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1. Introduction

Casimir operators of Lie algebras constitute an important tool in representation theory

and physical applications, since their eigenvalues can be used to label irreducible

representations, and, in the case of physical symmetry groups, provide quantum

numbers. For the classical algebras, explicit formulae to obtain the Casimir operators

and their eigenvalues were succesively developed by Racah, Perelomov and Popov or

Gruber and O’Raifeartaigh, among others [1, 2, 3, 4, 5]. For nonsemisimple algebras,

the problem is far from being solved, although various results have been obtained [6, 7].

In [8, 9] the Casimir operators of various semidirect products g of classical Lie algebras

and Heisenberg algebras were obtained by application of the Perelomov-Popov formulae.

The main idea was to introduce new variables that span a semisimple algebra isomorphic

to the Levi part of g, and then to apply the well known formulae for invariants of the

classical algebras. Such products hae been shown to be relevant for various physical

problems, like the nuclear collective motions [10, 11].

In this work we show that this argument can be enlarged to cover the exceptional

(complex) Lie algebra G2. The same procedure can be applied to the higher rank

exceptional algebras, but the low dimension of G2 and its particular properties make it

the adecuate frame for computations. The interest of a synthetic procedure for these

algebras is out of discussion, for the various physical applications of exceptional algebras,

as the labelling of internal states, since they entered elementary particle physics in the

beginning sixties ([12, 13] and references therein), and which constitute nowadays an

important tool in high energy physics.

The functional method to determine the (generalized) Casimir invariants of a Lie

algebra g has become the most extended in the literature, and is more practical than

the traditional method of analyzing the centre of the universal enveloping algebra U(g)

of g. For the study of completely integrable Hamiltonian systems, where the existence

of Casimir operators is not ensured, it allows to determine those solutions which are not

interpretable in terms of U(g).

Recall that if {X1, .., Xn} is a basis of g and
{
Ck

ij

}
the structure constants over this

basis, we can represent g in the space C∞ (g∗) by means of differential operators:

X̂i = −Ck
ijxk

∂

∂xj

, (1)

where [Xi, Xj] = Ck
ijXk (1 ≤ i < j ≤ n). In this context, an analytic function

F ∈ C∞ (g∗) is called an invariant of g if and only if it is a solution of the system:
{
X̂iF = 0, 1 ≤ i ≤ n

}
. (2)

If F is a polynomial, then it provides a classical Casimir operator, after symmetrization,

while nonpolynomial solutions of system (2) are usually called “generalized Casimir

invariants”. The cardinal N (g) of a maximal set of functionally independent solutions
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(in terms of the brackets of the algebra g over a given basis) is easily obtained from the

classical criteria for PDEs:

N (g) := dim g − rank
(
Ck

ijxk

)
1≤i<j≤dim g

, (3)

where A(g) :=
(
Ck

ijxk

)
is the matrix which represents the commutator table of g over

the basis {X1, .., Xn}. Evidently this quantity constitutes an invariant of g and does

not depend on the choice of basis. In particular, if the Lie algebra g is supposed to

be perfect, i.e., such that g = [g, g] holds, then we can always find a maximal set

of algebraically independent Casimir operators [14]. For semisimple Lie algebras g,

Gruber and O’Raifeartaigh [2] developed an effective procedure to determine the Casimir

invariants as trace operators. Given the matrix gµν associated to the Killing form over

a basis {Xµ}, they constructed the matrices

Q = (gµν)
−1

Xµ ⊗ xν (4)

The trace operator TrQp has the property of commuting with the basis elements of g:

[TrQp, Xµ] = 0, (5)

that is, TrQp is a Casimir operator of degree p. This method was applied in [15] to

determine the sixth order Casimir operator of the exceptional algebra G2 in dependence

of a A2-basis.

2. Generators of G2 in a A2 basis

The motivation to determine the invariants of exceptional Lie algebras lies in their

applications to particle physics, which require explicit formulae that can be manipulated

in effective manner. The Casimir operators of the exceptional algebra G2 have been

determined by various authors, using different bases, like A1 + A1, A2 or B3-bases

[15, 16, 17]. For the semidirect products of G2 with Heisenberg algebras analyzed in

this work, it is convenient to use a A2-basis. Recall that the adjoint representation Γ(1,0)

of G2 decomposes like follows with respect to the A2-subalgebra spanned by the long

roots:

Γ(1,0) = 8 + 3 + 3 (6)

According to this decomposition, we label the generators as Eij , ak, b
l (i, j, k, l = 1, 2, 3)

(with the constraint E11 + E22 + E33 = 0). We have the brackets:

[Eij , Ekl] = δjkEil − δilEkj (7)

[Eij , ak] = δjkai (8)
[
Eij , b

k
]

= −δikb
j (9)

[ai, aj ] = −2εijkb
k (10)

[
bi, bj

]
= 2εijkak (11)

[
ai, b

j
]

= 3Eij (12)
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Table 1. Eigenvalues of H over the basis (7)-(12)

X E12 E23 E13 E21 E32 E31 a1 a2 a3 b1 b2 b3

λ1 (X) 3 3 0 −3 −3 0 1 −2 1 −1 2 −1

λ2 (X) −1 2 1 1 −2 −1 0 1 −1 0 −1 1

Table 2. The fundamental 7-dimensional representation

of G2 in the A2-basis

V1 V2 V3 V4 V5 V6 V7

H1 V1 2V2 V3 −V4 −2V5 −V6 0

H2 0 −V2 −V3 V4 V5 0 0

E12 0 0 0 0 V1 V2 0

E21 V5 V6 0 0 0 0 0

E23 0 −V4 V5 0 0 0 0

E32 0 0 0 −V2 V3 0 0

E13 0 0 V1 0 0 V4 0

E31 V3 0 0 V6 0 0 0

a1 0 0 V2 0 −V4 −V7 2V1

a2 V4 V7 V6 0 0 0 2V5

a3 −V2 0 0 V7 −V6 0 2V3

b1 V7 V3 0 −V5 0 0 −2V6

b2 0 0 0 V1 V7 V3 2V2

b3 0 −V2 V7 0 0 −V5 2V4

The A2 subalgebra is clearly spanned by the operators Eij . For our purpose

it is convenient to choose the Cartan subalgebra generated by the operators H1 =

E11 − 2E22 + E33 and H2 = E22 − E33. The operators {a1, a2, a3} correspond to

the fundamental quark representation 3, while {b1, b2, b3} corresponds to the antiquark

representation 3 (the action is given in table 1)

With respect to this basis, the quadratic invariant of G2, obtained using the Q-

matrix (4), is given by

C2 = H2
1 + 3H1H2 + 3H2

2 + 3 (E12E21 + E23E32 + E13E31) + aib
i (13)

The corresponding symmetrization gives the quadratic Casimir operator. The operator

of order six can be computed by the same method (see [15] for the explicit expression

in a slightly different basis from that used here).

Here we are interested on the semidirect products g = G2
−→⊕Rh of the exceptional

algebra G2 with a Heisenberg Lie algebra hm. As usual, we use the characterizing

property of this algebra, namely being 2-step nilpotent of dimension (2m + 1) (m ≥ 1)

and having a one dimensional centre with coincides with the derived subalgebra. This

implies that we can always find a basis {V1, .., V2m, V0} of hm such that the only brackets

are

[Vi, V2m+1−i] = λiV0 (14)
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with λi 6= 0. Since the centre of such an algebra is nontrivial [18], the representation R

is of the form R = αiΓ(ai,bi) ⊕ Γ(0,0). Without loss of generality we can suppose that for

any index i we have (ai, bi) 6= (0, 0). In what follows, we will consider representations R

of the form R = 2Γ(a,b)⊕Γ(0,0). If {V1, .., Vp} is a basis of the (irreducible) representation

Γ(a,b), we label the basis of R as
{
V 1

1 , .., V 1
p , V 2

1 , .., V 2
p , V0

}
, where V0 is a basis of the

trivial representation of G2.

The lowest possible dimension for such a representation is 15, R = 2Γ(0,1)⊕Γ(0,0), where

Γ(0,1) denotes the fundamental seven dimensional irreducible representation of G2 (the

action is given in table 2). With the preceding labelling of the basis, the only nontrivial

brackets of the radical are given by:
[
V 1

1 , V 2
6

]
=

[
V 2

5 , V 1
2

]
=

[
V 2

4 , V 1
3

]
= V0 (15)

[
V 1

6 , V 2
1

]
=

[
V 2

3 , V 1
4

]
=

[
V 2

2 , V 1
5

]
= V0 (16)

[
V 1

7 , V 2
7

]
= 2V0. (17)

The number of invariants of such algebras is easily obtained.

Lemma 1 For any (a, b) ∈ N × N following identity holds:

N
(
G2

−→⊕2Γ(a,b)⊕Γ(0,0)
h7q

)
= 3

The proof follows at once either directly from the commutator matrix or using the

reformulation of the Beltrametti-Blasi in terms of differential forms developed in [19].

As expected, one of the invariants of g = G2
−→⊕ 2Γ(a,b)⊕Γ(0,0)

hmis given by the generator V0

of the centre. The other two invariants of g depend on all its variables, the generator of

the centre comprised [18].

3. An auxiliary result concerning sl(2)-representations

Let l ∈ N and δ = 0, 1. Let {2l − δ} be the irreducible representation of

sl(2) =
{

X1, X2, X3 | [X2, X3] = X1, [X1, Xi] = 2 (−1)i
Xi, i = 2, 3

}
of highest weight

λ = 2l − δ‡. Then, for any l ≥ 1 we can obtain a Lie algebra g = sl(2)
−→⊕Rr with

radical isomorphic to h2l+1−δ, the (4l + 3 − 2δ)-dimensional Heisenberg algebra, and

representation R = 2 {2l − δ} ⊕ {0} . Over a basis
{
V 1

1 , .., V 1
2l+1−δ, V

2
1 , .., V 2

2l+1−δ, V0

}
,

the action of sl (2) is given, for i = 1, 2, by
[
X1, V

i
k

]
= (2l + 2 − 2k − δ) V i

k , k = 1..2l + 1 − δ (18)
[
X2, V

i
k

]
= (2l + 2 − k − δ)V i

k−1, k = 2..2l + 1 − δ (19)
[
X3, V

i
k

]
= kV i

k+1, k = 1..2l − δ (20)

Suppose moreover that the brackets of the radical are given by
[
V 1

k , V 2
2l+2−k−δ

]
= λkV0, 1 ≤ k ≤ 2l + 1 − δ, (21)

‡ With this notation, the case δ = 0 corresponds to integer spin representations, while δ = 1

corresponds to half-integer spin representations. This notation has been chosen to simplify the formulae.
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where λk 6= 0 for all k. Using the determinantal formulae developed in [18], their

application to this particular case allows to express the noncentral Casimir invariant in

dependence of the quadratic operator of sl (2)

Lemma 2 The noncentral Casimir operator of g = sl(2)
−→⊕Rr2l+1−δ is given by C =

P 2
1 + 4P2P3, where

P1 = x1v0 +

2l+1−δ∑

k=1

(2l + 2 − 2k − δ)

λk

v1
kv

2
2l+2−k−δ (22)

P2 = x2v0 −
2l−δ∑

k=1

k

λk

v1
kv

2
2l+1−k−δ (23)

P3 = x3v0 +

2l−δ∑

k=1

k

λk

v1
kv

2
2l+3−k−δ (24)

Obviously the formula remains valid for any even multiple of the irreducible

representation {2l + 1 − δ} and their direct sums [20]. Therefore we conclude that the

Casimir operators of Lie algebras sl(2)
−→⊕2W⊕{0}h, where W is an arbitrary representation

of sl(2), can be written as function of the quadratic Casimir operator of the Levi part,

and that the coefficients of the new variables Pi are completely determined by W (the

signs of v1
i v

2
j are however dependent on the basis chosen).

As an example, let us consider the representation R = 4 {1}⊕{0}, where the action

of sl (2) over the basis {V 1
1 , .., V 1

4 , V 2
1 , .., V 2

2 , V0} is given by the following table:

V 1
1 V 1

2 V 1
3 V 1

4 V 2
1 V 2

2 V 2
3 V 2

4 V0

X1 V 1
1 −V 1

2 V 1
3 −V 1

4 V 2
1 −V 2

2 V 2
3 −V 2

4 0

X2 0 −V 1
1 0 V 1

3 0 −V 2
1 0 V 2

3 0

X3 −V 1
2 0 V 1

4 0 −V 2
2 0 V 2

4 0 0

(25)

Observe that the signs differ from those considered in (18)-(20). The brackets of the

radical are
[
V 1

k , V 2
5−k

]
= −V0, k = 1..4 (26)

The noncentral Casimir operator I can be computed using the determinantal formula

of [18]. It can be verified that this invariant can be written as I = (x′
1)

2 + 4x′
2x

′
3, where

x′
1 = x1v0 +

(
−v1

1v
2
4 + v1

4v
2
1

)
+

(
v1
2v

2
3 − v1

3v
2
2

)
(27)

x′
2 = x2v0 + v1

1v
2
3 − v1

3v
2
1 (28)

x′
3 = x3v0 + v1

2v
2
4 − v1

4v
2
2. (29)

In particular, we observe that the coefficients of v1
i v

2
j and v1

j v
2
i have opposite sign.

This will always be the case when the sl2-representation is obtained by restriction of

a representation R of a simple algebra s (with sl2 ↪→ s) which involves irreducible

representations of s along with their dual representations.
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4. The invariants of g as functions of the Casimir operators of G2

In this section we present a procedure to determine the Casimir operators of algebras

g = G2
−→⊕ 2Γ(a,b)⊕Γ(0,0)

hm using the invariants of G2. The idea to obtain the Casimir

operators is similar to the argument employed in [8] for the wsu (n) and wsp (n) Lie

algebras, among others. That is, to find new variables E ′
ij , a

′
i, b

′j which transform

like the generators (7)-(12) of G2 and such that C2

(
E ′

ij, a
′
i, b

′j
)

and C6

(
E ′

ij , a
′
i, b

′j
)

are

solutions of the system (2) corresponding to the Lie algebra G2
−→⊕ 2Γ(a,b)⊕Γ(0,0)

hm, where

C2 (Eij , ai, b
j) and C6 (Eij , ai, b

j) are the Casimir operators of G2 of degrees two and six,

respectively.

To this extent, we can suppose that the new variables X ′ associated to the basis (7)-(12)

must be of the form

X ′ = Xv0 + α
ij
Xv1

i v
2
j , i, j > 0, αij

X ∈ R, (30)

where
{
V 1

1 , .., V 1
p , V 2

1 , .., V 2
p , V0

}
is a basis of R. In other words, we consider X ′ as

quadratic polynomials in the variables of g. This fact implies the following conditions

on the products v1
i v

2
j :

Lemma 3 Let H be the Cartan subalgebra of G2 with respect to the basis (7) − (12).

Then for any H ∈ H and X ′ in (30) following identity holds:

λH (X) = λH

(
v1

i

)
+ λH

(
v2

j

)
(31)

In particular, if X ′ ∈ H, then

λH (X) = λH

(
v1

k

)
+ λH

(
v2

l

)
= 0 (32)

The proof follows from the following facts: First, for any element H ∈ H and any

X, Y ∈ g we have

[H, XY ] = HXY H − XY H = X [H, Y ] + [H, X]Y = (λH (X) + λH (Y )) XY. (33)

Since the radical of g is a Heisenberg Lie algebra, it is an algebra spanned by m creation

and annihilation operators
{
Bi, B

†
i

}
, as well as a unit operator I corresponding to the

centre generator V0. Therefore there exists an isomorphism:

σ : hm → span
{
Bi, B

†
i , I

}

1≤i≤m
(34)

In view of equations (33), this implies that the operators

Ẽij = Eij + µκlσ
(
v1

k

)
σ

(
v2

l

)
(35)

ãi = ai + νjkσ
(
v1

j

)
σ

(
v2

k

)
(36)

b̃j = bj + χκlσ
(
v1

k

)
σ

(
v2

l

)
(37)

transform in the say way as the generators of G2, i.e., they satisfy the relations (7)−(12).

Thus, in particular
[
H̃, X̃

]
= λ eH

(
X̃

)
X̃ = λH (X) X̃, (38)
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since the eigenvalues are preserved by (35) − (37). Thus the identities (31) − (32) are

satisfied.

In particular, it follows that the coupling of the variables v1
i v

2
j associated to the radical

does not depend on the choice of a Cartan subalgebra of G2, and can easily be obtained

from the weight diagram of the representation.

In order to determine the coefficients α
ij
X for X ′, we will consider the restriction of

the representation R to the different sl2-triples of G2. This gives Lie algebras with

Heisenberg radical, whose noncentral Casimir operator can be computed easily. Once

this operator has been obtained, the result of the preceding section shows that we can

rewrite it as a polynomial function of the quadratic Casimir operator of sl(2), from

which the coefficients will be deduced rapidly.

Proposition 1 For any X ∈ G2, the coefficients α
ij
X of X ′ = Xv0 + α

ij
Xv1

i v
2
j

are completely determined by the sl2-triples generated by {Eij , Eji, [Eij , Eji]}i6=j
and

{ai, b
i, Ei} and the restriction of R to them.

Proof. For any of the sl2-triples {H2, E23, E32}, {H1 + H2, E12, E21},

{H1 + 2H2, E13, E31}, {2H1 + H2, a1, b
1}, {H1, a2, b

2}, and {H1 + 3H2, a3, b
3}, the re-

striction of 2Γ(a,b) ⊕ Γ(0,0) gives a Lie algebra with Levi part sl (2) and Heisenberg rad-

ical. By lemma 2, the noncentral Casimir operator of these algebras can be written in

dependence of the quadratic Casimir operator of sl (2), which provides the expressions

of the new variables E ′
ij , a

′
i, b

′j. These expressions are completely determined by the

restriction of R to the different sl2-triples, therefore by R. It is straightforward to verify

that these satisfy the requirements of lemma 3 and equations (31)-(32), thus transform

in the same way as the generators of G2.

Proposition 2 Let g = G2
−→⊕2Γ(0,1)⊕Γ(0,0)

h7. A fundamental set of invariants of g is

given by C2

(
E ′

ij, a
′
i, b

′j
)
, C6

(
E ′

ij , a
′
i, b

′j
)

and C1 = v0.

The proof follows directly by insertion of the functions C2

(
E ′

ij, a
′
i, b

′j
)

and C6

(
E ′

ij, a
′
i, b

′j
)

in the system (2), C1 being obviously an invariant for being a generator of the centre.

In particular, C2

(
E ′

ij , a
′
i, b

′j
)

is given by

(H ′
1)

2 + 3H ′
1H

′
2 + 3(H ′

2)
2 + 3 (E ′

12E
′
21 + E ′

23E
′
32 + E ′

13E
′
31) +

(
a′

1b
′1 + a′

2b
′2 + a′

3b
′3
)
. (39)

We obtain an invariant of degree four, and of degree twelve for C6

(
E ′

ij , a
′
i, b

′j
)
.

These results enable us to propose a procedure to compute the invariants of

g = G2
−→⊕2Γ(a,b)⊕Γ(0,0)

hm in dependence of the Casimir operators C2

(
E ′

ij , a
′
i, b

′j
)

and

C6

(
E ′

ij , a
′
i, b

′j
)

of G2:

(i) Determine the noncentral Casimir operator C(si) of si
−→⊕ (2Γ(a,b)⊕Γ(0,0))|sihm for

the different sl2-triples si generated by {H2, E23, E32}, {H1 + H2, E12, E21},

{H1 + 2H2, E13, E31}, {2H1 + H2, a1, b
1}, {H1, a2, b

2}, and {H1 + 3H2, a3, b
3}.

(ii) Express C(si) as function of the quadratic invariant of sl2 using lemma 2.

(iii) Substitute Eij , ai, b
i by E ′

ij, a
′
i, (b

i)′ in the operators C2

(
E ′

ij, a
′
i, b

′j
)

and

C6

(
E ′

ij, a
′
i, b

′j
)

of G2.
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To illustrate this method, we consider the two lowest dimensional cases,

corresponding to the representations R = 2Γ(0,1) ⊕ Γ(0,0) and R = 2Γ(1,0) ⊕ Γ(0,0) of

G2.

4.1. R = 2Γ(0,1) ⊕ Γ(0,0)

In this case, the highest weight is given by λ = (0, 1). The action of G2 is given by table

2, while the brackets of the radical are given by equations (15)-(17). From table 2 and

lemma 2, it follows that, for example, the new variable H ′
2 takes the form

H ′
2 = H2v0 + α25

2 v1
2v

2
5 + α34

2 v1
3v

2
4 + α43

2 v1
4v

2
3 + α52

2 v1
5v

2
2 , (40)

where {V 1
1 , .., V 1

7 , V 2
1 , .., V 2

7 , V0} is a basis of R. Now the generators {H2, E23, E32} of G2

span a subalgebra s1 of G2 isomorphic to sl(2) (whose quadratic Casimir operators over

the given basis is H2
2 + 4E23E32). The restriction of R to s1 gives:

R|s1 = 4 {1} ⊕ 7 {0} , (41)

(compare with the example in section 3). The noncentral Casimir operator of s1
−→⊕Rh7

follows from the determinantal formulae developed in [18], and equals

C =
(
v1
4v

2
3

)2
+

(
v1
3v

2
4

)2
+

(
v1
5v

2
2

)2
+

(
v1
2v

2
5

)2
+ 4v0

(
E23

(
v1
2v

2
3 − v1

3v
2
2

)
+ E32

(
v1
4v

2
5 − v1

5v
2
4

))

+2
(
v1
2v

1
3v

2
4v

2
5 + v1

3v
1
5v

2
2v

2
4 + v1

4v
1
5v

2
2v

2
3 + v1

2v
1
4v

2
3v

2
5 − 2v1

2v
1
5v

2
3v

2
4 − 2v1

3v
1
4v

2
2v

2
5

)
+ 4v2

0E23E32

−2
(
v1
2v

1
5v

2
2v

2
5 + v1

3v
1
4v

2
3v

2
4

)
+ 2H2v0

(
v1
2v

2
5 − v1

5v
2
2 + v1

3v
2
4 − v1

4v
2
3

)
+ (H2v0)

2
. (42)

We observe that C does not depend on the variables {vi
1, v

i
6, v

i
7}i=1,2, since the

action of s1 over these elements is trivial [18]. A short calculation shows that (42) can

be written as

C = (H ′
2)

2 + 4(E ′
23E

′
32), (43)

where

H ′
2 = H2v0 + (v1

2v
2
5 − v1

5v
2
2) + (v1

3v
2
4 − v1

4v
2
3) (44)

E ′
23 = E23v0 + (v1

4v
2
5 − v1

5v
2
4) (45)

E ′
32 = E32v0 + (v1

2v
2
3 − v1

3v
2
2). (46)

Repeating the argument for the triples generated respectively by {H1 + H2, E12, E21},

{H1 + 2H2, E13, E31}, {2H1 + H2, a1, b
1}, {H1, a2, b

2}, and {H1 + 3H2, a3, b
3}, we obtain

the expression for the remaining generators of G2:

H ′
1 = H1v0 + v1

1v
2
6 − 2v1

2v
2
5 − v1

3v
2
4 + v1

4v
2
3 + 2v1

5v
2
2 − v1

6v
2
1 (47)

E ′
12 = E12v0 − v1

1v
2
2 + v1

2v
2
1 (48)

E ′
21 = E21v0 + v1

5v
2
6 − v1

6v
2
5 (49)

E ′
13 = E13v0 − v1

1v
2
4 + v1

4v
2
1 (50)

E ′
31 = E31v0 + v1

3v
2
6 − v1

6v
2
3 (51)
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Table 3. The adjoint representation of G2 in the A2-basis

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

H1 0 0 2V3 −2V4 −3V5 3V6 −V7 V8 V9 −V10 3V11 −3V12 0 0

H2 0 0 −V3 V4 2V5 −2V6 V7 −V8 0 0 −V11 V12 V13 −V14

E12 −3V11 V11 0 V9 V13 0 0 0 0 −V3 0 W1 0 −V6

E21 3V12 −V12 −V10 0 0 −V14 0 0 V4 0 −W1 0 V5 0

E23 3V5 −2V5 −V7 0 0 V2 0 V4 0 0 −V13 0 0 V12

E32 −3V6 2V6 0 V8 −V2 0 −V3 0 0 0 0 V14 −V11 0

E13 0 −V13 0 0 0 V11 0 V9 0 −V7 0 −V5 0 W2

E31 0 V14 0 0 −V12 0 −V10 0 V8 0 V6 0 −W2 0

a1 −3V9 0 3V11 −2V7 0 0 3V13 2V3 0 W3 0 −V4 0 −V8

a2 2V4 −V4 −V1 0 0 −V8 3V5 −2V10 2V7 3V12 −V9 0 0 0

a3 −3V8 V8 3V6 2V10 −V4 0 −W4 0 −2V3 3V14 0 0 −V9 0

b1 V10 0 2V8 −3V12 0 0 −2V4 −3V14 −W3 0 V3 0 V7 0

b2 −2V3 V3 0 V1 V7 0 2V9 −3V6 −3V11 −2V8 0 V10 0 0

b3 V7 −V7 −2V9 −3V5 0 V3 0 W4 −3V13 V4 0 0 0 V10

W1 = V1 + V2, W2 = V1 + 2V2, W3 = 2V1 + 3V2, W4 = V1 + 3V2

a′
1 = a1v0 + v1

1v
2
7 − v1

2v
2
4 + v1

4v
2
2 − v1

7v
2
1 (52)

a′
2 = a2v0 + v1

4v
2
6 + v1

5v
2
7 − v1

6v
2
4 − v1

7v
2
5 (53)

a′
3 = a3v0 − v1

2v
2
6 + v1

3v
2
7 + v1

6v
2
2 − v1

7v
2
3 (54)

b′1 = b1v0 − v1
3v

2
5 + v1

5v
2
3 − v1

6v
2
7 + v1

7v
2
6 (55)

b′2 = b2v0 − v1
1v

2
3 − v1

7v
2
2 + v1

3v
2
1 + v1

2v
2
7 (56)

b′3 = b3v0 + v1
1v

2
5 + v1

4v
2
7 − v1

5v
2
1 − v1

7v
2
4 (57)

The substitution of (44)-(57) into the corresponding system (2)§ provides a

Casimir operator of the algebra g = G2
−→⊕2Γ(0,1)⊕Γ(0,0)

h7 as function of the quadratic

Casimir operator of G2. C2

(
E ′

ij, a
′
i, b

′j
)

has 95 terms before symmetrization, while

C6

(
E ′

ij , a
′
i, b

′j
)
‖ involves some thousand terms, for which reason we omit its explicit

description here.

4.2. R = 2Γ(1,0) ⊕ Γ(0,0)

The Lie algebra g = G2
−→⊕2Γ(1,0)⊕Γ(0,0)

h14 is 43-dimensional, where Γ(1,0) is the

adjoint representation of G2 (the action is given in table 3). Over the basis

{V 1
1 , .., V 1

14; V
2
1 , .., V 2

14; V0} of the radical, the brackets are given by

[
V 1

1 , V 2
1

]
= 6V0;

[
V 1

2 , V 2
2

]
= 2V0 (58)

§ This system has been presented explicitly in Appendix A.
‖ The sixth order Casimir operator C6 of G2 obtained in [15] has 416 terms.
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[
V 1

3 , V 2
4

]
=

[
V 1

4 , V 2
3

]
= −

[
V 1

1 , V 2
2

]
= −

[
V 1

2 , V 2
1

]
= 3V0 (59)

[
V 1

7 , V 1
8

]
=

[
V 1

8 , V 2
7

]
=

[
V 1

9 , V 2
10

]
=

[
V 1

10, V
2
9

]
= 3V0 (60)

[
V 1

11, V
2
12

]
=

[
V 1

12, V
2
11

]
=

[
V 1

13, V
2
14

]
=

[
V 1

14, V
2
13

]
=

[
V 1

5 , V 2
6

]
=

[
V 1

6 , V 2
5

]
= V0 (61)

We observe that the element V 1
1 has nontrivial bracket with the elements V 2

1 and

V 2
2 . This fact is only a consequence of having chosen the basis of the radical such that

it transforms according to the brackets given in table 3. In fact, taking the change of

variables

Ṽ 1
1 = V 1

1 ; Ṽ 1
2 = V 1

2 ; Ṽ 2
1 = V 2

1 + 2V 2
2 ; Ṽ 2

2 = V 2
2 +

2

3
V 2

1 (62)

(the rest of the basis remaining unchanged) we obtain that
[
Ṽ 1

1 , Ṽ 2
1

]
=

[
Ṽ 1

2 , Ṽ 2
2

]
= 0 (63)

[
Ṽ 1

1 , Ṽ 2
2

]
=

[
Ṽ 1

2 , Ṽ 2
1

]
= V0, (64)

which shows that the radical is effectively a Heisenberg Lie algebra. We now take

the sl2-triple of G2 generated by {H2, E23, E32} of G2. The corresponding algebra has

dimension 32. Using the determinantal formulae and lemma 2, we get the noncentral

Casimir operator C = (H ′
2)

2 + 4(E ′
23E

′
32), where

H ′
2 = H2v0 +

1

3
(−v1

3v
2
4 + v1

4v
2
3 + v1

7v
2
8 − v1

8v
2
7) + 2(v1

5v
2
6 − v1

6v
2
5) − v1

11v
2
12 + v1

12v
2
11 + (65)

+v1
13v

2
14 − v1

14v
2
13

E ′
23 = E23v0 +

1

3
(v1

4v
2
7 − v1

7v
2
4) + v1

12v
2
13 − v1

13v
2
12 − v1

5v
2
2 + v2

5v
1
2 (66)

E ′
32 = E32v0 +

1

3
(−v1

3v
2
8 + v1

8v
2
3) − v1

11v
2
14 + v1

14v
2
11 + v1

6v
2
2 − v2

6v
1
2 (67)

This gives us the expressions for three of the G2-generators. Repeating the same

process with the other triples, we obtain the new variables for the remaining elements

of the A2-basis:

H ′
1 = H1v0 +

2

3
(v1

3v
2
4 − v1

4v
2
3) + 3(−v1

5v
2
6 + v1

6v
2
5 + v1

11v
2
12 − v1

12v
2
11) + (68)

1

3
(−v1

7v
2
8 + v1

8v
2
7 + v1

9v
2
10 − v1

10v
2
9)

E ′
12 = E12v0 +

1

3
(−v1

3v
2
9 + v1

9v
2
3) − v1

6v
2
13 + v1

13v
2
6 − v1

11(v
2
1 + v2

2) + v2
11(v

1
1 + v1

2) (69)

E ′
21 = E12v0 +

1

3
(v1

4v
2
10 − v1

10v
2
4) + v1

5v
2
14 − v1

14v
2
5 + v1

12(v
2
1 + v2

2) − v2
12(v

1
1 + v1

2) (70)

E ′
13 = E13v0 +

1

3
(−v1

7v
2
9 + v1

9v
2
7) − v1

5v
2
11 + v1

11v
2
5 − v1

13(v
2
1 + 2v2

2) + v2
13(v

1
1 + 2v1

2) (71)

E ′
31 = E31v0 + v1

6v
2
12 − v1

12v
2
6 +

1

3
(v1

8v
2
10 − v1

10v
2
8) + v1

14(v
2
1 + 2v2

2) − v2
14(v

1
1 + 2v1

2) (72)

a′
1 = a1v0 − v1

4v
2
11 + v1

11v
2
4 − v1

8v
2
13 + v1

13v
2
8 +

2

3
(v1

3v
2
7 − v1

7v
2
3) +

2

3
(−v1

9v
2
1 + v2

9v
1
1) + (73)
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+v2
9v

1
2 − v1

9v
2
2

a′
2 = a2v0 + v1

5v
2
8 − v2

5v
1
8 +

2

3
(v1

7v
2
10 − v1

10v
2
7) − v1

9v
2
12 + v1

12v
2
9 +

1

3
(v1

4v
2
1 − v2

4v
1
1) (74)

a′
3 = a3v0 +

2

3
(v1

3v
2
10 + v1

10v
2
3) − v1

4v
2
6 + v1

6v
2
4 − v1

9v
2
14 + v1

14v
2
9 +

1

3
(v1

8v
2
1 − v1

8v
1
1) + (75)

+v1
8v

2
2 − v1

2v
2
8

(b1)′ = b1v0 + v1
3v

2
12 − v1

12v
2
3 +

2

3
(−v1

4v
2
8 + v1

8v
2
4 + v1

10v
2
1 − v2

10v
1
1) + v1

7v
2
14 − v1

14v
2
7 + (76)

+v1
10v

2
2 − v2

10v
1
2

(b2)′ = b2v0 − v1
6v

2
7 + v1

7v
2
6 +

2

3
(−v1

8v
2
9 + v1

9v
2
8) + v1

10v
2
11 − v1

11v
2
10 +

1

3
(−v1

3v
2
1 + v2

3v
1
1) (77)

(b3)′ = b3v0 + v1
3v

2
5 − v1

5v
2
3 +

2

3
(v1

4v
2
9 − v1

9v
2
4) + v1

10v
2
13 − v1

13v
2
10 +

1

3
(v1

7v
2
1 − v2

7v
1
1) − (78)

−v1
7v

2
2 + v2

7v
1
2

The substitution of (65)-(78) into (13) gives a degree four Casimir operator of the

algebra.

5. Reduction to the A2-subalgebra

Since the operators Hi, Eij (i 6= j) generate a copy of A2, the restriction of R to

this subalgebra gives a Lie algebra sl(3)
−→⊕R|hp with Heisenberg radical. Although this

algebra is in general no more perfect, we can always find a fundamental set of invariants

generated by Casimir operators. In fact, let R = 2Γ(a,b) ⊕ Γ(0,0) be a representation of

G2 and
{
V 1

1 , .., V 1
p , V 2

1 , .., V 2
p , V0

}
be a basis of R (where p = dim R−1

2
). Further let

[
V 1

i , V 2
p+1−i

]
= λiV0 (79)

be the brackets of the Heisenberg radical. Suppose that the restriction of R to A2 equals

R| =
∑

Wi ⊕ kW0 (80)

where Wi is a nontrivial A2-representation and W0 is the trivial representation. First

of all, k must be odd. In fact, if V 1
j is a noncentral element of sl(3)

−→⊕R|hp such that[
X, V 1

j

]
= 0 for all X ∈ A2, then the Jacobi identity applied to the triple

{
H, V 1

j , V 2
p+1−j

}

(H an element of the Cartan subalgebra of A2) shows that
[
X, V 2

p+1−j

]
= 0, ∀X ∈ A2

as well. Thus k = 2q + 1. Further, the corresponding equations V̂ 1
j and V̂ 2

p+1−j are:

V̂ 1
j = − λjv0

∂F

∂v2
p+1−j

= 0 (81)

V̂ 2
p+1−j = λjv0

∂F

∂v1
j

= 0, (82)

hence ∂F
∂v2

p+1−j

= ∂F
∂v1

j

= 0. That is, the invariants of sl(3)
−→⊕R|hp do not depend on these

variables. As a consequence, the invariants of sl(3)−→⊕R|hp are the same as those of the

Lie algebra sl (3)
−→⊕P

Wi⊕W0
ht where t = dim R−1−2q

2
. Since this algebra is perfect, we can

find a fundamental set of invariants formed by Casimir operators.
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The preceding method shows that the Casimir invariants of sl(3)−→⊕R|hp can also be

determined using the expressions of the Casimir invariants of A2. Over the basis (7)-

(12), these are given by

I2 = 3
(
H1H2 + E12E21 + E13E31 + E23E32 + H2

2

)
+ H2

1 (83)

I3 = 27 (E21E31E23 + E12E13E32 + H2E12E21 − H2E13E31) +

9H1

(
E23E32 + E12E21 − 2E13E31 + H1H2 + H2

2

)
+ 2H3

1 (84)

The substitution of the E ′
ij into (83) and (84) provides the Casimir operators of the

corresponding semidirect products.

For the two examples exhibited before, the restrictions of R give:
(
2Γ(0,1) ⊕ Γ(0,0)

)
|A2 = 3 ⊕ 3 ⊕ 1 ⊕ 3 ⊕ 3 ⊕ 1 ⊕ 1 (85)

(
2Γ(1,0) ⊕ Γ(0,0)

)
|A2 = 8 ⊕ 3 ⊕ 3 ⊕ 8 ⊕ 3 ⊕ 3 ⊕ 1. (86)

In the first case, the Casimir operators will be independent of V 1
7 and V 2

7 , while in the

second case they depend on all variables (including the generator of the centre).

6. Conclusions

We have seen that the Casimir operators of semidirect products G2
−→⊕ 2Γ(a,b)⊕Γ(0,0)

h of

the exceptional Lie algebra G2 of rank two and Heisenberg Lie algebras hm can be

computed from the Casimir operators of G2 by substituting the generators by new

variables. These new variables are determined by the restriction of R to the different

sl2-triples, and can easily be deduced from the determinantal formulae of [18] and lemma

2. Indeed the method remains valid on different bases of G2, but as shown in [17],

the A2 is highly convenient. This basis also allows us to determine the invariants of

algebras with Heisenberg radical and Levi part isomorphic to A2, which coincides with

the results obtained in [8]. We could have also deduced the results using the reduction to

the A2-subalgebra of G2, but the A1-reduction turns out to be more practical, since the

Casimir operators of the induced algebras can be computed without effort and presented

in explicit form. For the case of G2, the determination of the two noncentral Casimir

operators of the semidirect product G2
−→⊕ 2Γ(a,b)⊕Γ(0,0)

h reduces to the computation of six

determinants, corresponding to the different sl2-triples, and which can be rewritten in

terms of the sl2-invariant. The advantage of this method in comparison with a direct

integration of system (2) or other less direct reduction methods is considerable. With

the method proposed here for G2, the corresponding eigenvalues of the Casimir operators

can also be deduced in closed form.

The same method should work for the remaining (complex) exceptional Lie algebras

F4, E6, E7 and E8. Indeed lemma 3 remains valid for these algebras, and the reduction

to the different sl2-triples follows at once from their structure and the root theory.

The important question that arises at once from this method is how to generalize

this to the real forms of the (exceptional) simple Lie algebras. For the corresponding

normal real forms the procedure is formally the same, but for the remaining real forms,
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Table 4. Commutator table for the real Lie algebra so (3)−→⊕
Γ
(0, 1

2 ),II|
⊕Γ(0,0)

h2

[.] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0 −X3 X2 0 −X6 X5
X10

2
X9

2
−X8

2
−X7

2
0

X2 X3 0 −X1 X6 0 −X4
−X8

2
X7

2
−X10

2
X9

2
0

X3 −X2 X1 0 −X5 X4 0 X9

2
−X10

2
−X7

2
X8

2
0

X4 0 −X6 X5 0 X3 −X2
−X8

2
−X7

2
−X10

2
−X9

2
0

X5 X6 0 −X4 −X3 0 X1
−X10

2
X9

2
X8

2
−X7

2
0

X6 −X5 X4 0 X2 −X1 0 −X7

2
X8

2
−X9

2
X10

2
0

X7 −X10

2
X8

2
−X9

2
X8

2
X10

2
X7

2
0 X11 0 0 0

X8
−X9

2
−X7

2
X10

2
X7

2
−X9

2
−X8

2
−X11 0 0 0 0

X9
X8

2
X10

2
X7

2
X10

2
−X8

2
X9

2
0 0 0 −X11 0

X10
X7

2
−X9

2
−X8

2
X9

2
X7

2
−X10

2
0 0 X11 0 0

X11 0 0 0 0 0 0 0 0 0 0 0

lemma 3 will not be applicable in general, since it requires a diagonal action of the

Cartan subalgebra. In this case, the sl2-triples used for the complex case must

be replaced either by its compact form so (3) or some other semisimple algebra of

higher rank. In this frame, the detailed description of subalgebras of semisimple Lie

algebras are of great importance [21, 22]. As an example where the reduction to three

dimensional simple subalgebras still works, take the eleven dimensional real Lie algebra

so (3, 1)
−→⊕

Γ(0, 12),II
⊕Γ(0,0)

h2, where Γ(0, 1
2),II is the ”realification” of the two dimensional

representation Γ(0, 1
2)¶ of the Lorentz algebra so (3, 1). Over a basis {X1, .., X11}, the

brackets are given in table 4.

It is easily seen that this algebra satisfies N (g) = 3, where I = x11 is one of the

invariants for generating the centre. To obtain the other two Casimir operators, we

want to make use of the invariants of the Levi subalgebra, which are, over the given

basis, given by

C1 = x2
1 + x2

2 + x3
3 − x2

4 − x2
5 − x2

6 (87)

C2 = x1x4 + x2x5 + x3x6. (88)

If we take the so (3)-subalgebra s1 spanned by {X1, X2, X3}, the induced algebra

so (3)
−→⊕

Γ(0, 12),II|s1
h2 has a (noncentral) Casimir operator C which can be determined

with the determinantal formulae of [18]. This determinant can be rewritten as

C = Y 2
1 + Y 2

2 + Y 2
3 , (89)

where

Y1 = x1x11 −
1

2
x7x9 +

1

2
x8x10 (90)

¶ Since the representation Γ(0,

1
2 ) of so(3, 1) is complex, the corresponding real representation has

double size, i.e., dimension four.
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Y2 = x2x11 +
1

4

(
x2

9 + x2
10 − x2

7 − x2
8

)
(91)

Y3 = x3x11 +
1

2
x8x9 +

1

2
x7x10. (92)

If we further consider the so (3)-subalgebras generated respectively by {X1, X5, X6},

{X2, X4, X6} and {X3, X4, X5}, the corresponding Casimir invariants of the induced

algebras can also be written in terms of the so (3)-quadratic invariant. The computation

provides the expressions

Y4 = x4x11 +
1

4

(
x2

7 − x2
8 − x2

9 + x2
10

)
(93)

Y5 = x5x11 −
1

2
x7x9 −

1

2
x8x10 (94)

Y6 = x6x11 −
1

2
x7x8 +

1

2
x9x10. (95)

A straightforward computation shows that Y 2
1 + Y 2

2 + Y 3
3 − Y 2

4 − Y 2
5 − Y 2

6 and

Y1Y4 + Y2Y5 + Y3Y6 are invariants of so (3)
−→⊕

Γ(0, 12),II|
⊕Γ(0,0)

h2.

Therefore, the reduction method can also be used for real Lie algebras. The

difficulty for the general case of real forms s of a simple Lie algebra is to find the

appropiate subalgebra to make the reduction and obtain the new variables corresponding

to the generators of s.

Finally, we can ask whether the semidirect products of simple and Heisenberg Lie

algebras is the only case where the Casimir operators can be described using the

classical formulae for these invariants, or if other radicals are possible [6, 23] . Even

if Heisenberg algebras occupy a privileged position within the possible candidates for

radicals of semidirect products, due to the deep relation between their compatibility and

the quaternionic, complex or real character of representations of simple Lie algebras,

examples where the method is still applicable for solvable non-nilpotent radicals exist.

To this extent consider the seven dimensional Lie algebra sl (2, R)
−→⊕ {1}⊕2{0}A

1
4,9 given

by the structure constants

C2
12 = −C3

13 = C7
67 = 2 (96)

C1
23 = C4

14 = C4
25 = C5

34 = C6
45 = C4

47 = C5
57 = −C5

15 = 1 (97)

over a basis {X1, .., X7}. It is straighforward to verify that N
(
sl (2, R)−→⊕{1}⊕2{0}A

1
4,9

)
=

1, and that this algebra does not admit a fundamental set of invariants generated by a

Casimir operator, but a harmonic invariant. Introducing the ”rational” variables

Y1 :=
x1x6 + x4x5

x6
(98)

Y2 :=
2x2x6 − x2

4

2x6
(99)

Y3 :=
2x3x6 + x2

5

2x6

, (100)

the function Y 2
1 + 4Y2Y3 turns out to be an invariant of the algebra. Observe that

x2
1 + 4x2x3 is the invariant of the Levi part.
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Having in mind this example, one could be tempted to analyze the possibility of

extending these methods to contractions of semidirect products g = s
−→⊕R⊕D0h, since

the contraction of the Casimir operators of g provides invariants of the contraction [24].

However, in general these Casimir operators will not be expressible as a function of the

invariants of the contracted algebra. With the notation of [25], the Lie algebra L6,2 and

its contraction L5,1 ⊕ L0 is the lowest dimensional example of this impossibility.
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Appendix A. The system for R = 2Γ(0,1) ⊕ Γ(0,0)

In this appendix we present explicitely the system (2) for the Lie algebra G2
−→⊕Rh7, where

R = 2Γ(0,1) ⊕ Γ(0,0). Since there is no ambiguity, we denote the variables associated to

the generators Eij , b
i, ai of G2 with the same symbol, while {V 1

1 , .., V 1
7 , V 2

1 , .., V 2
7 , V0} is

a basis of R. Further, the symbol Fz denotes ∂F
∂z

.

2b2Fb2 − 2a2Fa2 − 3E23FE23 + 3E32FE32 − b3Fb3 + a3Fa3 + a1Fa1 − b1Fb1 + (A.1)

+3E12FE12 − 3E21FE21 + v1
1Fv1

1
+ 2v1

2Fv1
2
+ v1

3FH17 − v1
4Fv1

4
− 2v1

5Fv1
5
− v1

6Fv1
6
+

+v2
1Fv2

1
+ 2v2

2Fv2
2
+ v2

3Fv2
3
− v2

4Fv2
4
− 2v2

5Fv2
5
− v2

6Fv2
6

= 0

−b2Fb2 + a2Fa2 + 2E23FE23 − 2E32FE32 + b3Fb3 − a3Fa3 − E12FE12 + E21FE21 + (A.2)

+E13FE13 − E31FE31 − v1
2Fv1

2
− v1

3Fv1
3
+ v1

4Fv1
4
+ v1

5Fv1
5
− v2

2Fv2
2
− v2

3Fv2
3
+

+v2
4Fv2

4
+ v2

5Fv2
5

= 0

−2b2FH1 + b2FH2 + H1Fa2 + b3FE23 + 2a1Fb3 − 3E32Fa3 − 3E12Fa1 − 2a3Fb1 + (A.3)

+b1FE21 + v1
1Fv1

4
+ v1

7Fv1
5
+ v1

3Fv1
6
+ 2v1

2Fv1
7
+ v2

1Fv2
4
+ v2

7Fv2
5
+ v2

3Fv2
6
+ 2v2

2Fv2
7

= 0

2a2FH1 − a2FH2 − H1Fb2 − a3FE32 + 3E23Fb3 − 2b1Fa3 + 2b3Fa1 + 3E21Fb1 + (A.4)

−a1FE12 + v1
4Fv1

1
+ v1

7Fv1
2
+ v1

6Fv1
3
+ 2v1

5Fv1
7
+ v2

4Fv2
1
+ v2

7Fv2
2
+ v2

6Fv2
3
+ 2v2

5Fv2
7

= 0

3E23FH1 − 2E23FH2 − b3Fb2 + H2FE32 + a2Fa3 − E13FE12 + E21FE31 − v1
4Fv1

2
+ (A.5)

+v1
5Fv1

3
− v2

4Fv2
2
+ v2

5Fv2
3

= 0

−3E32FH1 + 2E32FH2 + a3Fa2 − H2FE23 − b2Fb3 + E31FE21 − E12FE13 − v1
2Fv1

4
+ (A.6)

+v1
3Fv1

5
− v2

2Fv2
4
+ v2

3Fv2
5

= 0

b3FH1 − b3FH2 − 2a1Fb2 − 3E23Fa2 + b2FE32 + (H1 + 3H2)Fa3 − 3H13Fa1 + 2a2Fb1 +(A.7)

+b1FE31 − v1
1Fv1

2
+ v1

7Fv1
3
− v1

5Fv1
6
+ 2v1

4Fv1
7
− v2

1Fv2
2
+ v2

7Fv2
3
− v2

5Fv2
6
+ 2v2

4Fv2
7

= 0

−a3FH1 + a3FH2 + 3E32Fb2 + 2b1Fa2 − a2FE23 − (H1 + 3H2)Fb3 − 2b2Fa1 + 3E31Fb1 +(A.8)

−a1FE13 − v1
2Fv1

1
+ v1

7Fv1
4
− v1

6Fv1
5
+ 2v1

3Fv1
7
− v2

2Fv2
1
+ v2

7Fv2
4
− v2

6Fv2
5
+ 2v2

3Fv2
7

= 0

−a1FH1 + 3E12Fb2 − 2b3Fa2 + 3E13Fb3 + 2b2Fa3 + (2H1 + 3H2)Fb1 − a2FE21 + (A.9)

−a3FE31 + v1
2Fv1

3
− v1

4Fv1
5
− v1

7Fv1
6
+ 2v1

1Fv1
7 + v2

2Fv2
3
− v2

4Fv2
5
− v2

7Fv2
6
+ 2v2

1Fv2
7

= 0

b1FH1 + 2a3Fb2 − 3E21Fa2 − 2a2Fb3 − 3E31Fa3 − (2H1 + 3H2)Fa1 + b2FE12 + (A.10)

b3FE13 + v1
7Fv1

1
+ v1

3Fv1
2
− v1

5Fv1
4
− 2v1

6Fv1
7
+ v2

7Fv2
1
+ v2

3Fv2
2
− v2

5Fv2
4
− 2v2

6Fv2
7

= 0

−3E12FH1 + E12FH2 + a1Fa2 + E13FE23 − b2Fb1 + (H1 + H2)FE21 − E32FE31 + (A.11)

+v1
1Fv1

5
+ v1

2Fv1
6
+ v2

1Fv2
5
+ v2

2Fv2
6

= 0

3E21FH1 − E21FH2 − b1Fb2 − E31FE32 + a2Fa1 − (H1 + H2)FE12 + E23FE13 + (A.12)

+v1
5Fv1

1
+ v1

6Fv1
2
+ v2

5Fv2
1
+ v2

6Fv2
2

= 0

−E13FH2 + E12FE32 + a1Fa3 − b3Fb1 − E23FE21 + (H1 + 2H2)FE31 + v1
1Fv1

3
+ (A.13)

+v1
4Fv1

6
+ v2

1Fv2
3
+ v2

4Fv2
6

= 0

E31FH2 − E21FE23 − b1Fb3 + a3Fa1 + E32FE12 − (H1 + 2H2)FE13 + v1
3Fv1

1
+ (A.14)
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+v1
6Fv1

4
+ v2

3Fv2
1
+ v2

6Fv2
4

= 0

−v1
1FH1 − v1

4Fa2 + v1
2Fa3 − v1

7Fb1 − v1
5FE21 − v1

3FE31 + v0Fv2
6

= 0 (A.15)

−2v1
2FH1 + v1

2FH2 − v1
7Fa2 + v1

4FE23 + v1
1Fb3 − v1

3Fb1 − v1
6FE21 − v0Fv2

5
= 0 (A.16)

−v1
3FH1 + v1

3FH2 − v1
6Fa2 − v1

5FE23 − v1
7Fb3 − v1

2Fa1 − v1
1FE13 − v0Fv2

4
= 0 (A.17)

v1
4FH1 − v1

4FH2 − v1
1Fb2 + v1

2FE32 − v1
7Fa3 + v1

5Fb1 − v1
6FE31 − v0Fv2

3
= 0 (A.18)

2v1
5FH1 − v1

5FH2 − v1
7Fb2 − v1

3FE32 + v1
6Fa3 + v1

4Fa1 − v1
1FE12 − v0Fv2

2
= 0 (A.19)

v1
6FH1 − v1

3Fb2 + v1
5Fb3 + v1

7Fa1 − v1
2FE12 − v1

4FE13 + v0Fv2
1

= 0 (A.20)

−2v1
2Fb2 − 2v1

5Fa2 − 2v1
4Fb3 − 2v1

3Fa3 − 2v1
1Fa1 + 2v1

6Fb1 + 2v0Fv2
7

= 0 (A.21)

−v2
1FH1 − v2

4Fa2 + v2
2Fa3 − v2

7Fb1 − v2
5FE21 − v2

3FE31 − v0Fv1
6

= 0 (A.22)

−2v2
2FH1 + v2

2FH2 − v2
7Fa2 + v2

4FE23 + v2
1Fb3 − v2

3Fb1 − v2
6FE21 + v0Fv1

5
= 0 (A.23)

−v2
3FH1 + v2

3FH2 − v2
6Fa2 − v2

5FE23 − v2
7Fb3 − v2

2Fa1 − v2
1FE13 + v0Fv1

4
= 0 (A.24)

v2
4FH1 − v2

4FH2 − v2
1Fb2 + v2

2FE32 − v2
7Fa3 + v2

5Fb1 − v2
6FE31 + v0Fv1

3
= 0 (A.25)

2v2
5FH1 − v2

5FH2 − v2
7Fb2 − v2

3FE32 + v2
6Fa3 + v2

4Fa1 − v2
1FE12 + v0Fv1

2
= 0 (A.26)

v2
6FH1 − v2

3Fb2 + v2
5Fb3 + v2

7Fa1 − v2
2FE12 − v2

4FE13 − v0Fv1
1

= 0 (A.27)

−2v2
2Fb2 − 2v2

5Fa2 − 2v2
4Fb3 − 2v2

3Fa3 − 2v2
1Fa1 + 2v2

6Fb1 − 2v0Fv1
7

= 0 (A.28)


