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Abstract. We study the Ginzburg-Landau functional in the parameter regime

describing ‘Type II superconductors’. In the exact regime considered minimiz-

ers are localized to the boundary - i.e. the sample is only superconducting in
the boundary region. Depending on the relative size of different parameters

we describe the concentration behavior and give leading order energy asymp-

totics. This generalizes previous results by Lu and Pan, Helffer and Pan, and
Pan.
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1. Introduction

In this paper we study the Ginzburg-Landau functional given in (1.1) below. The
functional depends on different parameters: H denotes the strength of an external,
constant magnetic field and κ is a parameter depending on the material of the
superconductor. That the superconductor is of ‘Type II’ will for us mean that κ
is large. We will study the asymptotic regime, where κ,H → +∞. The functional
is defined on a domain Ω ⊂ R2, that we assume to be open, bounded, simply
connected and with smooth boundary. These assumptions fit general experimental
set-ups (though the effect of corners is also interesting, but beyond the scope of
the present paper—see [Pan02b] and [Bon03, Bon04] for some of the known results
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in that case). The problem of superconductivity below the critical field HC3 has
in the mathematical literature been addressed by several authors starting probably
with [BPT98] (see however also [BH93]). See below for further references.

The functional is

E [ψ, ~A] = Eκ,H [ψ, ~A] =
∫

Ω

{
|∇κH ~Aψ|

2 + κ2H2|curl ~A− 1|2

− κ2|ψ|2 +
κ2

2
|ψ|4

}
dx, (1.1)

with (ψ, ~A) ∈W 1,2(Ω; C)×W 1,2(Ω; R2). (The notation W j,k denotes the standard
Sobolev spaces, see for instance [GT01, Section 7.5]). Here we have introduced the
standard notation ∇ ~A = (−i∇− ~A) for the magnetic momentum operator.

The modulus of the wavefunction ψ(x) is a measure of the concentration of
Cooper pairs at the point x. The curl of the vector potential ~A gives the magnetic
field at the interior of the superconductor. As always, in problems with magnetic
fields, we have ‘gauge invariance’, i.e. the identity

E [ψ, ~A] = E [ψeiκHφ, ~A+∇φ].

Notice that, by ‘completion of the square’, we get

E [ψ, ~A] ≥ −κ2 |Ω|
2
, (1.2)

where |Ω| is the Lebesgue measure of Ω.
For notational convenience we fix a notation and a gauge for the vector potential

~F generating the external magnetic field. Let ~F be the unique smooth solution to

curl ~F = 1, div ~F = 0, ~F · ν = 0 on ∂Ω. (1.3)

It is fairly easy to prove that
(1) For fixed κ,H, the functional E has a (not necessarily unique) minimizer

(ψ, ~A) ∈W 1,2(Ω; C)×W 1,2(Ω; R2). By variation around such a pair (ψ, ~A),
we find that any minimizer satisfies the Ginzburg-Landau equations:

∇2
κH ~A

ψ = κ2(1− |ψ|2)ψ
curl 2 ~A = − i

2κ (ψ∇ψ − ψ∇ψ)− |ψ|2 ~A

}
in Ω ; (1.4a)

(∇κH ~Aψ) · ν = 0
curl ~A− 1 = 0

}
on ∂Ω . (1.4b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1, and

curl 2 ~A = (∂x2(curl ~A),−∂x1(curl ~A)) .

(2) For H sufficiently large the only minimizer, up to change of gauge1, of E is
(0, ~F ) (see [GP99]).

Notice that

E [0, ~F ] = 0. (1.5)

Thus a minimizer will always have non-positive energy. When combined with (1.2)
this trivial fact is very useful for establishing a priori bounds on minimizers.

We define the critical field HC3 , using (2) above, as follows:

1We will generally omit the phrase ‘up to change of gauge’. Thus, whenever we discuss ‘unique

minimizers’, it will mean unique once the gauge is fixed.
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Definition 1.1. For κ > 0,

HC3 = HC3(κ) = inf{H ≥ 0
∣∣ (0, ~F ) is the unique minimizer of Eκ,H}.

One can find the asymptotics of HC3 as κ → +∞. The best known result at
present (extending the results from [LP99, dPFS00]) is the two term asymptotics
given by Helffer and Pan [HP03]2:

HC3 =
κ

β0
+

C1

β
3/2
0

kmax +O(κ−1/3). (1.6)

Here β0, C1 are explicit constants, 0.5 < β0 < 0.76 (that will be defined in (1.12),
(1.15) below). The number kmax is the maximal curvature of the boundary ∂Ω.

We will consider field strengths below HC3 . Thus we write

H = HC3 − ρ(κ), (1.7)

for some positive function ρ. The results in this paper will concern ρ’s satisfying

ρ(κ) ≥ c > 0 , (1.8)

and

lim
κ→+∞

ρ(κ)/κ = 0 . (1.9)

We will need some results concerning the family of reference 1-dimensional spectral
problems defined below. For ξ ∈ R, we define the quadratic form qξ on the space
W 1,2(R+) ∩ 〈τ〉−1L2(R+) by

qξ[φ] =
∫ ∞

0

|φ′(τ)|2 + |(τ + ξ)φ(τ)|2 dτ. (1.10)

For a given ξ the ground state energy of qξ is

E0(ξ) = inf
‖φ‖2=1

qξ[φ], (1.11)

where ‖ · ‖2 denotes the L2-norm. It is a result of Dauge and Helffer [DH93] that
there exists a unique ξ0 ∈ R, which minimizes E0(ξ). We define

β0 ≡ E0(ξ0). (1.12)

Furthermore, this minimum is non degenerate

E′′0 (ξ0) > 0 , (1.13)

and there exists a unique positive, normalized (in L2(R+)) function u0 such that

qξ0 [u0] = β0. (1.14)

The constant C1 introduced in (1.6) is given in terms of u0 by

C1 =
(u0(0))2

3
. (1.15)

The family of quadratic forms, qξ will be further analyzed in Section 3.
The first new result that we will prove in the present paper is the following

control of the minimal energy :

2It is expected that the next term in the asymptotics will be of order κ−1/2. See [HP03] and

[BS98].
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Theorem 1.2. Let the constant c in (1.8) be given and let f : R → R be a function
satisfying limt→+∞ f(t) = 0. Then there exists a function g : R → R satisfying
limt→+∞ g(t) = 0 such that if (κ,H) is a couple satisfying (1.8) (with the given c),

ρ(κ)
κ1/2

≤ f(κ) , (1.16)

and (ψ, ~A) is an associated minimizer of (1.1). Then∣∣∣∣∣E [ψ, ~A] +
1

2β1/2
0 ‖u0‖44κ

∫ |∂Ω|

0

[
β

3/2
0 ρ− C1(kmax − k(s))

]2
+
ds

∣∣∣∣∣
≤ ρ2

κ
g(κ). (1.17)

Here k(·) denotes the curvature of the boundary (in the path-length parametrization)
and [ · ]+ is the function

[ t ]+ =

{
t, t ≥ 0
0, t < 0.

Remark 1.3. In the case when ρ→ +∞, formula (1.17) above becomes

E [ψ, ~A] = −β
5/2
0 |∂Ω|+ o(1)

2‖u0‖44

(
ρ2

κ

)
as κ→ +∞. (1.18)

Theorem 1.2 complements a previous result by Lu-Pan [LP99, Thm. 5.1]. They
state the same result (1.18) under the assumption

ρ

κ
1
3
→∞ . (1.19)

Thus our contribution fills, in particular, the gap from ρ ≈ κ1/3 down to ρ of order
1. We take the opportunity of this generalization for clarifying some aspects of
their proof by implementing in particular the techniques of [HM01] and [Pan02a].

Our second result expresses the concentration to the boundary. We introduce
the parameter ε as

ε =
1√
κH

. (1.20)

This parameter will give the length scale of the boundary concentration. In order
to state our result we consider the boundary coordinates defined in Appendix A.
Let t0 be the constant from this appendix. This number is chosen such that the
change of coordinates Φ : |∂Ω|

2π S1 × (0, t0) → Ω is a diffeomorphism on its range,
which is equal to {x ∈ Ω : d(x, ∂Ω) ≤ t0}. Actually, t(x) := dist(x, ∂Ω) satisfies
t(Φ(s, t)) = t.

Let χ ∈ C∞0 (R) be a smooth cut-off function:

χ = 1 on [0, t0/2], suppχ ⊂ (−t0, t0). (1.21)

On the support of χ(t(x)) we can use boundary coordinates (s, t) = Φ−1(x). Thus
the function

x 7→
[β3/2

0 − C1
kmax−k(s)

ρ ]+
β0‖u0‖44

|u0( t
ε )|2χ(t), (1.22)

is well-defined (with the dependence (s, t) = (s(x), t(x)) = Φ−1(x) being tacitly
understood).
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With this convention, we can now formulate

Theorem 1.4. Let the assumptions and notations be as in Theorem 1.2. Then

ε−1

∫
Ω

∣∣∣∣∣ |ψ(x)|2

ερ
−

[β3/2
0 − C1

kmax−k(s)
ρ ]+

β0‖u0‖44
|u0( t

ε )|2χ(t)

∣∣∣∣∣
2

dx→ 0. (1.23)

Remark 1.5. In case ρ→∞ the function from (1.22) can be replaced by
√
β0

‖u0‖44
|u0( t

ε )|2χ(t).

Combining Theorem 1.2 with the results of Helffer-Pan [HP03], Lu-Pan [LP99],
Pan [Pan02a] and Sandier-Serfaty [SS00, SS03], we get the following description of
the high κ-high H asymptotic regime. In the regimes considered below—except the
first H

κ < 1— the function |ψ| is (exponentially) small outside of a neighborhood
of width κ−1 of the boundary.

• The region H
κ < 1 has been explored by E. Sandier and S. Serfaty. These

authors give in particular a very fine analysis of the transition between
superconducting solutions (that is with non vanishing ψ) and solutions
with vortices. We refer to [SS00, SS03] and references therein.

• H
κ → b for some 1 ≤ b < 1

β0
(with an extra condition in case b = 1). This

situation is equivalent to having
ρ

κ
→ 1

b
− 1
β0

> 0.

In [Pan02a] it is proved that in this regime ψ concentrates uniformly along
the boundary ∂Ω. Furthermore, the boundary superconductivity is strong
i.e. ψ is of order 1 on the boundary.

• ρ → +∞, ρ/κ → 0. This is the regime analyzed in the present paper
and in [LP99]. Superconductivity is expected to nucleate uniformly at the
boundary, but only with a strength

|ψ(x)|2 ≈ ρ

κ
→ 0

(on the boundary). This result would be consistent with our energy asymp-
totics (and is the idea used in the construction of our trial functions).

• ρ of order 1. This regime is also treated in the present paper. We see that,
as ρ increases, the superconducting part of the boundary becomes larger.
When ρ reaches the value

ρcrit = β
−3/2
0 C1(kmax − kmin), (1.24)

(with kmin being the minimum of the curvature of the boundary) the en-
tire boundary carries superconductivity. In [HP03] an Agmon-type decay
estimate in the boundary coordinate was proved for ρ < ρcrit and it was
conjectured that for ρ > ρcrit superconductivity becomes uniform in the
boundary. From the above result we see that this is only partially true:
The entire boundary carries superconductivity but not with the same in-
tensity. The uniformity (to highest order) is only achieved when ρ→∞.

• ρ→ 0. In this case superconductivity nucleates in the vicinity of the points
on the boundary with maximum curvature. Precise estimates on the size
of the region of localization are given in [HP03]. In Section 5 below we
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will complete the picture by giving the leading order energy asymptotics
for minimizers of the Ginzburg-Landau functional in this case also.

For convenience (also for the reader when comparing to the works of Lu and
Pan) we introduce the parameters that we will use instead of κ,H. The parameter
ε has already been defined in (1.20). Furthermore,

δε =
κ

H
− β0 . (1.25)

In terms of ρ we get, under the condition (1.9),

ε =
√
β0

κ
+O(

ρ

κ2
), δε =

β2
0ρ− β

−1/2
0 C1kmax

κ
+O(

ρ2 + 1
κ2

). (1.26)

Notice that δε does not have a definite sign when ρ is bounded.

2. Basic known results

Let ~F be the vector potential defined in (1.3). We fix the gauge of ~A by demand-
ing also

div ~A = 0, ~A · ν = 0 on ∂Ω. (2.1)

Unless otherwise stated, this is the gauge in which we will work in the entire paper.
Since div ~A = 0, the equation for ~A in (1.4a) becomes

∆ ~A =
i

2κ
(
ψ∇ψ − ψ∇ψ

)
+ |ψ|2 ~A. (2.2)

Lemma 2.1. Let (ψ, ~A) be a minimal solution of (1.4) and satisfying (2.1). Let
κ,H ≥ 1. Then there exists a constant C (independent of κ,H) such that

‖ψ‖L∞(Ω) ≤ 1, ‖∇κH ~Aψ‖L2(Ω) ≤ Cκ, ‖ ~A− ~F‖W 1,2(Ω) ≤ C/H.

We include a short reminder of how these estimates are proved.
Proof.
The first estimate is a consequence of the diamagnetic inequality [LL97, Thm. 7.21]
and the maximum principle applied to the equations (1.4). The second and third
estimates simply follow from the primitive estimates (1.2) and (1.5). �

From the work of [HM01] and [HP03] we get the following estimate of the bottom
of the spectrum of the magnetic Neumann Laplacian (cf [HP03, Theorem 3.1]) :

Theorem 2.2. There exist a, c > 0 such that if κH ≥ a, ~A is a vector potential
satisfying the following estimates:

‖ ~A‖C2(Ω) ≤ c, ‖curl ~A− 1‖C1(Ω) ≤ c(κH)−1/6, curl ~A = 1 on ∂Ω, (2.3)

and Q ~A is the quadratic form on W 1,2(Ω) given by

Q ~A[φ] =
∫

Ω

|∇ ~Aφ|
2 dxdy.

Then there exists a constant C, depending only on a, c, such that we have the
following lower bound for all φ ∈W 1,2(Ω):

QκH ~A[φ] ≥ κH

(
β0 −

C1kmax√
κH

− C(κH)−2/3

)
‖φ‖22. (2.4)

Here kmax is the maximum of the curvature of the boundary, and C1 is the constant
defined in (1.15).
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It is well known that if we replace Ω by the entire plane R2, then the right
hand side of (2.4) should be replaced by (to leading order) κH‖φ‖22. Thus, since
β0 < 1, the presence of the boundary lowers the ground state energy3. It is therefore
no surprise that functions with low energy concentrate near the boundary. The
technique of Agmon estimates is an efficient way of quantifying this decay.

It is proved in [HP03] that under condition (1.9) the assumption (2.3) is satisfied.
Furthermore they prove exponential localization to the boundary.

Theorem 2.3 (Agmon estimates). Suppose (1.9) is satisfied. Let (ψ,A) be a se-
quence of minimizers of the Ginzburg-Landau functional satisfying the gauge con-
dition (2.1). Let t(x) = d(x, ∂Ω). Then (2.3) is satisfied. Furthermore, there exist
positive constants C, c0, α such that:∫

Ω

eακt(x)
(
|ψ|2 + (κH)−1|∇κH ~Aψ|

2
)
dx ≤ C

∫
{t(x)<c0/κ}

|ψ(x)|2 dx.

Theorem 2.3 is a summary, adapted to the present context, of [HP03, Lemma
3.2, Prop. 4.2 and Lemma 4.5].

Let us recall the following standard result (see for instance [AHS78]):

Proposition 2.4. Suppose ~A satisfies B ≡ curl ~A > 0. Let φ in W 1,2
0 (Ω), then,

for all ε > 0, ∫
Ω

|(−i∇− ε−2 ~A)φ|2 dx ≥ ε−2

∫
Ω

B(x)|φ(x)|2 dx.

We also state the following sharpening of Theorem 2.2. It was proved in [HM01,
Prop. 10.5], we give the adapted form from [HP03, Prop. 3.7].

Proposition 2.5. Under the assumptions of Theorem 2.3, there exists ε0, C0 > 0
such that, if Wε(x) is the potential defined by

Wε(x) =

{
1− C0ε

1/3 for dist(x, ∂Ω) > 2ε1/3,

β0 − C1k(s)ε− C0ε
4/3, for dist(x, ∂Ω) ≤ 2ε1/3,

then

Qε−2 ~A[u] ≥ 1
ε2

∫
Ω

Wε(x)|u(x)|2 dx,

for all ε ∈ (0, ε0] and all u ∈W 1,2(Ω).

3. The usual suspects

In this section we will study (as is usual in this context) the one-dimensional
eigenvalue problem given by the quadratic form

qξ[φ] = qξ(φ, φ) =
∫ ∞

0

|Dτφ(τ)|2 + (ξ + τ)2|φ(τ)|2 dτ, (3.1)

on the maximal domain (i.e. on W 1,2(R+) ∩ 〈τ〉−1L2(R+)).
Actually, our starting point is the quadratic form (in two variables)

Qε[φ] = Qε(φ, φ) =
∫ ε−1|∂Ω|

0

dσ

∫ ∞

0

|Dτφ(σ, τ)|2 + |(Dσ + τ)φ(σ, τ)|2 dτ, (3.2)

3This would, of course, not be true for Dirichlet boundary conditions.
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with periodic boundary conditions in σ and maximal domain. Explicitly, the do-
main is{

φ ∈ L2([0, ε−1|∂Ω|]× R+)
∣∣∣ Dτφ ∈ L2 , (Dσ + τ)φ ∈ L2

and φ(0, ·) = φ( |∂Ω|
ε , ·)

}
. (3.3)

The introduction of the quadratic form Qε is very natural from the following
point of view. Suppose ψ is a function localized to a neighborhood of size t0 (with
t0 small) near the boundary of ∂Ω. We consider the first term of the Ginzburg-
Landau functional: ∫

{t(x)<t0}
|(−i∇− κH ~A)ψ|2 dx. (3.4)

The quadratic form Qε results from this term by the following operations:
• Change to boundary coordinates.

From the change of coordinates a number of factors (1 − tk(s)) will ap-
pear. These we replace by 1—using the philosophy that t is small near the
boundary, so (1− tk(s)) ≈ 1.

• Replace ~A by the vector field (in boundary coordinates (s, t)) (−t, 0).
Using the gauge chosen in (2.1), this is the main term in the Taylor expan-
sion of ~A near the boundary.

• Scale variables by ε−1 (new coordinates (σ, τ)) and replace the upper bound
ε−1t0 in the τ integration by +∞.

From Theorem 2.3 we know that minimizers of the Ginzburg-Landau functional
concentrate to a region of size ε around the boundary. Therefore, it is reasonable to
assume that the quadratic form Qε captures the leading behavior of the expression
in (3.4).

Upon decomposition in Fourier modes in the σ variable, we get the sequence of
quadratic forms qζn

from Qε, where

ζn =
2πnε
|∂Ω|

. (3.5)

and where qξ was introduced in (3.1). For ξ ∈ R we define

E0(ξ) = inf
‖φ‖2=1

qξ[φ].

From Dauge-Helffer [DH93] (see also [BH93]) we find

Lemma 3.1. There exists a unique ξ0 ∈ R such that for ξ 6= ξ0 we have E0(ξ) >
E0(ξ0). We write E0(ξ0) = β0. Moreover, there exists a unique normalized, positive
function φξ ∈ L2(R+) such that E0(ξ) = qξ[φξ]. The eigenfunctions φξ satisfy :
For any K > 0, there exist constants α,C > 0 such that, for all τ > 0 and
ξ ∈]ξ0 −K, ξ0 +K[:

φξ(τ) ≤ Ce−ατ2
.

In particular, the lemma can be applied to u0 = φξ0 .

Remark 3.2. The constant β0 satisfies β0 ≈ 0.59. Lemma 3.1 provides the math-
ematical background for the definition of the constants β0, C1 used in the introduc-
tion. Mathematically, the important point about the numerical value of β0 is the
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fact that 0 < β0 < 1. The localization to the boundary is a consequence of this
fact.

Remark 3.3. In the literature there is a bit of confusion as to whether qξ should
be defined as in (3.1) or we should replace (ξ + τ)2 by (ξ − τ)2 in (3.1). This lat-
ter convention is taken in [HM01]. However, most works on the Ginzburg-Landau
functional (for example [HP03, SS00, LP99]) use our definition (1.1) of E , which
naturally leads to the sign convention in (3.1). One should remember this conven-
tion when comparing with the literature. In particular, with our definition, one
gets ξ0 = −

√
β0 < 0.

In the rest of this section we will prove that if φ is a function which almost
minimizes Qε, i.e. such that Qε[φ] ≈ β0‖φ‖22, then

φ(σ, τ) ≈ f(σ)u0(τ). (3.6)

Proposition 3.11 below summarizes the results of this section.
We want (3.6) to be true in Lp (in particular in L4 for application to the

Ginzburg-Landau functional). In order to control the Lp norms, we need a Sobolev-
type imbedding result.

Lemma 3.4 (Sobolev embedding). For ε ≤ 1 we define Ωε = ( 1
2πεS1)σ × (R+)τ

with measure dσ dτ . Then, for all p ∈ [2,+∞), there exists a constant Cp, such
that for all ε ∈ (0, 1] and all u ∈ D(Qε) we have

‖u‖2Lp(Ωε) ≤ Cp(Qε[φ] + ‖φ‖2L2(Ωε)).

Proof. The uniform control of the constant in the Sobolev embedding Theorem for
the scaled domain Ωε is probably well-known. We include a simple argument for
completeness. Let θ ∈ (−π, π] be the usual parametrization of S1 = R/(2πZ). In the
same way, we have a natural parametrization of 1

2πεS1 = R/(εZ) by θ ∈ (− 1
2ε ,

1
2ε ].

Let χ1, χ2 ∈ C∞(S1) be a partition of unity on S1:

χ2
1 + χ2

2 = 1, χ1(θ) = 1 for θ ∈ [−π
4 ,

π
4 ],

χ1(θ) = 0 for θ ∈ (−π,−π + η) ∪ (π − η, π] for some η > 0.

Finally, define the functions χi,ε (i = 1, 2) on 1
2πεS1 by

χi,ε(θ) = χi(2πεθ).

For sufficiently regular u we can now estimate as follows.
First we use the partition of unity and the triangle inequality

‖u‖2Lp(Ωε) ≤
(
‖χ1,εu‖Lp(Ωε) + ‖χ2,εu‖Lp(Ωε)

)2

≤ 2
(
‖χ1,εu‖2Lp(Ωε) + ‖χ2,εu‖2Lp(Ωε)

)
. (3.7)

One can naturally extend χ1,εu to a function φ̃1,ε on R2
+ by defining

φ̃1,ε(θ, τ) =

{
χ1,ε(θ)u(θ, τ), θ ∈ (− 1

2ε ,
1
2ε ),

0, |θ| ≥ 1
2ε .

One then obtains a function on R2 by reflection, i.e.

φ1,ε(θ, τ) =

{
φ̃1,ε(θ, τ), τ ≥ 0,
φ̃1,ε(θ,−τ), τ < 0.
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We denote by φ2,ε the similar extension of χ2,εu. We clearly have the relations

‖φi,ε‖p
Lp(R2) = 2‖χi,εu‖p

Lp(Ωε),
∥∥∇|φi,ε|

∥∥2

L2(R2)
= 2

∥∥∇|χi,εu|
∥∥2

L2(Ωε)
. (3.8)

By the Sobolev inequality for R2 (cf. [Ada75])

‖φi,ε‖2Lp(R2) ≤ Sp

(
‖∇|φi,ε|‖2L2(R2) + ‖φi,ε‖2L2(R2)

)
= 2Sp

(
‖∇|χi,εu|‖2L2(Ωε) + ‖χi,εu‖2L2(Ωε)

)
,

where Sp is the Sobolev constant for R2. By the diamagnetic inequality (see for
example [LL97, Thm. 7.21]), we can estimate the above as

≤ 2Sp

(
‖∇A(χi,εu)‖2L2(Ωε) + ‖χi,εu‖2L2(Ωε)

)
= 2Sp

(
Qε[χi,εu] + ‖χi,εu‖2L2(Ωε)

)
.

Summing over i = 1, 2, and computing the commutator (IMS-formula), we therefore
find

‖u‖2Lp(Ωε) ≤ 2Sp

{
Qε[u] +

(
1 + 2‖∇χ1,ε‖2L∞(Ωε)

)
‖u‖2L2(Ωε)

}
. (3.9)

Since ‖∇χ1,ε‖L∞(Ωε) is bounded uniformly in ε (∈ (0, 1]), this finishes the proof of
Lemma 3.4. �

As a first step towards (3.6) we have the following proposition.

Proposition 3.5. There exists δ0, η0 > 0, such that for all p ∈ [2,+∞), there exists
Cp > 0, satisfying that if δ ≤ δ0, η ≤ η0, ε ≤ 1 and if φ is a function satisfying,

‖φ‖2 = 1; Qε[φ]− (β0 + δ) < 0, (3.10)

then

φ =
∑

n:|ζn−ξ0|≤η

cne
iζnσφζn(τ) + ω1(σ, τ), (3.11)

with ζn from (3.5), φζn
from Lemma 3.1, where

cn =
ε

|∂Ω|

∫ ε−1|∂Ω|

0

∫ ∞

0

φ(σ, τ)eiζnσφζn(τ) dτ dσ , (3.12)

and where
‖ω1‖Lp([0,ε−1|∂Ω|]σ×(R+)τ ) ≤ Cp η

−1
√
δ.

For the proof of Proposition 3.5 we need a few preliminary results.

Lemma 3.6. There exists C > 0 such that for ξ ∈ R, φ ∈ L2(R+),

qξ[φ] ≥
(
β0 +

1
C

min{1, |ξ − ξ0|2}
)
‖φ‖2.

Proof. Since the ground state energy E0(ξ) is smooth as a function of ξ around ξ0,
the estimate follows from a Taylor expansion to second order around the minimum
and the fact that the minimum is non degenerate. �

We also need to consider the spectral gap. Define, for ξ ∈ R,

∆E0(ξ) = inf
〈φ,φξ〉=0,‖φ‖=1

qξ[φ]− E0(ξ).
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Lemma 3.7. There exists η0, δ0 > 0 such that if |ξ − ξ0| < η0, then

∆E0(ξ) ≥ δ0 . (3.13)

Proof. This follows from the existence of a gap at ξ = ξ0 and from the continuity
of the eigenvalues with respect to ξ. �

We now return our attention to the functional (in two variables) Q defined in
(3.2).
Proof of Proposition 3.5.
Let φ ∈ L2

(
[0, |∂Ω|

ε ]× R+

)
. Write, with η ≤ η0 sufficiently small,

φ = ω1 + φ≤, (3.14)

where

φ≤ =
∑

n:|ζn−ξ0|≤η

cne
iζnσφζn(τ),

Since the decomposition in (3.14) is an orthogonal projection onto subspaces left
invariant by the operator defining Qε, we get the relations

〈ω1, φ≤〉 = 0, Qε(φ≤, ω1) = 0. (3.15)

Using Lemmas 3.6 and 3.7 we find that, for η0 sufficiently small,

δ = δ‖φ‖22 ≥Qε[φ]− β0‖φ‖22 = Qε[ω1] +Qε[φ≤]− β0‖φ‖22
≥Cη2‖ω1‖22. (3.16)

Thus

‖ω1‖22 ≤ C ′η−2δ. (3.17)

Furthermore we read from (3.16) that

δ ≥ Qε[ω1] +Qε[φ≤]− β0‖φ‖22 ≥ Qε[ω1]− β0‖ω1‖22,
i.e. using (3.17)

Qε[ω1] ≤ C η−2 δ. (3.18)

Thus we find Qε[ω1]+ ‖ω1‖22 = O(η−2δ). Using Lemma 3.4 this implies the desired
estimates in Lp(Ωε) for p ∈ [2,+∞). �

We want to replace the functions φζn
(τ) appearing in the expansion (3.11) in

Proposition 3.5 by the function (independent of n) u0(τ). In order to do so we
apply Marcinkiewicz’s Theorem [Mar39].

Theorem 3.8. Let A be a Fourier multiplier on S1 defined by

Aeinx = λne
inx .

for a sequence {λn}n∈Z ⊂ C. Then for all p ≥ 2 there exits Cp > 0, such that if
{λn} satisfies

|λn| ≤M, for all n ∈ Z, (3.19)

and
2α+1∑
n=2α

(|λn − λn+1|+ |λ−n − λ−n−1|) ≤M for all α ∈ N, (3.20)

11



then A extends to a bounded operator on Lp(S1), and

‖A‖B(Lp(S1),Lp(S1)) ≤ CpM.

Using Theorem 3.8 we can prove

Proposition 3.9. For all p in [2,∞), there exists Cp such that, if we define

ω2(σ) =
∑

n:|ζn−ξ0|≤η

cne
iζnσ[φζn(τ)− u0(τ)],

then, for η ≤ η0 sufficiently small,

‖ω2‖Lp(Ωε) ≤ Cpη‖f‖Lp([0,ε−1|∂Ω|]),

where

f(σ) =
∑

n:|ζn−ξ0|≤η

cne
iζnσ. (3.21)

For the proof of Proposition 3.9 we will need the following estimates

Lemma 3.10. There exists η0 > 0 and positive continuous functions w1, w2 ∈
∩p≥2L

p(R+) such that for ζ, ζ ′ ∈ C, |ζ − ξ0|, |ζ ′ − ξ0| ≤ η0,

|φζ(τ)− u0(τ)| ≤ C|ζ − ξ0|w1(τ), (3.22)

|φζ(τ)− φζ′(τ)| ≤ C|ζ − ζ ′|w2(τ), (3.23)

where ‖wj‖Lp(R+) is bounded uniformly in ζ, ζ ′.

Proof of Lemma 3.10. The first estimate (3.22) is the special case ζ ′ = ξ0 of the
second. So we only need to prove (3.23). Define

D = {φ ∈ H2(R+)
∣∣∣φ′(0) = 0 and (1 + τ2)φ ∈ L2(R+)}.

We now get by analytic perturbation theory that

ζ 7→ φζ ,

is an analytic function from a neighborhood of ξ0 with values in D. Thus, by
Taylor’s formula, we can write

φζ − φζ′ = (ζ − ζ ′)
∫ 1

0

vζ′+s(ζ−ζ′) ds, (3.24)

where vz = ∂zφz is analytic (in particular continuous) in z with values in D. Now

sup
ζ,ζ′∈B(ξ0,η0)

|φζ(τ)− φζ′(τ)|
|ζ − ζ ′|

≤ sup
z∈B(ξ0,η0)

|vz(τ)|.

We will prove that (for η0 sufficiently small)

w(τ) = sup
z∈B(ξ0,η0)

|vz(τ)| (3.25)

belongs to Lp(R+).
For ζ ∈ R, define the operator h(ζ) on L2(R+) as the selfadjoint Neumann realiza-
tion with domain D of the differential operator

φ 7→ −φ′′ + (τ + ζ)2φ .
12



The function φζn is the eigenfunction corresponding to the lowest eigenvalue of
h(ζn). By choosing η0 sufficiently small we may assume that there exist unique
analytic functions E(ζ), φζ for ζ ∈ B(ξ0, η0) such that

h(ζ)φζ = E(ζ)φζ , (3.26)

and φξ0 = u0, φζ is normalized in L2(R+) and E(ξ0) = β0. By differentiation of
(3.26) we get the following equation for vz:

(h(z)− E(z))vz = (2(τ + z) + E′(z))φz.

By differentiation of the identity ‖φz‖L2(R+) = 1;, we get that 〈vz, φz〉 = 0. Define
the linear operator r(z) : L2(R+) → L2(R+) by

r(z)ψ =

{
(h(z)− E(z))−1ψ, if 〈ψ, φz〉 = 0,
0, if ψ ∈ Span{φz}.

We thereby find

vz = r(z)(2(τ + z) + E′(z))φz. (3.27)

Define, for k ≥ 0, the space Bk by

Bk = Hk(R+) ∩ (1 + τ2)−k/2L2(R+),

with its natural Hilbert space structure.
The desired estimate (3.25) is a consequence of the following three standard

facts:

• r(z) defines a bounded operator from Bk to Bk+2 ∩ {u′(0) = 0}.
• z 7→ φz defines a continuous function from B(ξ0, η0) to Bk for all k ≥ 0.
• The Sobolev embedding theorems permit to recover Lp estimates from the
L2 estimates.

�

Proof of Proposition 3.9. Let f be the function from (3.21), define, for τ ∈ R+,

λn(τ) =

{
φζn(τ)− u0(τ), |ζn − ξ0| ≤ η

0, |ζn − ξ0| > η,
(3.28)

and let Aτ be the operator associated with the sequence {λn(τ)} as in Theorem
3.8. Then

‖ω2‖p
p =

∫ ∞

0

∫ 2π

0

∣∣∣ ∑
n:|ζn−ξ0|≤η

cne
iζn

|∂Ω|
2πε s[φζn(τ)− u0(τ)]

∣∣∣p |∂Ω|
2πε

ds

 dτ

=
∫ ∞

0

(∫ 2π

0

|Aτ f̂ |p(s)
|∂Ω|
2πε

ds

)
dτ, (3.29)

where we have introduced the 2π-periodic function

f̂(s) =
∑

n:|ζn−ξ0|≤η

cne
iζn

|∂Ω|
2πε s =

∑
n:|ζn−ξ0|≤η

cne
ins.
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We therefore get

‖ω2‖p
p ≤

∫ ∞

0

‖Aτ‖p
B(Lp(S1),Lp(S1)) dτ‖f̂‖

p
Lp(S1)

|∂Ω|
2πε

= ‖f‖p
p

∫ ∞

0

‖Aτ‖p
B(Lp(S1),Lp(S1))dτ. (3.30)

Using Lemma 3.10, we find∑
n:|ζn−ξ0|≤η

|λn − λn+1| ≤ C
η

ε
εw2(τ) = Cηw2(τ),

|λn| ≤ Cηw1(τ). (3.31)

Thus, using Theorem 3.8, we get

‖Aτ‖B(Lp(S1),Lp(S1)) ≤ Cη(w1(τ) + w2(τ)),

and therefore, since w1 and w2 belong to Lp(R+),∫ ∞

0

‖Aτ‖p
B(Lp(S1),Lp(S1))dτ ≤ Cηp. (3.32)

�

We can sum up the results of Propositions 3.5 and 3.9, in the form needed for
later applications, as follows. This is a precise version of the informal statement
(3.6).

Proposition 3.11. There exist δ0, η0 > 0 such that if p ∈ [2,∞), then there exists
Cp > 0 such that for all δ < δ0, η < η0, ε ∈ (0, 1] and all functions φ satisfying

Qε[φ]− (β0 + δ)‖φ‖22 < 0, (3.33)

we have

φ = f(σ)u0(τ) + ω(σ, τ). (3.34)

Here

f(σ) =
∑

n:|ζn−ξ0|≤η

cne
iζnσ, (3.35)

with ζn from (3.5), where

cn =
√

ε

|∂Ω|

∫ ε−1|∂Ω|

0

∫ ∞

0

φ(σ, τ)eiζnσφζn
(τ) dτ dσ , (3.36)

with φζn
from Lemma 3.1, and where

‖ω‖Lp([0,ε−1|∂Ω|]σ×(R+)τ ) ≤ Cp

(
η−1

√
δ‖f‖L2([0,ε−1|∂Ω|]) + η‖f‖Lp([0,ε−1|∂Ω|])

)
.

Proof. Proposition 3.11 is an immediate consequence of Propositions 3.5 and 3.9.
�

4. Energy asymptotics

In this section we will prove the main theorems. First we establish a precise
upper bound to the ground state energy of the Ginzburg-Landau functional.
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4.1. Upper bound.
To get a good upper bound we can use an explicit test configuration. Our choice is
very similar to the one used by Lu and Pan in [LP99]. We choose ~A = ~F (the ex-
ternal field). For ψ, we write (in the boundary coordinates defined in Appendix A)

ψ(s, t) = eiκHχf +i[ξ0]εs/ελ(s)u0(t/ε)χ(t). (4.1)

We will proceed to define the different parts of ψ.
The function χ is smooth and localizes to the boundary region. If t0 is the

constant from Appendix A defining the boundary region, the function χ is chosen
non-increasing and satisfying

χ ∈ C∞(R), χ(t) =

{
0, t ≥ 3t0/4,
1, t ≤ t0/2.

(4.2)

The only reason for introducing χ is that this localization near the boundary allows
us to use the boundary coordinates (s, t).

The symbol [ξ0]ε denotes the following number

[ξ0]ε = max{z ∈ 2πε
|∂Ω|Z

∣∣z ≤ ξ0}.

Ideally, we would use ξ0 instead of [ξ0]ε, but in order for ψ to be well defined it
needs to satisfy the periodicity assumption. This is assured by using [ξ0]ε.

For λ(s) we would like to make the choice

λformal(s)2 =
1

εκ2‖u0‖44

[
β

3/2
0 ρ− C1(kmax − k(s))

]
+
. (4.3)

However, the function t 7→ [t]1/2
+ does not have a bounded derivative, so we need to

regularize the function slightly. Therefore we introduce, for ν > 0, the smoothed
out version

[t]+,ν =

{
0, t ≤ 0,√
t2 + ν2 − ν, t > 0.

.

An elementary analysis gives that [t]1/2
+,ν ∈ C1(R) and that

‖[t]1/2
+ − [t]1/2

+,ν‖∞ ≤ C
√
ν,

∥∥∥∥ ddt [t]1/2
+,ν

∥∥∥∥
∞
≤ C

1√
ν
. (4.4)

We make the choice ν = ε1/2 and define

λ(s) =
1√

εκ‖u0‖24

[
β

3/2
0 ρ− C1(kmax − k(s))

]1/2

+,ε1/2
. (4.5)

The function χf in (4.1) is the phase of a gauge transformation to be defined
below (see (4.6)). Let (using notation from Appendix A)

Ã(s, t) =
(
Ã1

Ã2

)
(s, t) =

(
(1− tk(s))~F (Φ(s, t)) · γ′(s)

~F (Φ(s, t)) · ν(s)

)
,

be the vector potential ~F transformed to boundary coordinates. We choose χf such
that (

Ã1

Ã2

)
+∇(s,t)χf =

(
−t+O(t2)

0

)
. (4.6)
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Since the choice of gauge (1.3) implies that

Ã2(s, 0) = 0, (∂tÃ2)(s, 0) = −1,

(4.6) is accomplished by the choice

χf (s, t) =
∫ t

0

Ã2(s, t′) dt′.

Let us start by considering the change of gauge χf . Using (4.6), we write(
Â1

0

)
=

(
Ã1

Ã2

)
+∇(s,t)χf =

(
−t+O(t2)

0

)
. (4.7)

Since, by (A.1)

−∂tÂ1 = B(s, t)(1− tk(s)) = 1− tk(s),

we get

Â1 = −t+ k(s)
t2

2
. (4.8)

With all these choices, ψ from (4.1) is defined and we can proceed to calculate
E [ψ, ~F ]. We will calculate in boundary coordinates, using Appendix A, with the
following formula.

E [ψ, ~F ] =
∫

(1− tk(s))−1|(−i∂s − κHÃ1)ψ|2 ds dt

+
∫ {

|(−i∂t − κHÃ2)ψ|2 − κ2|ψ|2
}

(1− tk(s)) ds dt

+ 1
2κ

2

∫
|ψ|4(1− tk(s)) ds dt .

Upon calculating E [ψ, ~F ] we therefore find

E [ψ, ~F ] =
∫

(1− tk(s))−1
∣∣∣(−i∂s − κHÂ1 + ε−1[ξ0]ε)(λ(s)u0(t/ε)χ(t))

∣∣∣2ds dt
−

∫
(1− tk(s))

∣∣∂t (λ(s)u0(t/ε)χ(t))
∣∣2dsdt

− κ2

∫
(1− tk(s))

∣∣λ(s)u0(t/ε)χ(t))
∣∣2(1− tk(s)) ds dt

+
κ2

2

∫ ∣∣λ(s)u0(t/ε)χ(t))
∣∣4(1− tk(s)) ds dt . (4.9)

This we write as

E [ψ, ~F ] =
∫ |∂Ω|

0

|λ(s)|2S(s)ds

+
κ2

2

∫ |∂Ω|

0

|λ(s)|4
∫ ∞

0

∣∣u0(t/ε)χ(t))
∣∣4(1− tk(s)) dsdt

+ r1. (4.10)
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Here

S(s) =
∫ ∞

0

(1− tk(s))−1
(
κHÂ1 − ε−1[ξ0]ε

)2

|u0(t/ε)χ(t)|2 dt

+
∫ ∞

0

(1− tk(s))
∣∣∂t(u0(t/ε)χ(t))

∣∣2 dt
− κ2

∫ ∞

0

(1− tk(s))
∣∣u0(t/ε)χ(t))

∣∣2 dt , (4.11)

and (since λ(s) is real-valued)

r1 =
∫

(1− tk(s))−1|λ′(s)|2|u0(t/ε)χ(t))|2 dsdt = O(ε3/2), (4.12)

where we used the choice of λ, and consequently that there exists c such that

|λ′(s)|2 ≤ c

εκ2
ε−1/2 = O(ε1/2),

to get the last estimate.
Using now the rapid decay of u0 at +∞, we can ‘eliminate’ the cut-off function

χ in S(s), and get :

E [ψ, ~F ] =
∫ |∂Ω|

0

|λ(s)|2T (s)ds

+
κ2ε

2

∫ |∂Ω|

0

|λ(s)|4‖u0‖44(1 +O(ε)) ds+O(ε3/2) , (4.13)

with

T (s) =
∫ ∞

0

(1− tk(s))−1
(
κHÂ1 − ε−1[ξ0]ε

)2

|u0(t/ε)|2 dt

+
∫ ∞

0

(1− tk(s))
∣∣∂t(u0(t/ε))

∣∣2 dt
− κ2ε+ κ2

∫ ∞

0

tk(s)
∣∣u0(t/ε)

∣∣2 dt+O(ε) . (4.14)

Let us write, using (4.8),

κHÂ1 − ε−1[ξ0]ε = (−κHt− ε−1ξ0) + κH
t2k(s)

2
− ε−1([ξ0]ε − ξ0) .

Then we can rewrite (4.14) as

T (s) := T0(s) + T1(s) + T2(s) + T3(s) + T4(s) +O(ε)
17



with the Tj (j = 0, . . . , 4) defined by :

T0(s) :=
∫ ∞

0

(
(κHt+ ε−1ξ0)2|u0(

t

ε
)|2 + |∂t(u0(

t

ε
))|2

)
dt− κ2ε ,

T1(s) :=
∫ ∞

0

tk(s)(κHt+ ε−1ξ0)2|u0(t/ε)|2 dt ,

T2(s) := −2
∫ ∞

0

[
κH

t2k(s)
2

− ε−1([ξ0]ε − ξ0)
]
(κHt+ ε−1ξ0)|u0(t/ε)|2 dt ,

T3(s) := −
∫ ∞

0

tk(s)|∂t(u0(t/ε))|2 dt ,

T4(s) := κ2

∫ ∞

0

tk(s)|u0(t/ε)|2 dt , (4.15)

which will now be analyzed successively using the formulas from Appendix B.
For T0 a change of variables gives immediately :

T0(s) =
β0

ε
− κ2ε .

Using (1.26), we get :

T0(s) = C1kmax − β
3/2
0 ρ+O(

ρ2

κ
) . (4.16)

Next we consider :

T1 = k(s)
∫ ∞

0

τ(τ + ξ0)2|u0(τ)|2 dτ

= k(s)
∫ ∞

0

[(τ + ξ0)3 − ξ0(τ + ξ0)2]|u0(τ)|2 dτ

= (M3 − ξ0
β0

2
)k(s) = (

C1

2
+
β

3/2
0

2
)k(s). (4.17)

In the last line, we have used (1.15) and (B.2).

T2 = −k(s)
∫ ∞

0

τ2(τ + ξ0)|u0(τ)|2 dτ

= −k(s)
∫ ∞

0

[
(τ + ξ0)2 − 2τξ0 − ξ20

]
(τ + ξ0)|u0(τ)|2 dτ

= −k(s)
∫ ∞

0

[
(τ + ξ0)2 − 2ξ0(τ + ξ0) + ξ20

]
(τ + ξ0)|u0(τ)|2 dτ

= −(M3 − 2ξ0M2)k(s) = −(
C1

2
+ β

3/2
0 )k(s). (4.18)
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Furthermore,

T3 = −k(s)
∫ ∞

0

τ |u′0(τ)|2 dτ

= k(s)
∫ ∞

0

u0(τ)[u′0(τ) + τu′′0(τ)] dτ

= k(s)
(
−u0(0)2

2
+

∫ ∞

0

τ
[
(τ + ξ0)2 − β0

]
|u0(τ)|2 dτ

)
= −k(s)u0(0)2

2

+ k(s)
∫ ∞

0

[
(τ + ξ0)3 − ξ0(τ + ξ0)2 − β0(τ + ξ0) + β0ξ0

]
|u0(τ)|2 dτ

= k(s)(−3M3 +M3 − ξ0M2 − β0ξ0) = (−C1 −
β

3/2
0

2
)k(s). (4.19)

Here we have used an integration by part (from line 1 to line 2), the equation
satisfied by u0 for line 3 and the formulas from Appendix B. Furthermore, using
the same estimates as for T0, we get

κ2ε2 =
κ

H
= β0 +O(

ρ

κ
) , (4.20)

and this leads for T4 to :

T4(s) := κ2

∫ ∞

0

tk(s)|u0(t/ε)|2 dt

= κ2ε2k(s)
∫ ∞

0

τ |u0(τ)|2 dτ = −k(s)κ2ε2ξ0

= β
3/2
0 k(s) +O(

ρ

κ
). (4.21)

Thus

T1 + T2 + T3 + T4 = −C1k(s) +O(
ρ

κ
). (4.22)

So the energy estimate (4.13) becomes

E [ψ, ~F ] =
∫ |∂Ω|

0

{
|λ(s)|2[C1(kmax − k(s))− β

3/2
0 ρ+O(

ρ

κ
)]

+
κ2ε

2
|λ(s)|4‖u0‖44(1 +O(ε))

}
ds+O(ε3/2) . (4.23)

Using the choice of λ and the first inequality in (4.4), we get

E [ψ, ~F ] =
−1

2εκ2‖u0‖44

∫ |∂Ω|

0

[
β

3/2
0 ρ− C1(kmax − k(s))

]2

+
ds

+O(ε1/4 ρ

κ
) +O(

ρ2

κ2
). (4.24)

If we insert the asymptotics of ε, this upper bound fits the energy asymptotics in
(1.17).
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4.2. Lower bound.
Let (ψ, ~A) be a minimizer. First we need to make a localization to the boundary
region. Let 1 = f2

1 (t)+ f2
2 (t) be a standard partition of unity on [0,∞). We choose

f1 to be non-increasing and satisfying

f1(t) =

{
1, t ≤ 1,
0, t ≥ 2.

(4.25)

Consider ψj(x) = fj(t(x)/εM)ψ(x). We will choose M = M(ε) � 1 later, under
the restriction:

εM → 0. (4.26)

Therefore, for ε small enough, one can change to boundary coordinates on the
support of f1(t(x)/εM). Then, by the IMS-formula,

E [ψ, ~A] =E [ψ1, ~A] + E [ψ2, ~A]− (εM)−2

∫
(|∇f1|2 + |∇f2|2)|ψ(x)|2 dx

+
κ2

2

∫
(1− f4

1 − f4
2 )|ψ(x)|4 dx. (4.27)

Consider first the last term in (4.27). Since

1 = (f2
1 + f2

2 )2 = f4
1 + f4

2 + 2f2
1 f

2
2 ,

this term is positive. We will therefore discard it for the lower bound.

Remark 4.1. The algebraic fact that the above term is positive is unimportant.
By using the Agmon estimates (as will be done for the gradient terms below), one
easily finds that the last term in (4.27) is small compared to the main term.

Notice, that Theorem 2.3 tells us that the estimate (2.3) is satisfied. Therefore,
Proposition 2.4 implies that

E [ψ2, ~A] ≥ ε−2(1−O(κ−1/3))‖ψ2‖22 ≥ 0.

So we can ignore this positive term for the lower bound.
The Agmon estimates, combined with the support properties of (|∇f1|2+|∇f2|2)

can be used to bound the localization errors as follows:

(εM)−2

∫
(|∇f1|2 + |∇f2|2)|ψ(x)|2 dx

≤ C(εM)−2

∫
{1≤ t(x)

εM ≤2}
e−αt(x)/ε

(
eαt(x)/ε|ψ(x)|2

)
dx

≤ C(εM)−2e−αM

∫
eαt(x)/ε|ψ(x)|2 dx

≤ c(εM)−2e−αM

∫
{t(x)<c0/κ}

|ψ(x)|2 dx

≤ c(εM)−2e−αM‖ψ1‖22. (4.28)

Here we used, in the last line, the fact that M →∞, so therefore (for ε sufficiently
small) ∫

{t(x)<c0/κ}
|ψ(x)|2 dx ≤ ‖ψ1‖22.
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We now redefine α in order to absorb the factor of M−2 and find

(εM)−2

∫
(|∇f1|2 + |∇f2|2)|ψ(x)|2 dx ≤ cε−2e−αM‖ψ1‖22.

From these estimates and (4.27), we find

E [ψ, ~A] ≥
∫
|(−i∇− κH ~A)ψ1|2 − κ2(1 + ce−αM )|ψ1|2 +

κ2

2
|ψ1|4 dx.

Upon changing to boundary coordinates (see Appendix A) this integral becomes:∫ |∂Ω|

0

∫
{t≤2Mε}

{
|Dtφ|2 + (1− tk(s))−2|(Ds − κHÃ1)φ|2

− κ2(1 + ce−αM )|φ|2 +
κ2

2
|φ|4

}
(1− tk(s)) dt ds, (4.29)

where
φ = ψ1(Φ(s, t)) (4.30)

and Ã1 was defined in Appendix A. Here we used the fact that after possibly
effecting a gauge transformation, we may assume that Ã2 = 0.

In the gauge where Ã2 = 0, we have from (A.1)

−∂tÃ1 = (1− tk(s))B̃.

From Theorem 2.3 we know that the estimates (2.3) are satisfied by the minimizing
vector potential ~A. Thus, by a Taylor expansion near the boundary, we can write

B̃ = 1 + κ−1/3tb(s, t),

where b is bounded (uniformly in κ) in C0 in a fixed (i.e. κ-independent) neighbor-
hood of the boundary. So we find

Ã1 = −t+
k(s)t2

2
+O(κ−1/3t2), (4.31)

uniformly in κ in a fixed neighborhood of the boundary.
In order to have a simple model operator, we want to replace Ã1(s, t) by −t.

Therefore, we estimate

|(−i∂s − κHÃ1)φ|2

= |(−i∂s + κHt)φ|2 + (κH)2|(Ã1 + t)φ|2 + κH<((−i∂s + κHt)φ · (Ã1 + t)φ)

≥ (1− γ)|(−i∂s + κHt)φ|2 + (κH)2(1− γ−1)|(Ã1 + t)φ|2. (4.32)

Using the Agmon estimates and the simple inequality |Ã1 + t| ≤ Ct2 (valid on
suppφ) deduced from (4.31), we find

(κH)2
∫
|(Ã1 + t)φ|2 dsdt ≤ c(κH)2‖t4e−αt/ε‖∞

∫
eαt/ε|φ|2 dsdt ≤ c′‖φ‖22.

We use the Agmon estimates (and the boundedness of the curvature k(s)) to
replace all factors of (1− tk(s)) by 1 +O(ε). Upon choosing

γ = ε, M = CM | log ε|, (4.33)

(for a big constant CM ), which satisfies (4.26), we get

E [ψ, ~A] ≥ (1− cε)Q̃[φ]− κ2(1 + cε)‖φ‖22 +
κ2

2
(1− cε)‖φ‖44,
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where

Q̃[φ] =
∫ |∂Ω|

0

∫ ∞

0

|Dtφ|2 + |(Ds + κHt)φ|2 dt ds.

We finally change coordinates (s, t) = ε(σ, τ). We introduce

φ̃(σ, τ) := φ(εσ, ετ). (4.34)

Thereby the inequality becomes

E [ψ, ~A] ≥ (1− cε)Qε[φ̃]− κ

H
(1 + cε)‖φ̃‖22 +

κ

2H
(1− cε)‖φ̃‖44. (4.35)

Here

Qε[φ̃] =
∫ |∂Ω|/ε

0

dσ

∫ +∞

0

|Dτ φ̃|2 + |(Dσ + τ)φ̃|2 dτ,

is the quadratic form studied in Section 3.

The boundary concentration (uniform in the case of large ρ) will now essentially
be a general feature of functions φ̃ satisfying

Qε[φ̃]− (
κ

H
+ cε)‖φ̃‖22 ≤ 0.

At this point we should recall the definition of δε from (1.25).
The limiting behavior of φ̃ will follow from Proposition 3.11. Notice that till this

point the analysis has been purely linear. We have only studied spectral properties
of the magnetic quadratic form. The quartic term in (4.35) will only play a role in
determining the normalization.

Using Proposition 3.11, we write

φ̃(σ, τ) = f(σ)u0(τ) + ω(σ, τ), (4.36)

where the function ω satisfies (since u0 is normalized)

‖ω‖2 ≤ C

(√
δε + cε

η
+ η

)
‖f‖2 , ‖ω‖4 ≤ C ′

(√
δε + cε

η
‖f‖2 + η‖f‖4

)
. (4.37)

The Cauchy-Schwarz inequality gives

‖f‖22 =
∫ ε−1|∂Ω|

0

|f(s)|2 ds ≤ ‖f‖24
√
ε−1|∂Ω|.

Thus we get from (4.37) (for η � 1)

‖ω‖4 ≤ C

(
η−1(

(δε + cε)2

ε
)1/4 + η

)
‖f‖4. (4.38)

Thus, for δ2 � ε, we can choose η = ( (δε+cε)2

ε )1/8 � 1 and get

‖ω‖4 ≤ C(
(δε + cε)2

ε
)1/8‖f‖4 = o(‖f‖4). (4.39)

Remark 4.2. The assumption (1.16) is equivalent to δ2 � ε. It is clear that, in
our approach, (1.16) is needed in order for (4.38) to imply (4.39). This is the only
place in the analysis where we need (1.16) and not the weaker (1.9).
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We now return to the problem on the entire domain Ω. Using Proposition 2.5,
we get

E [ψ, ~A] ≥ 1
ε2

∫
Ω

(Wε(x)− ε2κ2)|ψ(x)|2 dx+
κ2

2

∫
Ω

|ψ(x)|4 dx.

Applying the Agmon estimates (Theorem 2.3) we find∫
Ω

(Wε(x)− ε2κ2)|ψ(x)|2 dx ≥
∫

Ω

(Wε(x)− ε2κ2 − Ce−ακεM )|ψ1(x)|2 dx,

where M is the length-scale in the partition of unity χ. M has been chosen to be
M = C| log ε|, for some sufficiently large constant C. Thus we may assume that

e−ακεM = εα′C � ε. (4.40)

So we find, with r1, r2 = o(1),

E [ψ, ~A] ≥ 1
ε2

∫
Ω

(Wε(x)− ε2κ2 + εr1)|ψ1(x)|2 dx+
κ2

2

∫
Ω

|ψ1(x)|4 dx

=
∫ ε−1|∂Ω|

0

∫ ∞

0

{
(Wε(x)− ε2κ2 + εr1)|φ̃(σ, τ)|2 +

κ

2H
|φ̃(σ, τ)|4

}
× (1− τk(εσ)) dσdτ

=
∫ ε−1|∂Ω|

0

∫ ∞

0

{
−(δε + C1k(εσ)ε+ εr2)|φ̃(σ, τ)|2 +

β0 + δε
2

|φ̃(σ, τ)|4
}

× (1− τk(εσ)) dσdτ (4.41)

At this point, we can use (4.39) and (4.37) to do the τ -integration and find

E [ψ, ~A] ≥
∫ ε−1|∂Ω|

0

[
− (δε + C1k(εσ)ε+ εr3)|f(σ)|2

+ (
β0

2
+ r4)|f(σ)|4‖u0‖44

]
dσ, (4.42)

where r3, r4 = o(1).
By definition of δε we have

δε + C1k(εσ)ε+ εr3 = β
3/2
0 ρε− C1(kmax − k(εσ))ε+ εr′3,

with r′3 = o(1).
Let U1,κ be the set

U1,κ = {σ : β3/2
0 ρ(κ)− C1(kmax − k(εσ)) + r′3 ≥ 0} ,

and

U2,κ = {U1,κ = {σ : β3/2
0 ρ(κ)− C1(kmax − k(εσ)) + r′3 < 0} .

Using a corresponding decomposition for the integration, we get :

E [ψ, ~A] ≥ E1[ψ, ~A] + E2[ψ, ~A] ,
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with

E1[ψ, ~A] := −ε
∫

U1,κ

∣∣∣β3/2
0 ρ(κ)− C1(kmax − k(εσ)) + r′3

∣∣∣ |f(σ)|2 dσ

+
∫

U1,κ

(
β0

2
+ r4)|f(σ)|4‖u0‖44 dσ ,

E2[ψ, ~A] := ε

∫
U2,κ

∣∣∣β3/2
0 ρ(κ)− C1(kmax − k(εσ)) + r′3

∣∣∣ |f(σ)|2dσ

+
∫

U2,κ

(
β0

2
+ r4)|f(σ)|4‖u0‖44dσ .

Then, using the positivity of E2 and, by completion of the square in E1, we get

E [ψ, ~A]

≥(
β0

2
+ r4)‖u0‖44

∫
U1,κ

[
|f(σ)|2 − ε

(β3/2
0 ρ− C1(kmax − k(εσ)) + r′3))

(β0 + 2r4)‖u0‖44

]2

dσ

− 1
2

(
(β0 + 2r4)‖u0‖44

)−1
ε2

∫
U1,κ

[
(β3/2

0 ρ− C1(kmax − k(εσ)) + r′3)
]2

dσ

≥− 1
2

(
(β0 + 2r4)‖u0‖44

)−1
ε2

∫
U1,κ

[
(β3/2

0 ρ− C1(kmax − k(εσ)) + r′3)
]2

dσ .

Upon changing coordinates s = εσ, we get

E [ψ, ~A] ≥ − 1
2β0‖u0‖44

ε

∫ |∂Ω|

0

[β3/2
0 ρ− C1(kmax − k(s))]2+ ds+ o(ε). (4.43)

By inserting the definition of ε, this lower bound agrees with the energy asymptotics
(1.17). When combined with (4.24), we therefore get (1.17) from (4.43). This
finishes the proof of Theorem 1.2.
4.3. On the asymptotic behavior of the minimizer.
Coming back to all the “forgotten” terms in the previous proof, we will get the

weak localization result from Theorem 1.4. First we observe (reimplementing the
upper bound) that∫

U2,κ

({
−β

3
2
0 ρ(κ) + C1(kmax − k(εσ))

}
|f(σ)|2 +

1
ε
|f(σ|4

)
dσ = o(ρ2)

and that

1
ε

∫
U1,κ

|f(σ)|2 −
ε
{
β

3
2
0 ρ(κ)− C1(kmax − k(εσ))

}
β0‖u0‖44

2

dσ = o(ρ2) .

With a little extra work, this leads to :

∫
∂Ω

 |f(ε−1s)|2

ερ(κ)2
−

[
β

3
2
0 −

C1(kmax−k(s))
ρ(κ)

]
+

β0||u0||44


2

ds→ 0 . (4.44)

This shows that the concentration at the boundary is not uniform when ρ is
bounded, even when

ρ(κ) ≥ C1β
− 3

2
0 (kmax − kmin) .

24



We can now prove Theorem 1.4.

Proof. Let M = M(ε) be the parameter of the partition of unity from (4.25). Re-
member from (4.33) that M = CM | log ε|, where CM is a sufficiently large constant
independent of ε. We will use the freedom to choose CM large.

Consider

ε−1

∫
{t(x)≥εM}

∣∣∣∣∣ |ψ(x)|2

ερ
−

[β3/2
0 − C1

kmax−k(s)
ρ ]+

β0‖u0‖44
|u0(

t(x)
ε

)|2
∣∣∣∣∣
2

dx (4.45)

We will show that

ε−1(ερ)−2

∫
{t(x)≥εM}

|ψ(x)|4 dx+ ε−1

∫
{t(x)≥εM}

|u0(
t(x)
ε

)|4 dx→ 0, (4.46)

which clearly implies

ε−1

∫
{t(x)≥εM}

∣∣∣∣∣ |ψ(x)|2

ερ
−

[β3/2
0 − C1

kmax−k(s)
ρ ]+

β0‖u0‖44
|u0(

t(x)
ε

)|2
∣∣∣∣∣
2

dx→ 0. (4.47)

The term with u0 in (4.46) clearly tends to zero. This is a consequence of the
gaussian decay of u0. For the first term in (4.46), the estimate will follow from
the Agmon estimates and the inequality ‖ψ‖∞ ≤ 1 from Lemma 2.1: First using
Lemma 2.1 and the domain of integration

ε−1(ερ)−2

∫
{t(x)≥εM}

|ψ(x)|4 dx ≤ ε−1(ερ)−2

∫
{t(x)≥εM}

|ψ(x)|2 dx

≤ ε−1(ερ)−2e−αεκM

∫
Ω

eακt(x)|ψ(x)|2 dx.

Here we choose α to be as in Theorem 2.3. We can then continue the estimate as
follows

≤ Cε−1(ερ)−2e−αεκM

∫
Ω

|ψ(x)|2 dx ≤ C|Ω|ε−1(ερ)−2e−αεκM ,

where we again used Lemma 2.1. Using that εκ→
√
β0 we therefore get

ε−1(ερ)−2

∫
{t(x)≥εM}

|ψ(x)|4 dx ≤ C ′ε−1(ερ)−2e−
√

β0αM ≤ C ′′ε
√

β0αCM−3,

where we used that (1.8) to get the last inequality. By choosing CM sufficiently big
(> 3√

β0α
) we get the estimate (4.46).

Thus we only have to prove that

ε−1

∫
{t(x)≤εM}

∣∣∣∣∣ |ψ1(x)|2

ερ
−

[β3/2
0 − C1

kmax−k(s)
ρ ]+

β0‖u0‖44
|u0(

t(x)
ε

)|2
∣∣∣∣∣
2

dx→ 0. (4.48)

In boundary coordinates this is equivalent to

ε

∫ ε−1|∂Ω|

0

dσ

∫ M

0

∣∣∣ |φ̃(σ, τ)|2

ερ
−

[
β

3/2
0 − C1(kmax−k(εσ))

ρ

]
+

β0‖u0‖44
|u0(τ)|2

∣∣∣2
× (1− ετk(εσ) dτ → 0 . (4.49)

Applying (4.36) and (4.39) and doing the τ -integration explicitly, reduces (4.49) to
(4.44). This finishes the proof of Theorem 1.4. �
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5. Energy asymptotics in case ρ→ 0

In this section we consider the case

ρ→ 0. (5.1)

For simplicity we will impose the following Assumption 5.1 on Ω. This assumption
is ‘generically’ satisfied.

Assumption 5.1. The domain Ω is bounded and with smooth boundary. Fur-
thermore the boundary ∂Ω has only only a finite number of points of maximal
curvature and these maxima are non-degenerate. More precisely (using boundary
coordinates) there exist N ∈ N and {s1, . . . , sN} ∈ (0, |∂Ω|) such that

k(sj) = kmax and k′′(sj) < 0, for all j ∈ {1, . . . , N},
k(s) < kmax for all s /∈ {s1, . . . , sN}.

The critical field HC3 has till now only been calculated with limited precision,
the best result at present being the asymptotics (1.6) obtained by Helffer and Pan.
We expect that the correct asymptotics under Assumption 5.1 is (see Bernoff and
Sternberg [BS98])

HC3 =
κ

β0
+

C1

β
3/2
0

kmax +O(κ−1/2), (5.2)

but that is still work in progress. In order for the result of the present section to be
independent of possible improvements on the asymptotics of HC3 , we assume that
for the given domain Ω we have

HC3 =
κ

β0
+

C1

β
3/2
0

kmax +R. (5.3)

(Of course, we know then, from [HP03], that R = O(κ−1/3).) We then impose the
following natural condition on the gap ρ:

ρ−1 max(|R|, ε) → 0, as κ→∞. (5.4)

We then prove that the energy asymptotics remains formally the same as in the
case of large ρ:

Theorem 5.2. Suppose that Ω satisfies Assumption 5.1. Suppose furthermore that
ρ satisfies (5.1) as well as (5.4), where R is defined by (5.3). Let (ψ, ~A) be a
(sequence of) minimizers of (1.1). Then

E [ψ, ~A] = −(1− o(1))
1

2β1/2
0 ‖u0‖44κ

∫ |∂Ω|

0

[
β

3/2
0 ρ− C1(kmax − k(s))

]2
+
ds, (5.5)

as κ→ +∞.

Remark 5.3. Since ρ→ 0, the integral in (5.5) is not a very explicit asymptotics.
In order to better understand the energy asymptotics, let us discuss that integral
in detail. Define

A =
∫ |∂Ω|

0

[
β

3/2
0 ρ− C1(kmax − k(s))

]2
+
ds (5.6)

Let {s1, . . . , sN} be the maxima from Assumption 5.1. For each j = 1, . . . , N , we
define

Mj = −k′′(sj) = |k′′(sj)|.
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Around sj we have

k(s) = kmax −
Mj

2
(s− sj)2 +O(|s− sj |3).

For sufficiently small ρ, the integrand in (5.6) vanishes except in small interval
around each point sj , and (by taking ρ small enough) we can assume these intervals
to be disjoint. By elementary calculations we get that the contribution to A from
the interval around sj is

(1 + o(1))
∫ |∂Ω|

0

[
β

3/2
0 ρ− C1

Mj

2 (s− s0)2
]2
+
ds

=
16
√

2
15

1√
C1

β
15/4
0 ρ5/2 1√

Mj

. (5.7)

So (5.5) can equivalently be written

E [ψ, ~A] = −(1 + o(1))
8
√

2
15

β
13/4
0√

C1‖u0‖44
ρ5/2

κ

N∑
j=1

1√
Mj

(5.8)

In particular, this term is of order ρ5/2

κ .

Proof of Theorem 5.2.
Upper bound.
In the upper bound we use essentially the same calculations as in the case ρ
bounded, so we will only indicate the differences. For our test function we use
the pair (ψ, ~F ), with (as usual) ~F being the exterior field. The choice of ψ is as
follows:

ψ(s, t) = eiκHχf +i[ξ0]εs/ελ(s)u0(t/ε)χ(t). (5.9)

with

λ(s) =
1√

εκ‖u0‖24

[
β

3/2
0 ρ− C1(kmax − k(s))

]1/2

+,ν
. (5.10)

Notice that the only difference to Section 4 is in the choice of regularization of [ · ]+.
We will choose ν satisfying

1 � ν � ερ−1. (5.11)

Notice that this is possible only if

ρ� ε, (5.12)

which explains why we impose the second part of the condition (5.4). With the
choice of ν from (5.11) we get (using (4.4)) that

|λ′(s)|2 ≤

{
0, β

3/2
0 ρ ≤ C1(kmax − k(s)),

C 1
εκ2 ν

−1|k′(s)|2, β
3/2
0 ρ > C1(kmax − k(s)).
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This gives, for the term in (4.12), using Assumption 5.1,

r1 =
∫

(1− tk(s))−1|λ′(s)|2|u0(t/ε)χ(t))|2 dsdt

≤ Cε2ν−1

∫
{β3/2

0 ρ>C1(kmax−k(s))}
|k′(s)|2 ds

= O(ε2ν−1ρ3/2). (5.13)

Therefore we get, as in (4.13),

E [ψ, ~F ] =
∫ |∂Ω|

0

|λ(s)|2T (s)ds

+
κ2ε

2

∫ |∂Ω|

0

|λ(s)|4‖u0‖44(1 +O(ε)) ds+O(ε2ν−1ρ3/2) . (5.14)

The proof proceeds with the calculation of T (s). The terms T1, T2, T3, T4 are given
by (4.17), (4.18), (4.19), and (4.21). Doing the asymptotics in (4.16) with a bit
more care, using Assumption 5.1, it becomes

T0(s) = β
3/2
0 ρ

(
1 +O(R/ρ)

)
− C1kmax +O(ε) . (5.15)

Therefore, the energy estimate (4.23) is

E [ψ, ~F ] =
∫ |∂Ω|

0

{
|λ(s)|2[C1(kmax − k(s))− β

3/2
0 ρ+ o(ρ) +O(ε)]

+
κ2ε

2
|λ(s)|4‖u0‖44(1 +O(ε))

}
ds+O(ε2ν−1ρ3/2) . (5.16)

Using (5.11) and ρ� ε, (5.16) is the upper bound in (5.5).
Lower bound.
The proof of the lower bound proceeds exactly as in Section 4 except that we make
sure in (4.40) to choose M such that

e−ακεM � ε2.

This implies that the errors r1, r2 in (4.41) can be estimated by O(ε) and therefore
(4.42) becomes

E [ψ, ~A] ≥
∫ ε−1|∂Ω|

0

[
− (δε + C1k(εσ)ε+ εr3)|f(σ)|2

+ (
β0

2
+ r4)|f(σ)|4‖u0‖44

]
dσ, (5.17)

where r3 = O(ε), r4 = o(1). By the same type of ”completion of the square”-
argument as before, we therefore get

E [ψ, ~A] ≥ − 1
2β0(1 + o(1))‖u0‖44

ε

∫ |∂Ω|

0

[β3/2
0 ρ− C1(kmax − k(s)) + r′3]

2
+ ds, (5.18)

where r′3 is a term which is estimated by o(ρ) + O(ε). Since, by assumption, we
therefore have ρ � r′3, the lower bound (5.18) combined with the upper bound
(5.16) implies (5.5). �
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Appendix A. Boundary coordinates

Let γ(s), s ∈ R/|∂Ω| be a parametrization of the boundary ∂Ω, with |γ′(s)| = 1.
Let ν(s) be the inward unit normal vector at the point γ(s). We may assume the
orientation to be chosen so that

det(γ′(s), ν(s)) = 1 .

With this orientation, the curvature k(s) of the boundary at the point γ(s) is given
by

γ′′(s) = k(s)ν(s).
Define Φ : R/|∂Ω| × [0, t0) → Ω, by

Φ(s, t) = γ(s) + tν(s).

It is a well-known fact from differential geometry that if t0 is sufficiently small, then
Φ is a diffeomorphism to the neighborhood Ωt0 of the boundary given by

Ωt0 = {z ∈ Ω
∣∣dist(z, ∂Ω) < t0}.

Let ~A be a vector potential in Ωt0 and let B = ∇× ~A be the associated magnetic
field. Define

Ã1(s, t) = (1− tk(s)) ~A(Φ(s, t)) · γ′(s), Ã2(s, t) = ~A(Φ(s, t)) · ν(s),

B̃(s, t) = B(Φ(s, t)).

With these definitions we get

∂sÃ2 − ∂tÃ1 = (1− tk(s))B̃. (A.1)

Furthermore, for u ∈W 1,2(Ω) with suppu ⊂ Ωt0 , we find∫
Ω

|(−i∇− ~A)u|2 dx =∫ {
(1− tk(s))−2|(−i∂s − Ã1)v|2 + |(−i∂t − Ã2)v|2

}
(1− tk(s))dsdt.

Here v(s, t) = u(Φ(s, t)),∫
|u|2dxdy =

∫
|v|2(1− tk(s))dsdt.

Appendix B. Moments

We now describe some formulas appearing in [BS98] and already used in [BH93,
DH93, HM01]. Let Mk denote the centered moment, of order k of the probability
measure u2

0(x) dx :

Mk =
∫ +∞

0

(τ + ξ0)ku2
0(τ)dτ . (B.1)

The values of the first few of these moments are used in the calculations in Subsec-
tion 4.2.

Lemma B.1. .
The moments can be expressed by the following formulas :

M0 = 1 , M1 = 0 , M2 =
β0

2
, M3 =

u2
0(0)
6

> 0. (B.2)
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More generally, if k > 3, we have

4kMk = (k − 1){4ξ20Mk−2 + (k − 2)[ξk−3
0 u2

0(0) + (k − 3)Mk−4]}. (B.3)

Furthermore, we have the following identity

ξ0 = −
√
β0. (B.4)
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Phys. Théor. 58 (1993), no. 2, 189–233. MR 94k:82120

[Bon03] Virginie Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic
field in a domain with corners, C. R. Math. Acad. Sci. Paris 336 (2003), no. 2, 135–140.

MR 1 969 567
[Bon04] , On the fundamental state energy for a Schrödinger operator with magnetic

field in a domain with corners, To appear in Asymptotic Analysis (2004).

[BPT98] P. Bauman, D. Phillips, and Q. Tang, Stable nucleation for the Ginzburg-Landau system
with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), no. 1, 1–43. MR

99g:58040

[BS98] Andrew Bernoff and Peter Sternberg, Onset of superconductivity in decreasing fields
for general domains, J. Math. Phys. 39 (1998), no. 3, 1272–1284. MR 99a:82099

[DH93] Monique Dauge and Bernard Helffer, Eigenvalues variation. I. Neumann problem for

Sturm-Liouville operators, J. Differential Equations 104 (1993), no. 2, 243–262. MR
94j:47097

[dPFS00] Manuel del Pino, Patricio L. Felmer, and Peter Sternberg, Boundary concentration for

eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210
(2000), no. 2, 413–446. MR 2001k:35231

[GP99] Tiziana Giorgi and Daniel Phillips, The breakdown of superconductivity due to strong
fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (1999), no. 2, 341–359

(electronic). MR 2000b:35235

[GT01] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second
order, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. MR 2001k:35004

[HM01] Bernard Helffer and Abderemane Morame, Magnetic bottles in connection with super-

conductivity, J. Funct. Anal. 185 (2001), no. 2, 604–680. MR 2002m:81051
[HP03] Bernard Helffer and Xing-Bin Pan, Upper critical field and location of surface nucleation

for superconductivity, Ann. I.H. Poincaré 20 (2003), no. 1, 145–181.
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