ∈ ΞL+`

3 ,`, we estimate ‖Γx,LRω,x,L(E)χx, `
3
‖ by applying the SLI estimate

(4.33) repeatedly, as long as we do not hit the boundary belt Υ̃L(0), but we now have
two cases:

• If x′ /∈ Λ 7`
3
(u) and Λ`(x′) ∈ CL,`(x), then x′ is the center of a regular box in

CL,`(x) and we use (4.33) with `′ = `, obtaining

‖Γx,LRω,x,L(E)χx′, `
3
‖ ≤ 3dγIe−m `

2 ‖Γx,LRω,x,L(E)χx′′, `
3
‖ (7.24)

for some x′′ ∈ Υ`,`(x′), i.e., |x′′ − x′| = `
3 .
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• If x′ ∈ Λ 7`
3
(u) and Λ 11`

3
(u) @ ΛL(x), we apply the SLI estimate (4.33) with

y = x′, y′ = u, and `′ = 3`, so k = 9, obtaining

‖Γx,LRω,x,L(E)χx′, `
3
‖ (7.25)

≤ 9dγI‖Γu,3`Rω,u,3`(E)χx′, `
3
‖‖Γx,LRω,x,L(E)χx′′, `

3
‖

for some x′′ ∈ Υ3`,`(u) (see (4.29)), so |x′′ − u| = 4`
3 , and hence x′′ /∈ Λ 7`

3
(u)

with Λ`(x′′) ∈ CL,`(x). We are now in the previous case, so we can use (7.24)
to get

‖Γx,LRω,x,L(E)χx′, `
3
‖ (7.26)

≤ 27dγ2
I e−m `

2 ‖Rω,u,3`(E)‖‖Γx,LRω,x,L(E)χx′′′, `
3
‖

for some x′′′ ∈ Υ`,`(x′′); note |x′′′ − u| ≤ 5`
3 and |x′′′ − x′| ≤ 8`

3 .
To control ‖Rω,u,3`(E)‖ in (7.26) and ‖Rω,x,L(E)‖ in the final expression we will
require

‖Rω,u,3`(E)‖ ≤ Ls for all u ∈ ΞL,`(x) , (7.27)

and

‖Rω,0,L(E)‖ ≤ Ls . (7.28)

To do so, let us define the events

Wx(E, L, 3`, s) = (7.29){
ω; dist (σ(Hω,u,3`), E) >

1
Ls

for some u ∈ ΞL,`(x)
}

and

Wx(E, L, s) =
{

ω; dist (σ(Hω,x,L), E) >
1
Ls

}
, (7.30)

We will require ω /∈ Wx(E, L, 3`, s)∪Wx(E,L, s), so (7.27) and (7.28) hold. This will
be permissible since it follows from (4.37) that

P{Wx(E, L, 3`, s) ∪ Wx(E,L, s)} ≤ (3
L

`
+ 1)dQI

(3`)bd

Ls
+ QI

1
Ls−bd

<
1

2`αp
≤ 1

2Lp
(7.31)

for large `, since we chose s > p + bd.
Thus if ω /∈ Q

(2)
x (E, `, L, m)∪Wx(E, L, 3`, s)∪Wx(E, L, s), for each x0 ∈ Ξ L+`

3 ,`(x)
we find that after applying either (7.24) or (7.26) with (7.27) repeatedly, stopping
before we hit the boundary belt Υ̃L(x), we have

‖Γx,LRω,x,L(E)χx0, `
3
‖ (7.32)

≤
(
3dγIe−m `

2

)Nr
(
27dγ2

I Lse−m `
2

)Ns

‖Γx,LRω,x,L(E)χxN , `
3
‖

≤
(
3dγIe−m `

2

)Nr
(
27dγ2

I Lse−m `
2

)Ns

Ls ,
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where Nr and Ns are the number of times we used (7.24) or (7.26), respectively,
N = Nr + Ns. Since m ≥ 2θ′ log `

` and θ′ > αs, we can take ` sufficiently large such
that

27dγ2
I Lse−m `

2 ≤ 27dγ2
I

1
`θ′−αs

<
1
2

. (7.33)

Combining (7.32) and (7.33), we get

‖Γx,LRω,x,L(E)χx0, `
3
‖ ≤

(
3dγIe−m `

2

)Nr 1
2Ns

Ls . (7.34)

We cannot hit the boundary belt Υ̃L(x) as long

(Nr − 1)
`

3
≤ L − 3

2
− `

2
− L + `

6
− 8`

3
, (7.35)

where we subtracted 8`
3 due to the fact that we may have gone through the bad region.

Thus we always have (7.34) if

Nr ≤ L

`
− 10 . (7.36)

We have then two possible cases: either Ns is large enough so that the right hand
side of (7.34) is ≤ e−m L

2 Ls, or we get (7.34) with Nr the integer satisfying

L

`
− 11 < Nr ≤ L

`
− 10 , (7.37)

and hence

‖Γx,LRω,x,L(E)χx0, `
3
‖ ≤

(
3dγIe−m `

2

) L
` −11

Ls . (7.38)

The estimate (7.38) holds in either case, so we can proceed as in (7.18) to get

‖Γx,LRω,x,L(E)χx, L
3
‖ ≤ Ls

(
L

`
+ 2

)d (
3dγIe−m `

2

)L
` −11

≡ e−M L
2 , (7.39)

with

M ≥ m

(
1 − c1

log `

)
≥ 2θ′ log L

L
(7.40)

for ` sufficiently large, with c1 a constant depending only on d, γI , θ
′, s, α and L0. The

desired estimate (7.13) follows if L0 is large enough. Moreover, it follows from (7.23)
and (7.31) that for sufficently large L0 we have

pL(M) ≤ P{Q(2)
x (E, `, L, m) ∪ Wx(E, L,3`, s) ∪ Wx(E, L, s)} <

1
Lp

. (7.41)

The single energy multiscale analysis (5.11) is proven.
We now turn to the proof of the energy interval multiscale analysis (5.12). We fix

a compact subinterval Ĩ0 of I with I0 ⊂ Ĩ◦
0 , so dist(I0,I\Ĩ0) > 0. We require (7.3),

(7.4), and

θ > 2p + (b + 1)d . (7.42)
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As before, the proof proceeds by induction. The initial step in the induction is given
by (7.8). Given a scale L ∈ 6N and m > 0, we set

PL(m, x, y) = P {R (m, L, I, x, y)c} , (7.43)

where Ac denotes the complement of the event A. The induction step goes from scale
` ≥ L0 to scale L = [`α]6N : given that

P`(m,x, y) <
1

`2p
for all x, y ∈ Zd with |x − y| > ` + % , with m = m` ≥ 2θ′ log `

` ,

(7.44)

we prove

PL(M,x, y) <
1

L2p
for all x, y ∈ Zd with |x − y| > ` + %, some M = mL ≥ 2θ′ log L

L .

(7.45)

To finish the proof of (5.12), we show that that (7.13) holds for these mLk ’s.
The deterministic part of the argument is quite similar to the one we used for the

single energy multiscale analysis, except that the probabilistic estimates will require
us to accept the possibility of more singular boxes; for every E ∈ I we will forbid the
existence of four nonoverlapping singular boxes in either CL,`(x) or CL,`(y). But the
probabilistic estimates will require some new ideas.

Let x ∈ Zd and E ∈ I, and suppose there are at most three nonoverlapping
(ω, m, E)-singular boxes in CL,`(x), i.e., ω /∈ Q

(4)
x (E, `, L, m). In this case we can

always find three boxes Λ`(ui) ∈ CL,`(x), i = 1, 2, 3, with |ui − uj | > ` + % if i 6= j,
such that to guarantee that Λ`(u′) ∈ CL,`(x) is a (ω, m, E)-regular box we need
|u′ − ui| > ` + % for each i = 1, 2,3. (Note that the ui depend on ω, `,m, E. We
may not need all three boxes, but under our hypothesis it is always true with three.)
Taking ` > 3%, it suffices to have |u′ −ui| > 4`

3 for all i = 1, 2,3. We have three cases:

1. The closed boxes Λ̄ 7`
3

(ui), i = 1, 2, 3, are all disjoint. In this case they are the
“singular regions”.

2. Two of the closed boxes Λ̄ 7`
3
(ui), say i = 1, 2, are not disjoint, with the third

closed box disjoint from the others. In this case we can find u1,2 ∈ ΞL,`(x) such
that Λ 7`

3
(u3) and Λ5`(u1,2) are our “singular regions”.

3. None of the three closed boxes Λ̄ 7`
3

(ui), i = 1, 2, 3 is disjoint from the other two.
In this case we can find u1,2,3 ∈ ΞL,`(x) such that Λ7`(u1,2,3) is our “singular
region”.

The point is that all boxes in CL,`(x) with cores outside the“singular regions” are
regular. In all three cases we can find vj ∈ ΞL,`(x), `j ∈ { 7`

3 , 5`, 7`}, with j =
1, . . . , r ≤ 3,

∑r
j=1 `j ≤ 22`

3 , such that the closed boxes Λ̄`j (vj) are disjoint and all
boxes in CL,`(x) with cores outside

⋃r
j=1 Λ`j (vj) are (ω, m, E)-regular.

Given x0 ∈ ΞL+`
3 ,`(x), we estimate ‖Γx,LRω,x,L(E)χx0, `

3
‖ as before by applying the

SLI estimate (4.33) repeatedly, as long as we do not hit the boundary belt Υ̃L(x).
We now have the following cases:
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• If x′ /∈
⋃r

j=1 Λ`j (vj) and Λ`(x′) ∈ CL,`(x), then x′ is the center of a regular box
in CL,`(x) and we use (7.24).

• If x′ ∈ Λ`j (vj) and Λ`j+ 4`
3
(vj) @ ΛL(x), we apply the SLI estimate (4.33) with

y = x′, y′ = vj , and `′ = `j + 2`
3 , so k ≤ 23, obtaining

‖Γx,LRω,x,L(E)χx′, `
3
‖ (7.46)

≤ 23dγI‖Γvj ,`j+ 2`
3

Rω,vj ,`j+ 2`
3
(E)χx′, `

3
‖‖Γx,LRω,x,L(E)χx′′, `

3
‖

for some x′′ ∈ Υ`j+ 2`
3 ,`(vj) (see (4.29)), so |x′′ − vj | = `j

2 + `
6 , and hence

x′′ /∈
⋃r

j′=1 Λ`j′ (vj′) with Λ`(x′′) ∈ CL,`(x). We are now in the previous case,
so we can use (7.24) to get

‖Γx,LRω,x,L(E)χx′, `
3
‖ (7.47)

≤ 69dγ2
I e−m `

2 ‖Rω,vj,`j+ 2`
3

(E)‖‖Γx,LRω,x,L(E)χx′′′, `
3
‖

for some x′′′ ∈ Υ`,`(x′′); note |x′′′ − vj | ≤ `j+`
2 and |x′′′ − x′| ≤ `j + `

3 .
To control ‖Rω,vj ,`j+ 2`

3
(E)‖ in (7.47) we now require

‖Rω,v,`′(E)‖ ≤ Ls for all v ∈ ΞL,`(x) and `′ ∈ {3`, 17`
3 , 23`

3 } , (7.48)

i.e.,

ω /∈
⋃

`′∈{3`, 17`
3 , 23`

3 }

Wx(E, L, `′, s) . (7.49)

Given x0 ∈ Ξ L+`
3 ,`(x), we apply either (7.24) or (7.47) with (7.48) repeatedly, as long

as we do not hit the boundary belt Υ̃L(x), obtaining

‖Γx,LRω,x,L(E)χx0, `
3
‖ (7.50)

≤
(
3dγIe−m `

2

)Nr
(
69dγ2

I Lse−m `
2

)Ns

‖Γx,LRω,x,L(E)χxN , `
3
‖ ,

where Nr and Ns are the number of times we used (7.24) or (7.47) with (7.48),
respectively and N + Nr + Ns. Since m ≥ 2θ′ log `

` and θ′ > αs, we can take `
sufficiently large such that

69dγ2
I Lse−m `

2 ≤ 69dγ2
I

1
`θ′−αs

<
1
2

. (7.51)

Combining (7.50), (7.51), and taking ω /∈ Wx(E,L, s), i.e., ‖Rω,x,L(E)‖ ≤ Ls, we get
(7.34), but now to guarantee that we do not hit the boundary belt Υ̃L(x) we need

(Nr − 1)
`

3
≤ L − 3

2
− `

2
− L + `

6
− 8` , (7.52)

where we subtracted 8` due to the fact that we may have gone through the bad
regions. Thus we always have (7.34) if

Nr ≤ L

`
− 26 . (7.53)
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As before, we have two possibilities: either Ns is large enough so that the right hand
side of (7.34) is ≤ e−m L

2 Ls, or we get (7.34) with Nr the integer satisfying

L

`
− 27 < Nr ≤ L

`
− 26 , (7.54)

and hence

‖Γx,LRω,x,L(E)χx0, `
3
‖ ≤

(
3dγIe−m `

2

) L
` −27

Ls . (7.55)

The estimate (7.55) holds in either case, so we can proceed as in (7.18) to get

‖Γx,LRω,x,L(E)χx0, L
3
‖ ≤ Ls

(
L

`
+ 2

)d (
3dγIe−m `

2

) L
` −27

≡ e−M L
2 (7.56)

with

M ≥ m

(
1 − c2

log `

)
≥ 2θ′ log L

L
(7.57)

for ` sufficiently large, with c2 a constant depending only on d, γI , θ
′, s, α and L0. The

desired estimate (7.13) follows if L0 is large enough.
To finish the proof we need to establish the desired estimate on PL(M, x, y), where

x, y ∈ Zd with |x − y| > L + %. Given u ∈ Zd, let Q
(K)
u (I, `, L, m) be the event that

there is an energy E ∈ I for which CL,`(u) contains at least K (ω, m,E)-singular
nonoverlapping boxes, i.e.,

Q(K)
u (I, `, L, m) =

⋃

E∈I

Q(K)
u (E, `, L, m) , (7.58)

and let

Vu(I, `, L, s) =
⋃

E∈I




 ⋃

`′∈{3`, 17`
3 , 23`

3 }

Wu(E, L, `′, s)


 ∪ Wu(E, L, s)


 . (7.59)

We set

Q(K)
x,y (I, `, L, m) = Q(K)

x (I, `, L, m) ∪ Q(K)
y (I, `, L, m) , (7.60)

and

Vx,y(I, `, L, s) = Vx(I, `, L, s) ∩ Vy(I, `, L, s) . (7.61)

If ω /∈ Q
(4)
x,y(I, `, L, m) ∪ Vx,y(I, `, L, s), for every E ∈ I we have (7.56) and (7.57) for

either ΛL(x) or ΛL(y), and hence, using the tranlstion invariance of the probabilities,
we have

PL(M,x, y) ≤ 2P{Q
(4)
0 (I, `, L, m)} + P{Vx,y(I, `, L, s)} . (7.62)

We first estimate P{Q
(4)
0 (I, `, L,m)}. Let C(K)

L,` denote be the collection of K

nonoverlapping boxes in CL,`. We have, using property (IAD) and the induction
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hypothesis, that

P{Q
(4)
0 (I, `, L,m)} (7.63)

≤
∑

{Λ`(u),Λ`(v)}∈C(2)
L,`

P{R(m, `, I, u, v)c} P





⋃

{Λ`(u′),Λ`(v′)}∈C(2)
L,`

{Λ`(u),Λ`(v),Λ`(u′),Λ`(v′)}∈C(4)
L,`

R(m, `, I, u′, v′)c





≤
∑

{Λ`(u),Λ`(v)}∈C(2)
L,`

P{R(m, `, I, u, v)c} P





⋃

{Λ`(u′),Λ`(v′)}∈C(2)
L,`

R(m, `, I, u′, v′)c





≤




∑

{Λ`(u),Λ`(v)}∈C(2)
L,`

P{R(m, `, I, u, v)c}




2

=




∑

{Λ`(u),Λ`(v)}∈C(2)
L,`

P`(m, u, v)




2

≤

((
3
L

`

)2d 1
`2p

)2

≤ 34d 1
`4(p−d(α−1)) .

It remains to estimate P{Vx,y(I, `, L, s)}. Let σ̃(A) = σ(A)∩ Ĩ0 for any operator A.
If Λ`1(u) and Λ`2(v) are nonoverlapping boxes, then it follows from properties (IAD),
(NE) and (W) that for η < dist(I0,I\Ĩ0) we have

P {dist (σ̃(Hω,u,`1), σ̃(Hω,v,`2)) ≤ η} ≤ CĨ0
QĨ0

η`bd
1 `d

2 . (7.64)

To see that, let F1 and F2 be the σ-algebras generated by events based on the boxes
Λ`1(u) and Λ`2(v), respectively. We set Pi to be the restriction of the probability
measure P to Fi, with Ei the corresponding expectation and ωi the corresponding
variable of integration, i = 1, 2. Using the independence given by property (IAD), we
have

P {dist (σ̃(Hω,u,`1), σ̃(Hω,v,`2)) ≤ η} = (7.65)
E2 {P1 {dist (σ̃(Hω1,u,`1), σ̃(Hω2,v,`2)) ≤ η}}

For a fixed ω2 we have σ̃(Hω2,v,`2) = {λ1, λ2, . . . , λN} where N ≤ CĨ0
`d
2 by property

(NE). (Note that N and λ1, λ2, . . . , λN depend on ω2, v, `2.) Thus, using property
(W), we get

P1{dist (σ̃(Hω1,u,`1), σ̃(Hω2,v,`2)) ≤ η} ≤ (7.66)
N∑

j=1

P1 {dist (σ̃(Hω1,u,`1), λj)) ≤ η} ≤ CĨ0
QĨ0

η`bd
1 `d

2 .

The estimate (7.64) follows from (7.65) and (7.66).
Let Zx,y(I, `, L, s) denote the event that

dist (σ̃(Hω,u,`1), σ̃(Hω,v,`2)) ≤ 2
Ls

(7.67)
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for either
(i) u = x, v = y, and `1 = `2 = L, or
(ii) u = x, `1 = L, and some v ∈ ΞL,`(y) and `2 ∈ {3`, 17`

3 , 23`
3 }, or

(iii) v = y, `2 = L, and some u ∈ ΞL,`(x), and `2 ∈ {3`, 17`
3 , 23`

3 }, or
(iv) some u ∈ ΞL,`(x), v ∈ ΞL,`(y), and `1, `2 ∈ {3`, 17`

3 , 23`
3 }.

Clearly

Vx,y(I, `, L, s) ⊂ Zx,y(I, `, L, s) , (7.68)

and it follows from (7.64), if L0 is large enough so 1
Ls ≤ 1

Ls
0

< dist(I0, I\Ĩ0), that

P {Zx,y(I, `, L, s)} (7.69)

≤
2CĨ0

QĨ0

Ls

{
L(b+1)d + 6

(
3
L

`

)d

Ld

(
23`
3

)bd

+
(

3
L

`

)2d (
23`

3

)(b+1)d
}

≤
Cd,b,αCĨ0

QĨ0

Ls

{
L(b+1)d + L(2+ b−1

α )d
}

≤
2Cd,b,αCĨ0

QĨ0

Ls−(b+1)d ,

where Cd,b,α is a finite constant depending only on d, b, α.
It now follows from (7.62), (7.63), and (7.69) that

PL(M, x, y) ≤ 2 · 34d 1
`4(p−d(α−1)) +

4Cd,b,αCĨ0
QĨ0

Ls−(b+1)d <
1

L2p
(7.70)

for sufficiently large L, since α < 2p+2d
p+2d and s > 2p + (b + 1)d.
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Internat. Math. Res. Notices 17, 907–935 (1998)

[KuS] Kunz, H., Souillard, B.: Sur le spectre des operateurs aux differences finies
aleatoires. Commun. Math. Phys. 78, 201-246 (1980)
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Ann. Inst. H. Poincaré ser A40, 97-116 (1984)

[MS] Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson
localization. Riv. Nuovo Cimento 10, 1-90 (1987)



MULTISCALE ANALYSIS AND LOCALIZATION 37

[Ma] Maynard, J.: Acoustic Anderson Localization. In “Random Media and Compos-
ites”. SIAM, 1988

[P] Pastur, L.: Spectral properties of disordered systems in one-body approximation.
Commun. Math. Phys. 75, 179-196 (1980)

[PF] Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Hei-
delberg: Springer-Verlag, 1992

[SVW] Shubin, C., Vakilian, R., Wolff, T.: Some harmonic analysis questions suggested
by Anderson-Bernoulli models. Geom. Funct. Anal. 8, 932-964 (1998)

[Si] Simon, B.: Schrödinger semi-groups. Bull. Amer. Math. Soc. Vol.7, 447-526
(1982)

[SiW] Simon, B., Wolff, T.: Singular continuum spectrum under rank one perturbations
and localization for random Hamiltonians. Commun. Pure. Appl. Math. 39, 75-90
(1986)

[Sp] T. Spencer, Localization for random and quasiperiodic potentials. J. Stat. Phys.
51, 1009-1019 (1988)

[St] Stollmann. P.: Wegner estimates and localization for continuum Anderson models
with some singular distributions. Arch. Math. (Basel) 75, 307-311 (2000)

[T] Thouless, D.: Electrons in disordered systems and the theory of localization. Phys.
Rep. 13, 93-142 (1974)

[U] Ueki, N.: Wegner estimates and localization for Gaussian random potentials. Publ.
Res. Inst. Math. Sci. 40. To appear

[W1] Wang, W.-M.: Microlocalization, percolation, and Anderson localization for the
magnetic Schrödinger operator with a random potential. J. Funct. Anal. 146, 1-26
(1997)

[W2] Wang, W.-M.: Localization and universality of Poisson statistics for the multidi-
mensional Anderson model at weak disorder. Invent. Math. 146, 365-398 (2001)

[We] Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B
44, 9-15 (1981)

[WiBLR] Wiersma, D., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a
disordered medium. Nature 390, 671-673 (1997)

[Z] Zenk, H.: Anderson localization for a multidimensional model including long range
potentials and displacements. Rev. Math. Phys. 14, 273-302 (2002)

Abel Klein, University of California, Irvine, Department of Mathematics, Irvine, CA 92697-
3875, USA • E-mail : aklein@uci.edu


