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Abstract

Let S be the orthogonal sum of infinitely many pairwise unitarily equivalent

symmetric operators with non-zero deficiency indices. Let J be an open subset

of R. If there exists a self-adjoint extension S0 of S such that J is contained

in the resolvent set of S0 and the associated Weyl function of the pair {S, S0}
is monotone with respect to J , then for any self-adjoint operator R there exists

a self-adjoint extension S̃ such that the spectral parts S̃J and RJ are unitarily

equivalent. The proofs relies on the technique of boundary triples and associated

Weyl functions which allows in addition, to investigate the spectral properties of

S̃ within the spectrum of S0. So it is shown that for any extension S̃ of S the

absolutely continuous spectrum of S0 is contained in that one of S̃. Moreover,

for a wide class of extensions the absolutely continuous parts of S̃ and S are even

unitarily equivalent.

Keywords: symmetric operators, self-adjoint extensions, abstract boundary conditions,

Weyl function.
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1 Introduction

Let S be a densely defined symmetric operator in a separable Hilbert space H with deficiency

indices n+(S) = n−(S) ≤ ∞. We recall that a bounded open interval J = (α, β) is called a

gap for S if

‖2Sf − (α + β)f‖ ≥ (β − α)‖f‖, f ∈ domS. (1.1)

If α → −∞, then 1.1 turns into (Sf, f) ≥ β‖f‖2, for all f ∈ domS, meaning that (−∞, β)

is a gap for A if S is semi-bounded below with the lower bound β. The problem whether

there exist self-adjoint extensions S̃ of S preserving the gap (α, β) has been extensively

investigated in the middle of the thirties. It has been positively solved by M. Stone, K.

Friedrichs and H. Freidental for operators semi-bounded from below (α = −∞) (see, [1, 27])

and by M.G.Krein [22] for the case of a finite gap. The problem to describe completely the

set ExtS(α, β) of all self-adjoint extensions S̃ of S preserving the gap has been solved by

M.G.Krein [22], [23](see also [1],[27]) in the case J = (−∞, β) and in [17] for a finite gap

J = (α, β).

M. G. Krein [22] has investigated the spectrum of self-adjoint extensions S̃ within

a gap J of a densely defined symmetric operator S with finite deficiency indices. Namely,

Krein has shown that if R is any self-adjoint operator on some auxiliary separable Hilbert

space such that dim(ER(J)K) ≤ n, then there exists a self-adjoint extension S̃ such that the

part RJ := R�ER(J)K of R is unitarily equivalent to S̃J := S̃ �ES̃(J)K., i.e S̃J ∼= RJ , where

ER(·) and ES̃(·) are the spectral measures of R and S̃, respectively.

The result was generalized in [8] to the case of infinite deficiency indices. In this case

it was shown that if R is any self-adjoint operator with pure point spectrum, then there exists

a self-adjoint extension S̃ such that S̃J ∼= RJ . Naturally, the question arises whether we can

put other kind of spectra into J , for instance, absolutely continuous or singular continuous

spectrum. This problem has been investigated in a series of papers [2, 7, 8, 9, 10, 11]. For

the class of (weakly) significant deficient symmetric operators (for the definition see [2, 9])

it was shown [2, Theorem 6.2] that for any auxiliary self-adjoint operator R and any open

subset J0 ⊆ J there exists a self-adjoint extension S̃ such that

S̃pp ∼= Rpp
J , (1.2)

S̃acJ
∼= Rac

J , (1.3)

σsc(S̃) ∩ J = J0 ∩ J (1.4)

where Rac, S̃ac and Rpp, S̃pp denote the absolutely continuous and pure point parts of R, S̃,

respectively. Notice that the deficiency indices of (weakly) significant deficient symmetric

operators are always infinite. The assumption that S is a (weakly) significant deficient

symmetric operator was essentially used in the first proof of (1.3) and (1.4). Later on this
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assumption was dropped for the third relation (1.4), see [10]. However, one has to mention

that the singular continuous spectrum obtained in [10] belongs to a certain class of sets

which excludes a wide class of possible sets, for instance, Cantor sets.

In [11] an attempt was made to remove all these restrictions assuming that the

symmetric operator S has a special structure, namely,

S =
∞⊕
k=1

Sk on K =
∞⊕
k=1

Kk, (1.5)

where each of the operators Sk is unitarily equivalent to a fixed (i.e. k-independent) densely

defined closed symmetric operator A in a separable Hilbert space and A has positive defi-

ciency indices. If J is a gap of A (and therefore of Sk for every k), then for any self-adjoint

operator on any separable Hilbert space R there exists a self-adjoint extension S̃ of S in

K such that the relations (1.2) and (1.3) hold as well as σsc(S̃) ∩ J = σsc(R) ∩ J , cf. [11,

Theorem 10]. We remark that if n±(A) <∞, then the operator S is not (weakly) significant

deficient. Thus [11, Theorem 10] weakens considerable the property (1.4) for the special case

(1.5). The proof relies on a technique which is quite different from that of [2, 8, 9, 10] and

which is called the method of boundary triples and associated Weyl functions. We describe

the method briefly in the next section.

The previous results advise the assertion that for any densely defined closed sym-

metric operator S with infinite deficiency indices and gap J there is a self-adjoint extension S̃

such that the conditions (1.2), (1.3) and S̃scJ
∼= Rsc

J are satisfied for any auxiliary self-adjoint

operator R. Indeed, this is true and was proved in [7, Theorem 27]. In particular, S̃ has the

same spectrum, the same absolutely continuous and singular continuous spectrum and the

same eigenvalues inside J as R.

Since for one gap the problem on the spectral properties of self-adjoint extensions is

completely solved, naturally the question arises whether is it possible to extend the results

to the case of several gaps. It turns out that an analogous statement is wrong if J is the

union of disjoint gaps. In general, there does not even exist a self-adjoint extension S̃ of S

such that J ⊂ ρ(S̃).

In 1947 M.G. Krein posed the problem to find necessary and sufficient conditions for

a symmetric operator with several gaps such that there is an exit space self-adjoint extension

or canonical self-adjoint extension preserving the gaps. This problem has been solved in [17],

where a criterion for the existence of such types of extensions has been found and a complete

description of those extensions has been obtained.

In the following we always assume that there exists a self-adjoint extension S0 in the

original space such that J ⊆ ρ(S0) where ρ(S0) denotes the resolvent set of S0. Under this

assumption we are interested in the following problem: Let S be a closed symmetric operator

with equal deficiency indices n±(S) and let J ⊆ ρ(S0) be an open subset of R. Further,
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let R be a self-adjoint operator in a separable Hilbert space R satisfying the condition

dim(ER(J)R) ≤ n. Does there exist a self-adjoint extension S̃ of S such that S̃J ∼= RJ? In

general, the answer to this question is no, see Example 6.1, which means, that the solution

of this problem requires additional assumptions. To formulate these additional assumptions

we rely on the theory of abstract boundary conditions. Using this framework for each pair

{S, S0} there is a boundary triple Π = {H,Γ0,Γ1}, cf. Section 2.2, such that S0 = S∗ �

ker(Γ0). To each boundary triple one associates a Weyl function M(·), cf. Section 2.3, which

is the main tool in this approach. We demand that the Weyl function M(·) is monotone

with respect to J , cf. Definition 2.3.

In the present paper we restrict ourselves to the case (1.5) which was already treated

in [11]. Under this assumption we present a complete solution of the inverse spectral problem

for symmetric operators with gaps and monotone Weyl function.

THEOREM 1.1 Let {Sk}∞k=1 be a family of closed symmetric operators Sk defined

in the separable Hilbert spaces Kk such that the operators Sk are unitarily equivalent to a

closed symmetric operator A in H with equal positive deficiency indices. If there exists a

boundary triple Π0 = {H0,Γ
0
0,Γ

0
1} for A∗ such that the corresponding Weyl function M(·) is

monotone with respect to the open set J ⊆ ρ(A0), A0 := A∗ �ker(Γ0
0), then for any auxiliary

self-adjoint operator R in some separable Hilbert space R the closed symmetric operator S

defined by (1.5) admits a self-adjoint extension S̃ such that that the spectral parts S̃J and

RJ are unitarily equivalent, i.e. S̃J ∼= RJ .

The proof of Theorem 1.1, given at the end of Section 4, has the advantage that the extension

S̃ is constructed explicitly which allows to draw conclusions on the spectral properties outside

the gaps. In more detail, let as assume for the moment that n±(Sj) = 1. If Πj = {C,Γj0,Γ
j
1}

is a boundary triple for S∗j , then Π = {H,Γ0,Γ1} :=
⊕∞

j=1 Πj performs a boundary triple

for S =
⊕∞

j=1 Sj which is associated with the pair {S, S0}, i.e S0 = S∗ �ker(Γ0). Using this

boundary triple we indicate explicitly a self-adjoint boundary operator B in H such that the

self-adjoint extension S̃ = SB determined by

S̃ = SB = S∗ �dom(SB), dom(SB) := ker(Γ0 −BΓ1), (1.6)

cf. [11], has the required spectral properties.

We note that Theorem 1.1 essentially complements the results of [2, 7, 8, 9, 10, 11]

for symmetric operators of the special form (1.5) even for one gap J because in contrast

to the existing results the extension S̃ is constructed explicitly and the approach allows to

obtain spectral information on parts outside the gaps, cf. Section 5, which was until now

not possible in this general form in this case.

The paper is organized as follows. In Section 2 we summarize definitions and state-

ments which are necessary in the following. In particular, we define spectral measures which
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are non-orthogonal in general, Nevanlinna functions, boundary triples, Weyl functions and

γ-fields.

In Section 3 we consider the important case of a symmetric operator A with several

gaps which admits a self-adjoint extension A0 preserving the gaps such that the Weyl function

M(·) corresponding to the pair {A,A0} is monotone and of scalar-type. We calculate (see

Theorem 3.3) the non-orthogonal spectral measures (bounded and unbounded) in the gaps

of A for every self-adjoint extension AB = A∗B which is disjoint from A0.

In Section 4 we apply Theorem 3.3 to obtain a complete solution of the inverse

spectral problem for a symmetric operator of the form (1.5) with several gaps and monotone

Weyl functions and prove finally Theorem1.1.

In Section 5 we complement the main results on the spectrum of the operator SB

(see (1.6)) outside the gaps. Namely, applying the Weyl function technique elaborated in

[12] we show that if S is simple, then for any self-adjoint extension S̃ of S the absolutely

continuous spectrum of S̃ contains that one of S0 where S0 := S∗ �ker(Γ0), cf. Theorem 5.2

and Corollary 5.4. Moreover, it turns out that if B is singular, then the absolutely continuous

parts of SB and S0 are unitarily equivalent, cf. Theorem 5.6.

In Section 6 we consider three examples of symmetric operators of the form (1.5).

Using the Weyl function technique we calculate explicitly the non-orthogonal spectral mea-

sure ΣB(·) of any extension SB = S∗B. We rely on the fact that it is much easier to calculate

the non-orthogonal spectral measure ΣB(·) of SB than the corresponding orthogonal one

EAB(·). However, since both measures are spectrally equivalent in the sense of [26] the

knowledge of ΣB(·) allows to recover the spectral properties of EAB(·). We also remark

that our first example concerns a symmetric operator with periodic scalar-type Weyl func-

tion, and the Weyl function technique allows us to show that any self-adjoint extension S̃ is

periodic.

We conjecture that Theorem 1.1 remains true for any symmetric operator S ad-

mitting a boundary triple Π = {H,Γ0,Γ1} such that the associated Weyl function M(·) is

monotone with respect to J ⊆ ρ(S0) but not necessarily of scalar-type. In a forthcoming

paper we confirm this hypothesis for a wide class of symmetric operators with gaps.

Throughout the paper we use the following notations: B(X) denotes the Borel σ-

algebra of a topological space X while Bb(R) denotes the set of all bounded δ ∈ B(R). mes(δ)

stands for the Lebesgue measure of δ ∈ B(R). By H, R, H, K and K′ we denote separable

Hilbert spaces. The set of all bounded linear operators from H to R is denoted by [H,R] or

[H] if H = R. C(H) stands for the set of closed densely defined operators in H.

If A is a symmetric operator, we denote by Nz := ker(A∗ − z) the deficiency sub-

spaces of A and by n±(A) := dimN±i its deficiency indices. The set of all self-adjoint

extensions of a closed symmetric operator A is denoted by ExtA. As usual ET (·) stands for
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the spectral measure (resolution of the identity) of a self-adjoint operator T in H. We denote

by σac(T ), σs(T ), σsc(T ) and σpp(T ) the absolutely continuous, singular, singular continuous

and the pure point spectrum of the operator T = T ∗, respectively. By σp(T ) the set of

eigenvalues of T is indicated, σp(T ) = σpp(T ). Finally, we denote the resolvent set of an

operator by ρ(·).

2 Preliminaries

A mapping Σ(·) : Bb(R) −→ [H] is called an operator (operator-valued) measure if

(i) Σ(·) is σ-additive, in the strong sense.

(ii) Σ(δ) = Σ(δ)∗ ≥ 0 for δ ∈ Bb(R).

The operator measure is called bounded if it extends to the Borel algebra B(R) of R, i.e

Σ(R) ∈ [H]. Otherwise, the operator measure is called unbounded. A bounded operator

measure Σ(·) = E(·) is called orthogonal if, in addition, the following conditions are satisfied:

(iii) E(δ1)E(δ2) = E(δ1 ∩ δ2) for δ1, δ2 ∈ B(R),

(iv) E(R) = IH.

Setting in (iii) δ1 = δ2, one concludes that an orthogonal measure E(·) takes its values in

the set of orthogonal projections on the Hilbert space H.

Every orthogonal measure E(·) determines the operator T = T ∗ =
∫
R
λdE(λ) in

H with E(·) being its resolution of the identity. Conversely, by the spectral theorem, every

operator T = T ∗ in H admits the above representation with the orthogonal spectral measure

E =: ET .

The following result is known (see [13]) as a generalized Naimark dilation theorem.

PROPOSITION 2.1 If Σ(·) : B(R) −→ [H] is a bounded operator measure, then

there exist a Hilbert space K, a bounded operator K ∈ [H,K] and an orthogonal measure

E(·) : B(R) −→ [K] (an orthogonal dilation) such that

Σ(δ) = K∗E(δ)K, δ ∈ B(R). (2.1)

If the orthogonal dilation is minimal, i.e.

span{E(δ)ran(K) : δ ∈ B(R)} = K, (2.2)

then it is uniquely determined up to unitary equivalence. That is, if one has two bounded

operators K ∈ [H,K] and K ′ ∈ [H,K′] as well as two minimal orthogonal dilations E(·) :

B(R) −→ [K] and E ′(·) : B(R) −→ [K′] obeying Σ(δ) = K∗E(δ)K = K ′∗E ′(δ)K ′, δ ∈ B(R),

then there exists an isometry V : K′ −→ K such that E ′(δ) = V ∗E(δ)V , δ ∈ B(R).
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Note that a short and simple proof of the Naimark dilation theorem as well as of Proposition

2.1 has recently been obtained in [26].

DEFINITION 2.2 We call E(·), satisfying (2.1) and (2.2), the minimal orthogo-

nal measure associated to Σ(·), or the minimal orthogonal dilation of Σ(·).

Every operator measure Σ(·) admits the Lebesgue-Jordan decomposition Σ = Σac+Σs, Σs =

Σsc + Σpp where Σac,Σs,Σsc and Σpp are the absolutely continuous, singular, singular con-

tinuous and pure point components (measures) of Σ(·), respectively. Non-topological sup-

ports of measures Στ (τ ∈ {ac, sc, pp}) can be chosen to be mutually disjoint (see [12]).

Therefore, if an operator measure Σ is orthogonal, Σ(·) = ET (·), then the ortho-projections

P τ := Eτ
T (R)(τ ∈ {ac, sc, pp}) are pairwise orthogonal. Every subspace Hτ

T := P τH reduces

the operator T = T ∗ and the Lebesgue-Jordan decomposition yields

H = Hac
T ⊕ Hsc

T ⊕ Hpp
T , T = T ac ⊕ T sc ⊕ T pp, (2.3)

where T τ := P τT �Hτ
T , τ ∈ {ac, sc, pp}.

2.1 Nevanlinna functions

Let H be a separable Hilbert space. We recall that an operator-valued function F : C+ −→
[H] is said to be a Nevanlinna (or Herglotz or RH – ) one [1, 24, 28] if it is holomorphic and

takes values in the set of dissipative operators on H, i.e.

=m(F (z)) :=
F (z)− F (z)∗

2i
≥ 0, z ∈ C+.

Usually, one considers a continuation of F in C− by setting F (z) := F (z)∗, z ∈ C−. Notice

that this does not necessarily coincide with a holomorphic continuation of F to C− if it

exists.

If F (·) is a Nevanlinna function, F ∈ RH, then there exists a bounded operator

measure Σ0
F (·) : B(R) −→ [H], which is non-orthogonal in general, and operators Ck = C∗k ∈

[H], k ∈ {0, 1}, C1 ≥ 0, such that the representation

F (z) = C0 + C1z +

∫ ∞
−∞

1 + tz

t− z
dΣ0

F (t), z ∈ C+ ∪ C−, (2.4)

holds. The representation (2.4) is an operator generalization (see [13]) of a well-known

result for scalar Nevanlinna (Herglotz) functions (cf. [1, 4, 24, 28]). The integral in (2.4)

is understood in the strong sense. In the following the bounded measure Σ0
F (·) is called

the bounded spectral measure of F (·). The measure Σ0
F (·) is uniquely determined by the

Nevanlinna function F (·). Its associated orthogonal spectral measure is denoted by EF (·).
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By Proposition 2.1, there exists an auxiliary Hilbert space KF and a bounded operator

K ∈ [H,KF ] obeying ker(K) = ker(Σ0
F (R)) and Σ0

F (δ) = K∗EF (δ)K, δ ∈ B(R). By

ΣF (δ) :=

∫
δ

(1 + t2)dΣ0
F (t), δ ∈ Bb(R), (2.5)

one defines an operator measure which, in general, is non-orthogonal and unbounded. It is

called the unbounded spectral measure of F (·) Using ΣF the representation (2.4) transforms

into

F (z) = C0 + C1z +

∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dΣF (t), z ∈ C+ ∪ C−. (2.6)

F determines uniquely the unbounded spectral measure ΣF (·) by means of the Stieltjes

inversion formula (see [1]):

ΣF ((a, b)) = s− lim
δ→+0

s− lim
ε→+0

1

π

∫ b−δ

a+δ

=m(F (x+ iε))dx. (2.7)

By supp(F ) we denote the topological (minimal closed) support of the spectral measure ΣF .

Since supp(F ) is closed the set OF := R \ supp(F ) is open. The Nevanlinna function F (·)
admits an analytic continuation to OF given by

F (λ) = C0 + C1λ+

∫ +∞

−∞

(
1

t− λ
− t

1 + t2

)
dΣF (t), λ ∈ OF .

Using this representation we immediately find that F (·) is monotone on each component

interval ∆ of OF , i.e. F (λ) ≤ F (µ), λ < µ, λ, µ ∈ ∆. In general, this relation is not

satisfied if λ and µ belong to different component intervals .

DEFINITION 2.3 Let F (·) be a Nevanlinna function. The Nevanlinna function

is monotone with respect to the open set J ⊆ OF if for any two component intervals J1 and

J2 of J one has F (λ1) ≤ F (λ2) for all λ1 ∈ J1 and λ2 ∈ J2 or F (λ1) ≥ F (λ2) for all λ1 ∈ J1

and λ2 ∈ J2.

Let L ∈ N ∪∞ be the number of component intervals of J . Obviously, if F (·) is monotone

with respect to J and L <∞, then there exists an enumeration {Jk}Lk=1 of the components

of J such that

F (λ1) ≤ F (λ2) ≤ . . . ≤ F (λL)

holds for {λ1, λ2, . . . , λL} ∈ J1 × J2 × . . .× JL. If L = ∞, then it can happen that such an

enumeration does not exist. If F (·) is a scalar Nevanlinna function, then F (·) is monotone

with respect to J if and only if the condition F (J1) ∩ F (J2) = ∅ is satisfied for any two

component intervals J1 and J2 of J .
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2.2 Boundary triples

In what follows A will always denote a closed symmetric operator with deficiency indices

n±(A) ≤ ∞. Without loss of generality we may assume that A is simple. This means that

A has no self-adjoint reducing subspaces.

Our approach to the inverse spectral theory of self-adjoint extensions is based on

the concept of boundary triples (see [21] and references therein) and the corresponding Weyl

functions ([16, 17, 18]). We start with the definition of a boundary triple which may be

considered as an abstract version of the second Green’s formula.

DEFINITION 2.4 A triple Π = {H,Γ0,Γ1} consisting of an auxiliary Hilbert

space H and linear mappings Γi : dom(A∗) −→ H, i = 0, 1, is called a boundary triple for

the adjoint operator A∗ of A if the following two conditions are satisfied:

(i) The second Green’s formula takes place:

(A∗f, g)− (f, A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom(A∗).

(ii) The mapping Γ := {Γ0,Γ1} : dom(A∗) −→ H⊕H, Γf := {Γ0f,Γ1f}, is surjective.

The above definition allows one to describe the set ExtA in the following way (see ([16, 17,

25]).

PROPOSITION 2.5 Let Π = {H,Γ0,Γ1} be a boundary triple for A∗. Then the

mapping Γ establishes a bijective correspondence Ã→ Θ := Γ(dom(Ã)) between the set ExtA

of self-adjoint extensions of A and the set of self-adjoint linear relations in H.

By Proposition 2.5, the following definition is natural.

DEFINITION 2.6 Let Π = {H,Γ0,Γ1} be a boundary triple for A∗.

(i) We put AΘ = Ã, if Θ := Γ(dom(Ã)) that is

AΘ := A∗ �DΘ, where dom(AΘ) = DΘ := {f ∈ dom(A∗) : {Γ0f,Γ1f} ∈ Θ}. (2.8)

(ii) If Θ = G(B) is the graph of an operator B = B∗ ∈ C(H), then dom(AΘ) is determined

by the equation dom(AB) = DB := DΘ = ker(Γ1 −BΓ0). We set AB := AΘ.

REMARK 2.7 We note the following (see ([16, 17, 25]):

1. The deficiency indices n±(A) are equal to the dimension of H, i.e dim(H) = n±(A).
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2. There exist two self-adjoint extensions Ai := A∗ �ker(Γi) which are naturally associated

to a boundary triple. According to Definition 2.6 Ai := AΘi , i ∈ {0, 1}, where Θ0 =

{0} × H and Θ1 = H × {0}. Conversely, if A0 is a self-adjoint extension of A, then

there exists a boundary triple Π = {H,Γ0,Γ1} such that A0 = A∗ �ker(Γ0).

3. If B = B∗ ∈ [H], then one defines a new boundary triple ΓB = {H,ΓB0 ,ΓB1 } for A∗

with ΓB1 := Γ0, ΓB0 := BΓ0 − Γ1. It is clear that AB = A∗ �ker(ΓB0 ).

4. Θ is the graph of an operator B = B∗ ∈ C(H) iff the extensions AΘ and A0 are disjoint,

i.e. dom(AΘ) ∩ dom(A0) = dom(A).

5. Θ = G(B) with B = B∗ ∈ [H] iff AΘ and A0 are transversal, i.e. dom(AΘ)+dom(A0) =

dom(A∗).

2.3 Weyl functions

It is well known that Weyl functions are an important tool in the direct and inverse spectral

theory of singular Sturm-Liouville operators. In [16, 17, 18] the concept of Weyl function

was generalized to an arbitrary symmetric operator A with infinite deficiency indices (n, n).

Let us recall the basic facts on Weyl functions.

DEFINITION 2.8 ([16, 17]) Let A be a densely defined closed symmetric op-

erator and let Π = {H,Γ0,Γ1} be a boundary triple for A∗. The unique mapping

M(·) : ρ(A0) −→ [H] defined by

Γ1fz = M(z)Γ0fz, fz ∈ Nz = ker(A∗ − z), z ∈ C+,

is called the Weyl function corresponding to the boundary triple Π.

It is well known (cf. [16, 17]) that the above implicit definition of the Weyl function is

correct and that M(·) is a strict Nevanlinna function, i.e. an Nevanlinna function obeying

0 ∈ ρ(=m(M(i))). Moreover, if A is simple, then the Weyl function M(·) corresponding to

Π determines the pair {A,A0} uniquely up to unitary equivalence (cf. [16, 17]). Sometimes

it is said for brevity that M(·) is the Weyl function of the pair {A,A0}.
Since A is densely defined the integral representation (2.4) for M simplifies to

M(z) = C0 +

∫ +∞

−∞

1 + tz

t− z
dΣ0

M(t), z ∈ C+ ∪ C−, (2.9)

i.e. C1 = 0. The condition 0 ∈ ρ(=m(M(i))) is equivalent to 0 ∈ ρ(Σ0(R)). By EM(·) we

denote the minimal orthogonal dilation associated to Σ0
M(·) on the Hilbert space KM . Using
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the unbounded spectral measure ΣM(·), ΣM(δ) =
∫
δ
(1 + t2)dΣ0

M(t), δ ∈ Bb(R), (cf. (2.5)),

we arrive at the representation

M(z) = C0 +

∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dΣM(t), z ∈ C+ ∪ C−. (2.10)

Taking into account the Stieltjes inversion formula (2.7) one recovers ΣM((a, b)) for finite

open intervals (a, b) ⊆ R. The Weyl function allows one to describe the spectrum of self-

adjoint extensions (cf. [17]).

PROPOSITION 2.9 Let A be a simple closed symmetric operator and let Π =

{H,Γ0,Γ1} be a boundary triple for A∗ with Weyl function M(λ). Suppose that Θ is a

self-adjoint linear relation in H and λ ∈ ρ(A0). Then

(i) σ(A0) = supp(M).

(ii) λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ−M(λ)).

(iii) λ ∈ στ (AΘ) if and only if 0 ∈ στ (Θ−M(λ)), τ ∈ {p, c}.

In what follows we need the following simple proposition (cf. [17]).

PROPOSITION 2.10 Let A be a closed symmetric operator and let Π =

{H,Γ0,Γ1} be a boundary triple for A∗.

(i) If A is simple and Π1 = {H1,Γ
1
0,Γ

1
1} is another boundary triple for A∗ such that

ker(Γ0) = ker(Γ1
0), then the Weyl functions M(·) and M1(·) of Π and Π1, respectively,

are related by

M1(z) = K∗M(z)K +D, z ∈ C+ ∪ C−,

where D = D∗ ∈ [H1] and K ∈ [H1,H] is boundedly invertible.

(ii) If Θ = G(B), B = B∗ ∈ [H], then the Weyl function MB(·) corresponding to the

boundary triple ΠB = {H,ΓB0 ,ΓB1 } := {H, BΓ0 − Γ1,Γ0} is given by

MB(z) = (B −M(z))−1, z ∈ C+ ∪ C−. (2.11)

Since MB(·) is a Weyl function it admits a representation (2.9) with C0 and Σ0
M replaced

by CB = C∗B and a spectral measure Σ0
B := Σ0

MB
, respectively. The associated orthogonal

spectral measure is denoted by EB(·) on the Hilbert space KB := KMB
. Similarly to (2.5)

one can introduce the unbounded spectral measure ΣB(·) := ΣMB
(·) which leads to the

representation (2.10) with ΣM replaced by ΣB.

12



2.4 γ-fields

With each boundary triple we associate a so-called γ-field.

DEFINITION 2.11 Let A be a densely defined closed symmetric operator and

let Π = {H,Γ0,Γ1} be a boundary triple for A∗. The mapping ρ(A0) 3 z −→ γ(z) ∈ [H,Nz],

γ(z) := (Γ0 �Nz)−1 : H −→ Nz, z ∈ ρ(A0),

is called the γ-field of the boundary triple Π.

One can easily check that

γ(z) = (A0 − z0)(A0 − z)−1γ(z0), z, z0 ∈ ρ(A0). (2.12)

The γ-field and the Weyl function M(·) are related by

M(z)−M(z0)∗ = (z − z̄0)γ(z0)∗γ(z), z, z0 ∈ ρ(A0). (2.13)

The latter formula allows us to relate the orthogonal spectral measure EM(·) associated

to the Weyl function M(·) with the orthogonal spectral measure EA0(·) of the self-adjoint

extension A0 (cf. Lemma 3.2 from [12], and Theorem 1 from [25]).

LEMMA 2.12 Let A be a simple densely defined closed symmetric operator on a

separable Hilbert space H with equal deficiency indices. Further, let Π = {H,Γ0,Γ1} be a

boundary triple for A∗ with Weyl function M(·). If EA0(·) is the orthogonal spectral measure

of A0 defined on H and EM(·) the associated minimal orthogonal dilation of Σ0
M(·) defined on

KM , then both measures are unitarily equivalent, that is, there is an isometry W : H −→ KM
such that EA0(δ) = W ∗EM(δ)W for any Borel set δ ∈ B(R).

PROOF. By (2.13) one obtains

=m(M(x+ iy)h, h) = y(γ(x+ iy)h, γ(x+ iy)h), h ∈ H. (2.14)

Further, it follows from (2.12) that

γ(x+ iy) = [I + (x+ i(y − 1))(A0 − x− iy)−1]γ(i). (2.15)

Inserting (2.15) into (2.14) one gets

=m(M(x+ iy)h, h) = y

∫ ∞
−∞

1 + t2

(t− x)2 + y2
d(EA0(t)γ(i)h, γ(i)h), h ∈ H.

On the other hand we obtain from (2.10) that

=m(M(x+ iy)h, h) = y

∫ ∞
−∞

d(ΣM(t)h, h)

(t− x)2 + y2
, h ∈ H.

13



Applying the Stieltjes inversion formula (2.7) we find

(ΣM((a, b))h, h) =

∫
(a,b)

(1 + t2)d(EA0(t)γ(i)h, γ(i)h), h ∈ H,

which yields

Σ0
M((a, b)) = γ(i)∗EA0((a, b))γ(i) (2.16)

for any bounded open interval (a, b) ⊆ R. Since A is simple, it follows from (2.15) that

span{(A0 − λ)−1ran(γ(i)) : λ ∈ C+ ∪ C−} = H. (2.17)

By (2.16) and (2.17), EA0(·) is a minimal orthogonal dilation of Σ0
M(·). By Proposition 2.1

we find that the spectral measures EA0(·) and EM(·) are unitarily equivalent. �

By Lemma 2.12, the following definition is natural.

DEFINITION 2.13 Let Π = {H,Γ0,Γ1} be a boundary triple for A∗ with corre-

sponding Weyl function M(·). We will call Σ0
M (resp. ΣM) the bounded (resp. unbounded)

non-orthogonal spectral measure of the extension A0(= A∗ �ker(Γ0)).

We note that in contrast to orthogonal spectral measures, which are defined up to unitary

equivalence for given self-adjoint operators, a non-orthogonal bounded spectral measure Σ0
M

for a given Weyl function is not unique up to unitary equivalence. According to Proposition

2.10 two such measures Σ0
M and Σ0

M1
being the bounded spectral measures of the correspond-

ing Weyl functions M and M1, are connected by Σ0
M1

(δ) = K∗Σ0
M(δ)K, δ ∈ B(R), where

K ∈ [H′,H] and is boundedly invertible.

COROLLARY 2.14 Let A be a simple densely defined closed symmetric operator

in a separable Hilbert space H with equal deficiency indices. Further, let Π = {H,Γ0,Γ1} be

a boundary triple for A∗ and M(·) the corresponding Weyl function. Then

σ(A0) = supp(M) := supp(ΣM), στ (A0) = supp(Στ
M), τ ∈ {ac, s, sc, pp}.

PROOF. The first statement follows either from Proposition 2.9(i), or from Lemma

2.12. Further, it follows from (2.4) and the Lebesgue-Jordan decompositions of the measures

ΣM(·) and EM(·), that Στ
M(·) = K∗Eτ

M(·)K, τ ∈ {ac, s, sc, pp}. To complete the proof it

remains to apply Lemma 2.12. �

By Corollary 2.14 one gets, in particular, that OM = ρ(A0) ∩ R.

REMARK 2.15 If Π = {H,Γ0,Γ1} is a boundary triple for A∗ and B = B∗ ∈
C(H) \ [H], then the extensions AB and A0 are disjoint but not transversal. In this case

a triple ΠB = {H,ΓB0 ,ΓB1 } := {H, BΓ0 − Γ1,Γ0} forms a generalized boundary triple for

A∗ := A∗ �(domA0 + domAB) in the sense of [18], Definition 6.1. Note that A∗ is not closed,

but A∗ = A∗. Now the Nevanlinna function MB(z) := (B −M(z))−1 can be treated as the

Weyl function corresponding to the triple ΠB (see [18], Definition 6.2). Both Lemma 2.12

and Corollary 2.14 can easily be extended to the case of generalized boundary triples.
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3 Scalar-type Weyl functions

Let A be a densely defined closed symmetric operator on H and let Π = {H,Γ0,Γ1} be a

boundary triple for A∗ with the Weyl function M(·). The Weyl function is said to be of

scalar-type if there exists a scalar Nevanlinna function m(·) such that the representation

M(z) = m(z)IH, z ∈ C+,

holds. In accordance with (2.6) the function m(·) admits the representation

m(z) = c0 + c1z +

∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dµ(t), z ∈ C+, (3.1)

where c0, c1 ∈ R, c1 ≥ 0 and µ(·) is a scalar Radon measure obeying (1 + t2)−1 ∈ L1(R, µ).

Since M(·) is a Weyl function we find c1 = 0. Obviously, we have supp(M) = supp(m).

Further, the Weyl function M(·) is monotone with respect to J ⊆ OM if and only if m(·) is

monotone with respect to J ⊆ Om := R \ supp(m).

If B = B∗ ∈ [H], then the Weyl function MB(·) of the boundary triple ΠB is given

by

MB(z) := (B −M(z))−1 = (B −m(z) · IH)−1, z ∈ C+ ∪ C−, (3.2)

cf. Proposition 2.10. If B = B∗ ∈ C(H) \ [H], then (see Remark 2.15) MB(·) of the form

(3.2) is the Weyl function of the generalized boundary triple ΠB.

Being a Weyl function, MB(·) admits the representation (cf. (2.10))

MB(z) = C0 +

∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dΣB(t), z ∈ C+ ∪ C−, (3.3)

where ΣB(·) := ΣMB
(·) is the (unbounded) non-orthogonal spectral measure of MB(·). In

accordance with the Stieltjes inversion formula (2.7), the spectral measure can be re-obtained

by

ΣB((a, b)) = s− lim
δ↓0

s− lim
ε↓0

1

2πi

∫ b−δ

a+δ

(MB(x+ iε)−MB(x− iε)) dx (3.4)

with M(z) := M(z)∗, z ∈ C−. Taking into account (3.2) we find

MB(x+ iε)−MB(x− iε) =

∫ +∞

−∞

(
(λ−m(x+ iε))−1 − (λ−m(x− iε))−1

)
dEB(λ), (3.5)

which leads to the expression

1

2πi

∫ b−δ

a+δ

(MB(x+ iε)−MB(x− iε)) dx =

∫ +∞

−∞
k∆(λ, δ, ε)dEB(λ), ε > 0, (3.6)

where

k∆(λ, δ, ε) :=
1

2πi

∫ b−δ

a+δ

(
λ−m(x+ iε))−1 − (λ−m(x− iε))−1

)
dx, (3.7)
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λ ∈ R, ∆ = (a, b) ⊆ R and ε > 0 with m(z) := m(z), z ∈ C−.

We denote by {∆l}Ll=1 (L ∈ N or L = ∞) the family of the component intervals

∆l = (al, bl) of Om := R \ supp(m). This family is unique up to the (henceforth fixed)

enumeration. Further, the function m(·) admits an analytic continuation to Om such that

m(x) = c0 +

∫ +∞

−∞

(
1

t− x
− t

1 + t2

)
dµ(t), x ∈ Om.

Hence the function m(·) restricted to Om is analytic. Moreover, one easily verifies that for

every component interval ∆ of Om

m(x) < m(y), x < y, x, y ∈ ∆.

Therefore, for every component interval ∆ of Om the set ∆′ := m(∆) is again an open

interval. Thus O′m := m(Om) is also open and the (not necessarily disjoint) union of the sets

∆′ = m(∆) where the union is taken over all component intervals ∆ of Om.

LEMMA 3.1 Let m(·) be a scalar Nevanlinna function. If ∆ = (a, b) is contained

in a component interval ∆l of Om, then

C∆(δ) := sup
λ∈R, ε∈(0,1]

|k∆(λ, δ, ε)| <∞ (3.8)

for each δ ∈ (0, (b− a)/2).

PROOF. We have

m(x+ iε) = m(x)− ε2τ0(ε, x) + iετ1(ε, x), x ∈ Om, (3.9)

where

τ0(ε, x) :=

∫ +∞

−∞

1

y − x
· 1

(y − x)2 + ε2
dµ(y) (3.10)

and

τ1(ε, x) :=

∫ +∞

−∞

1

(y − x)2 + ε2
dµ(y). (3.11)

Using (3.10) and (3.11) we find constants κ0(δ), κ1(δ) and ω1(δ) such that

|τ0(ε, x)| ≤ κ0(δ) and 0 < ω1(δ) ≤ τ1(ε, x) ≤ κ1(δ), x ∈ (a+ δ, b− δ), (3.12)

for ε ∈ [0, 1]. Further we get from (3.9)

p(λ, x, ε) = (3.13)
1

λ−m(x+ iε)
− 1

λ−m(x)− iετ1(ε, x)
=

ε2τ0(ε, x)

(λ−m(x+ iε))(λ−m(x)− iετ1(ε, x))
, λ ∈ R, x ∈ Om, ε > 0.
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Since both m(x) and τ0(ε, x) are real for x ∈ Om (see (3.10)) we have from (3.9) that

|λ−m(x+ iε)| ≥ ετ1(ε, x) and |λ−m(x)− iετ1(ε, x)| ≥ ετ1(ε, x), λ ∈ R.

In view of (3.13) these inequalities yield

|p(λ, x, ε)| ≤
∣∣∣∣ τ0(ε, x)

τ1(ε, x)2

∣∣∣∣ , λ ∈ R, x ∈ Om, ε > 0. (3.14)

Combining (3.12) with (3.14) we obtain the estimate

|p(λ, x, ε)| ≤ κ0(δ)

ω1(δ)2
, λ ∈ R, x ∈ (a+ δ, b− δ), ε ∈ (0, 1]. (3.15)

We set

r∆(λ, δ, ε) :=
1

2πi

∫ b−δ

a+δ

(
1

λ−m(x)− iετ1(ε, x)
− 1

λ−m(x) + iετ1(ε, x)

)
dx,

for λ ∈ R and ε > 0. By the representation

r∆(λ, δ, ε) =
1

π

∫ b−δ

a+δ

ετ1(ε, x)

(λ−m(x))2 + ε2τ1(ε, x)2
dx

and the estimates (3.12) we obtain

r∆(λ, δ, ε) ≤ 1

π

∫ b−δ

a+δ

εκ1(δ)

(λ−m(x))2 + ε2ω2
1(δ)

dx, λ ∈ R, ε ∈ (0, 1]. (3.16)

The derivative m′(x), x ∈ Om, admits the representation

m′(x) =

∫ +∞

−∞

1

(t− x)2
dµ(t), x ∈ Om. (3.17)

Obviously, there exist constants ω2(δ) and κ2(δ) such that

0 < ω2(δ) ≤ m′(x) ≤ κ2(δ), x ∈ (a+ δ, b− δ). (3.18)

Combining (3.16) with (3.18) we get

r∆(λ, δ, ε) ≤ κ1(δ)

πω2(δ)

∫ b−δ

a+δ

ε ·m′(x)

(λ−m(x))2 + ε2ω2
1(δ)

dx, λ ∈ R, ε ∈ (0, 1].

Using the substitution y = m(x) we derive

r∆(λ, δ, ε) ≤ κ1(δ)

πω2(δ)

∫ m(b−δ)

m(a+δ)

ε

(λ− y)2 + ε2ω2
1(δ)

dy, λ ∈ R, ε ∈ (0, 1].

Finally, we get

r∆(λ, δ, ε) ≤ κ1

ω1ω2

, λ ∈ R, ε ∈ (0, 1]. (3.19)

17



Obviously, we have

k∆(λ, δ, ε) =
1

2πi

∫ b−δ

a+δ

(
p(λ, x, ε)− p(λ, x, ε)

)
dx+ r∆(λ, δ, ε), λ ∈ R ε > 0.

Hence we find the estimate

|k∆(λ, δ, ε)| ≤ 1

π

∫ b−δ

a+δ

|p(λ, x, ε)| dx+ r∆(λ, δ, ε), λ ∈ R, ε > 0.

Taking into account (3.15) and (3.19) we arrive at the estimate

|k∆(λ, δ, ε)| ≤ κ0(δ)

πω1(δ)
(b− a) +

κ1(δ)

ω1(δ)ω2(δ)
, λ ∈ R, ε ∈ (0, 1],

which proves (3.8). �

Since the function m(·) is strictly monotone on each component interval ∆l of

Om, the inverse function ϕl(·) exists there. The function ϕl(·) is analytic and also strictly

monotone. Its first derivative ϕ′l(·) exists, is analytic and non-negative.

LEMMA 3.2 Suppose that m(·) is a scalar Nevanlinna function. Let ∆ = (a, b)

be contained in some component interval ∆l of Om := R \ supp(m). Then (with k∆ defined

as in (3.7))

lim
ε→+0

k∆(λ, δ, ε) = θl(λ, δ) :=


0 λ ∈ R \ [m(a+ δ),m(b− δ)],
1
2
ϕ′l(λ) λ ∈ {m(a+ δ),m(b− δ)},
ϕ′l(λ) λ ∈ (m(a+ δ),m(b− δ))

(3.20)

for δ ∈ (0, (b− a)/2) and

lim
δ→+0

lim
ε→+0

k∆(λ, δ, ε) =

{
0 λ ∈ R \ (m(a),m(b))

ϕ′l(λ) λ ∈ (m(a),m(b)).
(3.21)

PROOF. At first let us show that

lim
ε↓0

1

2πi

∫ b−δ

a+δ

p(λ, x, ε)dx = 0, λ ∈ R. (3.22)

By (3.13) one immediately gets that

lim
ε↓0

p(λ, x, ε) = 0, λ ∈ R, x ∈ Om.

Now (3.22) is implied by (3.15) and the Lebesgue dominated convergence theorem.

Next we set

τ3(ε, x) :=

∫ +∞

−∞

1

(y − x)2 + ε2
· 1

(y − x)2
dµ(y), x ∈ Om, ε ≥ 0. (3.23)
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Obviously, there is a constant κ3(δ) > 0 such that

0 ≤ τ3(ε, x) ≤ κ3(δ), x ∈ (a+ δ, b− δ), ε ∈ [0, 1]. (3.24)

Let

p0(λ, x, ε) :=
1

λ−m(x)− iετ1(ε, x)
− 1

λ−m(x)− iετ1(0, x)
, λ ∈ R, x ∈ Om, (3.25)

for ε > 0. It follows from (3.11), (3.23) and (3.25) that

p0(λ, x, ε) = −i ε3τ3(ε, x)

(λ−m(x)− iετ1(ε, x))(λ−m(x)− iετ1(0, x))
, λ ∈ R, x ∈ Om, (3.26)

for ε > 0. Since λ ∈ R and m(x) is real for x ∈ Om, we get from (3.26)

|p0(λ, x, ε)| ≤ ε
τ3(ε, x)

τ1(ε, x)τ1(0, x)
, λ ∈ R, x ∈ Om, ε > 0.

Using (3.12) and (3.24) we obtain the estimate

|p0(λ, x, ε)| ≤ ε
κ3(δ)

ω1(δ)2
, λ ∈ R, x ∈ (a+ δ, b− δ), ε ∈ (0, 1],

which immediately yields

lim
ε↓0

1

2πi

∫ b−δ

a+δ

p0(λ, x, ε)dx = 0, λ ∈ R, δ > 0. (3.27)

Finally, let us introduce

q∆(λ, δ, ε) :=
1

2πi

∫ b−δ

a+δ

(
1

λ−m(x)− iετ1(0, x)
− 1

λ−m(x) + iετ1(0, x)

)
dx (3.28)

for λ ∈ R and ε > 0. Using the representation

q∆(λ, δ, ε) =
1

π

∫ b−δ

a+δ

ετ1(0, x)

(λ−m(x))2 + ε2τ1(0, x)2
dx, λ ∈ R, ε > 0,

and the relation

m′(x) = τ1(0, x), x ∈ Om,

(see (3.11) and (3.17)) we find after change of variable y = m(x) that

q∆(λ, δ, ε) =
1

π

∫ m(b−δ)

m(a+δ)

ε

(λ− y)2 + ε2τ1(0, ϕl(y))2
dy, λ ∈ R, ε > 0.

By τ1(0, ϕl(y)) = m′(ϕl(y)) = 1/ϕ′l(y), y ∈ ∆l, we finally obtain that

q∆(λ, δ, ε) =
1

π

∫ m(b−δ)

m(a+δ)

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy, λ ∈ R, ε > 0. (3.29)
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Next we prove the relation

lim
ε↓0

q∆(λ, δ, ε) = θl(λ, δ), δ ∈ (0, (b− a)/2), λ ∈ R. (3.30)

We consider only the case when λ ∈ (m(a+ δ),m(b− δ)). The other cases can be treated in

a similar way.

Noting that ϕ′l(λ) > 0 choose an arbitrary c ∈ (0, ϕ′l(λ)). Since ϕ′l is continuous we

can choose η > 0 such that m(a+ δ) < λ− η < λ+ η < m(b+ δ) and

0 < ϕ′l(λ)− c ≤ ϕ′l(y) ≤ ϕ′l(λ) + c, λ− η ≤ y ≤ λ+ η. (3.31)

Let a, b > 0. The change of variables x = b(y − λ)/ε yields∫ λ+η

λ−η

a2ε

b2(λ− y)2 + ε2
dy =

a2

ε

∫ bη
ε

−bη
ε

1

1 + x2
· ε
b
dx −→ πa2

b
, as ε ↓ 0. (3.32)

Setting a = ϕ′l(λ)− c and b = ϕ′l(λ) + c resp. a = ϕ′l(λ) + c and b = ϕ′l(λ)− c in (3.32) and

using (3.31) we obtain

π
(ϕ′l(λ)− c)2

ϕ′l(λ) + c
≤ lim inf

ε↓0

∫ λ+η

λ−η

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy (3.33)

≤ lim sup
ε↓0

∫ λ+η

λ−η

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy ≤ π

(ϕ′l(λ) + c)2

ϕ′l(λ)− c
.

Setting G := (m(a + δ),m(b − δ)) \ (λ − η, λ + η) and applying the Lebesgue dominated

convergence theorem we get

lim
ε↓0

∫
G

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy = 0. (3.34)

By (3.33) and (3.34),

π
(ϕ′l(λ)− c)2

ϕ′l(λ) + c
≤ lim inf

ε↓0

∫ m(b−δ)

m(a+δ)

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy (3.35)

≤ lim sup
ε↓0

∫ m(b−δ)

m(a+δ)

εϕ′l(y)2

ϕ′l(y)2(λ− y)2 + ε2
dy ≤ π

(ϕ′l(λ) + c)2

ϕ′l(λ)− c
.

Since (3.35) holds for every c ∈ (0, ϕ′l(λ)), (3.35) in combination with (3.29) imply (3.30).

Combining (3.7), (3.13), (3.25) and (3.28) we derive the representation

k∆(λ, δ, ε) = (3.36)

1

2πi

∫ b−δ

a+δ

(
p(λ, x, ε)− p(λ, x, ε)

)
+

1

2πi

∫ b−δ

a+δ

(
p0(λ, x, ε)− p0(λ, x, ε)

)
+ q∆(λ, δ, ε)
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where λ ∈ R and ε > 0. Now combining the relations (3.22), (3.27) and (3.30) with (3.36),

we arrive at (3.20). The relation (3.21) immediately follows from (3.20). �

Now we are ready to calculate a non-orthogonal spectral measure Σ0
B in a gap of any

self-adjoint extension AB = A∗B ∈ ExtA if only A admits a boundary triple with a scalar-type

Weyl function.

THEOREM 3.3 Let m be a scalar Nevanlinna function, B = B∗ a self-adjoint

(not necessarily bounded) operator in H and ΣB(·) (resp. Σ0
B(·)) the unbounded (bounded)

non-orthogonal spectral measure of MB(z) = (B − m(z)IH)−1 (see (3.3)). Then for every

component interval ∆l of Om

ΣB(δ) = ϕ′l(Bm(∆l))EB(m(δ)), δ ∈ Bb(∆l), (3.37)

and

Σ0
B(δ) = ϕ′l(Bm(∆l))(I + ϕl(Bm(∆l))

2)−1EB(m(δ)), δ ∈ B(∆l). (3.38)

PROOF. 1. First we prove (3.37) for δ which are really contained in ∆l, i.e δ ⊂ ∆l.

If δ = ∆ = (a, b) is such an interval, then by (3.4), (3.5), (3.6) and the Stieltjes inversion

formula (2.7), we obtain that

ΣB(∆) = s− lim
ε↓0

s− lim
ε↓0

∫ +∞

−∞
k∆(λ, ε, ε)dEB(λ). (3.39)

On the other hand, combining Lemma 3.1 with Lemma 3.2 and applying the Lebesgue

dominated convergence theorem we get that for every h ∈ H

lim
ε↓0

∫ ∞
−∞

k∆(λ, ε, ε)dEB(λ)h = (3.40)∫ ∞
−∞

lim
ε↓0

k∆(λ, ε, ε)dEB(λ)h = ϕ′l(B)EB(m((a+ ε, b− ε))h+

1

2
[ϕ′l(m(a+ ε))EB({m(a+ ε)}) + ϕ′l(m(b− ε))EB({m(b− ε)})]h.

Combining (3.39) with (3.40), we arrive at (3.37) with δ = (a, b)(⊂ ∆l).

2. Passing to an arbitrary δ ∈ Bb(∆l) we observe that ΣB(δ) is bounded for any

δ ∈ Bb(∆l) but Tl := ϕ′l(Bm(∆l)) in general not. However, one has TlEB
(
m(δ)

)
∈ [H] for

δ ∈ Bb(∆l) if the closure δ obeys δ ⊆ ∆l. Therefore, the equality (3.37) is valid for any

δ ∈ Bb
(
(α + 1/n, β − 1/n)

)
, n ∈ N.

Let now δ ∈ Bb(∆l). Setting δn := δ ∩ (α + 1/n, β − 1/n) we get δn ⊂ ∆l, n ∈ N,

and

lim
n→∞

EB
(
m(δn)

)
Tlh = EB

(
m(δ)

)
Tlh (3.41)
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for any h ∈ dom(Tl). Since δn ⊂ ∆l, n ∈ N, we find

lim
n→∞

TlEB
(
m(δn)

)
h = lim

n→∞
ΣB(δn)h = ΣB(δ)h. (3.42)

Thus, TlEB(m(δ)) = ΣB(δ) ∈ [H] which proves the identity (3.37) for any δ ∈ Bb(∆l).

3. Formula (3.38) follows from (3.37). Indeed, one has

Σ0
B(δ) =

∫
δ

(1 + t2)−1dΣB(t) =

∫
δ

ϕ′l(B)EB(m(δ))(1 + t2)−1dEB(m(t))

= ϕ′l(B)EB(m(δ))

∫
m(δ)

(1 + ϕ2
l (s))

−1dEB(t) = ϕ′l(B)(1 + ϕ2
l (B))−1EB(m(δ)).

for δ ∈ Bb(∆l). �

The following corollary follows easily from Proposition 2.9 but we prefer to obtain

it directly from Theorem 3.3.

COROLLARY 3.4 Let A be a symmetric operator in H, Π = {H,Γ0,Γ1} a

boundary triple for A∗ and B = B∗ ∈ C(H). If the corresponding Weyl function M(·)
is of scalar-type, i.e. M(z) = m(z) · IH, then for every component interval ∆l of Om the

operator ABEAB(∆l) is purely absolutely continuous (resp. singular, singular continuous,

purely point) if the operator B is so, i.e.

B = Bτ =⇒ ABEAB(∆l) = (ABEAB(∆l))
τ , τ ∈ {ac, s, sc, pp}. (3.43)

PROOF. Let B be absolutely continuous, i.e. B = Bac. Then for every δ ∈ B(∆l)

with mes(δ) = 0 one has mes(m(δ)) = 0 since m is absolutely continuous on ∆l. Hence

EB(m(δ)) = 0. Applying Theorem 3.3 we get ΣB(δ) = Σ0
B(δ) = 0.

If B is singular, i.e. B = Bs, then the measure EB(·)EB(∆′l) admits a (non-

topological) support of the form m(∆s
l ) ⊂ ∆′l where ∆′l = m(∆l). By definition, this

means that mes(m(∆s
l )) = 0 and EB(m(∆s

l )) = EB(∆′l). Note that mes(∆s
l ) = 0 since

∆s
l = ϕ(m(∆s

l )) and ϕl is absolutely continuous on m(∆l). By (3.37) and (3.38) both

measures ΣB(·) and Σ0
B(·), restricted to the interval ∆l, are supported on ∆s

l and therefore

are singular within the gap ∆l.

The cases of singular continuous and pure point spectrum can be treated quite

similar. �

REMARK 3.5

1. We note that if for some l

BEB(m(∆l)) = (BEB(m(∆l)))
τ , τ ∈ {ac, s, sc, pp},

then the implication (3.43) remains true.
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2. If the equality m(∆l) = m(Om) holds for some l, then the implication (3.43) is in fact

an equivalence, in particular, if m(∆l) = R.

REMARK 3.6 Let Π = {H,Γ0,Γ1} be a boundary triple for A∗. Then every self-

adjoint extension Ã ∈ ExtA is of the form (2.8), that is Ã = AΘ for Θ := {Γ0,Γ1}dom(Ã).

Note that formulas (3.37) and (3.38) remain valid after the corresponding modification for

the Nevanlinna function MΘ(z) := (Θ −m(z) · IH)−1 with Θ = Θ∗ being a linear relation.

Thus Theorem 3.3 presents an explicit form of a part (Σ0
Θ)J of a non-orthogonal spectral

measure ΣΘ restricted to the gap J of A, for any operator AΘ = A∗Θ ∈ ExtA.

4 Inverse spectral problem for direct sums of symmet-

ric operators

4.1 The case of scalar-type Weyl function

Throughout this section we suppose in addition that m(·) is monotone with respect to

J ⊆ Om. We apply Theorem 3.3 to obtain a solution of the inverse spectral problem for a

symmetric operator A satisfying the above assumptions. Namely, we indicate a boundary

operator B = B∗ in H such that the corresponding extension AB ∈ ExtA yields an explicit

solution of the above problem.

We recall that if ET (·) is the orthogonal spectral measure of a self-adjoint operator T

in H and δ ∈ B(R), then the underlying Hilbert space H admits an orthogonal decomposition

H = ran(ET (δ))⊕ran(ET (R\δ)). According to this decomposition T itself can be decomposed

as T = Tδ⊕TR\δ where Tδ and TR\δ is a self-adjoint operator in the Hilbert space ran(ET (δ))

and ran(ET (R \ δ)), respectively. For every Borel-measurable function f defined on δ we set

f(T ) := f(Tδ).

We start with a simple result being a corollary to Theorem 3.3.

PROPOSITION 4.1 Suppose that a scalar Nevanlinna function m(·) is mono-

tone with respect to the open set J ⊆ Om and T = T ∗ is a self-adjoint operator in H
satisfying ET (R \ J) = 0. Let Σm(T ) (resp. Σ0

m(T )) be the unbounded (resp. bounded) non-

orthogonal spectral measure of the Nevanlinna function (m(T )−m(·) · IH)−1. Then

Σm(T )(δ) = (m′(T ))−1ET (δ), δ ∈ Bb(J), (4.1)

Σ0
m(T )(δ) = (m′(T ))−1(1 + T 2)−1ET (δ), δ ∈ B(J). (4.2)
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PROOF. By the σ-additivity and outer regularity of the involved measures it

suffices to prove the assertion in the special case when δ is really contained in a component

interval ∆ of Om, i.e δ ⊂ ∆. We set B = mJ(T ) = B∗. Then

B = m(T∆)⊕m(TR\∆) = m(T∆)⊕m(TJ\∆). (4.3)

In the last step we have used that ET (R \ J) = 0. Moreover,

EB(m(δ)) = Em(T∆)(m(δ))⊕ Em(TJ\∆)(m(δ)) = ET∆
(δ)⊕ 0 = ET (δ), δ ∈ B(∆) (4.4)

where we have used the fact that m(∆)∩m(J \∆) = ∅ which follows from the monotonicity

of m on J . In particular, one gets

ran(EB(m(∆))) = ran(ET (∆)). (4.5)

By (4.3) and (4.5) we obtain that

Bm(∆) := BEB(m(∆)) = m(T∆). (4.6)

Let ∆ := ∆l for some l. We note that

ϕ′l(m(λ)) =
1

m′(λ)
, λ ∈ ∆l. (4.7)

Combining (3.37) with (4.4), (4.6) and (4.7) we get

ΣB(δ) = ϕ′l(Bm(∆l))EB(m(δ)) = ϕ′l(m(T∆l
))ET (δ) = (m′(T∆l

))−1ET (δ), δ ∈ Bb(∆l).

Thus we have proved (4.1). Formula (4.2) follows from (4.1) just in the same way as (3.38)

follows from (3.37). �

REMARK 4.2 We note that even though the right hand sides of (4.1) and (4.2)

make sense without the assumption of monotonicity of m(·) with respect to J , nevertheless,

the equalities (4.1) and (4.2) might be false without this assumption.

To prove the main theorem of this section the following lemma is helpful.

LEMMA 4.3 Let A be a densely defined closed symmetric operator on a separable

Hilbert space H with equal deficiency indices. Further, let Π = {H,Γ0,Γ1} be a boundary

triple for A∗ and M(·) the corresponding Weyl function. Further, let Â be a closed symmetric

extension of A obeying

A ⊆ Â ⊆ A0, (dom(A0) = ker(Γ0)).

Then there is a boundary triple Π̂ = {Ĥ, Γ̂0, Γ̂1} such that A0 = Â0 := Â∗ �ker(Γ̂0) and the

corresponding Weyl function M̂(·)
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(i) is of scalar-type provided M(·) is of scalar-type,

(ii) is monotone with respect to J ⊆ OM provided M(·) is monotone with respect to J ,

(iii) is of scalar-type and monotone with respect to J ⊆ OM provided M(·) is of scalar-type

and monotone with respect to J .

PROOF. We put H1 := Γ1dom(Â) ⊂ Γ1dom(A0) = H. Let π be the orthogonal

projection from H onto Ĥ := H	H1. Setting Γ̂0 := Γ0 �dom(Â∗) and Γ̂1 := πΓ1 �dom(Â∗),

we easily check that Π̂ := {Ĥ, Γ̂0, Γ̂1} forms a boundary triple for Â∗ such that Â0 := Â∗ �

ker(Γ̂0) = A0 (cf. [15]). The corresponding Weyl function is M̂(·) = πM(·)�Ĥ is monotone

with respect to J , because M(·) is monotone with respect to J . Obviously, if M(·) is of

scalar-type, then M̂(·) is also of scalar-type. �

We come now to the main theorem of this section.

THEOREM 4.4 Let A be a densely defined closed symmetric operator in a separa-

ble Hilbert space H with equal deficiency indices n±(A) =: n(A). Further, let Π = {H,Γ0,Γ1}
be a boundary triple for A∗ with scalar-type Weyl function M(·) = m(·) IH. If the Weyl func-

tion M(·) is monotone with respect to the open set J ⊆ OM(⊂ ρ(A0)), then for any auxiliary

self-adjoint operator R on some separable Hilbert space R obeying dim(ER(J)R) ≤ n(A)

there exists a self-adjoint extension Ã of A such that ÃJ ∼= RJ .

PROOF. Let us assume that A is simple. If n(A) = dim(H) = dim(ER(J)R),

then there exists a partial isometry U : H −→ R such that U∗U = IH and UU∗ = ER(J).

We set T := U∗RU . Obviously, we have ET (R \ J) = 0. Notice that T = TJ ∼= RJ .

We put B := m(T ) and consider the self-adjoint extension Ã := AB ∈ ExtA defined

by

AB = A∗�dom(AB), dom(AB) = ker(Γ1 −BΓ0), B = U∗m(RJ)U, (4.8)

cf. Remark 2.7 and Definition 2.6. By Proposition 2.10 and Remark 2.15 the Weyl function

MB(·) of the pair {A,AB}, which corresponds either to the boundary triple ΠB = {H, BΓ0−
Γ1,Γ0} if B = B∗ ∈ [H] or to the generalized boundary triple ΠB if B = B∗ ∈ C(H) \ [H],

is given by (2.11), that is, MB(z) = (B −M(z))−1. Let ΣB(·), (Σ0
B(·)) be the corresponding

unbounded (bounded) non-orthogonal spectral measure. Then by Proposition 4.1 we get

ΣB(δ ∩ J) = (m′J(T ))−1ET (δ ∩ J) = (m′J(T ))−1ET (δ), δ ∈ B(R). (4.9)

Hence, setting

D := m′J(T )−1/2(I + T 2)−1/2(∈ [H]), (4.10)
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we obtain from (4.9) and (2.5) that

Σ0
B(δ ∩ J) =

∫
δ∩J

(1 + t2)−1dΣB(t) =

∫
δ∩J

(1 + t2)−1m′J(T )−1dET (t) (4.11)

= m′J(T )−1(I + T 2)−1ET (δ) = D∗ET (δ)D = D∗ET (δ ∩ J)D, δ ∈ B(R).

Identity (4.11) means that the spectral measure ET (= ETJ ) is the orthogonal dilation of the

measure Σ0
B,J : B(R) 3 δ 7→ Σ0

B(δ ∩ J). Since ker(D) = {0} this dilation is minimal. Let

further EB(·) be the orthogonal spectral measure in KB associated to Σ0
B(·) (see Definition

2.2). Then EB(·)EB(J) is the orthogonal spectral measure in KB,J := EB(J)KB associated

to Σ0
B,J(·). By Proposition 2.1, the measures ET (·) and EB(·)EB(J) are unitarily equivalent.

Finally, by Lemma 2.12 and Remark 2.15 the spectral measures EB(·)EB(J) and

EÃ(·)EÃ(J), where Ã := AB, are also unitarily equivalent. Hence the spectral measures

ET (·) and EÃ(·)EÃ(J) are unitarily equivalent. Thus, ÃJ ∼= T ∼= RJ .

If dim(ER(J)R) < dim(H), then there is a closed symmetric extension Â, A ⊂
Â ⊂ A0, such that n(Â) = dim(ER(J)R). By Lemma 4.3 there is a boundary triple Π̂ =

{Ĥ, Γ̂0, Γ̂1} such that the corresponding Weyl function M̂(·) is monotone with respect to J

and of scalar-type. Following now the line of reasoning of the first part we complete the

proof.

If A is not simple, then the operator A admits a decomposition A = As⊕A′ where

As is a self-adjoint and A′ is a simple closed symmetric operator which has the same gaps as

A. Setting Π′ = {H,Γ′0,Γ′1}, Γ′i := Γi �dom(A′∗), i = 0, 1, one performs a boundary triple for

A′∗ such that the corresponding Weyl functions M ′(·) and M(·) coincides. By n(A) = n(A′)

the condition dim(ER(J)R) ≤ n(A′) is satisfied. Hence applying the considerations above

to the simple closed symmetric operator A′ we get a self-adjoint extension Ã′ of A′ obeying

Ã′ ∼= RJ . Setting Ã = As ⊕ Ã′ we obtain the desired extension for A. �

REMARK 4.5 If the deficiency indices of the closed symmetric operator A are

infinite, then, of course, the condition dim(ER(J)R) ≤ n(A) =∞ is always satisfied.

4.2 General case: Proof of Theorem 1.1

In this subsection we apply Theorem 4.4 to the case of direct sums of pairwise unitarily

equivalent symmetric operators. We start with the following simple lemma.

LEMMA 4.6 Let A be a densely defined closed symmetric operator on the sep-

arable Hilbert space H. Further, let Π = {H,Γ0,Γ1} be a boundary triple of A∗ with the

corresponding Weyl function M(·). If the densely defined closed symmetric operator S on

the separable Hilbert space K is unitarily equivalent to A, then there exists a boundary triple
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Π1 = {H,Γ1
0,Γ

1
1} with Weyl function M1(·) : C+ −→ [H] such that the self-adjoint exten-

sions S0, A0 are unitarily equivalent and the corresponding Weyl functions M1(·) and M(·)
coincide.

PROOF. Since S is unitarily equivalent to A there is an isometric operator

U : H −→ K such that S = UAU−1. Obviously, one has S∗ = UA∗U−1. We set

Γ1
i := ΓiU

−1, i ∈ {0, 1}. One easily checks that Π1 = {H,Γ1
0,Γ

1
1} is a boundary triple

for S∗. In particular, one finds that S0 = UA0U
−1. By Definition 2.8 one immediately gets

that M1(z) = M(z) for z ∈ C+. �

LEMMA 4.7 Let {Sk}Nk=1, N ∈ N ∪ {∞}, be a sequence of closed symmetric

operators Sk defined on the separable Hilbert spaces Kk. If the operators Sk are unitarily

equivalent to a given closed symmetric operator A on H, then there exists a closed symmetric

extension Ŝ of S = ⊕Nk=1Sk on K = ⊕Nk=1Kk such that Ŝ∗ admits a boundary triple Π̂ with a

scalar-type Weyl function M̂(·).

PROOF. Let Π0 = {H0,Γ
0
0,Γ

0
1} be a boundary triple of A∗ with corresponding

Weyl function M0(·). If the operators Sk are unitarily equivalent to A, then by Lemma

4.6 we find a sequence of boundary triples Πk :=
{
Hk,Γ

k
0,Γ

k
1

}
for S∗k such that Hk = H,

the self-adjoint extensions Sk,0 are unitarily equivalent to A0 and the corresponding Weyl

functions Mk(·) and M0(·) coincide. Furthermore, one verifies that Π = {H,Γ0,Γ1},

H :=
N⊕
k=1

Hk, Hk = H0 and Γi :=
N⊕
k=1

Γki , i ∈ {0, 1}, (4.12)

defines a boundary triple for S∗ where S :=
⊕N

k=1 Sk. The Weyl function M(·) of this

boundary triple Π = {H,Γ0,Γ1} is given by

M(z) =
N⊕
k=1

Mk(z) where Mk(z) = M0(z), z ∈ C+ ∪ C−.

By Â we denote a closed symmetric extension of A such that n±(Â) = 1. Consider a

boundary triple Π̂ = {Ĥ, Γ̂0, Γ̂1} for Â∗. Since dim Ĥ = 1 (see Remark 2.7(i)) the space Ĥ
can be identified with C and the corresponding Weyl function M̂(·) : C+ −→ [Ĥ] can be

identified with a scalar Nevanlinna function m̂(·) : C+ −→ [C] = C.

Now, if each operator of {Sk}Nk=1 is unitarily equivalent to A, then there is a new

sequence of closed symmetric extensions {Ŝk}Nk=1 such that each operator Ŝk is unitarily

equivalent to Â with deficiency indices n±(Â) = 1. Applying the construction from above

we find a sequence of boundary triples
{

Π̂k := {Ĥk
0 , Γ̂

k
0, Γ̂

k
1}
}N
k=1

such that Ĥk = C, the self-

adjoint extensions Ŝk,0 = Ŝ∗k �ker(Γ̂k0), and Â0 = Â�ker(Γ̂0) are unitarily equivalent and the
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corresponding Weyl functions M̂k(·) are scalar Nevanlinna functions m̂k(·) which coincide

with m̂(·). Setting

Ĥ :=
N⊕
k=1

Ĥk, Ĥk = C, and Γ̂i :=
N⊕
k=1

Γ̂ki , i ∈ {0, 1},

we define a boundary triple Π̂ for Ŝ∗ where Ŝ = ⊕Nk=1Ŝk with Weyl function M̂(·),

M̂(z) =
N⊕
k=1

M̂k(z) = m̂(z)IĤ, z ∈ C+ ∪ C−.

This completes the proof. �

Lemma 4.7 allows us to express the concept of scalar-type Weyl function in geo-

metric terms.

PROPOSITION 4.8 Let S be a simple symmetric operator in K with equal de-

ficiency indices n±(S) =: N and let Π = {H,Γ0,Γ1} be a boundary triple for S∗. The

corresponding Weyl function M(·) is of scalar-type if and only if S and S0 := S∗ � ker(Γ0)

admit the decompositions

S =
N⊕
k=1

Sk and S0 =
N⊕
k=1

Sk,0 (4.13)

such that

(i) Sk, k = 1, 2, . . . , N , are closed symmetric operators with deficiency indices n±(Sk) = 1

which are unitarily equivalent to each other,

(ii) Sk,0, k = 1, 2, . . . , N , are self-adjoint extensions of Sk which are unitarily equivalent to

each other,

(iii) there is a boundary triple Πk = {Hk,Γ
k
0,Γ

k
1} for S∗k and each k = 1, 2, . . . , N , such that

Sk,0 = S∗k � ker(Γk1) and the corresponding Weyl function coincides with m(·) for each

k = 1, 2, . . . , N .

The decomposition (4.13) is not unique.

PROOF. The scalar function m(·) is a Nevanlinna function satisfying the assump-

tions of Corollary 0.2 of [17]. Hence, by this corollary there is a simple closed symmetric

operator A with deficiency indices n±(A) = 1 on some Hilbert space H0 and a boundary

triple Π0 = {H0,Γ
0
0,Γ

0
0}, dim(H0) = 1, for A∗ such that the corresponding Weyl function

coincides with m(·). We set

Ĥ :=
N⊕
k=1

Hk, Hk = H0, and Â :=
N⊕
k=1

Ak, Ak = A.
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With each Ak one associates a boundary triple Πk = {Hk,Γ
k
0,Γ

k
1}, Hk = H0, Γk0 := Γ0

0,

Γk1 := Γ0
1, with Weyl function Mk(·) = mk(·), k = 1, 2, . . . , N . Considering the orthogonal

sum of all these boundary triples one gets a boundary triple Π̂ for Â∗ with corresponding

Weyl function M̂ = ⊕Nk=1Mk. Moreover, one has that the extension Â0 := Â∗ � dom(Γ̂0)

admits the representation Â0 :=
⊕N

k=1 Ak,0, Ak,0 := A∗k�dom(Γk0). Since the Weyl functions

M̂(·) and M(·) coincide one gets from Corollary 0.1 of [17] that S and Â as well as S0 and

Â0 are unitarily equivalent which proves (i)-(iii). The converse follows from Lemma 4.7. �

Combining Lemma 4.7 with Lemma 4.3 we obtain

PROPOSITION 4.9 Let {Sk}Nk=1 be a sequence of closed symmetric operators

Sk defined on the separable Hilbert spaces Kk and such that the operators Sk are unitarily

equivalent to a given symmetric operator A in H. Suppose that for some boundary triple Π

for A∗ the corresponding Weyl function M(·) is monotone with respect to J ⊆ OM . Then

there exists a closed symmetric extension Ŝ of S = ⊕Nk=1Sk in K = ⊕Nk=1Kk and a boundary

triple for Ŝ∗ such that the corresponding Weyl function M̂(·) is of scalar-type, OM̂ = OM
and M̂(·) is monotone with respect to J ⊆ OM .

Now we are ready to prove Theorem 1.1:

PROOF OF THEOREM 1.1. By Proposition 4.9 it is sufficient to consider

a closed symmetric operator admitting a boundary triple with scalar-type Weyl function.

Applying Theorem 4.4 we complete the proof. �

5 Beyond the gaps

In this section we assume that the simple symmetric operator A admits a boundary triple

Π = {H,Π0,Π1} such that the corresponding Weyl function M(·) is of scalar-type. We try

to complement Theorem 4.4 by results on the spectrum σ(AB) of the operator AB, defined

by (4.8), outside the gaps Ocm := R \ Om = supp(m). Partially, we try to extend the results

to arbitrary extensions. Mainly, we obtain results on the absolutely continuous spectrum,

cf. Theorems 5.2,5.6, Corollary 5.4 and Proposition 5.5. However, we are also interested in

the singular spectrum, cf. Theorem 5.6 and Proposition 5.8.

We will rely on a Fatou-type theorem (see [4, 5, 19, 20, 28]) which for convenience

is repeated here in the form used in [12], Proposition 3.5.

THEOREM 5.1 Let m(·) be a scalar Nevanlinna function in C+ with the integral

representation (3.1) and the imaginary part v(z) := =m(m(z)) which admits the representa-

tion

v(x, y) = c1y +

∫
R

ydµ(t)

(t− x)2 + y2
,

∫
R

dµ(t)

1 + t2
<∞
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where v(x, y) := v(x+ iy), z = x+ iy ∈ C+. Then

(i) For any x ∈ R the limit v(x+ i0) := limy↓0 v(x+ iy) exists and is finite if and only if

the symmetric derivative Dµ(x)

Dµ(x) = lim
ε→0

µ(x+ ε)− µ(x− ε)
2ε

exists and is finite. In this case one has v(x+ i0) = πDµ(x).

(ii) If the symmetric derivative Dµ(x) exists and is infinite, then v(z)→ +∞ as z →� x.

(iii) For each x ∈ R one has =m(z − x)v(z)→ µ({x}) as z →� x.

(iv) v(z) converges to a finite constant as z →� x if and only if the derivative µ′(t) := dµ(t)
dt

exists at t = x and is finite. Moreover, one has v(x0 + i0) = πµ′(x).

The symbol→� means that the limit limr↓0 v(x+reiθ), x ∈ R, exist uniformly in θ ∈ [ε, π−ε]
for each ε ∈ (0, π/2). The main result of this section reads as follows.

THEOREM 5.2 Let A be a simple symmetric operator in H with infinite defi-

ciency indices. Further, let Π = {H,Γ0,Γ1} be a boundary triple for A∗ with scalar-type

Weyl function M(·), i.e. M(z) = m(z)IH, and let B = B∗ ∈ C(H).

(i) Then σac(AB) ⊃ σac(A0), A0 := A∗ �ker(Γ0).

(ii) If the operator B is purely absolutely continuous, then the self-adjoint extension AB is

purely absolutely continuous, too.

PROOF. (i) By Corollary 2.14 we get that σac(A0) = suppac(µ) where µ is the

Radon measure of the representation 3.1. In accordance with [12] we set

Ωac(m) := {x ∈ R : ∃ m(x+ i0) := lim
y↓0

m(x+ iy) and 0 < v(x, 0) := =m(m(x+ i0)) <∞}.

Notice that the limit m(x+ i0) := limy↓0 m(x+ iy) exists for almost all x ∈ R. Further, let

us introduce the set

clac(X ) := {x ∈ R : mes((x− ε, x+ ε) ∩ X ) > 0 for all ε > 0}.

By Lemma 4.1 of [12] we get that clac(Ωac(m)) = suppac(µ).

By Remark 2.15 the Weyl function MB(·) of the extension AB is given by MB(z) :=

(B −M(z))−1 = (B −m(z) · IH)−1, z ∈ C+. Let us introduce the scalar-function

MB,h(z) := (MB(z)h, h) = ((B −m(z)IH)−1h, h) =

∫
R

d(EB(t)h, h)

t−m(z)
, z ∈ C+, (5.1)
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for h ∈ H. If z = x+ iy and m(z) =: u(x, y) + iv(x, y), then we get from (5.1) that

FB,h(z) := =m(MB,h(z)) =

∫
R

v(x, y)d(EB(t)h, h)

(t− u(x, y))2 + v(x, y)2
. (5.2)

Let x ∈ Ωac(m). Notice that the limits v(x, 0) := limy↓0 v(x, y) > 0 and u(x, 0) :=

limy↓0 u(x, y) exists if x ∈ Ωac(m). If y0 > 0 is small enough, then

v(x, y)

(t− u(x, y))2 + v2(x, y)
≤ 1

v(x, y)
≤ 2

v(x, 0)
, y ∈ [0, y0), x ∈ Ωac(m). (5.3)

Taking into account (5.3) and applying the Lebesgue dominated convergence theorem we

obtain from (5.2) that

FB,h(x+ i0) := lim
y↓0

FB,h(x, y) = v(x, 0)

∫
R

d(EB(t)h, h)

(t− u(x, 0))2 + v(x, 0)2
, x ∈ Ωac(m). (5.4)

Since v(x, 0) > 0 for x ∈ Ωac(m) we find

0 < FB,h(x+ i0) <∞, x ∈ Ωac(m).

Furthermore, we have

GB,h(z) := <e(MB,h(z)) =

∫
R

(t− u(x, y))d(EB(t)h, h)

(t− u(x, y))2 + v(x, y)2

Since
|t− u(x, y)|

(t− u(x, y))2 + v(x, y)2
≤ 1√

(t− u(x, y))2 + v(x, y)2
≤
√

2

v(x, 0)

for x ∈ Ωac(m) and y ∈ (0, y0). Again by the Lebesgue dominated convergence theorem we

find

GB,h(x+ i0) := lim
y↓0

GB,h(x+ iy) =

∫
R

(t− u(x, 0))d(EB(t)h, h)

(t− u(x, 0))2 + v(x, 0)2

which shows that x ∈ Ωac(m) implies x ∈ Ωac(MB,h) for every h ∈ H where

Ωac(MB,h) := {x ∈ R : ∃MB,h(x+ i0) := lim
y↓0

MB,h(x+ iy) and 0 < =m(MB,h(x+ i0)) <∞}.

Since Ωac(m) ⊆ Ωac(MB,h) one gets σac(A0) = suppac(µ) = clac(Ωac(m)) ⊆ clac(Ωac(MB,h))

for each h ∈ H. Finally, applying Proposition 4.2 of [12] we verify (i).

(ii) If B = Bac, then the measure ρh(·) := (EB(·)h, h) is absolutely continuous for

any h ∈ H, that is, dρh(t) = ρ′h(t)dt, where ρ′h(·) ∈ L1(R) for any h ∈ H. One rewrites (5.2)

as

FB,h(z) =

∫
R

v(x, y)ρ′h(t)dt

(t− u(x, y))2 + v(x, y)2
(5.5)
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From [6] it is well known that the subset H∞ := {h ∈ H : ρ′h ∈ L∞(R) ∩ L1(R)} is dense in

H = Hac(B). For h ∈ H∞ we obtain from (5.5) that

C∞(h) := sup
0<y<1

sup
x∈R
=mFB,h(x+ iy) ≤ ‖ρ′h‖L∞ sup

v>0
sup
u∈R

∫
R

v ds

(s− u)2 + v2
≤ π‖ρ′h‖L∞ . (5.6)

Using Corollary 4.7 of [12] we complete the proof. �

REMARK 5.3

1. The results of Theorem 5.2 are valid if the extensions Ã and A0 are disjoint, cf. Remark

2.7. If they are not disjoint and if A0 is not absolutely continuous, then the assertion

(ii) of Theorem 5.2 might be false.

2. The inclusion σac(AB) ⊃ σac(A0) of Theorem 5.2(i) might be strict. Indeed, if B = Bac

and A0 is singular, in particular, pure point, then AB = AacB by Theorem 5.2(ii) but

σac(A0) = ∅, i.e. ∅ 6= σac(AB) ⊃ σac(A0) = ∅.

Assertion(i) of Theorem 5.2 is not only true for extensions which are disjoint with A0 but

for any extension.

COROLLARY 5.4 Let A be a simple symmetric operator in H with infinite defi-

ciency indices. Further, let Π = {H,Γ0,Γ1} a boundary triple for A∗ with scalar-type Weyl

function M(·). If Ã ∈ ExtA, then σac(A0) ⊆ σac(Ã).

PROOF. Taking into account Remark 2.7 the corollary follows from Theorem 5.2

provided the extension Ã is disjoint with A0.

If Ã is not disjoint with A0 we set Â = A∗ � dom(Â) ⊇ A, dom(Â) := dom(A0) ∩
dom(Â). The operator Â is closed and symmetric. Moreover, one has A ⊆ Â ⊆ A0. Notice

that Ã and A0 are disjoint with respect to Â. By Lemma 4.3 there is a boundary triple

Π̂ = {Ĥ, Γ̂0, Γ̂1} such that the corresponding Weyl function M̂(·) is a scalar-type one.

If Â is simple, then applying Theorem 5.2 one gets σac(A0) ⊆ σac(Ã). If Â is not

simple, then Â = Âself ⊕ Âsim where Âself is self-adjoint and Âsim is simple. Notice that

Âself ⊆ Ã and Âself ⊆ A0 which yields

Ã = Âself ⊕ Ãsim and A0 = Âself ⊕ A0,sim.

Hence, the self-adjoint operators Ãsim and A0,sim are extensions of the symmetric operator

Âsim. We note that

dom(Âsim) = dom(Ãsim) ∩ dom(A0,sim)

which shows that the extensions Ãsim and A0,sim are disjoint.
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Setting Γ̂sim0 := Γ̂0 � dom(Â∗sim) and Γ̂sim1 := Γ̂1 � dom(Â∗sim) we define a boundary

triple Π̂sim = {Ĥ, Γ̂sim0 , Γ̂sim1 } for A∗sim such that A0,sim = Â∗sim � ker(Γ̂sim0 ) and the corre-

sponding Weyl function M̂sim(·) coincides with M̂(·). Applying again Theorem 5.2 we find

σac(A0,sim) ⊆ σac(Ãsim) which yields σac(A0) ⊆ σac(Ã). �

Corollary 5.4 shows that under the assumption of a scalar-type Weyl function the

absolutely continuous spectrum of any extension always contains σac(A0). By Theorem 4.4

the above result implies the following corollary.

COROLLARY 5.5 Let A be a simple symmetric operator with infinite deficiency

indices on the separable Hilbert space H. Further, let Π = {H,Γ0,Γ1} be a boundary triple

for A∗ with scalar-type Weyl function M(·) = m(·) IH which is is monotone with respect to

the open set J ⊆ OM ⊂ ρ(A0). Then for any operator R on some separable Hilbert space

there is a self-adjoint extension Ã such that ÃJ ∼= Rac
J and Ã is absolutely continuous.

PROOF. By Theorem 4.4 there is a self-adjoint extension such that ÃJ ∼= Rac
J .

Following the line of reasoning of Theorem 4.4 we find that Ã is of the form Ã = AB where

B is absolutely continuous. Applying Theorem 5.2(ii) we complete the proof. �

Naturally, the problem arises to find conditions which are sufficient in order that

σac(Ã) = σac(A0).

THEOREM 5.6 Let A be a simple symmetric operator in H with infinite defi-

ciency indices. Further, let Π = {H,Γ0,Γ1} be a boundary triple for A∗ with scalar-type

Weyl function M(·), i.e. M(z) = m(z)IH, and let B = B∗ ∈ C(H).

(i) If B is singular, i.e. Bs = B, then the absolutely continuous parts AacB and Aac0 are

unitarily equivalent, in particular, σac(AB) = σac(A0).

(ii) If B and A0 are singular, then AB is singular.

(iii) If B is pure point and the spectrum of A0 consists of isolated eigenvalues, then AB is

pure point.

PROOF. (i) Let B be pure point with the eigenvalues {bk}∞k=1 and eigenprojections

{Qk}∞k=1. We set Hk := QkH. Without loss of generality let us assume that Qk are one

dimensional projections. By Proposition 4.8 one gets

A =
∞⊕
k=1

Sk and A0 =
∞⊕
k=1

Sk,0

where Sk and Sk,0 obey the properties (i)-(iii) of Proposition 4.8. In particular, by property

(iii) of Proposition 4.8 for each bk, k = 1, 2, . . ., there is a boundary triple Πk = {C,Γk0,Γk1}
for S∗k such that Sk,0 = S∗k � ker(Γk0) and the corresponding Weyl function coincides with
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m(·). Introducing for each k the boundary triple Πbk = {C,Γbk0 ,Γ
bk
1 }, Γbk0 := bkΓ

k
0 − Γk1,

Γbk1 := Γk1, one defines a self-adjoint extension Sbk := S∗k �ker(Γbk0 ) of Sk with corresponding

Weyl function mbk(·) given by mbk(z) := (bk −m(z))−1, z ∈ C+. Obviously, we have

MB(z) =
∞⊕
k=1

(bk −mk(z))−1, z ∈ C+,

which yields AB =
⊕∞

k=1 Sbk . Since the self-adjoint operators Sk,0 and Sbk are extensions of

the same symmetric operator Sk with deficiency indices n±(Sk) = 1 one gets by the Kato-

Rosenblum theorem [6] that their absolutely continuous parts Sack,0 and Sacbk are unitarily

equivalent, i.e Sack,0
∼= Sacbk . Hence AacB

∼= Aac0 .

If B is only singular, then by Theorem VI.7 of [29], see also [14], there is a self-

adjoint trace class operator C such B′ := B + C is pure point. Hence AacB′
∼= Aac0 by the

first part. By Theorem 2 of [17] the difference (AB − z)−1 − (AB′ − z)−1 is a trace class

operator if and only if (B − z)−1 − (B′ − z)−1 is a trace class operator. Applying again the

Rosenblum-Kato theorem [6] one gets that AacB
∼= AacB′

∼= Aac0 .

(ii) If σac(A0) = ∅, then by (i) we get σac(AB) = ∅ which yields AacB = 0.

(iii) Following the line of reasoning of (i) one gets that the spectrum of Sk,0 consists of

isolated eigenvalues for each k = 1, 2, . . ., too. Since Sk,0 and Sbk are self-adjoint extensions of

a symmetric operator Sk with n±(Sk) = 1 the spectrum of Sbk consists of isolated eigenvalues,

too. Hence the spectrum of AB =
⊕∞

k=1 Sbk is pure point. �

REMARK 5.7 The conclusion (iii) of Theorem 5.6 might be false if A0 is only

pure point. In this case it can happen that the singular continuous part AscB of AB is not

trivial.

Under additional assumptions on the spectral measure µ of m(·) we can refine the

statements of Theorem 5.2.

PROPOSITION 5.8 Let A be a simple symmetric operator in H with infinite

deficiency indices. Further, let Π = {H,Γ0,Γ1} be a boundary triple for A∗ with scalar-type

Weyl function M(·), i.e. M(z) = m(z)IH and

supp+(µ) := {x ∈ supp(µ) : ∃ Dµ(x) and Dµ(x) > 0}

where µ is the Radon measure of representation (3.1). If B ∈ C(H), then

Eτ
AB

(supp+(µ)) = 0, τ ∈ {s, pp, sc}. (5.7)

In particular, it holds

(i) σp(AB) ∩ supp(µ) ⊆ supp(µ) \ supp+(µ) and
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(ii) Esc
AB

(supp(µ)) = 0 provided supp(µ) \ supp+(µ) is either finite or countable.

PROOF. We set supp+
∞(µ) := {x ∈ supp+(µ) : Dµ(x) = ∞}. By Theorem 5.1(i)

we derive that the limit limy↓0 v(x, y) exists and is finite for x ∈ supp+(µ) \ supp+
∞(µ) and

v(x, 0) := lim
y↓0

v(x, y) = πDµ(x) > 0, x ∈ supp+(µ) \ supp+
∞(µ). (5.8)

By Proposition 2.5, there exists an operator B = B∗ ∈ C(H) such that Ã = AB := A∗ �

ker(Γ1 − BΓ0). We consider the generalized Weyl function MB(z) := (B −M(z))−1 and

define FB,h(·) by (5.2). Following the line of reasoning of Theorem 5.2 we obtain

0 < FB,h(x+ i0) <∞, x ∈ supp+(µ) \ supp+
∞(µ), h ∈ H. (5.9)

Further, let x ∈ supp+
∞(µ). By Theorem 5.1(ii) and (iii) we find

v(x, 0) := lim
y↓0

v(x, y) =∞ and lim
y↓0

y v(x, y) = µ({x}).

Therefore for every y0 > 0 there exists N = N(y0) such that v(x, y) ≥ N for y ∈ (0, y0).

Hence
v(x, y)

(t− u(x0, y))2 + v2(x, y)
≤ 1

N
, y ∈ (0, y0).

By the Lebesgue dominated theorem we obtain from (5.2) that

lim
y↓0

FB,h(x+ iy) = 0, x ∈ supp+
∞(µ), h ∈ H. (5.10)

Let ΣB(·) be the unbounded non-orthogonal spectral measure of the Weyl function MB(z) =

(B −M(z))−1, z ∈ C+, and ΣB,h(·) = (ΣB(·)h, h), h ∈ H. If

S ′′s (ΣB,h) := {x ∈ R : FB,h(z)→∞ as z →� x}, h ∈ H,

then we find from (5.9) and (5.10) that S ′′s (ΣB,h) ∩ supp+(µ) = ∅. Let T = {hk}∞k=1 be a

total set in H. Setting

S ′′s (ΣB; T ) :=
∞⋃
k=1

S ′′s (ΣB,hk)

one gets S ′′s (ΣB; T ) ∩ supp(µ+) = ∅. Applying Theorem 3.6 of [12] we find

Es
AB

(supp+(µ)) = EAB(supp+(µ) ∩ S ′′s (ΣB; T )) = 0

which proves (5.7) for τ = s. Similarly, setting

S ′′pp(ΣB,h) := {x ∈ R : lim
z→�x

(z − x)FB,h(z) > 0}, h ∈ H,
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and

S ′′pp(ΣB; T ) :=
∞⋃
k=1

S ′′pp(ΣB,hk)

we verify S ′′pp(ΣB; T ) ⊆ S ′′s (ΣB; T ). Using Theorem 3.6 of [12] one proves (5.7) for τ = pp.

Finally, setting

S ′′sc(ΣB,h) := {x ∈ R : FB,h(z)→∞ and (z − x)FB,h(z))→ 0 as z →� x}, h ∈ H,

and

S ′′sc(ΣB; T ) :=
∞⋃
k=1

S ′′sc(ΣB,hk) \ S ′′pp(ΣB; T )

we obtain S ′′sc(ΣB,h) ⊆ S ′′s (ΣB,h) which yields (5.7) for τ = sc by Theorem 3.6 of [12].

(i) By Theorem 3.6 of [12] we have σp(AB) = S ′′pp(ΣB; T ) which yields σp(AB) ∩
supp(µ) ⊂ supp(µ) \ supp+(µ).

(ii) We have

Esc
AB

(supp(µ)) = Esc
AB

(supp+(µ)) + Esc
AB

(supp(µ) \ supp+(µ)) = Esc
AB

(supp(µ) \ supp+(µ)).

Since by assumption supp(µ)\supp+(µ) is countable we obtain Esc
AB

(supp(µ)\supp+(µ)) = 0

which shows Esc
AB

(supp(µ)) = 0. �

REMARK 5.9 We note that if in addition to the assumptions of Proposition 5.8

the condition supp(µ) = supp+(µ) is satisfied, then by (i) one has σp(AB) ∩ σ(A0) = ∅, cf.

[3, 19, 20, 28].

6 Examples

In this section we consider several examples in order to illustrate the previous results.

6.1 Example

Let H = L2((0, 1)). By A we denote the closed symmetric operator

(Af)(x) := −i d
dx
f(x), x ∈ (0, 1),

f ∈ dom(A) := {f ∈ W 1
2 ((0, 1)) : f(0) = f(1) = 0},

which is simple and has deficiency indices (1, 1). We note that A∗ is given by (A∗f)(x) :=

−i d
dx
f(x), f ∈ dom(A∗) := W 1

2 ((0, 1)). A straightforward computation shows that Π =

{H,Γ0,Γ1} where H := C,

Γ0f :=
f(0)− f(1)√

2
, Γ1f := i

f(0) + f(1)√
2

, f ∈ dom(A∗) = W 1
2 ((0, 1)), (6.1)
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forms a boundary triple for A∗. The operator A0 := A∗ �ker(Γ0) is given by

(A0f)(x) = −i d
dx
f(x), x ∈ (0, 1), f ∈ dom(A0) = {W 1

2 ((0, 1)) : f(0) = f(1)}.

The spectrum of A0 is discrete. It consists of isolated eigenvalues σ(A0) = {λl}l∈Z with

λl = 2lπ. Obviously, we have ρ(A0) = ∪l∈Z∆l where ∆l = (2lπ, 2(l + 1)π). Trivially, the

open intervals ∆l are gaps of the operator A0 = A∗0. Hence they are gaps of the symmetric

operator A. The extension A1 = A∗ � ker(Γ1) has the domain dom(A1), dom(A1) := {f ∈
W (1,2)((0, 1)) : f(0) = −f(1)}. Its spectrum is discrete and consists of the eigenvalues

λl = (2l + 1)π, l ∈ Z. Any other extension of A is given by a real constant θ ∈ R and the

boundary triple Πθ := {C,Γθ0,Γθ1}, where Γθ1 = Γ0 and Γθ0 = θΓ0− Γ1. The domain dom(Aθ)

of the self-adjoint extension Aθ = A∗ �ker(Γθ0) can be alternatively described by

dom(Aθ) =
{
f ∈ {W 1

2 ((0, 1)) : (θ − i)(θ + i)−1f(0) = f(1)
}

Of course, the spectrum of Aθ is also discrete and consists of the eigenvalues. Setting

θ = − cot(τ/2), τ ∈ (0, 2π), one easily verifies that λ
(θ)
l = τ + l, l ∈ Z. In other words, any

extension of A, which is different from A0, has an eigenvalue in the gaps ∆l, l ∈ Z, i.e., it

does not preserve the gaps ∆l.

It is easily seen that the Weyl function corresponding to the boundary triple Π =

{H,Γ0,Γ1} of the form (6.1) is

m(z) = −cos(z/2)

sin(z/2)
= − cot(z/2), z ∈ C+ ∪ C−.

The open set Om = R \ supp(m) coincides with ρ(A0) ∩ R, i.e. Om = ∪l∈Z∆l. The Weyl

function admits an extension to Om which is given by m(λ) = − cot(λ/2), λ ∈ Om.

Obviously, the Weyl function m(·) is increasing on each open interval ∆l. However, choosing

J = Om one easily verifies that the Weyl function m(·) is not monotone with respect to J .

The lack of monotonicity is related to the fact that there does not exist an extension Ã of

A which has only an eigenvalue in one gap ∆l as we have seen above.

Let us consider the closed symmetric operator S = ⊕∞k=1Sk on the Hilbert space

K = ⊕∞k=1Kk where the operators Sk are unitarily equivalent to A defined above. Obviously,

the operator S is unitarily equivalent to the operator C defined on H = L2((0,∞)),

(Cf)(x) := −i d
dx
f(x), f ∈ dom(C) := {W 1

2 (R+) : f(k) = 0, k ∈ {0} ∪ N}

To apply Theorem 3.3 we note that now Om =
⋃
l∈Z(2πl, 2π(l+1)) and ϕl(t) = −2arccot(t)+

2π(l+1), l ∈ Z. By (3.37) and (3.38) the associated non-orthogonal spectral measures, Σ0
B(·)

and ΣB(·) of the Weyl function MB(z) := (B −m(z) · I)−1 are given by

Σ0
B(δ) = ϕ′l(B)(1 + ϕl(B)2)−1EB(m(δ)) = (1 + 2π(l + 1)− 2arccot(B)2)−1EB(− cot(δ/2)),

(6.2)
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and

ΣB(δ) = ϕ′l(B)EB(− cot(δ/2)) = 2(1 +B2)−1EB(− cot(δ/2)), (6.3)

δ ∈ B(∆l). It follows from (6.3) that the measure ΣB(·) is periodic: Σ(δ + 2πl) = Σ(δ),

δ ∈ B(∆0), l ∈ Z. Having in mind this fact one obtains that for any l ∈ Z the operator

SBESB((2πl, 2π(l + 1)) is unitarily equivalent to the operator SBESB((0, 2π)).

We note in conclusion that the latter fact is a special case of the following

PROPOSITION 6.1 Let A be a simple closed symmetric operator in H with

n+(A) = n−(A) and Π = {H,Γ0,Γ1} a boundary triple for A∗. If the corresponding Weyl

function M(·) is τ -periodic, i.e. M(z + τ) = M(z), then for any B = B∗ ∈ C(H) the

extension AB = A∗ � ker(Γ1 − BΓ0) is τ -periodic in the following sense: for every l ∈ Z
the operator ABEAB(∆0) is unitarily equivalent to the operator (AB − τ l · I)EAB(∆l) where

∆l := (lτ, (l + 1)τ).

PROOF. Let ΣB(·) := ΣMB
(·) be the unbounded non-orthogonal spectral measure

of the Nevanlinna function MB(z) := (B −M(z))−1. It is clear that MB(·) is τ -periodic,

MB(z + τ) = MB(z) since so is M(·). It follows from the Stieltjes inversion formula (2.7)

that ΣB(·) is τ -periodic, too, ΣB(δ + τ) = ΣB(δ), δ ∈ B(R).

Next we introduce the operator measures

Σ0
B,l(·) : B((0, τ))→ [H], Σ0

B,l : δ → Σ0
B(δ + τ l), δ ∈ B((0, τ)).

It follows from (2.5) that

Σ0
B,l(δ) =

∫
δ+τl

(1 + t2)−1dΣB(t) =

∫
δ

(1 + (s+ τ l)2)−1dΣB(s+ τ l) =

∫
δ

(1 + (t+ τ l)2)−1dΣB(t)

(6.4)

for δ ∈ B((0, τ)). Notice that Σ0
B,l(δ) 6= Σ0

B(δ)), δ ∈ B((0, τ)). Thus, the operator measures

Σ0
B,l and Σ0

B,0 are not unitarily equivalent for l 6= 0. Nevertheless due to (6.4) they are

spectrally equivalent (see [26, Proposition 4.18]), that means that they are equivalent in

the measure sense and their multiplicity functions are equal. By Proposition 4.9 of [26]

the minimal orthogonal dilations of the operator measures Σ0
B,l(·) and Σ0

B, (·) are unitarily

equivalent.

On the other hand, by Proposition 2.1 one gets the representation Σ0
B,l(δ) =

K∗EAB(δ + τ l)K, δ ∈ B((0, τ)). This identity means that the measure EAB(·+ τ l)EAB(∆l)

is the orthogonal dilation of Σ0
B,l(·) for every l ∈ Z. Since the operator A is simple, it fol-

lows that EAB(· + τ l)EAB(∆l) is the minimal orthogonal dilation of Σ0
B,l(·). Therefore the

measures EAB(·)EAB(∆0) and EAB(·+ τ l)EAB(∆l) are unitarily equivalent. By the spectral

theorem the operators ABEAB(∆0) and (AB − τ l · I)EAB(∆l) are unitarily equivalent. �

Finally, we complement Proposition 6.1 by the following simple result.
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PROPOSITION 6.2 Let A be a symmetric operator in H with two gaps (α, β)

and (α + τ, β + τ). Suppose that there exists a boundary triple Π = {H,Γ0,Γ1} for A∗ such

that A0(= A∗ �ker(Γ0)) preserves the gaps and the corresponding Weyl function M(·) satisfies

M(x + τ) = M(x), x ∈ (α, β). Then A has infinitely many gaps (α + kτ, β + kτ), k ∈ Z
and both M(·) and A0 are τ -periodic.

PROOF. Since M(·) is holomorphic in C+ ∪ C− we have M(z + τ) = M(z), z ∈
C+ ∪C−. In particular we have M(x+ iy + kτ) = M(x+ iy) for x ∈ (α, β), y ∈ R \ {0}. It

follows that there exist strong limits s− limy↓0 M(x+ kτ ± iy) for x ∈ (α, β) and

M(x+ kτ + i0) := s− lim
y↓0

M(x+ kτ + iy) = s− lim
y↓0

M(x+ iy) = M(x) = M(x)∗,

M(x+ kτ − i0) := s− lim
y↓0

M(x+ kτ − iy) = s− lim
y↓0

M(x− iy) = M(x)∗ = M(x)

for x ∈ (α, β) and k ∈ Z which yields

M(x+ kτ − i0) = M(x+ kτ + i0)∗, k ∈ Z.

By the Stieltjes inversion formula (2.7) one has ΣM((α + kτ, β + kτ)) = 0 and the Weyl

function M(·) admits a holomorphic continuation through (α+ kτ, β + kτ) for every k ∈ Z.

Hence (α + kτ, β + kτ) is a gap for both A and A0. By Proposition 6.1 A0 is τ -periodic. �

6.2 Example

Let H1 := L2(R+) and let S1 be a closed symmetric operator in H1 defined by

(S1f)(x) = − d2

dx2
f(x), f ∈ dom(S1) =

0

W2
2(R+) := {f ∈ W 2

2 (R+) : f(0) = f ′(0) = 0}.
(6.5)

Obviously S1 ≥ 0. Setting

Γ1
0(θ)f = f ′(0)− θf(0), Γ1

1(θ)f = −f(0), f ∈ dom(S∗1) = W 2
2 (R+), θ ∈ R,

we obtain the boundary triple Πθ
1 = {C,Γ1

0(θ),Γ1
1(θ)} for S∗1 . It is clear that the extension

Sθ1 := S∗1 �ker(Γ1
0(θ)) is non-negative iff θ ≥ 0. The corresponding Weyl function is mθ(λ) =

(θ− i
√
λ)−1. It is regular in C\R+ if θ ≥ 0, where the branch of

√
λ is fixed by the condition√

1 = 1. The Weyl function mθ(·) admits the following integral representation

mθ(λ) = (θ − i
√
z)−1 =

1

π

∫ ∞
0

√
t

(t− z)(t+ θ2)
dt, θ ≥ 0,

and the corresponding spectral measure is given by dµθ = π−1t1/2(t + θ2)−1dt. Clearly,

mθ(·) is holomorphic within (−∞, 0) such that mθ((−∞, 0)) = (0, θ−1). The inverse function
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ϕθ(·) : (0, θ−1)→ (−∞, 0) is given by ϕθ(ξ) = −(ξ−1−θ)2, ξ ∈ (0, θ−1). We set ∆ := (−∞, 0)

and ∆′ := mθ(∆) = (0, θ−1). Notice that ϕ′θ(ξ) = 2(ξ−1 − θ)ξ−2.

Let H = ⊕∞k=1Hk, A := ⊕∞k=1Sk and Π = {H,Γ0,Γ1} := ⊕∞k=1Πθ
k where Hk := H1,

Sk := S1 and Πθ
k = Πθ

1 for k ∈ N. We set A0 := A∗ � ker(Γ0). The corresponding Weyl

function M(·) is of scalar-type, i.e. M(z) = mθ(z)IH. Further, let B = B∗ ∈ C(H). To the

self-adjoint extension AB it corresponds the Weyl function MB(z) := (B −mθ(z)IH)−1. Let

ΣB(·) be the unbounded non-orthogonal spectral measure of the Weyl function MB(·). It

follows from (3.37)

ΣB(δ) = 2(B−1
∆′ − θ)B

−2
∆′ EB(mθ(δ)), Bmθ(∆) = B∆′ = BEB(∆′), δ ∈ B(∆). (6.6)

Let δ = (x, 0), x < 0. Since mθ

(
(x, 0)

)
=
(
(θ +

√
|x|)−1, θ−1

)
for x < 0 we get from (6.6)

ΣB((x, 0)) = 2
(
B−1

∆′ − θ
)
B−2

∆′ EB
(
(θ +

√
|x|)−1, θ−1)

)
, x < 0. (6.7)

We note that ΣB(x) ∈ [H] for every x < 0, while B−1
∆′ may be unbounded.

Further, starting with (5.4) we can explicitly calculate the non-orthogonal spectral

measure ΣB(·) outside the gap ∆ = (−∞, 0). Setting ΣB,h(·) := (ΣB(·)h, h) and FB,h(z) =

=m(MB(z)h, h) we easily derive from (5.4) and the Fatou theorem that

π
dΣB,h(x)

dx
= FB,h(x+ i0) =

∫
R

√
x d(EB(t)h, h)

(tθ − 1)2 + xt2
, x > 0, h ∈ H, (6.8)

where ΣB,h(x) := ΣB,h((0, x)), x > 0. A straightforward computation shows that

supp+(µθ) = (0,∞). By Proposition 5.8 we have Eτ
AB

((0,∞)) = 0, τ = s, pp, sc. Hence

στ (AB) ⊆ (−∞, 0], τ = s, p, sc. Since σac(A0) = [0,∞) we obtain from Theorem 5.2

that σac(AB) ⊇ [0,∞). Therefore, the orthogonal spectral measure EAB(·) of AθB is abso-

lutely continuous on (0,∞) which yields that ΣB(·) is absolutely continuous on (0,∞), i.e

Σac
B (δ) = ΣB(δ) for δ ∈ B((0,∞)). Hence

ΣB,h((0, x)) =
1

π

∫ x

0

ds

∫
R

√
s d(EB(t)h, h)

(tθ − 1)2 + st2
=

∫
R

Φθ(x, t) d(EB(t)h, h), x > 0, h ∈ H,

where

Φθ(x, t) :=
2

πt2

(√
x− |tθ − 1|

t
arctan

(
t
√
x

|tθ − 1|

))
, x > 0, (6.9)

which yields

ΣB((0, x))h =

∫
R

Φθ(x, t)dEB(t)h, x > 0, h ∈ H. (6.10)

Thus, formulas (6.7) and (6.10) together give the explicit form for the unbounded non-

orthogonal spectral measure ΣB(·) of the extension AB.

40



6.3 Example

Let H1 = L2(R+) and let S1 ≥ 0 be as in (6.5). Consider a boundary triple Π∞1 =

{C,Γ1
0(∞),Γ1

1(∞)} for S∗1 where

Γ1
0(∞)f = f(0), Γ1

1(∞)f = −f ′(0), f ∈ dom(S∗1) = W 2
2 (R+). (6.11)

It is clear that the extension S∞1 ≥ 0 defined by

S∞1 := S∗1 �ker(Γ1
0(∞)), ker(Γ1

0(∞)) = W 2
2,0(R+) = {f ∈ W 2

2 (R+) : f(0) = 0}

is the Friedrichs extension of S1. The Weyl function corresponding to the triple (6.11) is

m∞(λ) = i
√
λ. It admits the integral representation

m∞(λ) = i
√
λ = − 1√

2
+

1

π

∫ ∞
0

(
1

t− λ
− t

1 + t2

)
t1/2dt.

The associated spectral measure is dµ∞(t) = π−1t1/2dt. Clearly, m∞(λ) = i
√
λ is holomor-

phic and monotone on (−∞, 0). Its inverse is ϕ∞(ξ) = −ξ2. We set ∆ = (−∞, 0) and

∆′ = m∞(∆) = (−∞, 0). Notice that ϕ∞(ξ) = −2ξ.

As in the previous example let H = ⊕∞k=1Hk, A := ⊕∞k=1Sk and Π = {H,Γ0,Γ1} :=

⊕∞k=1Π∞k where Hk := H1, Sk := S1 and Π∞k = Π∞1 for k ∈ N. Notice that Π forms a

boundary triple for A∗. The corresponding Weyl function M(·) is of scalar-type, i.e M(z) =

m∞(z)IH. The operator A0 := A∗ � ker(Γ0) is the Friedrichs extension of A, is absolutely

continuous and σ(A0) = σac(A0) = [0,∞). Let B = B∗ ∈ C(H). As above to the self-adjoint

extension AB it corresponds the Weyl function MB(z) = (B − m∞(z)IH)−1. By ΣB(·) we

denote the unbounded non-orthogonal spectral measure of the Weyl function MB(·). We

obtain from (3.37) that

ΣB((x, 0)) = −2BEB((−∞, 0))EB
(
(−|x|1/2, 0)

)
= −2BEB

(
(−|x|1/2, 0)

)
, x < 0. (6.12)

Repeating the reasoning from above we find

ΣB,h((0, x)) =
1

π

∫ x

0

ds

∫
R

√
s

t2 + s
d(EB(t)h, h) =

∫
R

Φ∞(x, t) d(EB(t)h, h), x > 0, (6.13)

h ∈ H, where

Φ∞(x, t) := 2π−1
(√

x− |t| arctan
(√

x/|t|
))
, x > 0. (6.14)

Formula (6.13) leads to the following explicit integral representation for the non-orthogonal

spectral measure ΣB(·) outside the gap,

ΣB(x)h =

∫
R

Φ∞(x, t)dEB(t)h, x > 0, h ∈ H, (6.15)

with the kernel (6.14).

We note that by Proposition 5.8 one has στ (AB) ⊆ (−∞, 0], τ ∈ {s, pp, sc}. Since

by Theorem 5.2 the relation σac(AB) ⊇ [0,∞) holds the spectral measure EAB(·) is absolutely

continuous on (0,∞) independent from the spectral properties of B.
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