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Abstract

We prove the existence of absolutely continuous spectrum for a class of discrete Schrödinger

operators on tree like graphs. We consider potentials whose radial behaviour is subject only to an

`∞ bound. In the transverse direction the potential must satisfy a condition such as periodicity.

The graphs we consider include binary trees and graphs obtained from a binary tree by adding

edges, possibly with weights. Our methods are motivated by the one dimensional transfer matrix

method, interpreted as a discrete dynamical system on the hyperbolic plane. This is extended

to more general graphs, leading to a formula for the Green’s function. Bounds on the Green’s

function then follow from the contraction properties of the transformations that arise in this

generalization. The bounds imply the existence of absolutely continuous spectrum.

1. Introduction

One of the most important open problems in the field of random Schrödinger operators is

to prove the existence of absolutely continuous spectrum for weak disorder in the Anderson

model in three and higher dimensions (See [CL], [FP] or [CKFS] for general information about the

mathematical theory of random Schrödinger operators). One of the few results in this direction

is Abel Klein’s, for random Schrödinger operators acting on a tree, or Bethe Lattice. Klein [Kl]

proves that for weak disorder, almost all potentials will produce absolutely continuous spectrum.

This means that there must be many potentials on a tree where the corresponding Schrödinger

operator has absolutely continuous spectrum without there being an obvious reason, such as

periodicity or decrease at infinity. The goal of this work is to prove a deterministic result for some

of these potentials.
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Here is an outline of the paper. After this introduction we review, in section 2, the transfer

matrix method for a one-dimensional problem. We notice that viewed projectively, the transfer

matrices correspond to contractions of the hyperbolic plane. This leads to formula (2.6) for the

Green’s function. In section 3 we generalize this method to a large class of graphs, including trees

and Zn. The hyperbolic plane is now replaced by a sequence of Siegel upper half spaces. A key

issue is the choice of metric for the Siegel upper half spaces. It turns out that the maps that arise in

our method are not contractions with respect to the standard Riemannian metric. However, they

do contract with respect to a Finsler metric, whose distance function we identify in an appendix

as one of a family of naturally occuring distance functions (see [F]). The end result of this section is

formula (3.13) for the Green’s function. This formula shows that the Green’s function at the origin

can be approximated by the image of an arbitrary starting point under a series of contractions on

Siegel upper half spaces.

Our main results are contained in section 4. Here we restrict to a class of tree like graphs and

to potentials satisfying a periodicity or decay condition in the direction transverse to the radial

direction. Given such a restriction we can allow arbitrary small fluctuations in the radial direction

and still control the image of the maps in (3.13). This results in bounds on the Green’s function.

We conclude this section with some results on potentials that decay in the radial direction at

infinity. We first show how to prove results similar to existing ones (see [AF] [GG]) obtained using

the Mourre estimate. Then we show that our method of proving the boundedness of the Green’s

function allows suitable decreasing perturbations.

Now we fix our notation. Let G = (V,E) be a graph with vertices V and edges E. The

discrete Laplacian ∆ acting on functions ϕ : V → C is defined by

(∆ϕ)(v) =
∑

w:dist(v,w)=1

(ϕ(v) − ϕ(w)) .

Here dist denotes the distance in the graph, so that the sum is over all nearest neighbours of v.

Notice that according to this definition ∆ ≥ 0. There is also a Laplacian associated to each weight

function γ defined on the edges of the graph. Given a weight γvw > 0 for each edge vw ∈ E

running between the vertices v and w, the corresponding Laplacian is defined by

(∆γϕ)(v) =
∑

w:dist(v,w)=1

γvw(ϕ(v) − ϕ(w)) .

A potential is a real valued function q on V acting on functions ϕ : V → C diagonally, that is, as a

multiplication operator. Thus

(qϕ)(v) = q(v)ϕ(v) .

A discrete Schrödinger operator is an operator of the form H = ∆ + q, or H = ∆γ + q. If

the number of edges meeting a vertex is uniformly bounded on the graph, and the potential is

bounded, then H is a bounded self-adjoint operator on `2(V ).
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We are interested in the spectral properties of H . These can be deduced from the Green’s

function

G(v, w;λ) = 〈χv , (H − λ)−1χw〉 .

Here χw denotes the characteristic function given by

χw(v) =
{

1 if v = w
0 otherwise

. (1.1)

By Stone’s formula, the spectral measure µχv
for χv satisfies

µχv
((a, b)) ≤ lim

ε→0

1

π

∫ b

a

Im(G(v, v, µ+ iε))dµ ,

with equality unless a or b is an eigenvalue of H . Thus, as is well known, to prove absolute

continuity of the spectral measure µχv
in some interval (a, b) it suffices to show

lim sup
ε→0

sup
µ∈(a,b)

|G(v, v, µ + iε))| ≤ C .

For fixed w ∈ V and λ in the resolvent set of H , the Green’s function G(v, w;λ) as a function

of v can be characterized as the unique `2 solution to

(∆ + q − λ)G(v, w;λ) = χw(v) , (1.2)

where χw is given by (1.1). In this paper we consider situations where we can compute all the

solutions to (1.2). To find the Green’s function we must then identify which one of these solutions

decreases rapidly enough to be in `2. The simplest example of such a situation is the half line.

2. The half line

We will now explain how to compute the Green’s function at the origin for the half line with

a bounded potential, using the transfer matrix formalism. Since our method for more general

graphs is based on these ideas, we review them in some detail. In this one dimensional situation

we cannot expect to be able to control the imaginary part of the Green’s function as λ approaches

the real axis for arbitrary bounded potentials. Such control implies the existence of absolutely

continuous spectrum, which is absent for typical bounded potentials in one dimension [KS]. See

[LS] for recent work on absolutely continuous spectrum and the transfer matrix method for one

dimensional problems.

Consider the graph Z
+ with vertices 0, 1, 2, 3, . . . and edges joining neighbouring integers.

Let q = (q0, q1, q2, . . .) be bounded potential on Z+. To streamline the notation we redefine ∆ by
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subtracting 2 from the diagonal everywhere except at the first position, where we subtract 1. This

amounts to shifting λ by 2 and q0 by 1. Then

(∆ + q − λ)ϕ = χ0 ⇐⇒







− ϕ1 + (q0 − λ)ϕ0 − 1 = 0

− ϕn+1 + (qn − λ)ϕn − ϕn−1 = 0 for n > 0
. (2.1)

Here ϕ = (ϕ0, ϕ1, ϕ2, . . .). This implies that ϕ solves this equation if and only if
[

ϕn+1

ϕn

]

= AnAn−1 · · ·A0

[

ϕ0

1

]

, (2.2)

where, for n ≥ 0, An ∈ SL(2,C) is the matrix

An =

[

qn − λ −1
1 0

]

.

This formula shows how to compute
[

ϕn+1

ϕn

]

from
[

ϕ0

1

]

. There is only one choice of ϕ0 that

results in a decreasing solution. With this choice of ϕ0 the resulting solution ϕn is G(n, 0, λ).

An equivalent formula is
[

ϕ0

1

]

= A−1
0 A−1

1 · · ·A−1
n

[

ϕn+1

ϕn

]

. (2.3)

This formula shows how to recover
[

ϕ0

1

]

from
[

ϕn+1

ϕn

]

. Although formulas (2.2) and (2.3) are

mathematically equivalent, there is a big difference if we were to try actually using them in

computation. To see why, consider the case where q = (0, 0, 0, 0, . . .) and λ ∈ C\[−2, 2]. In this

case, each matrix Ai appearing in (2.2) is the same. Lets call this matrix A. For λ ∈ C\[−2, 2] the

matrix A has one eigenvalue inside the unit circle and one outside. Therefore, we must choose
[

ϕ0

1

]

to lie in the direction of the eigenvector of A corresponding to the small eigenvalue. This

choice will result in an exponentially decreasing solution, which must be the Green’s function.

However, this choice also means that the left side of (2.2) is very sensitive to the input vector
[

ϕ0

1

]

. A small deviation of the input value from its true value will result in a big change in the

computed value of
[

ϕn+1

ϕn

]

. In contrast to this, the output vector
[

ϕ0

1

]

in formula (2.3) is the

eigenvector corresponding to the large eigenvalue of the matrix A−1 appearing in that formula.

This means that the output vector is insensitive to changes in the input vector. In fact, when n is

large, changing the true input vector
[

ϕn+1

ϕn

]

to anything at all (except the other eigenvector) will

result in approximately the same output vector, up to a scalar multiple.

This observation can be turned into a method of computing the Green’s function. To get rid

of the ambiguity of a scalar multiple, consider the equation (2.3) projectively. From now on let ϕn

denote the decreasing solution G(n, 0, λ) and define αn+1 ∈ Ĉ by

αn+1 = ϕn+1/ϕn .
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Then, equation (2.3) implies that for any n,

ϕ0 = Φ0 ◦ Φ1 ◦ · · · ◦ Φn(αn+1) , (2.4)

where Φn denotes the Möbius transformation associated with the matrix A−1
n =

[

0 1
−1 qn − λ

]

,

that is,

Φn(z) =
1

−z + qn − λ
.

We now focus on the mapping properties of Φn. Let H = {x+ iy : y > 0} denote the complex

upper half plane equipped with the Poincaré metric

ds2 =
dx2 + dy2

y2
.

Proposition 2.1

(i) For Im(λ) ≥ 0, the map Φn maps H into H. When Im(λ) > 0, the image lies in the hyperbolic half

plane {z ∈ H : |z| ≤ 1/ Im(λ)}
(ii) When λ ∈ R, the map Φn is a hyperbolic isometry. When Im(λ) > 0, the map Φn is a hyperbolic

contraction.

(iii) If z1 and z2 lie in the hyperbolic half plane H = {z ∈ H : |z| ≤ C} and Im(λ) > 0 then there

exists a positive constant δ < 1, depending only on C and Im(λ) such that

dist(Φn(z1),Φn(z2)) ≤ δ dist(z1, z2) .

Proof: It is convenient to factor Φn as

Φn = ρ ◦ τn ,

where τn : z 7→ z − qn + λ and ρ : z 7→ −z−1. The map τn is a translation that maps H into H

when Im(λ) ≥ 0. The map ρ is a hyperbolic isometry, a rotation by an angle of π about i. Thus the

composition lies in H. Clearly

|Φn(z)| =
1

| − z + qn − λ| <
1

Im(z) + Im(λ)
<

1

Im(λ)
.

When λ ∈ R, the translation τn, and hence also Φn is a hyperbolic isometry. However, when

Im(λ) > 0 then τn is a hyperbolic contraction. To show this, it suffices to show that dτn decreases

the length of tangent vectors measured in the hyperbolic metric. If w ∈ C represents a tangent

vector at z ∈ H, then its length in the Riemannian norm is |w|/ Im(z). Since dτn(z)[w] = w we

have

‖dτn(z)[w]‖τn(z) =
|w|

Im(τn(z))
=

|w|
Im(z − qn + λ)

=
|w|

Im(z) + Im(λ)
<

|w|
Im(z)

= ‖w‖z .
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This implies that τn, and thus Φn decreases hyperbolic distances when Im(λ) > 0.

When z ∈ H we have Im(z) ≤ C. Thus, for Im(λ) > 0

δ = sup
z∈H

‖dΦn(z)[w]‖Φn(z)

‖w‖z

= sup
z∈H

‖dτn(z)[w]‖τn(z)

‖w‖z

= sup
z∈H

Im(z)

Im(z) + Im(λ)

< C/(C + Im(λ)) < 1 .

(2.5)

Now suppose that z1, z2 ∈ H and that γ(t) for t ∈ [0, T ] is the geodesic joining z1 and z2. Then the

entire geodesic γ lies in H . Also, the path γ1(t) = Φn(γ(t)) joins Φn(z1) and Φn(z2). Thus we can

use (2.5) to estimate

dist(Φn(z1),Φn(z2)) ≤
∫ T

0

‖γ̇1(t)‖γ1(t)dt

=

∫ T

0

‖dΦn(γ(t))[γ̇(t)]‖Φn(γ(t))dt

≤ δ

∫ T

0

‖γ̇(t)‖γ(t)dt

= δ dist(z1, z2) .

Remark: The fact that Φn is a contraction also follows from the Schwarz Lemma in classical function

theory [Kr], which asserts that any analytic map from H into H is a contraction. This contraction

is strict unless the map is a hyperbolic isometry.

The previous proposition shows that one application of any Φn sends H into a half space. The

next proposition shows that two applications send H into a bounded set. For this proposition, we

need the boundedness of the potential.

Proposition 2.2 Assume Im(λ) > 0. Given a uniform bound supn |qn| ≤ C, there is a fixed hyperbolic

ball B ⊂ H, depending on Im(λ) and C, such that Φn ◦ Φn+1(H) ⊆ B

Proof: Figure 1 illustrates the action of two iterations of Φ on the upper half plane when Im(λ) > 0.

The first translation shifts the upper half plane horizontally, with no effect, and then up by a

vertical Euclidean distance Im(λ). The image is a horosphere at infinity which then is rotated to

a horosphere at zero. The second translation moves this horosphere up by a vertical Euclidean

distance Im(λ), as before, followed by a horizontal translation whose size depends on the values

of q and Re(λ). The diagram shows three possibilities. Under the boundedness assumption on

the potential, any possible image can be fit in a fixed hyperbolic ball B, depending on Im(λ) and

C, about i. A subsequent rotation about i keeps the images inside this ball.
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Figure 1

Now we state the promised formula for the Green’s function at 0.

Theorem 2.3 Suppose Im(λ) > 0 and assume supn |qn| ≤ C. Let γn ∈ H, n = 1, 2, . . ., be arbitrary.

Then

lim
n→∞

Φ0 ◦ Φ1 ◦ · · · ◦ Φn(γn) = ϕ0 = G(0, 0;λ) . (2.6)

Proof: Let wn = Φ0 ◦ Φ1 ◦ · · · ◦ Φn(γn). We must show that wn → ϕ0. We have that

wn = Φ0 ◦ Φ1 ◦ · · · ◦ Φn−2(β) ,

where β = Φn−1 ◦ Φn(γn) ∈ B. Here B is the hyperbolic ball in Proposition 2.2. Similarly,

wn+1 = Φ0 ◦ Φ1 ◦ · · · ◦ Φn−1(β
′)

for some β′ ∈ B. Now each image of β and of β′ under subsequent applications of Φk all lie in a

fixed hyperbolic half space (in fact, in B). So

dist(wn+1, wn) = dist(Φ0 ◦ Φ1 ◦ · · · ◦ Φn−1(β),Φ0 ◦ Φ1 ◦ · · · ◦ Φn−1(β
′))

≤ δdist(Φ1 ◦ · · · ◦ Φn−2(β),Φ1 ◦ · · · ◦ Φn−2(β
′))

≤ · · ·

≤ δn−1dist(β, β′)

= Cδn .

In the last step we used that β, β′ ∈ B. This implies that wn is Cauchy and hence converges. A

similar estimate shows that any two such sequences will converge to the same limit. Equation

(2.4) shows that this limit must be ϕ0.

Remark 1: Theorem 2.3 shows that the Green’s function ϕ0 = G(0, 0;λ) must lie in the ball B.

Unfortunately this ball expands to fill out all of H as Im(λ) → 0, so this bound is not very useful.

This is not surprising, since we know that in one dimension there typically is no uniform bound

on the Green’s function.

Remark 2: It is interesting to note for Im(λ) large, the value of the Green’s function G(0, 0;λ) is

determined to a good approximation by the values of the potential near 0. The reason for this is

that if Im(λ) is large then the maps Φn will all be strongly contracting, and the numbers wn will

be close to their limit after only a few steps.
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Remark 3: Theorem 2.3 implies that the contracting fixed points of the Möbius transformations

Φ0 ◦ Φ1 ◦ · · · ◦ Φn, which all lie in the upper half plane, converge to G(0, 0;λ). In contrast, the

expanding fixed points, corresponding to the “bad” eigenvector of the matrix product in (2.3), all

lie in the lower half plane and do not converge.

The numbers αn are discrete analogues of the Dirichlet to Neumann map. They also can be

identified as values of a Green’s function for a truncated graph. We digress to explain this, since

we will use something similar in the next section. First notice that we could define αi to be the

unique number such that for any choice of ϕi−1, the numbers ϕn for n ≥ i defined by ϕi = αiϕi−1

and
[

ϕn+1

ϕn

]

= An · · ·Ai

[

αiϕi−1

ϕi−1

]

are decreasing at infinity. The numbers so defined satisfy

−ϕn+1 + (qn − λ)ϕn + ϕn−1 = 0 (2.7)

for n ≥ i. We can interpret this as an equation on the truncated graph {i, i+1, i+2, . . .}. Let ∆i be

the Laplacian for this graph. Then for n > i equation (2.7) simply says that ((∆i + q − λ)ϕ)n = 0.

However, since there is no i − 1th site on the truncated graph, equation (2.7) for n = i says

((∆i + q − λ)ϕ)i = ϕi−1. In particular, if we have chosen ϕi−1 = 1 then ϕ is the Green’s function

for the truncated graph, and ϕi = αi.

3. A formula for the Green’s function on more general graphs

Now we generalize the one dimensional transfer matrix formalism to a more general class of

graphs. For this class of graphs we can follow the same strategy as in one dimension to obtain a

formula for the Green’s function similar to (2.6).

We begin by introducing the graph analogue of polar co-ordinates for a graph (V,E). Pick

an origin 0 ∈ V and define the spheres

Sn = {v ∈ V : dist(v, 0) = n} ,

where dist denotes the distance in the graph. Then V is the disjoint union V = ∪∞
n=0Sn and

`2(V ) =
⊕∞

n=0 `
2(Sn). With respect to this decomposition, the graph Laplacian ∆ has the block

form

∆ =









D0 −ET
0 0 0 · · ·

−E0 D1 −ET
1 0 · · ·

0 −E1 D2 −ET
2 · · ·

...
...

...
...

. . .









.
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The matrix Di = ∆i + Ni, where ∆i is the Laplacian for Si and Ni is diagonal matrix whose

entry on the diagonal position corresponding to v ∈ Si is the number of vertices joining v to

neighbouring spheres. The matrix forEi : `2(Si) → `2(Si+1) has a 1 in the v, w position if v ∈ Si+1

is connected to w ∈ Si, and otherwise has a 0 there.

Given a potential q, let qi denote the restriction of q to Si. Then, as an operator, q = ⊕iqi

where qi is a diagonal operator on `2(Si).

We will assume the following hypothesis on the graph, the choice of origin and the potential.

Hypothesis 3.1

(i) For every i Ker(Ei) = {0}, or equivalently, ET
i Ei is invertible.

(ii) supi ‖Ei‖ < C .

(iii) supi ‖Di‖ < C .

(iv) supi ‖qi‖ < C .

Remark: Examples for (i), (ii) and (iii) include trees and Zn as well as graphs obtained from these

by added edges within spheres, subject to (iii).

Now we analyze the solutions to the equation

(∆ + q − λ)ϕ = ϕ−1χ0 (3.1)

by generalizing the transfer matrix formulation of the previous section. Hereχ0 is the characteristic

function of the origin, and ϕ−1 is a complex parameter inserted to streamline the notation below.

We are most interested in the case where ϕ−1 = 1 and where the solution ϕ ∈ `2(V ) since, for this

solution, ϕ(·) = G(·, 0, λ).
To begin we write equation (3.1) in polar co-ordinates. Write ϕ = (ϕ0, ϕ1, . . .) where ϕi is the

restriction of ϕ to Si. Then ϕ solves (3.1) if and only if

(D0 + q0 − λ)ϕ0 −ET
0 ϕ1 = ϕ−1 ,

−Ei−1ϕi−1 + (Di + qi − λ)ϕi −ET
i ϕi+1 = 0 for i ≥ 1 .

(3.2)

These equations can be rewritten as
[

ET
i ϕi+1

ϕi

]

=

[

(Di + qi − λ)ϕi −Ei−1ϕi−1

ϕi

]

provided we define E−1 = 1. For i ≥ 1 we may write the decomposition of ϕi with respect to

`2(Si) = Ran(Ei−1) ⊕ Ker(ET
i−1) as

ϕi = Ei−1(E
T
i−1Ei−1)

−1ET
i−1ϕi + ψi ,

where ψi ∈ Ker(ET
i−1). This gives

[

ET
i ϕi+1

ϕi

]

=

[

(Di + qi − λ)Ei−1(E
T
i−1Ei−1)

−1 −Ei−1

Ei−1(E
T
i−1Ei−1)

−1 0

][

ET
i−1ϕi

ϕi−1

]

+

[

Di + qi − λ
I

]

ψi .

9



To write the equations in a compact form, define the matrices

Ai =

[

(Di + qi − λ) −I
I 0

]

and

Bi =

[

Ei−1(E
T
i−1Ei−1)

−1 0
0 Ei−1

]

.

for i = 0, 1, 2, . . .. Note that with E−1 is defined to be 1, B0 is the 2 × 2 identity matrix. Let ψi

for i ≥ 0 be the projections of ϕi onto Ker(ET
i−1). In particular ψ0 = 0. Then the equation for ϕ is

equivalent to
[

ET
i ϕi+1

ϕi

]

= Ai

(

Bi

[

ET
i−1ϕi

ϕi−1

]

+

[

ψi

0

])

,

for i = 0, 1, 2, . . .. The iteration of this equation is the graph analogue of (2.2). When λ is real,

both Ai and Bi are symplectic transformations. This is analogous to the transfer matrices in one

dimension being in SL(2,R).

Lemma 3.2 Assume Hypothesis 3.1. The solutions of (∆ + q − λ)ϕ = ϕ−1χ0 are in one-to-one

correspondence with vectors (ϕ0, ψ1, ψ2, . . .) with ϕ0 ∈ C and ψi ∈ Ker(ET
i−1).

Proof: (Sketch) The correspondence is given by first setting ξ−1 = ϕ0. Then, starting with
[

ξ−1

ϕ−1

]

we define
[

ξi
ϕi

]

for i ≥ 0 by

[

ξi
ϕi

]

= Ai

(

Bi

[

ξi−1

ϕi−1

]

+

[

ψi

0

])

. (3.3)

Writing out this equation using the definition of Ai and Bi we find that ξi = ET
i ϕi+1 for every i,

and that the solution ϕ = (ϕ0, ϕ1, . . .) generated by this procedure solves the equation (3.1).

The same procedure can also be used to generate a solution of (∆+q−λ)ϕ = 0 in the exterior

of a ball in the graph. To do this, begin with
[

ξi−1

ϕi−1

]

∈ `2(Si−1) ⊕ `2(Si−1) and ψn ∈ Ker(ET
n−1)

for n ≥ i. Then follow the recursive procedure (3.3) above to generate ϕn for n ≥ i. The resulting

vector ϕ = (ϕi, ϕi+1, . . .) solves the equation

(∆i + q − λ)ϕ = Ei−1ϕi−1 . (3.4)

Here ∆i denotes the Laplacian for the truncated graph with vertices ∪∞
n=iSn, and Ei−1ϕi−1 is

shorthand for (Ei−1ϕi−1, 0, 0, . . .). Conversely, given a solution to (3.4), the vectors
[

ξi
ηi

]

=
[

ET
i−1ϕi

ϕi

]

satisfy the recursion (3.3).

Now we can define the discrete Dirichlet to Neumann maps for a graph. These are the

analogues for more general graphs of the numbers αi. They will be linear transformations

Λi = Λi(λ) acting on `2(Si−1), or on C for i = 0.
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Definition: Let Im(λ) > 0. For ϕi−1 ∈ `2(Si−1), or ϕi−1 ∈ C for i = 0, define Λi(λ)ϕi−1 to be the

unique vector ξ ∈ `2(Si−1) such that the recursion (3.3) beginning with
[

ξ
ϕi−1

]

generates an `2

solution of (3.4) for some choice of ψi, ψi+1. . . ..

Just as the numbers αi represented a direction in C2, the linear transformations Λi can be

thought of as representing a subspace of `2(Si−1) × `2(Si−1), namely the graph of Λi. This is the

subspace of Cauchy data that generates `2 solutions.

When Im(λ) > 0 the numbers αi are in the upper half plane H. The analogous property for

the linear transformations Λi is that they take values in the Siegel upper half space, SH ni−1 , where

ni−1 = dim(`2(Si−1)). This is the set of ni−1 × ni−1 matrices Z = X + iY where X and Y are

symmetric real matrices and Y is positive definite. The facts we will need about the Siegel upper

half spaces are collected the Appendix.

Proposition 3.3 Let Im(λ) > 0. Then

(i) Λi is a well defined linear map.

(ii) Let ∆i denote the Laplacian for the truncated graph with vertices ∪∞
n=iSn. Then Λ0 = G(0, 0;λ)

while for i ≥ 1

Λi = ET
i−1(∆i + q − λ)−1Ei−1 . (3.5)

(iii) Λi lies in SH ni−1 .

Proof: First we note that the vector ξ in the definition of Λi must be unique, if it exists. For if there

were two distinct vectors generating `2 solutions to (3.4) with Im(λ) > 0, their difference would

be a non-zero `2 solution to (∆i + q − λ)ϕ = 0, contradicting the fact that λ is in the resolvent set.

For Im(λ) > 0, the resolvent gives an `2 solution

ϕ = (∆i + q − λ)−1Ei−1ϕi−1

to (3.4). This solution is generated by
[

ET
i ϕi

ϕi−1

]

. Thus Λiϕi−1 = ET
i ϕi, which implies (3.5).

From (3.5) the symmetry of Λi follows easily. This formula also implies that 〈ψ,Λiψ〉 equals

〈Ei−1ψ, (∆i + q−λ)−1Ei−1ψ〉 which has positive imaginary part if Im(λ) > 0. Thus Λi ∈ SH ni−1 .

The analogues of the Möbius transformations in the one dimensional case are the maps

Φi : SHni
→ SHni−1 defined by

Φi(Λ) = ET
i−1(−Λ +Di + qi − λ)−1Ei−1 . (3.6)

Here E−1 is defined to be 1.
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Proposition 3.4

Λi = Φi(Λi+1) .

Proof: Let ϕi−1 be arbitrary and let (ϕi, ϕi+1, . . .) be the solution generated by
[

Λiϕi−1

ϕi−1

]

. Then

ET
i ϕi+1 = Λi+1ϕi so equation (3.2) reads

(−Λi+1 +Di + qi − λ)ϕi = Ei−1ϕi−1 ,

so that

ϕi = (−Λi+1 +Di + qi − λ)−1Ei−1ϕi−1 .

This is also true when i = 0 with the convention E−1 = 1. Applying ET
i−1 to both sides and

substituting Λiϕi−1 = ET
i−1ϕi completes the proof.

Proposition 3.4 implies that for any n

G(0, 0; lambda) = Φ0 ◦ · · · ◦ Φn(Λn+1) . (3.7)

We now must examine the mapping properties of Φi on the Siegel upper half space. It turns

out that the distance defined by the standard Riemannian metric on SH n is not suitable for our

estimates. Instead we define a Finsler metric as follows. Let Z = X + iY ∈ SH n and let the

complex symmetric matrix W be an element in the tangent space at Z. We define the Finsler

norm

FZ(W ) = ‖Y −1/2WY −1/2‖ , (3.8)

where ‖ · ‖ is the usual matrix (operator) norm. This Finsler norm defines a distance function

which we will denote d∞.

Definition: The distance d∞ is defined as

d∞(Z1, Z2) = inf
Z(t)

∫ T

0

FZ(t)(Ż(t))dt ,

where the infimum is taken over all differentiable paths Z(t) joining Z1 to Z2.

The arguments leading to Theorem 3.6 are roughly the same as those in the one dimensional

case leading to Theorem 2.3. However, since the geometry of the Siegel half space with the Finsler

metric is more complicated, some modifications are needed.

Lemma 3.5 Assume that Hypothesis 3.1 holds and define Yi = ET
i Ei.

(i) For Im(λ) ≥ 0, the map Φ0 maps SH n0 = H into H, while for i ≥ 1, the map Φi maps SH ni
into

SH ni−1 . When Im(λ) > 0 the image lies in the set {Z ∈ SH ni−1 : ‖Z‖ ≤ C}, where C depends only on

λ and the constants in Hypothesis 3.1.

(ii) When Im(λ) > 0, the map Φi is a contraction with respect to the d∞ metric.

12



(iii) Φi ◦Φi+1(SH ni
) ⊆ B(iYi−1, R) where B(iYi−1, R) denotes a ball in the d∞ metric about iYi−1

whose radius R depends only on λ and the constants in Hypothesis 3.1.

(iv) If Z1 and Z2 lie in B(iYi−1, R) then there exists a positive constant δ < 1, depending only on λ

and the constants in Hypothesis 3.1, such that

d∞(Φi(Z1),Φi(Z2)) ≤ δ d∞(Z1, Z2) .

Proof: Factor

Φi = π ◦ ρ ◦ τ . (3.9)

where
τ : Z 7→ Z + Im(λ)

ρ : Z 7→ −(Z −Di − qi + Re(λ))−1

π : Z 7→ ET
i−1ZEi−1 .

For Im(λ) ≥ 0 it is clear that τ maps SH ni
into SH ni

, while ρ is an isometry of SH ni
corresponding

to the symplectic matrix
[

0 I
−I Di + qi − Re(λ)

]

.

The map Z 7→ ET
i−1ZEi−1 maps SH ni

to SH ni−1 since the image is obviously symmetric, and by

Hypothesis 3.1, ET
i−1Y Ei−1 is positive definite if Y is.

When Im(λ) > 0 we have Z −Di − qi + λ = X + iY with Y ≥ Im(λ)I . Thus ‖Y −1/2‖ < C

and so

‖ET
i−1(X + iY )−1Ei−1‖ = ‖ET

i−1Y
−1/2(Y −1/2XY −1/2 + iI)−1Y −1/2Ei−1‖

≤ ‖ET
i−1‖‖Y −1/2‖‖(Y −1/2XY −1/2 + iI)−1‖‖Y −1/2‖‖Ei−1‖

≤ C .

This proves (i). Here and throughout the proof, constants depend only on the constants in

Hypothesis 3.1 and on λ, and may change in value from line to line.

Since ρ is an isometry, to prove (ii) we must show that τ and π are contractions. The argument

for τ is similar to the one dimensional case and follows from the inequality FZ+Im(λ)(W ) < FZ(W )

for Z ∈ SH ni
and W a symmetric complex matrix representing an element in the tangent space

of SH ni
at Z. We omit the details. Next we must show that π : SH ni

→ SH ni−1 is a contraction

with respect to the d∞ metric. This follows if we can show

FET ZE(ETWE) ≤ FZ(W )

for any matrix W in the tangent space to SH ni
at Z = X + iY . In other words, we need that for

any complex symmetric matrix W and positive definite matrix Y ,

‖(ETY E)−1/2ETWE(ETY E)−1/2‖ ≤ ‖Y −1/2WY −1/2‖ . (3.10)
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Consider

P = (ETY E)−1/2ETY 1/2 .

Then PP ∗ = I so that P is a partial isometry. Since the left side of (3.10) can be written

‖PY −1/2WY −1/2P ∗‖, this implies (3.10) and proves (ii).

We already know that Φi+1(SH ni+1) ⊆ {Z ∈ SH ni
: ‖Z‖ ≤ C}. Starting with this set we now

apply Z 7→ Z −Di − qi + λ. Given the bounds on ‖Di‖ and ‖qi‖ the resulting image now lies in

the set

B1 = {Z = X + iY : Im(λ) ≤ Y ≤ C and ‖X‖ ≤ C} .

Now let Z = X + iY ∈ B1. By the triangle inequality and (5.5)

d∞(iI, Z) ≤ d∞(iI, iY ) + d∞(iY,X + iY )

≤ max{ln(‖Y ‖), ln(‖Y −1‖)} + d∞(iY,X + iY )

≤ C + d∞(iY,X + iY ) .

We can estimate d∞(iY,X + iY ) using the path Z(t) = tX + iY , for t ∈ [0, 1]. Then Ż = X

and

d∞(iY,X + iY ) ≤
∫ 1

0

FZ(t)(Ż)dt =

∫ 1

0

‖Y −1/2XY −1/2‖dt ≤ C‖X‖ ≤ C .

Thus d∞(iI, Z) < C soB1 ⊆ B(iI, R). To obtain Φi ◦Φi+1(SH di
) we must apply toB1 the rotation

Z 7→ −Z−1 followed by the map π defined above. The rotation leaves B(iI, R) invariant. Finally,

since Yi−1 = π(iI) and π is a contraction

d∞(π(Z), iYi−1) = d∞(π(Z), π(iI))

≤ d∞(Z, iI) ≤ R .

This completes the proof of (iii).

To prove (iv) we begin with the local version of the desired inequality. Let Z = X + iY and

let W be a symmetric matrix tangent at Z. If Im(λ) > 0 and ‖Y ‖ < C then

Fτ(Z)(dτ(Z)[W ]) = ‖(Y + Im(λ))−1/2W (Y + Im(λ))−1/2‖

≤ ‖(Y + Im(λ))−1/2Y 1/2‖2‖Y −1/2WY −1/2‖

≤ δ‖Y −1/2WY −1/2‖ = δFZ(W )

This inequality will imply (iv) if we can show that if Z1 and Z2 lie in B(iYi−1, R) and Z = X + iY

is any point along a length minimizing path joining Z1 and Z2, then ‖Y ‖ < C.

So let Z be such a point. We begin by showing that

Z ∈ B(iYi−1, 2R) . (3.11)

IfZ lies on a length minimizing path joining Z1 andZ2 then d∞(Z1, Z)+d∞(Z,Z2) = d∞(Z1, Z2).

So

d∞(Z, iYi−1) ≤
{

d∞(Z,Z1) + d∞(Z1, iYi−1) ≤ d∞(Z,Z1) +R
d∞(Z,Z2) + d∞(Z2, iYi−1) ≤ d∞(Z,Z2) +R
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implies

d∞(Z, iYi−1) ≤ (1/2)(d∞(Z,Z1) + d∞(Z,Z2) + 2R) ≤ 2R ,

proving (3.11). Now we estimate

2R ≥ d∞(Z, iYi−1)

≥ d∞(iY, iYi−1)

= d∞(iI, Y −1/2Yi−1Y
−1/2)

= max{ln(‖Y −1/2Yi−1Y
−1/2‖), ln(‖Y 1/2Y −1

i−1Y
1/2‖)

≥ ln(‖Y 1/2Y −1
i−1Y

1/2‖) .

(3.12)

Here we used (5.6) in the second line, the fact that Z 7→ Y −1/2ZY −1/2 is a symplectic transforma-

tion in the third line, and (5.5) in the fourth line. Now

Y −1
i−1 ≥ ‖Yi−1‖−1 ≥ C ,

since by Hypothesis 3.1 (ii) we have the uniform bound ‖Yi−1‖ ≤ C. Thus Y 1/2Y −1
i−1Y

1/2 ≥ CY

which implies ‖Y 1/2Y −1
i−1Y

1/2‖ ≥ C‖Y ‖ and therefore also ln(‖Y 1/2Y −1
i−1Y

1/2)‖ ≥ ln(‖Y ‖) + C.

Thus (3.12) implies

2R ≥ ln(‖Y ‖) + C .

This provides the desired uniform bound on ‖Y ‖ and completes the proof of (iv).

Now we can copy the proof of Theorem 2.3 to obtain our formula for the Green’s function at

the origin.

Theorem 3.6 Suppose that Hypothesis 3.1 holds. Let Γi ∈ SHni
be arbitrary, whereni = dim(`2(Si−1)).

Then

lim
i→∞

Φ0 ◦ · · · ◦ Φi(Γi) = ϕ0 = G(0, 0;λ) . (3.13)

4. Controlling the Green’s function near the real axis

In this section we show how formula (3.13) can be used to control the value of G(0, 0;λ) in

the limit Im(λ) → 0, uniformly for Re(λ) in some interval. According to (3.13), we can compute

G(0, 0;λ) with the following sequence of maps

H SH n0

Φ0
oo SH n1

Φ1
oo SH n2

Φ2
oo · · ·oo

by starting at an arbitrary point Γi ∈ SH ni
and following the arrows all the way to the left.

The farther to the right the starting point is, the better the approximation to G(0, 0;λ). In the
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previous section we used the contractive properties of the maps Φi to control the position of the

final image when Im(λ) is fixed and positive. What happens when Im(λ) tends to zero? In the

one dimensional case, the maps Φi becomes hyperbolic isometries and do not contract. This is

reflected in the unbounded variation of G(0, 0;λ) as Im(λ) → 0. But for the more general graphs

in the previous section, the maps Φi are still contracting in some directions even for λ ∈ R, due to

the non-expanding map π in the factorization (3.9). It is this contraction that we are able to exploit

in the graphs and potentials considered in this section.

Our basic idea is to find a sequence of bounded sets B−1, B0, B1, . . . with B−1 ⊆ H and

Bi ⊂ SH ni
for i ≥ 0 such that

Φi(Bi) ⊆ Bi−1 . (4.1)

Since we are always free to choose the starting point Γi to lie in Bi, we conclude that G(0, 0;λ) ∈
B−1.

In the previous section we found sets Bi = Bi(λ) that worked for a large collection of graphs

and any bounded potential. However as Im(λ) tended to zero, the sets Bi(λ) grew to fill out all of

SH ni
. For the graphs and potentials in this section we will again find sets Bi = Bi(λ) satisfying

(4.1). But now we will be able to control B−1(λ) as Im(λ) tends to zero. This gives a bound on

G(0, 0;λ) and thereby implies the existence of absolutely continuous spectrum.

Notice that it is not really necessary to find the sets Bi for every sphere. It is enough to find

them for i large, say i ≥ N . Then we can define the rest of the sets as BN−1 = ΦN (BN ), BN−2 =

ΦN−1◦ΦN (BN ), and so on. Since a finite composition of the maps Φi maps bounded sets in SH n to

bounded sets and is continuous in λ, it is enough to check thatBN is bounded for some range of λ

values to conclude thatB−1 and thus G(0, 0;λ) is also bounded for that range of λ. Moreover, it is

not even necessary to find the setsBi for every large i. It is enough to find them for a subsequence

of i1, i2, . . . tending to infinity, provided we can show that Φik−1+1◦Φik−1+2◦· · ·◦Φik
(Bik

) ⊆ Bik−1
.

The graphs we consider in this section are trees, possibly with some transverse edges added.

We are able to handle potentials that have `∞ fluctuations in the radial direction, while satisfying

various conditions restricting the behaviour in the transverse direction. We also briefly consider

decreasing potentials.

4.1 Perturbations of potentials with transverse period 2

Our first examples are perturbations of the base graph and potential depicted in Figure 2.
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Figure 2: the base graph

On this figure labels δ1 and δ2 are the values of the potential at the indicated sites, while µ is

a weighting of the corresponding edge. Note that the underlying graph in Figure 2 has many

symmetries generated by flipping a subtree about any vertex. This implies that we could flip any

pair of potentials δ1, δ2 without changing G(0, 0;λ).

We begin with a spectral analysis of the base graph and potential using our machinery. For

this graph `2(Si) = C2i

. We can compute Φi using (3.6). To simplify the expression for Φi, we

subtract 3 from the diagonal of the graph Laplacian. This makes Di = 0. The map Φi preserves

diagonal elements of SH ni
. Suppose that Γi = diag[z, z, . . . , z] for some z ∈ H. Then for i ≥ 1

Φi(Γi) = diag[φ(z, z), φ(z, z), . . . , φ(z, z)] , (4.11)

where
φ(z1, z2) = φ(z1, z2; δ1, δ2, µ, λ)

= − [1, 1]

[

z1 − δ + λ µ
µ z2 + δ + λ

]−1 [
1
1

]

.

Define the diagonal map

φd(z) = φd(z; δ1, δ2, µ, λ0) = φ(z, z; δ1, δ2, µ, λ0) .

Then (3.13) implies

G(0, 0;λ) = Φ0 ◦ φd ◦ φd ◦ · · · ◦ φd(z)

for any z ∈ H. Thus, the spectrum for the unperturbed graph can be found explicitly in terms of

the fixed points of φd(z).

To simplify notation, let us now assume that

δ1 = −δ2 = δ .
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This amounts to a real shift in λ. Then

φd(z) =
2(−z + µ− λ)

(z + λ)2 − δ2 − µ2
.

Since φd only depends on δ2 we will assume that δ > 0. The fixed points of φd(z) are roots of the

cubic polynomial

p(z) = z3 + 2λz2 + (2 + λ2 − µ2 − δ2)z + 2(λ− µ) .

When λ ∈ R there are either three real roots or a pair of conjugate complex roots and one real root.

The latter case is the interesting one for us, since the root in the upper half plane will remain there

when λ is moved slightly into the upper half plane.

Now suppose that zf = zf (δ, µ, λ) is such a root, that is, a fixed point in H for the map

φd(z; δ,−δ, µ, λ). Then G(0, 0;λ) = Φ0(zf ) = −1/(zf − qo + λ), so the λ dependence of G(0, 0;λ)

as λ approaches the real axis can now be deduced from the behaviour of zf . In particular, since

Φ0 is a hyperbolic isometry for λ ∈ R, G(0, 0;λ) has non-zero imaginary part for λ ∈ R exactly

when zf has.

Here is a plot of the contour Im(zf (δ, 0, λ)) = 0 in the λ, δ plane. The interior of the contour

is the region of spectrum, which is purely absolutely continuous. At the critical value δ =
√

2 the

spectrum splits into two bands which then move out to infinity as δ increases.
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Figure 3: spectra for base potentials

To put this into our general framework, we should define Bi for i ≥ 0 to be the singleton

{diag[zf , . . . , zf ]} and B−1 = {Φ0(zf )}. For this sequence of sets we have perfect control as Imλ

tends to zero. But these sets only work for a single potential and weight function given on the nth

sphere as

qn = [δ,−δ, δ,−δ, . . . , δ,−δ]

and

wn = [µ, µ, . . . , µ] .
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Now we present some ways of fattening the sets Bi to allow for a class of perturbations of this

potential and weight. The simplest situation is where the perturbation on each sphere has the

same periodicity as the base potential.

Proposition 4.1 Choose δ, µ and λ0 ∈ R with δ 6= 0 and with zf (δ, µ, λ0) in the upper half plane. Let

R > 0. Then there exists ε1, ε2 > 0 such that for every perturbation of the form

qi = [δ + di,1,−δ + di,2, δ + di,1,−δ + di,2 , . . . , δ + di,1,−δ + di,2],

wn = [µ+ ei, µ+ ei, . . . , µ+ ei]

with

|di,1|, |di,2|, |ei| < ε1 (4.3)

and every λ in the upper half plane with

|λ− λ0| ≤ ε2 , (4.4)

the Green’s function for the perturbed potential satisfies

G(0, 0;λ) ⊆ Φ0(B(zf , R)) .

Here B(zf , R) is a closed hyperbolic ball of radius R about zf .

Proof: The diagonal map φd(z; δ,−δ, µ, λ0) is a strict contraction on H. This can be checked directly,

but also follows from the Schwarz Lemma [Kr], since (i) φd is analytic from H into H and, (ii)

because δ 6= 0, the map φd is not a Möbius transformation. Since zf is a fixed point for φd, this

implies that

φd(B(zf , R); δ,−δ, µ, λ0) ⊂ B(zf , R) ,

where the inclusion is strict. By continuity, there exists ε1 and ε2 such that (4.3) and (4.4) imply

φd(B(zf , R); δ + di,1,−δ + di,2, µ+ ei, λ) ⊆ B(zf , R) . (4.5)

Now define the sets Bi = {diag[z, z, . . . , z] : z ∈ B(zf , R)} for i ≥ 0 and B−1 = Φ0(B0). Clearly

(4.5) implies Φi(Bi) ⊆ Bi−1 for all potentials and weights in our perturbation class defined by

(4.3) and all λ satisfying (4.4). Thus we obtain G(0, 0;λ) ⊆ B−1, which is what we want to prove.

Remark: The map Φ0 is the hyperbolic isometry z 7→ (−z + q0 − λ)−1 so this proposition gives a

uniform bound on ImG(0, 0;λ) for potentials and weights in our perturbation class defined by

(4.3) and all λ satisfying (4.4).
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We digress to investigate how large the fluctuations in the potential can be if we want to insure

thatG(0, 0;λ) remains bounded. For simplicity, we set µ = 0. Then we pick a base potential value

δ and spectral parameter λ ∈ R, so that the corresponding zf has positive imaginary part. Since

for the proof of the existence of absolutely continuous spectrum we are only interested in some

bound on G(0, 0;λ) we will choose R very large. Then we try to find the largest interval [δ−, δ+]

such that δ′ ∈ [δ−, δ+] implies φd(B(zf , R), δ′,−δ′, 0, λ) ⊆ B(zf , R). Fluctuations of the potential

in [δ−, δ+] will result in a bounded Green’s function as Im(λ) → 0.

To begin, consider λ = 0. Choose a base potential value δ ∈ (0,
√

2) so that zf = i
√

2 − δ2

has positive imaginary part. For the special value λ = 0, the map φd(z) = −2z/(z2 − δ2)

preserves the positive imaginary axis. Thus we may restrict our attention to z purely imaginary.

The intersection of the positive imaginary axis with the hyperbolic ball B(zf , R) is the interval

i[
√

2 − δ2e−R,
√

2 − δ2eR]. We must therefore decide for which δ′ the map φd(z) = −2z/(z2 − δ′
2
)

maps this interval to itself. It is an easy calculus problem to compute that the image of the interval

under φd is i[2
√

2 − δ2/((2−δ2)e−2R +δ′
2
), 1/δ′]. If we restrict δ′ to lie in [ε,

√
2−ε] for any positive

ε, then for R large the image interval lies inside the original interval.

So for λ = 0, the interval [δ−, δ+] can be any strict subinterval of [0,
√

2]. What happens when

λ moves away from zero? We have done a numerical computation of the interval [δ−, δ+] about a

base value. What we find, as |λ| grows, is that the interval [δ−, δ+] shrinks to a tiny neighbourhood

of the base value of δ. It would be interesting to know whether for large λ, comparatively small

fluctuations about a base potential given by, say, δ = λ, really result in a singular part to the

spectral measure dµχ0 .

The next situation we consider is where the perturbation is again periodic across each sphere

with fixed period. However, now the period can be larger than the period of the base potential.

In this situation, the map φ2 below, which plays the same role as φd above, maps H2 into H2. So

the Schwarz Lemma is no longer available to show that it is a strict contraction. Instead we will

rely on a local analysis at the fixed point.

It is important to realize that the function of two variables φ(z1, z2) is not a strict contraction

from H2, with the d∞ metric, to H. We can see this locally at (zf , zf ) by calculating the linearization.

To simplify the notation let

α =
∂φ

∂z1
(zf )

and

β =
∂φ

∂z2
(zf ) .

Lemma 4.2 Choose δ, µ and λ0 ∈ R with δ 6= 0 and with zf (δ, µ, λ0) in the upper half plane. Let
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φ(z1, z2) = φ(z1, z2; δ, µ, λ0) and let α and β be the partial derivatives evaluated at zf . Then

|α+ β| < 1 , (4.6)

while

|α| + |β| = 1 . (4.7)

Proof: Since φ(z1, z2) = −ET (Z +Q)−1E for E =

[

1
1

]

, Z =

[

z1 0
0 z2

]

and Q =

[

−δ + λ µ
µ δ + λ

]

,

we have
∂φ

∂z1
= ET (Z +Q)−1

[

1 0
0 0

]

(Z +Q)−1E

so that
∣

∣

∣

∣

∂φ

∂z1

∣

∣

∣

∣

(z, z) +

∣

∣

∣

∣

∂φ

∂z2

∣

∣

∣

∣

(z, z) = ET (diag[z, z] +Q)−1(diag[z, z] +Q)−1E =
Im(φ(z, z))

Im z
.

Since φ(zf , zf ) = zf this implies (4.7). Given (4.7) the only way we can have equality in (4.6) is if

α is a real multiple of β. A short calculation shows this only happens when δ = 0.

Now we have φ(zf + w1, zf + w2) ∼ zf + αw1 + βw2. So d(φ(zf + w1, zf + w2), zf ) ∼
Im(zf )−1|αw1 + βw2| while d∞((zf + w1, zf + w2), (zf , zf )) ∼ Im(zf )−1 max{|w1|, |w2|}. So the

linearization of the statement that φ is a contraction at (zf , zf ) is

|αw1 + βw2| ≤ max{|w1|, |w2|} . (4.8)

Although this is true, and follows easily from (4.7), there are always directions, given by ei arg αw1 =

ei arg βw2, where equality holds, so the contraction is not strict. Notice that in the first example

we only considered the diagonal, w1 = w2. In this case (4.6) confirms that we do get a strict

contraction.

Proposition 4.3 Choose δ, µ and λ0 ∈ R with δ 6= 0 and with zf (δ, µ, λ0) in the upper half plane. Then

there exists ε1, ε2 > 0 and a fixed bounded set B ⊂ H such that for every perturbation of the form

qi = [δ + di,1,−δ + di,2, δ + di,3,−δ + di,4 , . . . , δ + di,2i−1,−δ + di,2i ],

periodic with period 2k, that is, di,j+2k = di,j ,

wi = [µ+ ei,1, µ+ ei,2, . . . , µ+ ei,2i−1 ]

periodic with period 2k−1 satisfying

|di,1|, |di,2|, |di,3|, |di,4|, |ei,1|, |ei,2| < ε1 , (4.9)

and every λ in the upper half plane with

|λ− λ0| ≤ ε2 , (4.10)

the Green’s function G(0, 0;λ) for the perturbed potential lies in B.
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Proof: We give the proof for period 4. The generalization to higher periods is immediate. For a

period 4 perturbation we consider the map

φ2 :

[

z1
z2

]

7→
[

φ(φ(z1, z2; δ1 + d1, δ2 + d2, µ+ e1), φ(z1, z2; δ1 + d3, δ2 + d4, µ+ e2))
φ(φ(z1, z2; δ1 + d1, δ2 + d2, µ+ e1), φ(z1, z2; δ1 + d1, δ2 + d2, µ+ e1))

]

when d1 = d2 = d3 = d4 = e1 = e2 = 0, the map φ2 has fixed point
[

zf

zf

]

, and it follows easily

from (4.6) and (4.7) that φ2 is a strict contraction near this fixed point. Thus there is a small ball in

H2 with the d∞ distance about
[

zf

zf

]

that maps strictly inside itself under φ2. By continuity, this

remains true under small perturbations of the potential and weights. Since

Φ ◦ Φ : diag[z1, z2, z1, z2, . . .] 7→ diag[φ2(

[

z1
z2

]

), φ2(

[

z1
z2

]

), . . .]

we can construct sets Bi for every second sphere consisting of small balls about the fixed point

such that Φi−1 ◦ Φi(Bi) ⊆ Bi−2. This suffices for the proof.

Remark: Both Proposition 4.1 and Proposition 4.3 required that δ 6= 0, to insure that φd was a strict

contraction and could be perturbed. In fact, if we set δ = 0 and try to perturb about q = 0, we

can end up with an unbounded Green’s function. To see this, consider the potential that takes

the values [δ1,−δ1, δ1,−δ1, · · ·] and [δ2,−δ2, δ2,−δ2, · · ·] on alternate spheres. Then the fixed point

equation is of the form

z = φd(φd(z; δ2, λ); δ1, λ) .

When λ = 0 and 0 < |δ1δ2| < 2 the fixed point is

zf = i
|δ2|
|δ1|
√

2 − |δ1δ2| .

This point is on the boundary at infinity in hyperbolic space if δ1 = 0, δ2 6= 0 or δ1 6= 0, δ2 = 0,

and therefore so is G(0, 0; 0) = Φ0(zf ). Of course, this does not mean that the spectrum is not

absolutely continuous (in fact, it is), just that the curve G(0, 0;λ) = Φ0(zf (λ)) hits the real axis or

goes to infinity when λ tends to zero.

In two previous propositions, the perturbations in each sphere were taken from a subspace

of periodic functions whose dimension was fixed. In the following example we consider pertur-

bations that are decreasing across each sphere. As before, the change from one sphere to the next

is only subject to an `∞ bound.

Proposition 4.4 Choose δ, µ and λ0 ∈ R with with zf (δ, µ, λ0) in the upper half plane. Let g(k) be a

positive decreasing function satisfying

g(2k − 1) ≤ δ1g(k)
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for some δ1 < 1. Let q and w be a potential and weight function of the form

qi = [δ + di,1,−δ + di,2, δ + di,3,−δ + di,4, . . . , δ + di,2i−1,−δ + di,2i ] ,

and

wi = [µ+ ei,1, µ+ ei,2, . . . , µ+ ei,2i−1 ] .

There exist ε > 0 and a bounded setB ⊂ H such that for |di,k| ≤ εg(k), |ei,k| ≤ εg(2k−1) and |λ−λ0| ≤ ε

the Green’s function G(0, 0;λ) for this potential and weight lies in B.

Proof: In this proof we use sets Bi defined by

Bi = {diag[zf + w1, zf + w2, zf + w3, zf + w4, . . . zf + w2i ] : |wk| ≤ Lεg(k)}

for some constant L. In this case the sets will work only for one fixed value of λ. But the set B−1

containing the Green’s function is a small ball about zf which does not move much if we change

λ. Thus we may take B in the theorem to be a union of sets B−1 for λ close to λ0. We must show

that Φi(Bi) ⊆ Bi−1. Linearizing about w2k−1 = w2k = di,2k−1 = di,2k = ei,k = 0 yields

φ(zf + w2k−1, zf + w2k ; δ + di,2k−1,−δ + di,2k , µ+ ei,k, λ)

= zf + αw2k−1 + βw2k +O(‖[w2k−1, w2k]‖2) +O(‖[di,2k−1, di,2k , ei,k]‖)

Under one iteration of Φ we estimate the value of the new wk by

|αw2k−1 + βw2k | + CL2ε2g(2k − 1)2 + Cεg(2k − 1)

≤ |α|Lεg(2k − 1) + |β|Lεg(2k) + CL2ε2g(2k − 1)2 + Cεg(2k − 1)

≤ (δ1 + CLεδ21 + Cδ1/L)Lεg(k)

≤ Lεg(k) ,

for suitable choice ofL large and ε small. This is the inequality needed to show that Φi(Bi) ⊆ Bi−1.

Remark 1: In this theorem we did not require δ 6= 0, so it gives results about perturbations about

q = 0.

Remark 2: The function g(k) = k−ε for ε > 0 satisfies the hypothesis in this theorem.

This concludes our list of perturbations of a base potential and weight that are transversally

periodic with period two. Our list is certainly not exhaustive. We could, for example begin with

a potential of the type in Proposition 4.1 and superimpose a perturbation of the type considered

in Proposition 4.4.

23



4.2 Perturbations of potentials with transverse period 4

In principle, our methods should be able to handle general periodic modifications of the tree.

Starting with a block of length 2k in the sphere of the tree, we can add an arbitrary potential

and extra edges with weights within that block, and repeat this block periodically in each sphere.

Associated to this base graph and potential is a map of SH 2k whose fixed point determines the

spectrum of the base graph and potential. If this map, or possibly some power of it, is a strict

contraction, we may perturb it as in the previous section.

Unfortunately, the fixed point equation for this map is complicated, and we do not have a

general way of showing that it has a unique solution in SH 2k , nor do we know a general method

for deciding for which parameter values the map, or some power of the map, is a strict contraction

at the fixed point. But it perhaps worth pointing out that for a given set of parameter values, both

these steps can quite easily be performed numerically.

In this section we will consider a situation where we can perform the necessary calculations.

The graph and potential depicted in Figure 4.
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Figure 4: base potentials with period 4

In this figure the unlabeled values of the potential are arbitrary. We will only discuss the base

potential

qn = [δ, δ,−δ,−δ, . . . , δ, δ,−δ,−δ] .

depicted in Figure 4, leaving the perturbation results analogous to Proposition 4.1, Proposition

4.3 and Proposition 4.4 to the reader.

As in the previous section, the map Φi preserves diagonal elements of SH ni
. Suppose that
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Γi = diag[z1, z2, . . . , z1, z2] for some z1, z2 ∈ H. Then for i ≥ 2

Φi(Γi) = diag[ψ(z1, z2, z1, z2), ψ(z1, z2, z1, z2), . . . , ψ(z1, z2, z1, z2)] , (4.11)

where

ψ(z1, z2, z3, z4; δ, λ)

= −
[

1 1 0 0
0 0 1 1

]







z1 − δ + λ 0 0 0
0 z2 − δ + λ 0 0
0 0 z3 + δ + λ 0
0 0 0 z4 + δ + λ







−1 





1 0
1 0
0 1
0 1






.

The spectrum for the unperturbed graph can be found explicitly in terms of the fixed points

of z 7→ ψ(z, z; δ, λ) with z = (z1, z2) ∈ H
2. These fixed points are roots of a fifth order polynomial.

We can solve this explicitly when λ = 0, and we present this solution now.

First notice that the pair z = (ζ,−ζ) with ζ ∈ H is a solution if ζ satisfies

ζ =
1

δ − ζ
+

1

δ + ζ
.

ζ is thus a solution of the cubic equation, ζ3 − δ2ζ + 2δ = 0. We do not need to solve this equation

because its solutions do not correspond to a solution in H2 where both z1 and z2 are in the upper

half plane.

The other two independent solutions are of the form (ζ,−ζ̄). So, let ζ = x+ iy. Then,

x+ iy =
1

δ − x− iy
+

1

δ + x− iy

yields two equations for the real and imaginary parts. They are of the form

x(δ2 − x2 − y2) + 2δy2 = 2δ ,

y(δ2 − x2 − y2) − 2δxy = −2y .

We may divide the latter equation by y; if y = 0 we would be lead to the previous real solution of

the equation, x3 − δ2x+ 2δ = 0. Hence we obtain

y = ±
√

2 − x2 − 2δx+ δ2 .

We plug this into the first equation and get a linear equation in x with the solution x =
δ(1 + δ2)

1 + 2δ2
.

This gives y = ±
√

2 + 6δ2 + 4δ4 − δ6

1 + 2δ2
. Let

δ2 < δ2max =
1

3

(

199 + 3
√

33
)1/3

+
34

3

(

199 + 3
√

33
)−1/3

+
4

3
≈ 5.222262523 . (4.12)

Then, y is real and non-zero. The unique solution (z1, z2) in the upper half plane is
(

δ(1 + δ2)

1 + 2δ2
+ i

√
2 + 6δ2 + 4δ4 − δ6

1 + 2δ2
,−δ(1 + δ2)

1 + 2δ2
+ i

√
2 + 6δ2 + 4δ4 − δ6

1 + 2δ2

)

. (4.13)
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Now we discuss the contraction property of the map z 7→ ψ(z) = ψ(z, z; δ, λ) : H2 → H2 at

the fixed point, zf = (z1, z2). In this case there is no Schwarz Lemma available. In general, a map

χ = (χ1, χ2) : H2 → H2 is a contraction at a point z = (z1, z2) iff

diag[Im(χ1(z)), Im(χ2(z))]
−1 (Dχ)(z) diag[Im(z1), Im(z2)] : C

2 → C
2

is a contraction with the `∞ norm. So let us look at the matrix

D̃(zf ) = diag[Im(zf )]−1 (Dψ)(zf ) diag[Im(zf )]

=







|δ−λ−z1|
2

(δ−λ−z1)2
1

1+
Im(z2)

Im(z1)

∣

∣

δ−λ−z1
δ−λ−z2

∣

∣

2
|δ−λ−z2|

2

(δ−λ−z2)2
1

1+
Im(z1)

Im(z2)

∣

∣

δ−λ−z2
δ−λ−z1

∣

∣

2

|δ+λ+z1|
2

(δ+λ+z1)2
1

1+
Im(z2)

Im(z1)

∣

∣

δ+λ+z1
δ+λ+z2

∣

∣

2

|δ+λ+z2|
2

(δ+λ+z2)2
1

1+
Im(z1)

Im(z2)

∣

∣

δ+λ+z2
δ+λ+z1

∣

∣

2







=:

[

eiα11x eiα12(1 − x)
eiα21(1 − y) eiα22y

]

.

(4.14)

Notice that D̃(zf ) has the property that 0 < |D̃ij(zf )| < 1 and
∑2

j=1 |D̃ij(zf )| = 1. If the

eigenvalues of this matrix all have absolute value less than one, then some power of the matrix

will be a contraction. Since we are interested in the absolute values of eigenvalues of D̃(zf ) we

may as well look at

D̂ = eiA

[

1 0
0 eiB

] [

eiα11x eiα12(1 − x)
eiα21(1 − y) eiα22y

] [

1 0
0 e−iB

]

.

A,B are real. Now we may choose 2A = −α11 − α22, 2B = α12 − α21. If we let 2α = α11 − α22

and 2β = α12 + α21 − α11 − α22 then

D̂ =

[

eiαx eiβ(1 − x)
eiβ(1 − y) e−iαy

]

. (4.15)

Unfortunately, D̂ is not a contraction, a situation we already encountered in Proposition 4.3.

However, we shall show that unless α = β = 0, the square of the matrix D̂ is contracting in

the `∞-norm, i.e., ‖D̂2(w)‖∞ < ‖w‖∞ for non-zero w ∈ C2. This can be seen as follows. The

non-contracting directions of D̂ are
[

e−i(α−β)

1

]

and
[

e−i(α+β)

1

]

. After one more application of D̂,

the first direction is mapped into
eiβ

ei(2β−α)(1 − y) + e−iαy
. Now, this equals e−i(α−β) or e−i(α+β)

iff α = β = 0. The same applies to the other direction.

Now, the case α = 0, β = 0 corresponds to α11 = α22, α12 + α21 = 2α11, respectively. This

implies that

|z1 − λ− δ|2
(z1 − λ− δ)2

=
|z2 + λ+ δ|2
(z2 + λ+ δ)2

,
|z1 + λ+ δ|2|z2 − λ− δ|2
(z1 + λ+ δ)2(z2 − λ− δ)2

=
|z1 − λ− δ|4
(z1 − λ− δ)4

.

Since z ∈ H
2 we obtain that

|z1 − λ− δ|
z1 − λ− δ

=
|z2 + λ+ δ|
z2 + λ+ δ

. (4.16)

26



We claim that this condition cannot be satisfied at the fixed point unless δ = 0 but we can prove

it only in a neighborhood of λ = 0. By the symmetry of the fixed point equation, z2 = −z̄1.

Combined with (4.16) we obtain z1 = δ+ iγ for some γ ≥ 0. Then we plug this into the fixed point

equation and get that

δ + iγ =
i

γ
+

1

2δ − iγ
.

A comparison of the real part reveals γ =
√

2 − 4δ2 which we insert into the equation for the

imaginary part. This leads to δ = 0.

Thus, we have shown the twofold iteration of the map z 7→ ψ(z) = ψ(z, z; δ, λ) is a contraction

at the fixed point when λ = 0. This leaves us in a position to prove results analogous to Proposition

4.1, Proposition 4.3 and Proposition 4.4. We omit the details.

4.3 Decaying potentials

In this section we show how our methods can be used to prove results about potentials that

decay at infinity. For binary trees, similar results were proved using the Mourre estimate in [AF].

This work was generalized in [GG], where a more abstract setup in Fock space was studied.

We briefly consider the one dimensional situation and the tree, and then prove a result about

perturbations by decreasing potentials in a more general situation.

We begin with the following lemma, which exploits formula (3.13) and the contractive prop-

erty of the maps Φi.

Lemma 4.5 Suppose we are given a graph and potential satisfying Hypothesis 3.1, and that Φk are the

maps defined by (3.6). Suppose that we are given a sequence Zk ∈ SH nk
for every λ in a compact set

K ⊂ {Im(λ) ≥ 0}. This sequence need only be defined for k ≥ k0, and must satisfy

∞
∑

k=k0

d∞(Φk+1(Zk+1), Zk) ≤ C1 . (4.17)

and

d∞(Zk0 , iI) ≤ C2 (4.18)

for every λ ∈ K. Then there exists a constant C3 such that for every λ ∈ K

d(G(0, 0;λ), i) < C3 .

Proof: According to (3.13) there exists n ≥ k0 such that d(G(0, 0;λ),Φ0 ◦ · · · ◦ Φn(Zn)) ≤ 1. We

estimate the distance of G(0, 0;λ) from i, using the fact that the maps Φi and their compositions
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are contractions.

d(G(0, 0;λ), i)

≤ d∞(Φ0 ◦ · · · ◦ Φn(Zn), i) + 1

≤ d∞(Φ0 ◦ · · · ◦ Φn−1(Φn(Zn)),Φ0 ◦ · · · ◦ Φn−1(Zn−1)) + d∞(Φ0 ◦ · · · ◦ Φn−1(Zn−1), i) + 1

≤ d∞(Φn(Zn), Zn−1) + d∞(Φ0 ◦ · · · ◦ Φn−1(Zn−1), i) + 1

≤ · · ·

≤
n
∑

k=k0

d∞(Φk+1(Zk+1), Zk) + d∞(Φ0 ◦ · · · ◦ Φk0(Zk0), i) + 1

≤ C1 + d∞(Φ0 ◦ · · · ◦ Φk0(Zk0), i) + 1 .

The second term on the right is bounded because Zk0 varies in a bounded set and Φ0 ◦ · · · ◦Φk0 is

a continuous map.

In the one dimensional case considered in section 2, Φk maps H to H and possible choices for

Zk are the fixed points of of Φk. These are given explicitly by

zf
k =

qk − λ

2
+

√

(

qk − λ

2

)2

− 1 , (4.19)

where the branch of
√· is chosen so that Im(zf

k ) ≥ 0. This leads to the following result.

Theorem 4.6 Let q be a potential on Z+ such that qk → 0 as k → ∞ and
∑∞

k=0 |qk+1 − qk| < ∞ .

Then for all 0 < µ < 2 and ε > 0

sup
λ∈Kµ,ε

d(i, G(0, 0;λ)) <∞ ,

where Kµ,ε := {λ ∈ H : |Reλ| ≤ µ , 0 < Imλ ≤ ε }.

Proof: When qk = 0 and λ ∈ [−µ, µ] the corresponding fixed point zf
k given by (4.19) lies on a

portion of the unit circle in the upper half plane. By continuity, the values of zf
k remain in a

bounded set when λ ∈ Kµ,ε with ε and qk small. Since qk → 0 we thus obtain (4.18) for k0

sufficiently large and ε sufficiently small. The estimate (4.17) for k0 sufficiently large follows from

the estimate

d(Φk+1(z
f
k+1), z

f
k ) = d(zf

k+1, z
f
k ) ≤ C|qk+1 − qk| ,

which holds for λ ∈ Kµ,ε and qk sufficiently small. The theorem now follows from Lemma 4.5.

We can modify this argument to treat the case of a binary tree. For a multiplication operator

q on `2(Sk) define

Z(q, λ) =
q − λ

2
+

√

(

q − λ

2

)2

− 2 .

Then −(Z(qk, λ) − qk + λ)−1 = Z(qk, λ)/2 so that we find that

Φk+1(Z(qk+1), λ) = −ET
k (Z(qk+1, λ) − qk+1 + λ)−1Ek =

1

2
ET

k Z(qk+1, λ)Ek .

If we use Zk = Z(qk, λ) as the sequence in Lemma 4.5 we arrive at the following theorem.
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Theorem 4.7 Let q = (q0, q1, . . .) be a potential on the binary tree such that ‖qk‖∞ → 0,
∑

k

‖1

2
ET

k (qk+1) − qk‖∞ <∞

and
∑

k

‖qk+1 −Ek(qk)‖2
∞ <∞.

(In these formulas we are thinking of qk+1 and qk as vectors rather than diagonal operators, so that we write

ET
k (qk+1) rather than using the operator notation ET

k qk+1Ek.)

Then for all 0 < µ < 2
√

2 and ε > 0

sup
λ∈Kµ,ε

d(i, G(0, 0;λ)) <∞ ,

where Kµ,ε := {λ ∈ H : |Reλ| ≤ µ , 0 < Imλ ≤ ε }.

Proof: Let Zk = Z(qk, λ). To apply Lemma 4.5, we need to show (4.17) and (4.18). To begin, we

point out that Zk may be regarded either as diagonal operators or vectors. It follows from their

definition that Im(Zk) is bounded below for k sufficiently large, so that qk is sufficiently small,

and λ ∈ Kµ,ε. It follows that 1
2E

T
k (Zk+1) (or, in operator notation, 1

2E
T
k Zk+1Ek) is also bounded

below. Then, by considering a straight line path joining Φk+1(Zk+1) = 1
2E

T
k (Zk+1) to Zk we find

d∞(Φk+1(Zk+1), Zk) ≤ C‖1

2
ET

k (Zk+1) − Zk‖∞

for k sufficiently large. Now ET
k (Zk+1) can be written by first splitting qk+1 into two vectors qodd

k+1

and qevenk+1 of half the length containing the values of qk+1 on alternate sites in the sphere. We then

have

ET
k (Zk+1) = Z(qodd

k+1, λ) + Z(qevenk+1 , λ) ,

so we obtain
1

2
ET

k (Zk+1) − Zk =
1

2

(

Z(qodd
k+1, λ) − Z(qk, λ)

)

+
1

2

(

Z(qevenk+1 , λ) − Z(qk, λ)
)

.

The function Z(q, λ) is differentiable for λ in a small neighbourhood of Kµ,ε and q sufficiently

small. Expanding about q = qk we have

Z(qodd
k+1, λ) = Z(qk, λ) + Z ′(qk, λ)(q

odd
k+1 − qk) +

1

2
Z ′′(ξodd, λ)(qodd

k+1 − qk)2

for some ξodd which is small for k large. This, and a similar expansion for Z(qeven
k+1 , λ) leads to

1

2
ET

k (Zk+1) − Zk

= Z ′(qk, λ)
(1

2
(qodd

k+1 + qevenk+1 ) − qk
)

+ Z ′′(ξodd, λ)(qodd
k+1 − qk)2 +

1

2
Z ′′(ξeven, λ)(qevenk+1 − qk)2 .

This implies

‖1

2
ET

k (Zk+1) − Zk‖∞ ≤ C‖1

2
ET

k (qk+1) − qk‖∞ + ‖qk+1 −Ek(qk)‖2
∞ .

Therefore the assumptions on the potential imply (4.17) for k0 sufficiently large.

The distance, d∞(Zk0 , iI) can be estimated by ‖Zk0 − iI‖∞ using a staight line path. This

leads to (4.18) and completes the proof.
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We conclude this section with an `1 perturbation result. The hypotheses of this theorem are

satisfied for the transversally periodic and transversally decaying potentials we considered above.

Theorem 4.8 Suppose we are given a base graph and potential satisfying Hypothesis 3.1, and define

Q0,k = D0,k + q0,k for this base potential and graph. Let Φ0,k are the maps defined by (3.6) for this

base potential, that is, Φ0,k(Z) = −ET
k (Z − Q0,k − λ)−1Ek. Assume that for the base potential and

graph we have produced a sequence Zk ∈ SH nk
with Φ0,k+1(Zk+1) = Zk, Yk = Im(Zk) ≥ C > 0 and

Z0 = G0(0, 0;λ) bounded for all λ in some compact set K ⊂ H.

Now consider a perturbation where we change Dk and qk. Let Qk = Dk + qk for the perturbed graph

and let Φk(Z) = −ET
k (Z −Qk − λ)−1Ek. Assume

∑

k

‖Q0,k −Qk‖ <∞ .

Here ‖ · ‖ is the operator norm. Then G(0, 0;λ), the Green’s function for the perturbed graph, is also

bounded for λ ∈ K.

Proof: We apply Lemma 4.5 using the sequence Zk in the hypothesis and k0 = 0. The estimate

(4.18) is true by hypothesis. To show (4.17) we factor Φ0,k = πk ◦ ρ ◦ τ0,k and Φk = πk ◦ ρ ◦ τk,

where πk(Z) = ET
k ZEk, ρ(Z) = −Z−1, τ0,k(Z) = Z−Q0 +λ and τk(Z) = Z−Qk +λ. Now, using

that πk and ρ are contractions, we have

d∞(Φk(Zk), Zk−1) = d∞(Φk(Zk),Φ0,k(Zk))

= d∞(πk ◦ ρ ◦ τ0,k(Zk), πk ◦ ρ ◦ τk(Zk))

≤ d∞(τ0,k(Zk), τk(Zk))

= d∞(Zk −Q0,k + λ, Zk −Qk + λ)

≤ ‖(Yk + λ)−1/2(Q0,k −Qk)(Yk + λ)−1/2‖

≤ C‖Q0,k −Qk‖ .

Here we estimated the d∞ distance using a straight line path. Thus the hypothesis on the potential

implies (4.17).

Appendix: The Siegel upper half space

The Siegel upper half space is a generalization of the hyperbolic plane. In this appendix we

collect the facts about this space that we need. For more information we refer to the original work

of Siegel [S] and the article of Freitas [F].

Definition: The Siegel upper half space SH n is the set of n × n matrices of the form Z = X + iY ,

where X and Y are real symmetric matrices, and Y is positive definite.
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There are other models of SH n described in [F]. In particular, we will identify the Siegel upper

half space SH n with a homogeneous space of the group of symplectic matrices.

Definition: The symplectic group Sp2n(R) is the group of all real 2n× 2n matrices S satisfying

STJS = J , with J =

[

0 1n

−1n 0

]

,

where 1n is the identity matrix in n dimensions.

To relate the symplectic group to the Siegel upper half space, we write a symplectic 2n× 2n

matrix S in terms of four n× n matrices, A,B,C,D, i.e.,

S =

[

A B
C D

]

.

It was shown in [S] that for each symplectic matrix S, the map

ΦS : SH n → SH n , Z 7→ (AZ +B)(CZ +D)−1

is well defined. Moreover, ΦS ◦ΦR = ΦSR, Φ12n
= id, and ΦS acts transitively on SH n. A standard

calculation shows that the set of elements U in Sp2n(R) for which ΦU (i1) = i1 is precisely the

subgroup of orthogonal matrices in Sp2n(R), which we shall denote byK. In particular, this yields

the bijective map Ψ

Ψ : Sp2n(R)/K → SH n , SK 7→ ΦS(i1) . (5.1)

For Z = X + iY ∈ SH n we define the symplectic matrix

S(X + iY ) =

[

Y 1/2 XY −1/2

0 Y −1/2

]

. (5.2)

It follows that the mapZ 7→ S(Z)K is the inverse of the map (5.1), since ΦS(Z)(i1) = Z. We define

the following metric on Sp2n(R)/K

dS
∞(S1K,S2K) = 2 ln ‖S−1

1 S2‖ .

It is clear that the expression on the left is independent of the choice of representative in the

equivalence class. That this defines indeed a metric, is shown for example in [F]. At the end of

this section we will prove the following

Theorem 5.1 The map Ψ is an isometry for the metrics dS
∞ and d∞. In particular,

d∞(Z1, Z2) = 2 ln ‖S(Z1)
−1S(Z2)‖ . (5.3)

Theorem 5.1 implies that for all symplectic matrices S, the map ΦS acts as an isometry on

SH n for the metric d∞. Inserting the expression (5.2) into (5.3), we find

d∞(X1 + iY1, X2 + iY2) = 2 ln

∥

∥

∥

∥

[

Y
−1/2
1 Y

1/2
2 Y

−1/2
1 (X2 −X1)Y

−1/2
2

0 Y
1/2
1 Y

−1/2
2

]
∥

∥

∥

∥

. (5.4)
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We shall now show inequalities (5.5) and (5.6), which were used in the proof of Lemma 3.5. As a

direct consequence of (5.4) we have

d∞(iI, iY ) = max{ln(‖Y ‖), ln(‖Y −1‖)} . (5.5)

Using the explicit expression (5.2), one can show that

(S−1
X1+iY1

SX2+iY2)
TS−1

X1+iY1
SX2+iY2 ≥ (S−1

iY1
SiY2)

TS−1
iY1
SiY2 .

This implies, by (5.3), that

d∞(iY1, iY2) ≤ d∞(X1 + iY1, X2 + iY2) . (5.6)

In the case where n = 1 the Siegel upper half space SH 1 = H. For z1, z2 ∈ H the metric takes the

following form

d∞(z1, z2) = d(z1, z2) = cosh−1

(

1 +
|z1 − z2|2
2Imz1Imz2

)

. (5.7)

Remark: We note that the above statements can be generalized to p-metrics. For p ≥ 1, we

introduce the trace norm ‖A‖p = (Tr|A|p)1/p , and define the p-metrics on the homogeneous space

Sp2n(R)/K by

dS
p (S1K,S2K) = 2‖(ln |S−1

1 S2|)+‖p ,

where ( · )+ denotes the positive part. Likewise we define dp(Z1, Z2) on SH n

dp(Z1, Z2) = inf
Z(t)

∫ 1

0

‖Y −1/2 dZ Y −1/2‖p ,

where the infimum is taken over all continuously differentiable curves Z : [0, 1] → SH n with

Z(0) = Z1 and Z(1) = Z2. We note that Siegel [S] considered the case p = 2, for which he derived

analogous statements. We want to point out that the map Ψ defined in (5.1) is an isometry for all

p-metrics (p ≥ 1). The proof of Theorem 5.1 generalizes in a straightforward way to that case.

Proof of Theorem 5.1: Note that dS
∞(S(Z1)K,S(Z2)K) defines a metric on SH n. We need to

show that this metric agrees with distance d∞ defined by the Finsler metric (3.8). For notational

convenience we set dS
∞(Z1, Z2) = dS

∞(S(Z1)K,S(Z2)K)

(1) We shall first show that dS
∞(Z1, Z2) ≤ d∞(Z1, Z2). A calculation reveals that

dS
∞(Z + ξ, Z) = FZ(ξ) + r(Z, ξ) , (5.8)

where r(Z, ξ) is a function such that lim‖ξ‖→0 |r(Z, ξ)|/‖ξ‖ = 0 uniformly in Z, for Z on compact

subsets of SH n. Let γ be a continuously differentiable path with γ(0) = Z1 and γ(1) = Z2. Then,

by the triangle inequality,

dS
∞(Z1, Z2) ≤

n
∑

i=1

dS
∞(γ(ti−1), γ(ti)) ,
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where t0 = 0 < t1 < ... < tn = 1 is a partition with ti − ti−1 = 1/n. By (5.8), in the limit as n tends

to infinity, we have

dS
∞(Z1, Z2) ≤

∫ 1

0

Fγ(t)(γ̇(t)) dt .

Since the curve γ is arbitrary,

dS
∞(Z1, Z2) ≤ d∞(Z1, Z2) .

(2) We shall now show the opposite inequality: dS
∞(Z1, Z2) ≥ d∞(Z1, Z2). SinceS(Z1)

−1S(Z2)

is a symplectic matrix there exist orthogonal and symplectic matrices R1, R2 ∈ K, such that

R1S(Z1)
−1S(Z2)R2 is diagonal. For 0 ≤ t ≤ 1, define the path

γ(t) = Ψ
(

S(Z1)R
−1
1 (R1S(Z1)

−1S(Z2)R2)
t
)

.

It is clear that γ(0) = Z1 and γ(1) = Z2. For 0 ≤ s, t ≤ 1,

dS
∞(γ(t), γ(s)) = 2 ln ‖(R1S(Z1)

−1S(Z2)R2)
s−t‖ = |s− t|dS

∞(γ(0), γ(1)) .

This implies

dS
∞(Z1, Z2) =

n
∑

i=1

dS
∞(γ(ti−1), γ(ti)) ,

for partitions as above. As n→ ∞,

dS
∞(Z1, Z2) =

∫ 1

0

Fγ(t)(γ̇(t)) dt .

Taking the infimum over all paths yields the desired inequality.
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