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Abstract. It is shown that transition measures of the stochastic Navier-Stokes equation
in 2D converge exponentially fast to the corresponding invariant measures in the distance
of total variation. As a corollary we obtain the existence of spectral gap for a related
semigroup obtained by a sort of ground state trasformation. Analogous results are proved
for the stochastic Burgers equation.

1. Introduction

In this paper we study ergodic behaviour of two important equations arising in Statistical
Physics: the stochastic Burgers equation and the stochastic Navier-Stokes equation in 2D. In
both cases we assume that the random forcing is correlated in space and white in time. The
problem of ergodicity and the rate of convergence to invariant measure in various norms for
those two equations was an object of intense research in recent years. In the paper [15] the
existence and uniqueness of invariant measure for the stochastic Navier-Stokes equation in
2D was proved in the case when the random force is sufficiently close to the space-time white
noise. The exponential rate of convergence of transition measures to the invariant measure µ
of the stochastic Navier-Stokes equation was proved for the first time in [1] for µ-almost every
initial condition and subsequently for every square integrable initial condition in [22] and [26]
(see also [10]). In all those papers various versions of coupling technique were applied to
prove the convergence properties in metrics equivalent to the topology of weak convergence of
measures (or an intermediate metric, cf. [26]). The coupling method proved also to be useful
to handle random forces which are degenerated in space. For Navier-Stokes equation perurbed
by finite-dimensional Wiener process, uniqueness of invariant measure has been proven in a
recent paper [18]. Let us note also that similar result were obtained for the forcing consisting
of a sequence of random excitations arising in discrete moments of time (random kicks), see
e.g. [21].
In this work we continue the approach initiated in [15] assuming that the random force is
sufficiently nondegenerate. In particular, we are using results of [11], [12], [3] and [9], where the
strong Feller property and irreducubility have been proven in an appropriately chosen state
space for particular cases of the stochastic Navier-Stokes equation and stochastic Burgers
equation. Our main result may be described as follows. Let {u(t, ζ) : t > 0, ζ ∈ O} be a
solution to either the stochastic Navier-Stokes equation (in which case O is a bounded domain
in R2) or a solution to the stochastic Burgers equation (and then O = (0, 1)) and let µ be
the corresponding invariant measure. Then for any initial distribution ν of the L2(O)-valued
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random variable u(0, ·) the probability distribution P ∗
t ν of the random variable u(t, ·) enjoys

the property
‖P ∗

t ν − µ‖var 6 ‖P ∗
t ν − µ‖V 6 Ce−βt‖ν‖V , (1.1)

where ‖·‖var denotes the norm of total variation of measures and ‖ν‖V stands for the norm of
total variation of the measure V dν considered on L2(O). The function V : L2(O) → [1,∞) in
(1.1) is an appropriate Lyapunov function. A class of functions V is found for which (1.1) holds
is also provided and shown to include V (x) = 1 + |x|p

L2 (for p > 0) and V (x) = exp
(
|x|2α

L2

)
(for α ∈ (0, 1)). Finally, we derive from (1.1) the spectral gap property of the V -transform(
P V

t

)
P V

t φ(x) = V −1(x)E (V (u(t, ·))φ(u(t, ·)))
of the semigroup (Pt). Namely, we show that for φ ∈ Lp(H,V µ), p ∈ (1,∞)∫

L2

∣∣∣∣P V
t φ− V −1

∫
L2

φV dµ

∣∣∣∣p V dµ 6 Cpe
−βt/p

∫
L2

|φ|pV dµ. (1.2)

Exponential convergence to the invariant measure in the distance of total variation and the
spectral gap property (1.2) seem to be new for both equations studied in this paper. The main
idea of the proof consists in verifying the V -uniform ergodicity for a skeleton process and to
this end a geometric drift towards a nontrivial small set must be shown. It is proven that
levelsets of the function V are nontrivial small sets and then the corresponding Lyapunov-
Foster condition is verified by means of Ito formula. The proof is given for a general Markov
process taking values in a Polish space and satisfying conditions (H1)-(H4) (cf. Section 3)
and then these ”abstract” conditions are verified for Markov processes defined by stochastic
Navier-Stokes and Burgers equations, respectively, under suitable assumptions on the corre-
lation of the noise. It may be expected that these assumptions are not optimal, it should be
possible to find other sets of conditions implying (H1)-(H4) in particular cases.

The general scheme of the proof of V -uniform ergodicity of the skeleton exploits well-
known results from the theory of Markov chains (cf. [23]), similar idea was used in [27] for
some stochastic semilinear equations. For stochastic reaction-diffusion equations V -uniform
ergodicity has been proven recently by a slightly different method that allows to give some
explicit bounds on the convergence rate ([17] ).

It may be interesting to note that we also obtain an independent proof of existence of
invariant measure for both Navier-Stokes and Burgers equation (it is an easy consequence of
(3.2) and (3.9), cf. [24] or [25] for similar results), which however is known in both cases.
The paper is divided into five sections including the Introduction. In Section 2 we provide a
rigorous framework for our results and formulate the main theorems, separately for stochastic
Navier-Stokes and Burgers equations (the Section is divided into two parts). In the case
of Navier-Stokes equation only the Dirichlet type boundary conditions are studied in detail,
although the case of periodic boundary conditions may be treated as well; only minor changes
in the proofs are needed and the noise may be even more ”degenerate” (Hypothesis 2.23 and
Theorem 2.13). In Section 3 we study V -uniform ergodicity for a general Markov process in in
a Polish space. These results are applied in Sections 4 and 5 to the stochastic Navier-Stokes
and Burgers equations, respectively.

In order to avoid clumsy notation, the same symbols may sometimes have different meaning
in different sections. All results concerning the Navier-Stokes and Burgers equations are given
in separate sections, so there is no risk of confusion. For example, H and (Xt) are the state
space and solution to the Navier-Stokes equation (in Sections 2.1 and 4) or the Burgers
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equation (in Sections 2.2 and 5). The symbols (Pt) and P ∗
t denote the Markov semigroups

of a general Markov process taking values in a Polish space E (in Section 3 and the general
Definition 2.4), or of the Markov processes defined by the Navier-Stokes equation (Sections
2.1 and 4) or the Burgers equation (Sections 2.2 and 5). The notation is explained at the
beginning of particular sections.

ACKNOWLEDGEMENT. The authors would like to thank to Franco Flandoli for his
valuable remarks.

2. Main Results

2.1. Navier-Stokes Equation. In this Section the equation

∂u

∂t
(t, ζ)−ν∆u(t, ζ)+(u(t, ζ)·∇)u(t, ζ)+∇p(t, ζ) = f(ζ)+η(t, ζ), (t, ζ) ∈ (0,∞)×O, (2.1)

is considered, where u(t, ζ) = (u1(t, ζ), u2(t, ζ)) and p(t, ζ) denote the velocity and pressure
fields respectively, of a viscous incompressible fluid in a bounded domain O ⊂ R2 with a
smooth boundary ∂O, f is a deterministic external force, η is a random forcing of white noise
type and ν > 0 denotes the viscosity. Incompressibility condition reads

div u(t, ζ) = 0, (t, ζ) ∈ [0,∞)× O, (2.2)

and initial and the Dirichlet boundary conditions

u(0, ζ) = u0(ζ), ζ ∈ O, (2.3)

and
u(t, ζ) = 0 for (t, ζ) ∈ [0,∞)× ∂O, (2.4)

are considered. We will study an abstract version of system (2.1)-(2.4) and its weak solution
(cf. [13]). Set

H =
{
x ∈

(
L2(O)

)2 : div x = 0, x · n|∂O = 0
}
,

and
V =

{
x ∈

(
H1

0 (O)
)2 : div x = 0

}
,

where n is the outward normal to ∂O (cf. [28] for an interpretation of the condition x ·n = 0).
Identifying H1 with a subspace of V ′ (the dual space of V ) we have V ⊂ H ⊂ V ′ and (if
there is no danger of confusion) 〈·, ·〉 stands for the pairing between V and V ′. Furthermore,
define a closed operator A in H by the formula

Ax = −νΠ∆x, dom(A) =
(
H2(O)

)2 ∩ V,
where Π is the orthogonal projection of

(
L2(O)

)2 onto H. The space V coincides with
dom

(
A1/2

)
and is endowed with the norm |x|V =

∣∣A1/2x
∣∣. The operator A is strictly positive,

selfadjoint and its resolvent is compact. For β > 0 we will denote by Hβ the domain of
fractional power Aβ equipped with the norm |x|β =

∣∣Aβx
∣∣.

The bilinear operator B : V × V → V ′ is defined as

〈B(u, v), z〉 =
∫

O
z(ζ) · (u(ζ) · ∇)v(ζ)dζ, u, v, z ∈ V. (2.5)
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Then we may rewrite system (2.1)-(2.4) in the abstract form{
dXt + (AXt +B (Xt, Xt)) dt = fdt+GdWt, t > 0,
X0 = x.

(2.6)

In the equation above Xt is identified with u(t, ·) and x with u0(·). The noise in (2.6) is
modelled as a standard cylindrical Wiener process (Wt) on H defined on a stochastic basis
(Ω,F , (Ft) ,P), f ∈ H and G is a bounded injective linear operator on H. Following [13] we
adopt a definition of solution to equation (2.6) resembling the classical definition of a weak
solution as understood in the theory of deterministic PDE’s.

Definition 2.1. A progressively measurable process (Xt) = (Xx
t ) is a (generalised) solution

to equation (2.6) if Xx ∈ C([0, T ];H) ∩ L2
(
[0, T ];H1/4

)
P-a.s. and

〈Xt, y〉+
∫ t

0
〈Xs, Ay〉 ds−

∫ t

0
〈B (Xs, y) , Xs〉 ds = 〈x, y〉+ t〈f, y〉+ 〈Wt, G

∗y〉 ,

P-a.s. for all x ∈ H, t ∈ [0, T ] and y ∈ dom(A).

Remark 2.2. By the incompressibility condition we obtain

〈B(u, v), z〉 = −〈B(u, z), v〉, u, v, z ∈ V, (2.7)

and by the Sobolev embedding theorem there exists a universal constant C such that

|〈B(u, v), u〉| 6 C|v|V |u|2L4(O) 6 C|v|V |u|21/4,

which justifies Definition 2.1.

Assume that
im(G) ⊂ dom

(
A

1
4
+ε
)
, (2.8)

for some ε > 0 and consider an Ornstein-Uhlenbeck process defined by the equation{
dZt +AZtdt = GdWt,
Z0 = 0. (2.9)

It is well known, (see e.g. [8]) that under assumption (2.8) equation (2.9) has a unique
progressively measurable mild solution (Zt) taking values in dom

(
A1/4

)
P-a.s. The following

result has been proven in [13].

Proposition 2.3. Assume (2.8). Then for each initial condition x ∈ H there exists a unique
solution Xx to equation (2.6), which additionally enjoys the property

Xx − Z ∈ L2([0, T ];V ) P− a.s. (2.10)

Moreover, the family of solutions {Xx : x ∈ H} forms a Markov family which satisfies the
Feller property and has an invariant measure µNS.

Our next aim is to define the concept of V -uniform ergodicity of a Markov semigroup. The
definition is formulated for a general Markov process (Xt) with values in a Polish space E.
Let bB denote the space of bounded Borel functions on E and let (Pt), (P ∗

t ) and (P (t, x, ·)
denote the Markov semigroup on bB, the adjoint Markov semigroup on the space P of
probability measures on E, and the transition probability measures, respectively, associated
to the process (Xx

t ). More precisely, for any t > 0

Pt : bB → bB, Ptφ(x) = Exφ (Xt) , (2.11)
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Ptφ(x) =
∫

E
φ(y)P (t, x, dy), φ ∈ bB, x ∈ E, (2.12)

and
P ∗

t : P → P, P ∗
t ν =

∫
E
P (t, x, ·)ν(dx), (2.13)

where Ex denotes the expectation corresponding to the initial condition X0 = x. Obviously,
P ∗

t ν may be interpreted as the probability distribution of Xt, ν being the initial distribution.
Let V : E → [1,∞) be a measurable function and let bV B denote the space of Borel

functions on E endowed with the norm

‖φ‖V = sup
x∈E

|φ(x)|
V (x)

.

Definition 2.4. The Markov semigroup (Pt) is said to be V -uniformly ergodic if (Pt) extends
to operator Pt : bV B → bV B and there exist C > 0 and ω > 0 such that

sup
|φ|V 61

|Ptφ(x)− 〈φ, µ〉| 6 CV (x)e−ωt, t > 0 x ∈ E, (2.14)

where µ ∈ P is the invariant measure.

Let ‖ν‖var denote the norm of total variation of a signed measure ν and let ‖ν‖V denote
the so-called V -variation:

‖ν‖V = sup
‖φ‖V 61

|〈ν, φ〉| = ‖V ν‖var, (2.15)

where we denoted by V ν the measure dρ = V dν. Obviously ‖ν‖var 6 ‖ν‖V . In terms of the
adjoint Markov semigroup (2.14) implies

‖P ∗
t ν − µ‖var 6 ‖P ∗

t ν − µ‖V 6 C ‖ν‖V e
−ωt, t > 0, ν ∈ P. (2.16)

Note that one can have ‖ν‖V = 〈ν, V 〉 = ∞.
In the rest of Section 2.1 (Pt) and (P ∗

t ) will denote the Markov semigroups defined by the
solution of the Navier-Stokes equation (2.6) on the space E = H. Under suitable nondegen-
eracy conditions on G it has been proven (cf. [15], [11]) that P ∗

t ν → µNS as t → ∞ in the
metric of total variation of measures for each initial measure ν ∈ P. Building upon these
results we aim at proving the V -uniform ergodicity under suitable assumptions on G and V .

Hypothesis 2.5. The operator G is Hilbert-Schmidt on H and there exist α ∈ (1
4 ,

1
2) and

ε > 0 such that
dom

(
A2α

)
⊂ im(G) ⊂ dom

(
A

1
4
+α

2
+ε
)
. (2.17)

The second inclusion in (2.17) is slightly stronger than (2.8) because we need more regularity
of the solution to (2.6). The first inclusion is a nondegeneracy condition.

Hypothesis 2.6. The function V : H → [1,∞) is measurable and

c1Φ
(
|x|2
)

6 V (x) 6 c2Φ
(
|x|2
)
, x ∈ H, (2.18)

where Φ ∈ C2 (R+), Φ > 1, Φ′ > 0,

lim
r→∞

Φ(r) = ∞,

and for any α, k > 0 there exist β,C > 0 such that

−αrΦ(r) + k
(
r
∣∣Φ′′(r)

∣∣+ r1/2Φ′(r)
)

6 −βΦ(r) + C, (2.19)
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for r > 0 large enough.

Example 2.7. It is easy to see that the functions

V (x) = 1 + |x|p, p > 0, (2.20)

and
V (x) = e|x|

2α
, α ∈ (0, 1), (2.21)

satisfy conditions of Hypothesis 2.6.

Remark 2.8. (i) Without loss of generality we may suppose that (2.19) holds for all r > 0
changing perhaps the constant C.
(ii) If two functions U and V satisfy Hypothesis 2.6 then αU + βV and αV (βx) satisfy this
hypothesis for any α, β > 0 as well.

The following is our main result on the stochastic Navier-Stokes equation with the Dirichlet
boundary conditions.

Theorem 2.9. Let the operator G and the function V satisfy Hypotheses 2.5 and 2.6 re-
spectively. Then the Markov semigroup associated to the Navier-Stokes equation (2.6) is
V -uniformly ergodic, i.e. (2.14) and (2.16) hold true with E = H and µ = µNS, where (Pt)
and (P ∗

t ) denote the Markov semigroups defined by the equation (2.6). In particular, V may
be defined by (2.20) or (2.21).

We will denote by ‖φ‖p the norm

‖φ‖p
p =

∫
H
|φ(x)|pV (x)µNS(dx)

of a function φ in the space Lp (H,V µNS). Let(
1
V
PtV

)
φ(x) =

1
V (x)

Pt(V φ)(x).

Theorem 2.10. The family of operators
(

1
V PtV

)
defines a C0-semigroup on Lp (H,V µNS)

for p ∈ (1,∞) and V µNS is an invariant measure for this semigroup. Moreover, there exist
β,Cp > 0 such that∥∥∥∥ 1

V
PtV φ− 〈V µNS , φ〉

1
V

∥∥∥∥
p

6 CP e
−βt/P ‖φ‖p , φ ∈ Lp (H,V µNS) . (2.22)

Remark 2.11. (Stochastic Navier-Stokes equation with periodic boundary condi-
tions) Using the results from the B.Ferrario’s paper [12] it is possible to make similar con-
clusions in case when the Dirichlet boundary conditions (2.4) are replaced by periodic ones.
It may be interesting that in such case the noise may be ”more degenerate”. More specifi-
cally, consider the problem 2.1)-(2.3), where O = (0, L1)× (0, L2), endowed with the periodic
boundary conditions

u(t, ξ + Liηi) = u(t, ξ), t > 0, ξ ∈ R2, i = 1, 2, (2.23)

where (η1, η2) is the canonical basis of R2 and Li is the period in the ithe direction. The
system (2.1)-(2.3), (2.23), may be formalized in terms of the abstract equation of the form
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(2.6) (see e.g. [12] for details), where the state spaces are defined by means of the space
(H̊m

p (O))2 of functions from (Hm
loc(R2))2 with zero average and the period (L1, L2), e.g.

H = {u ∈ (H̊0
p (O))2; div u = 0}, V = {u ∈ (H̊1

p (O))2; div u = 0}.

Then A = −ν∆ with dom(A) = (H̊2
p ((O)))2 ∩ H and the spaces Hα are defined again as

domains of fractional powers of the operator A equipped with the graph norm. The Wiener
process Wt is standard cylindrical on H and G is a bounded injective linear operator on H.
The following is our main condition on the noise term:

Hypothesis 2.12. There exist α > 1 and ε > 0 such that

dom(A
α
2
+ 1

2 ) ⊂ im(G) ⊂ dom(A
α
2
+ε). (2.24)

The existence and uniqueness of solutions, the Markov property and existence of an invari-
ant measure may be shown as in Proposition 2.3, cf. [13] and [12]. Our result on Navier-Stokes
equation with periodic boundary conditions is formulated as follows:

Theorem 2.13. Let f ∈ Hα
2
− 1

2
and assume that Hypotheses 2.6 and 2.12 are satisfied. Then

the conclusions of Theorem 2.9 (V -uniform ergodicity) and Theorem 2.10 (the spectral gap)
hold true for the Markov semigroups (Pt) and (P ∗

t ) defined by the system (2.1)-(2.3), (2.23).

2.2. Stochastic Burgers Equation. In this section we study the stochastic Burgers equa-
tion

∂u

∂t
(t, ζ)− ν

∂2u

∂ζ2
(t, ζ) =

1
2
∂
(
u2
)

∂ζ
(t, ζ) + η(t, ζ), (t, ζ) ∈ (0,∞)× (0, 1), (2.25)

with viscosity ν > 0, the Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t > 0, (2.26)

and the initial condition
u(0, ζ) = u0(ζ), ζ ∈ [0, 1]. (2.27)

Following a well known approach e.g. [5], [6], [9], we will rewrite system (2.25)-(2.27) as an
evolution equation {

dXt +AXtdt = 1
2Dζ

(
X2

t

)
dt+GdWt,

X0 = x,
(2.28)

in the space H = L2(0, 1), where Xt = Xx
t is identified with u(t, ·) and x with u0(·) ∈ H.

In equation (2.28), (Wt) stands for a standard cylindrical Wiener process in H defined on a
stochastic basis (Ω,F , (Ft) ,P), G ∈ H → H is a bounded operator, Dζ is the distributional
derivative operator and

A = −ν ∂
2

∂ζ2
, dom(A) = H2(0, 1) ∩H1

0 (0, 1).

Denote by
(
e−tA

)
a symmetric C0-semigroup generated by A inH. Similarly as in the previous

Section we define the Ornstein-Uhlenbeck process

Zt =
∫ t

0
e−(t−s)AGdWs, t > 0. (2.29)
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It is well known that Z ∈ C ([0, T ];C(0, 1)) P-a.s. (cf. p. 14 of [8]). The difference Y x
t =

Xx
t − Zt satisfies formally the equation{

d
dtY

x
t +AY x

t = 1
2Dζ

(
(Y x

t + Zt)
2
)
, t > 0,

Y x
0 = x.

(2.30)

We will define (Y x
t ) as a solution to the integral equation

Y x
t = e−tAx+

1
2

∫ t

0
e−(t−s)ADζ

(
(Y x

s + Zs)
2
)
ds, t > 0. (2.31)

Definition 2.14. A process Xx ∈ C([0, T ];H) is said to be a mild solution of equation (2.28)
if and only if Y x = Xx − Z a solution to equation (2.31).

Proposition 2.15. (cf. [9], pp. 262 and 273) For any x ∈ H there exists a unique mild
solution to equation (2.28) and there exists an invariant measure µB for the Markov semigroup
associated to equation (2.28).

Hypothesis 2.16. The operator Q = GG∗ has the following properties: tr(Q) < ∞ and for
some δ ∈

(
1
2 , 1
)

im
(
Aδ/2

)
⊂ im

(
Q1/2

)
. (2.32)

Under the nondegeneracy condition (2.32) Da Prato and Debussche proved in [3] that the
Markov semigroup associated to (2.28) is strongly Feller in H. Irreducibility has been proven
for Q = I by Da Prato and Ga̧tarek in [6] (cf. also [9]), it is however easy to adapt their proof
to the present case (see Proposition 5.1 for a sketch of the proof). Therefore, for each initial
measure ν ∈ P the probability distributions P ∗

t ν converge to µB, as t→∞, in the norm of
total variation. We shall prove a stronger result.

Theorem 2.17. Let the operator Q and the function V satisfy Hypotheses 2.32 and 2.6,
respectively. Then the V -uniform ergodicity (2.14) and (2.16) holds true, where the transition
semigroup (Pt) and its adjoint (P ∗

t ) are associated to equation (2.28), E = H and µ = µB.
In particular, V may be defined as in (2.20) or (2.21).

We will denote by ‖φ‖p the norm

‖φ‖p
p =

∫
H
|φ(x)|pV (x)µB(dx)

of a function φ in the space Lp (H,V µB). Let(
1
V
PtV

)
φ(x) =

1
V (x)

Pt(V φ)(x).

Theorem 2.18. The family of operators
(

1
V PtV

)
defines a C0-semigroup on Lp (H,V µB)

for all p ∈ (1,∞) and V µB is an invariant measure for this semigroup. Moreover, there exist
β,Cp > 0 such that∥∥∥∥ 1

V
PtV φ− 〈V µB, φ〉

1
V

∥∥∥∥
p

6 Ce−βt/p ‖φ‖p , φ ∈ L2 (H,V µB) . (2.33)
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3. Results on Markov Processes

In this section some results on V -uniform ergodicity and Lp-ergodicity are stated for general
time homogeneous Markov processes. These results are applied to Markov processes defined
by the stochastic Navier-Stokes and Burgers equations in the next sections.

Throughout the present section we assume that (Xt) a time-homogeneous Markov process
in a Polish space E and (Pt), (P ∗

t ) and (P (t, x, ·)) are the respective Markov semigroup, its
adjoint and the transition kernel as defined in (2.11)-(2.13). We also assume that there exists
an invariant measure µ ∈ P:

P ∗
t µ = µ, t > 0.

The following hypotheses are supposed to be satisfied, where V : E → [1,∞) is a measurable
function.
(H1) {P (t, x, ·) : t > 0, x ∈ E} is a family of equivalent measures.
(H2) There exists a measurable subspace E1 ⊂ E such that for each t > 0 and Γ ∈ B the
mapping x→ P (t, x,Γ) is continuous in E1.
(H3) For each r > 1 there exist T0 > 0 and a compact K ⊂ E1 such that

inf
x∈Vr

P (T0, x,K) > 0, (3.1)

where Vr = {y ∈ E : V (y) 6 r}.
(H4) For certain k, α, c > 0

ExV (Xt) 6 kV (x)e−αt + c, t > 0. (3.2)

Theorem 3.1. Assume (H1)-(H4). Then the Markov semigroup (Pt) is V -uniformly ergodic,
i.e. (2.14) and (2.16) hold true.

Proof. Take t0 > 0 such that ke−αt0 6 1
4 . By (H4) we have

ExV (Xt)− V (x) 6
(
ke−αt0 − 1

)
V (x) + c 6 −3

4
V (x) + c, (3.3)

for t > t0, x ∈ E. Therefore,

ExV (Xt)− V (x) 6 c, x ∈ E, t > t0. (3.4)

Taking r > 4c we find that

−1
4
V (x) + c < −1

4
r + c 6 0, for x ∈ E \ Vr,

and thereby

ExV (Xt)− V (x) 6 −1
2
V (x) + cIVr(x), x ∈ E, t > t0. (3.5)

The last inequality implies that each skeleton chain (Xnt)n>0 with t > t0 has a geometric
drift toward Vr. We will show that there exists a skeleton for which Vr is a nontrivial small
set. By (H1) each skeleton (Xnτ ), τ > 0, is ψ-irreducible where ψ(·) = P (1, x0, ·) and x0 ∈ E
is arbitrary and fixed. Hence, (cf. Lemma 2 in [19] or Theorem 5.2.2 in [23]) there exists a
small set Π ∈ B, ψ(Π) > 0, that is

P (1, x0,Π) > 0, (3.6)

and
inf
x∈Π

P (T, x,Γ) > λ(Γ), Γ ∈ B, (3.7)
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for some T > 0 and a nonnegative measure λ such that λ(Π) > 0. By the Chapman-
Kolmogorov equation we have

inf
x∈Vr

P (2T + T0, x,Γ) > inf
x∈Vr

∫
Π
P (T, y,Γ)P (T + T0, x, dy)

> λ(Γ) inf
x∈Vr

P (T + T0, x,Π) > λ(Γ) inf
x∈Vr

∫
K
P (T, y,Π)P (T0, x, dy), (3.8)

where t and K are given in (H3). By (H1) and (3.6) the function y → P (T, y,Π) is positive
on E and by (H2) it is continuous with respect to the topology of E1, in which K is compact.
Therefore, by (H3)

inf
x∈Vr

P (2T + T0, x,Γ) > δ1λ(Γ) inf
x∈Vr

P (T0, x,K) > δ2λ(Γ), Γ ∈ B, (3.9)

for some δ1, δ2 > 0. It follows that Vr is a nontrivial small set for each skeleton
(
Xnm(2T+T0)

)
n>0

,
where m > 1. Taking m large enough so that τ = m(2T + T0) > t0 we obtain the skeleton
(Xnτ ) which is V -uniformly ergodic, i.e.

sup
‖φ‖V 61

|Pnτφ(x)− 〈µ, φ〉| 6 C0e
−nτωV (x), x ∈ E, n > 0, (3.10)

for some C0, ω > 0. Therefore, by (H4)

sup
‖φ‖V 61

|Pnτ+sφ(x)− 〈µ, φ〉| 6 sup
‖φ‖V 61

|Ps (Pnτφ− 〈µ, φ〉) (x)|

6 C0e
−nτωExV (Xs) 6 C0e

−nτω
(
kV (x)e−αs + c

)
6 C0V (x)e−(nτ+s)ωeωs

(
ke−αs + c

)
6 CV (x)e−(nτ+s)ω, x ∈ E, s ∈ [0, τ ], (3.11)

for some C > 0, which completes the proof. �

The following simple lemma will be useful to verify condition (H1).

Lemma 3.2. Let E1 ⊂ E with continuous and dense embedding and suppose that the process
(Xt) is strongly Feller with respect to the topology of E1 (i.e. (H2) holds) and let (Xt) be
E1-topologically irreducible (i.e. P (t, x, U) > 0 for each t > 0, x ∈ E1 and nonempty open
U ⊂ E1) and P (t, x, E1) = 1 for all x ∈ E and t > 0. Then condition (H1) holds as well, i.e.
the measures P (t, x, ·) are equivalent for all t > 0 and x ∈ E.

Proof. The proof based on a modification of an earlier result by Khasminskii cf. [20] is given
in [15] for a special choice of spaces E and E1 but it can be easily extended to the present
case. �

In the last part of this Section we will consider the problem of existence of the spectral gap
in the weighted space Lp (E, V µ), p ∈ {1,∞), with the norm

‖φ‖p
p =

∫
E
|φ(x)|pV (x)µ(dx), φ ∈ Lp(E, V µ).

For any Radon measure ν on E and g ∈ L1(E, ν) we denote by gν the measure

(gν)(B) =
∫

B
g(x)ν(dx), B ∈ B(E).

Let (
1
V
PtV

)
φ(x) =

1
V (x)

Pt(V φ)(x).
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If (2.14) holds then ∥∥∥∥ 1
V
PtV φ−

1
V
〈V µ, φ〉

∥∥∥∥
∞

6 Ce−ωt ‖φ‖∞ .

We will denote by (Qt) the semigroup of bounded operators

Qt =
1
V
PtV : bB → bB.

Let us recall that if the semigroup (Pt) satisfies the condition (H1) then the spaces Lp(E,µ)
are invariant for (Pt) and

Ptφ(x) =
∫

E
pt(x, y)φ(y)µ(dy). (3.12)

where pt(x, ·) the the density dP (t, x, ·)/dµ. The next lemma is essentially known. It collects
the facts necessary to prove Theorem 3.4.

Lemma 3.3. Assume that (H1)-(H4) are satisfied. Then the following holds.
(a) The measure V µ is invariant for the positive semigroup (Qt).
(b) Let ν = ψV µ with ψ ∈ L1(E, V µ). Then

Q∗
t ν = (Gtψ)V µ,

where

Gtψ(y) =
∫

E
pt(x, y)ψ(x)µ(dx) (3.13)

with pt(·, ·) given by (3.12). Moreover,

‖Q∗
t ‖var = ‖Gt‖L1(E,V µ)→L1(E,V µ) .

(c) The space Lp (E, V µ) is invariant for the semigroup (Q∗
t ) for each p ∈ [1,∞] and

sup
t>0

‖Q∗
t ‖Lp(E,V µ)→Lp(E,V µ) <∞.

Moreover, (Q∗
t ) is a C0-semigroup on Lp (E, V µ) for p ∈ [1,∞) and for p > 1 it may be, in

fact, identified as the dual of the extension of Qt : Lq(E, V µ) → Lq(E, V µ) for q = p
p−1 .

Proof. (a) Clearly, (Q∗
t ) is a positive semigroup on Mb(E) with the invariant measure V µ:(

1
V
PtV

)∗
(V µ) = V P ∗

t

1
V

(V µ) = V µ.

(b) For ψ ∈ bB, ψ > 0, we define

Gtψ(y) =
∫

E
pt(x, y)ψ(x)µ(dx),

where Gtψ > 0 is a well defined measurable function. Let ν = ψV µ. For φ ∈ L∞(E, V µ)
such that φ > 0 (3.13) and the Fubini Theorem yield〈

V P ∗
t V

−1(ψV µ), φ
〉

= 〈ψµ, Pt(V φ)〉

=
∫

E

∫
E
pt(x, y)V (y)φ(y)µ(dy)ψ(x)µ(dx) =

∫
E

(∫
E
pt(x, y)ψ(x)µ(dx)

)
φ(y)V (y)µ(dy)

= 〈(Gtψ)V µ, φ〉 . (3.14)
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Hence (3.14) holds for arbitrary ψ ∈ L1(E, V µ) and φ ∈ L∞(E, V µ) and V P ∗
t V

−1(ψV µ) =
(Gtψ)V µ. Moreover,

‖(Gtψ)V µ‖var = sup
‖φ‖61

|〈(Gtψ)V µ, φ〉|

= sup
‖φ‖61

∣∣∣∣〈ψV µ,( 1
V
PtV

)
φ

〉∣∣∣∣ 6 CT ‖ψ‖1 , t ∈ [0, T ].

Since

〈(Gtψ)V µ, φ〉 =L1 〈Gtψ, φ〉L∞ ,

we find that Gt is bounded on L1(E, V µ) and is fact the restriction of V P ∗
t

1
V from Mb(E) to

this space and (3.13) holds.
(b) If ψ ∈ L∞ (E, V µ) is nonnegative then for f > 0 from L1 (E, V µ) the arguments similar
as in (a) imply〈

V P ∗
t

1
V

(ψV µ), f
〉

= 〈(Gtψ)V µ, f〉 6 CT ‖ψ‖∞ ‖f‖1 , t ∈ [0, T ],

since
∥∥ 1

V PtV
∥∥

1→1
6 CT , and therefore V P ∗

t V
−1ψ ∈ L∞ (E, V µ). All those arguments extend

immediately to an arbitrary ψ ∈ L1 (E, V µ) and (b) follows by a standard density argument.
(c) This part follows again by the density argument. �

Theorem 3.4. Assume (H1)-(H4). Then the family of operators
(

1
V PtV

)
defines a C0-

semigroup on Lp(E, V µ), p ∈ (1,∞) with the invariant measure V µ. Moreover, there exist
β,Cp > 0 such that∥∥∥∥ 1

V
PtV φ− 〈V µ, φ〉 1

V

∥∥∥∥
p

6 Cpe
−βt/p ‖φ‖p , φ ∈ Lp (E, V µ) . (3.15)

Proof. By Theorem 3.1 and Lemma 3.3 (2.16) holds and therefore

‖Q∗
t ν − V µ‖var 6 Ce−ωt ‖ν‖var .

By Lemma 3.3 we find that

‖Q∗
tφ− 〈µ, φ〉‖1 6 Ce−ωt ‖φ‖1

and

‖Q∗
tφ− 〈µ, φ〉‖∞ 6 C ‖φ‖∞ .

Therefore, by interpolation we obtain

‖Q∗
tφ− 〈µ, φ〉‖p 6 Cpe

−ωt/p ‖φ‖p ,

for all p ∈ (1,∞). Finally by (c) of Lemma 3.3∥∥∥∥Qtφ− 〈V µ, φ〉 1
V

∥∥∥∥
p

6 Cpe
−ωt/p ‖φ‖p ,

for each p ∈ (1,∞), which completes the proof. �
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4. Proofs: Stochastic Navier-Stokes Equation

The aim of this section is to prove Theorems 2.9 2.10 and 2.13 from Section 2.1. We are
going to use the abstract results of Section 3 and to this end we need to verify conditions
(H1)-(H4) for the Markov process defined by the stochastic Navier-Stokes equation (2.6) and a
function V satisfying Hypothesis 2.6. The full proof is given for the case of Dirichlet boundary
conditions (Theorems 2.9 and 2.10). The case of periodic boundary conditions (Theorem 2.13)
may be treated very similarly (the sketch of the proof is given at the end of the section).

Throughout the section the notation from Section 2.1 is preserved, Hypotheses 2.5 and
2.6 are supposed to hold true, E = H and the Markov semigroups are those defined by the
solution to the Navier-Stokes equation (2.6).

Lemma 4.1. Let β ∈
[
0, 1

2

)
. Then for any t0 > 0 there exists a random variable Ct0 depending

on t0 only and such that ∣∣Xx
t0

∣∣2
β

6 Ct0 |x|2e|x|
2
, P− a.s., (4.1)

where (Xx
t ) denote the solution to equation (2.6) starting from Xx

0 = x ∈ H.

Proof. Recall that (Zt) is the Ornstein-Uhlenbeck process defined by (2.9). It is well known
that the operator A is positive and selfadjoint, with A−1 compact and the eigenvalues αn of
A have the property αn ∼ n2. Hence, by the second inclusion of (2.17) Q is of trace class and

Z ∈ C ([0, T ],Hβ) , P− a.s., (4.2)

for each T > 0 (cf. [7]). Fix T > t0 and set Y x
t = Xx

t − Zt for x ∈ H. Obviously, (Y x
t )

satisfies the equation{
d
dtY

x
t +AY x

t +B (Y x
t + Zt, Y

x
t + Zt) = f, t > 0,

Y x
0 = x,

(4.3)

and by Proposition 2.3 Y x ∈ C ([0, T ];H) ∩ L2 (0, T ;V ) (cf. [13], [14] or [29]). By (4.2)
it suffices to show (4.1) with Xx

t replaced with (Y x
t ). Following arguments in the proof of

Proposition 4.1 in [13] we find that for each t ∈ [0, T ], ε > 0 and sufficiently large C(ε) > 0
P-a.s.

1
2
d

dt
|Y x

t |
2 + |Y x

t |1/2 = −〈B (Y x
t + Zt, Y

x
t + Zt) , Y x

t 〉+ 〈f, Y x
t 〉

6 ε |Y x
t |

2
1/2 + ε |Y x

t |
2 + C(ε)

(
|Zt|41/4 |Y

x
t |

2 + |Zt|41/4 + |f |2
)
, (4.4)

P-a.s. Taking ε < 1 and invoking the Gronwall Lemma we obtain

|Y x
t |

2 6 C1

(
|x|2e

∫ t
0 (1+|Zs|41/4)ds +

∫ t

0
e
∫ t

τ (1+|Zs|41/4)ds
(
|Zτ |41/4 + |f |2

)
dτ

)
, (4.5)

for all t ∈ [0, T ] and a certain universal constant C1, which together with (4.2) yields

sup
t∈[0,T ]

|Y x
t |

2 6 L1

(
1 + |x|2

)
, x ∈ H, P− a.s., (4.6)

where L1 is a finite random variable. Using (4.6), (4.2) and again (4.4) we find that

sup
06t16t26T

∫ t2

t1

|Y x
t |

2
β dt 6 C2 sup

06t16t26T

∫ t2

t1

|Y x
t |

2
1/2 dt

6 L2

(
1 + |x|2

)
, x ∈ H, P− a.s., (4.7)
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where C2 is a universal constant and L2 is a finite random variable. Since B : Hθ ×Hρ → Hδ

is bounded for θ, ρ > 0 and δ ∈ [0, 1) such that δ + θ + ρ > 1 and δ + ρ > 1
2 (cf. [16]), taking

θ = ρ = 1
4 + β

2 and δ = 1
2 − β we obtain for v ∈ H 1

2
+β and z ∈ H 1

4
+β

2∣∣∣〈A− 1
2
+βB(v + z, v + z), A

1
2
+βv

〉∣∣∣ 6 C
∣∣∣A 1

4
+β

2 (v + z)
∣∣∣2 ∣∣∣A 1

2
+βv

∣∣∣
6 C

(
|v|21

4
+β

2

+ |z|21
4
+β

2

)
|v| 1

2
+β , (4.8)

where C stands for a universal constant which may be different on each line. Therefore, by
interpolation∣∣∣〈A− 1

2
+βB(v + z, v + z), A

1
2
+βv

〉∣∣∣ 6 C

(
|v|β|v|1/2|v| 1

2
+β + |z|21

4
+β

2

|v| 1
2
+β

)
6 ε|v|21

2
+β

+ C(ε)
(
|v|2β|v|21/2 + |z|41

4
+β

2

)
, (4.9)

for each ε > 0 and each constant C(ε) depending on ε only. By classical arguments (see e.g.
[13] we find that Y x ∈ L2 (0, T ;Hλ) for each λ < 1, which yields for t ∈ (0, T )

1
2
d

dt
|Y x

t |
2
β + |Y x

t |
2
1
2
+β = −

〈
A−

1
2
+βB (Y x

t + Zt, Y
x
t + Zt) + f,A

1
2
+βY x

t

〉
6 ε |Y x

t |
2
1
2
+β + C(ε)

(
|Y x

t |
2
β |Y

x
t |

2
1/2 + |Zt|41

4
+β

2

+ |f |2
)
, (4.10)

and therefore for 0 < s 6 t 6 T

|Y x
t |

2
β 6 C |Y x

s |
2
β exp

(∫ t

s
|Y x

r |
2
1/2 dr

)
+ C

∫ t

s
|Zr|41

4
+β

2

exp
(∫ t

r
|Y x

τ |
2
1/2 dτ

)
dr, (4.11)

and in virtue of (4.7)

|Y x
t |

2
β 6 C |Y x

s |
2
β e

L2(1+|x|2) + CeL2(1+|x|2)
∫ t

s
|Zr|41

4
+β

2

dr

6 L3 |Y x
s |

2
β e

|x|2 , (4.12)
where L3 is a finite random variable independent of x ∈ H and 0 < s 6 t 6 T . Integrating
(4.12) with respect to s ∈

[
1
2 t0, t0

]
and invoking (4.7) we obtain

|Y x
t |

2
β 6

2
t0
L3e

|x|2
∫ t0

t0/2
|Y x

s |
2
β ds 6

2
t0
L3Ce

|x|2
∫ t0

t0/2
|Y x

s |
2
β ds

6 L4|x|2e|x|
2
, (4.13)

for a random variable L4 depending on t0 only, which together with (4.2) completes the
proof. �

Theorem 4.2. Assume that the function V satisfies Hypothesis 2.6. Then (H4) holds.

Proof. Let {en : n > 1} be the orthonormal basis of H consisting of the eigenvectors of A and
let Πm be the orthogonal projection onto Hn = lin {ek : k 6 n}. Set, for n > 1

Bn(x) = ΠnB (Πnx,Πnx) , xn = Πnx, x ∈ H,
and

Gn = ΠnGΠn, fn = Πnf.
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We will consider the finite dimensional equations{
dXn(t) +AXn(t)dt+Bn (Xn(t)) dt = fndt+GndWt, t > 0,
Xn(0) = xn ∈ Hn

(4.14)

Without the loss of generality we may assume that V (x) = Φ
(
|x|2
)
. Denote by τR the exit

time of Xn from the ball BR = {y ∈ H : |y| < R}. For a fixed λ > 0 the Ito formula yields

EV (Xn (t ∧ τR)) eλ(t∧τR)

6 V (xn) + E
∫ t∧τR

0

[
λeλsV (Xn(s))

+eλs
(
−2Φ′

(
|Xn(s)|2

)
〈AXn(s), Xn(s)〉+ 2Φ′

(
|Xn(s)|2

)
〈Bn (Xn(s)) + fn, Xn(s)〉

+2
∣∣∣Φ′′

(
|Xn(s)|2

)∣∣∣ · |Xn(s)|2 tr (GnG
∗
n) + Φ′

(
|Xn(s)|2

)
tr (GnG

∗
n))]ds

6 V (xn) + E
∫ t∧τR

0

(
λeλsV (Xn(s))

+eλs
(
−κΦ′

(
|Xn(s)|2

)
|Xn(s)|2 + k

(
Φ′′
(
|Xn(s)|2

)
|Xn(s)|2 + Φ′

(
|Xn(s)|2

)
|Xn(s)|

)))
ds,

(4.15)
for any t > 0 and some κ, k > 0. Hypothesis 2.6 implies that

EV (Xn (t ∧ τR)) eλ(t∧τR)

6 V (xn) + E
∫ t∧τR

0

(
λeλsV (Xn(s)) + eλs (−βV (Xn(s)) + C)

)
ds, (4.16)

for some β,C > 0. Taking λ ∈ (0, β) we have

EV (Xn (t ∧ τR)) eλ(t∧τR) 6 V (xn) + E
∫ t∧τR

0
eλsCds

6 V (xn) +
C

λ
eλt. (4.17)

For R→∞ we obtain by the Fatou Lemma:

EV (Xn(t)) 6 V (xn) e−λt +
C

λ
. (4.18)

It remains to justify passing with n→∞. Set for m = 1, 2, . . .

Φm(r) =
{

Φ(r) if 0 6 r 6 m,
Φ(m) if r > m.

Clearly, Vm(y) ↑ V (y) as m→∞ for each y ∈ H and thereby

EVm (X(t)) ↗ EV (Xt) , m→∞. (4.19)

By [2] Xn(t) → Xt for each t > 0 in distribution on the space H−δ for each δ > 0 and therefore

EVm (Xn(t)) → EVm (Xt) , n→∞. (4.20)

Moreover, by (4.18)

EVm (Xn(t)) 6 EV (Xn(t)) 6 V (xn) e−λt +
C

λ
,



16 B. GOLDYS AND B. MASLOWSKI

and V (xn) → V (x) so (4.19) and (4.20) yield

EV (Xt) 6 V (x)e−λt +
C

λ
, t > 0. (4.21)

�

Proof of Theorems 2.9 and 2.10. We need to verify conditions (H1)-(H4) for the Markov
process defined by equation (2.6). Under Hypothesis 2.5 it has been proven in [11] that the
Markov semigroup (Pt) is strongly Feller and irreducible in the space E1 = Hα. Furthermore,
since α < 1

2 , (4.2) and (2.10) imply that P (t, x, E1) = 1 for x ∈ E = H and t > 0. Hence by
Lemma 3.2 conditions (H1) and (H2) are satisfied with the above choice of spaces E and E1.
Condition (H4) has been verified in Proposition 4.2 and it remains to check condition (H3).
Let β ∈

(
α, 1

2

)
and for R > 0 put

KR = {z ∈ Hβ : |z|β 6 R}
By compactness of the operator A−1 each KR is relatively compact in E1 = Hα. Since
Φ(r) →∞ for r →∞, for each T > 0 there exists L > 0 such that

inf
x∈Vr

P (T, x,KR) > inf
|x|6L

P (T, x,KR) > 1− sup
|x|6L

P (T, x,H \KR)

= 1− sup
|x|6L

P
(
|Xx

t |
2
β > R2

)
, (4.22)

hence by Lemma 4.1

inf
x∈Vr

P (T, x,KR) > 1− P
(
CT |x|2e|x|

2
> R2

)
> 1− P

(
CT >

R2e−L2

L2

)
> 0, (4.23)

for R sufficiently large which completes the proof of (H3).

Proof of Theorem 2.13.
The proof almost exactly follows the lines of preceding one, however, the verification of our

general condition (H1)-(H3) is based on the results from [12], Theorem 3.2, where it was shown
that the Markov semigroup is strongly Feller and irreducible in the space E1 = Hα

2
. Also, it is

standard to check that P (t, x, E1) = 1 for all x ∈ H and t > 0, so Hypotheses (H1) and (H2)
are satisfied. Condition (H3) may be verified as in Lemma 4.1 by induction (cf. Proposition
3.1 in [12] for a similar proof). Finally, condition (H4) follows from Proposition 4.2, which
applies to the present case without change (note that the second inclusion in Hypothesis 2.23
implies that the operator G is Hilbert-Schmidt on H).

5. Proofs: Stochastic Burgers Equation

In this section Theorems 2.17 and 2.18 are proven. By Lemma 3.2 it suffices to show that
conditions (H1)-(H4) are satisfied for the Markov process defined by the Burgers equation
(2.28) and a function V satisfying Hypothesis 2.6. Throughout this section we preserve the
notation from Section 2.2 and we assume that Hypotheses 2.16 and 2.6 hold true.

Proposition 5.1. The Markov semigroup defined by equation (2.28) is strongly Feller and
irreducible.



17

Proof. The strong Feller property has been proven in [3]. Irreducibility was shown in [6] (cf.
also [9]) for Q = I, the proof may be however, easily adapted to the case of more general Q.
For the reader’s convenience we provide a sketch of the proof. Let{

żu = Azu +Q1/2u,
zu(0) = x.

(5.1)

where u ∈ L2(0, T ;H). The system (5.1) is approximately controllable which follows from
the fact that im(Q1/2) = H. That is, for any x, y ∈ H and ε > 0 we can find u ∈ L2(0, T ;H)
such that |zu(T )− y| < ε. Assume now that x, y ∈ H1

0 . Then zu ∈ C
(
0, T ;H1

0

)
and

B (zu(·)) ∈ C(0, T ;H). Let

ψ(t) = −B (zu(t)) +Q1/2u(t).

and

ψn(t) = −nQ1/2
(
I + nQ1/2

)−1
B (zu(t)) +Q1/2u(t) = Q1/2φn(t)

Clearly, ψ,ψn, φn ∈ L2(0, T ;H) and ψn → ψ in L1 (0, T ;H). Let us rewrite equation (5.1) in
the form {

żu = Azu +B (zu) + ψ,
zu(0) = x,

and consider also the equation{
żu
n = Azu

n +B (zu
n) +Q1/2φn,

zu
n(0) = x.

(5.2)

It is known that the corresponding integral equation

zu
n(t) = Stx+

∫ t

0
St−sB (zu

n(s)) ds+
∫ t

0
St−sQ

1/2φn(s)ds,

has a unique solution zu
n ∈ C

(
0, T ;H1

0

)
. We claim that

zu
n → zu in C

(
0, T ;H1

0

)
. (5.3)

It follows that for any ε we can find n big enough, such that zu
n(0) = x and |zu

n(T )− y| < ε.
Since H1

0 is dense in H we find that the last estimate can be obtained for any y ∈ H. Then
using the same arguments as in [9] we can prove that that for any t > 0, y ∈ H and r > 0

PtI{z∈H;|z−y|<r}(x) > 0, x ∈ H1
0 . (5.4)

If x /∈ H1
0 then we can find a sequence (xn) ⊂ H1

0 such that xn → x and then by the result in
[3] we find that

E |Xx
t −Xxn

t |2 −→ 0

uniformly in t ∈ [0, T ]. Therefore, (5.4) holds for any x ∈ H and the irreducibility follows. �

Lemma 5.2. Let β ∈
(
0, 1

4

)
. then for each t0 > 0 there exists a random variable Ct0 depending

on t0 only and such that ∣∣Xx
t0

∣∣
β

6 Ct0

(
1 + |x|2

)
, P− a.s., (5.5)

where (Xx
t ) denotes the solution starting from Xx

0 = x ∈ H.
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Proof. the proof is based on a priori estimates given in Chapter 14 of [9]. for Y x
t = Xx

t − Zt

(where Zt is defined in (2.29) we have for a fixed T > t0

|Y x
t |

2 6 |x|2 exp
(

8
∫ t

0
|Zs|2∞ ds

)
+ 2

∫ t

0
|Zs|4∞ exp

(
8
∫ t

s
|Zr|2∞ dr

)
ds, t ∈ [0, T ], x ∈ H,

(5.6)
where | · |∞ stands for the norm in L∞(0, 1). Since tr(Q) <∞ it follows that for each λ < 1

2

Z ∈ C ([0, T ];Hλ) ∩ C ([0, T ];C(0, 1)) , (5.7)

and by (5.6) there exists a random variable C1 such that

|Y x
t |

2 6 C1

(
1 + |x|2

)
, P− a.s., x ∈ H. (5.8)

Furthermore, by Lemma 14.2.1 of [9] there exists a constant Cβ > 0 such that∣∣∣∣∫ t

0
e−(t−s)ADζu(s)ds

∣∣∣∣2
β

6 Cβ sup
s6t

|u(s)|L1(0,1), t 6 T, (5.9)

for β ∈
(
0, 1

4

)
and u ∈ C

(
[0, T ];L1(0, 1)

)
and by the analyticity of the semigroup

(
e−tA

)
it

follows that
|Xx

t |β 6 |Y x
t |β + |Zt|β

6
∣∣e−tAx

∣∣
β

+
∣∣∣∣12
∫ t

0
e−(t−s)ADζ (Y x

s + Zs) ds
∣∣∣∣
β

+ |Zt|β

6
c1
tβ
|x|+ 1

2
Cβ sup

s6t

∣∣∣(Y x
t + Zt)

2
∣∣∣
L1(0,1)

+ |Zt|β

6
c1
tβ
|x|+ Cβ sup

s6t

(
|Y x

s |
2 + |Zs|2

)
+ |Zt|β , t 6 T,

for a universal constant c1 > 0, which together with (5.7) and (5.8) yields (5.5). �

Proposition 5.3. Let the function V satisfy Hypothesis 2.6. then (H4) holds true.

Proof. Following [3] we consider a sequence of approximating equations{
dXn(t) +AXn(t)dt = Bn (Xn(t)) dt+ ΠnGdWt,
Xn(0) = xn = Πnx,

where Πn are defined as orthogonal projections on the spans of the first n eigenvectors of the
operator A and

Bn(x) = ΠnDζ

(
(Πnx)

2
)
, x ∈ H1

0 .

Taking into account that 〈Bn(x), x〉 = 0 and Xx
n → Xx in L2 (Ω,F ,P;H)(cf. [3]) we may

repeat word by word the proof of Proposition 4.2 i.e. apply the Ito formula to the process
t→ eλtV (Xx

n(t)) with λ > 0 small enough, estimate the drift term using Hypothesis 2.6 and
pass with n→∞. �

Proof of Theorem 2.17. We have to verify conditions (H1)-(H4) for the Markov process defined
by equation (2.28) with E = E1 = H. By Lemma 3.2 and Proposition 5.1 (H1) and (H2)
hold true while (H4) follows from Proposition 5.3. It remains to verify (H3). To this end we
proceed in a similar way as in the proof of Theorem 2.9. For a fixed β ∈

(
0, 1

4

)
set

KR =
{
z ∈ Hβ : |z|β 6 R

}
, R > 0.
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Obviously, KR is relatively compact in E1 = H for each R > 0 and for each r > 0 there exists
L > 0 such that

inf
x∈Vr

P (T, x,KR) > inf
|x|6L

P (T, x,KR) > 1− sup
|x|6L

P (T, x,H \KR) , (5.10)

so by Lemma 5.2

inf
x∈Vr

P (T, x,KR) > 1− sup
|x|6L

P
(
CT

(
1 + |x|2

)
> R

)
> 1− P

(
CT >

R

1 + L2

)
, (5.11)

which is positive for R large enough and (H3) holds.

References

[1] Bricmont J., Kupiainen A. and Lefevere R.: Exponential mixing of the 2D stochastic Navier-Stokes
dynamics, Comm. Math. Phys. 230 (2002), 87-132

[2] Capinski M. and Gatarek D.: Stochastic equations in Hilbert space with applicaton to Navier-Stokes
equations in Any dimension, J.Funct. Anal. 126 (1994), 26-35

[3] Da Prato G. and Debussche A.: Differentiability of the transition semigroup of the stochastic Burgers
equation, and application to the corresponding Hamilton-Jacobi equation, Atti Accad. Naz. Lincei Cl.
Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9 (1998), 267-277

[4] Da Prato G. and Debussche A.: Maximal dissipativity of the Dirichlet operator corresponding to the
Burgers equation, in Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), 85-98,
CMS Conf. Proc., 28, Amer. Math. Soc., Providence, RI, 2000

[5] Da Prato G., Debussche A. and Temam R.: Stochastic Burgers’ equation, NoDEA Nonlinear Differential
Equations Appl. 1 (1994), 389-402

[6] Da Prato G. and Gatarek D.: Stochastic Burgers equation with correlated noise. Stochastics Stochastics
Rep. 52 (1995), 29-41

[7] Da Prato G., Kwapien S. and Zabczyk J.: Regularity of solutions of linear stochastic equations in Hilbert
spaces, Stochastics 23 (1987), 1-23

[8] Da Prato G. and Zabczyk J.: Stochastic Equations in Infinite Dimensions, Cambridge University Press,
Cambridge 1992

[9] Da Prato G. and Zabczyk J.: Ergodicity for Infinite Dimensional Systems, Cambridge University Press,
Cambridge 1996

[10] E W., Mattingly J. C. and Sinai Ya.: Gibbsian dynamics and ergodicity for the stochastically forced
Navier-Stokes equation, Comm. Math. Phys. 224 (2001), 83-106

[11] Ferrario B.: Ergodic results for stochastic Navier-Stokes equation, Stochastics Stochastics Rep. 60 (1997)
271-288

[12] Ferrario B.: Stochastic Navier-Stokes equations: Analysis of the noise to have a unique invariant measure,
Annali Mat. Pura Appl. 177 (1999), 331-347

[13] Flandoli F.: Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1
(1994), 252-286

[14] Flandoli F. and Ga̧tarek D.: Martingale and stationary solutions for stochastic Navier-Stokes equations,
Probab. Theory Related Fields 102 (1995), 367-391

[15] Flandoli F. and Maslowski B.: Ergodicity of the 2-D Navier-Stokes equation under random perturbations,
Comm. Math. Phys. 172 (1995), 119-141

[16] Giga Y. and Miyakawa T.: Solution in Lr of the Navier-Stokes initial value problem, Arch.Rational Mech.
Anal. 89 (1985), 267-281

[17] Goldys B. and Maslowski B.: Lower estimates of transition densities and bounds on exponential ergodicity
for stochastic PDE’s, preprint of the School of Mathematics, The University of New South Wales, 2004,
http://www.maths.unsw.edu.au/statistics/pubs/statspreprints2004.html

[18] Hairer M. and Mattingly J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic
forcing, preprint 2004, http://front.math.ucdavis.edu/author/Hairer-M*c=PR



20 B. GOLDYS AND B. MASLOWSKI

[19] Jain N. and Jamison B.: Contributions to Doeblin’s theory of Markov processes Z. Wahrscheinlichkeits-
theorie Verw. Geb. 8 (1967), 19-40

[20] Khasminskii R.Z.: Ergodic properties of recurrent diffusions and stabilization of the Cauchy problem for
parabolic equations, Teoriya Veroyat. Primen. 5 (1960), 7-28 (in Russian)

[21] Kuksin S. and Shirikyan A.: A coupling approach to randomly forced nonlinear PDE’s I, Comm. Math.
Phys. 221 (2001), 351-366

[22] Kuksin S. and Shirikyan A.: Coupling approach to white-forced nonlinear PDE’s, J. Math. Pures Appl.
81 (2002), no. 6, 567-602

[23] Meyn S.P. and Tweedie R.L.: Markov Chains and Stochastic Stability, Springer-Verlag, Berlin 1993
[24] Maslowski B. and Simao I.: Asymptotic properties of stochastic semilinear equations by the method of

lower measures, Colloquium Math. 72 (1997), 147-171
[25] Maslowski B. and Simao I.: Long-time behaviour of non-autonomous SPDE’s, Stochastic Processes Appl.,

95 (2001), 285-309
[26] Mattingly J. C., Exponential convergence for the stochastically forced Navier-Stokes equations and other

partially dissipative dynamics, Comm. Math. Phys. 230 (2002), 421-462
[27] Shardlow T.: Geometric ergodicity for stochastic PDE’s, Stochastic Anal. Appl. , 17 (1999), 857-869
[28] Temam R.: Navier-Stokes Equations, North-Holland, Amsterdam, 1984
[29] Vishik M.J. and Fursikov A.V.: Mathematical Problems of Statistical Hydromechanics, Kluwer, Dor-

drecht, 1980

School of Mathematics, The University of New South Wales, Sydney 2052, Australia
E-mail address: B.Goldys@unsw.edu.au

Mathematical Institute, Academy of Sciences of Czech Republic, Žitná 25, 11567 Prague 1,
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