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Abstract. We justify the linear response theory for an ergodic Schrödinger
operator with magnetic field within the non-interacting particle approxima-
tion, and derive a Kubo formula for the electric conductivity tensor. To achieve
that, we construct suitable normed spaces of measurable covariant operators
where the Liouville equation can be solved uniquely. If the Fermi level falls
into a region of localization, we recover the well-known Kubo-St̆reda formula
for the quantum Hall conductivity at zero temperature.
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1. Introduction

In theoretical works, the electric conductivity tensor is usually expressed in terms
of a “Kubo formula,” derived via formal linear response theory. The importance
of this Kubo formula is enhanced by its links with the quantum Hall conductivity
at zero temperature. During the past two decades a few papers managed to shed
some light on these derivations from the mathematical point of view, e.g., [P, Ku, B,
NB, AvSS, BES, SB1, SB2, AG, Na, ES, AES]. While a great amount of attention
has been brought to the derivation of the quantum Hall conductivity from a Kubo
formula, and to the study of this conductivity itself, not much has been done
concerning a controlled derivation of the linear response and the Kubo formula
itself; only the recent papers [SB2, Na, ES, AES, CoJM] deal with this question.

In this article we consider an ergodic Schrödinger operator with magnetic field,
and give a controlled derivation of a Kubo formula for the electric conductivity ten-
sor, validating the linear response theory within the noninteracting particle approx-
imation. For an adiabatically switched electric field, we then recover the expected
expression for the quantum Hall conductivity whenever the Fermi energy lies either
in a region of localization of the reference Hamiltonian or in a gap of the spectrum.

To perform our analysis we develop an appropriate mathematical apparatus for
the linear response theory. We first describe several normed spaces of measurable
covariant operators which are crucial for our analysis. We develop certain analytic
tools on these spaces, in particular the trace per unit volume and a proper def-
inition of the product of two (potentially unbounded) operators. (Similar spaces
and their relevance were already discussed in [BES].) We then use those tools to
compute rigorously the linear response of the system forced by a time dependent
electric field. This is achieved in two steps. First we set up the Liouville equa-
tion which describes the time evolution of the density matrix under the action of
a time-dependent electric field, in a suitable gauge with the electric field given by
a time-dependent vector potential. In a standard way, this evolution equation can
be written as an integral equation, the so-called Duhammel formula. Second, we
compute the net current per unit volume induced by the electric field and prove
that it is differentiable with respect to the electric field at zero field. This yields the
desired Kubo formula for the electric conductivity tensor. We then push the anal-
ysis further to recover the expected expression for the quantum Hall conductivity,
the Kubo-St̆reda formula.

Our derivation of the Kubo formula is valid for any initial density matrix ζ =
f(H) with a smooth profile of energies f(E) that has appropriate decay at high
energies. In particular, the Fermi-Dirac distributions at positive temperature are
allowed. At zero temperature, with the Fermi projection P (EF ) as the initial profile,
our analysis is valid whenever the Fermi energy EF lies either in a gap of the
spectrum or in a region of localization of the reference Hamiltonian. The latter
is actually one of the main achievements of this article. There is indeed a crucial
difference between P (EF ) with EF in a gap (or similarly f(H), with f smooth with
decay at high energies) and P (EF ) with EF in a region of localization: in the first
case the commutator [xk, P (EF )] is a bounded operator while it is unbounded in the
second case. Dealing with the unbounded commutator [xk, P (EF )], which appears
naturally in the Kubo-Str̆eda formula, forces us to use the full theory of the normed
spaces of measurable covariant operators we develop.
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We now sketch the main points of our analysis. We consider a system of non-
interacting quantum particles in a disordered background, with the associated one-
particle Hamiltonian described by an ergodic magnetic Schrödinger operator

Hω = (−i∇ − Aω)2 + Vω on H := L2(Rd), (1.1)

where the parameter ω runs in the probability space (Ω, P), and for P-a.e. ω we
assign a magnetic potential Aω and an electric potential Vω. The precise require-
ments are described in Assumption 4.1 of Section 4. Briefly, Aω and Vω belong to
a very wide class of potentials which ensures that Hω is essentially self-adjoint on
C∞

c (Rd) and uniformly bounded from below for P-a.e. ω. In particular no smooth-
ness assumption is required on Vω. The probability space (Ω, P) is equipped with
an ergodic group {τ(a); a ∈ Zd} of measure preserving transformations. The cru-
cial property of the ergodic system is that it satisfies a covariance relation: there
exists a unitary projective representation U (a) of Zd on L2(Rd), such that for all
a, b ∈ Zd and P-a.e. ω we have

U (a)HωU (a)∗ = Hτ(a)ω , (1.2)
U(a)χbU (a)∗ = χb+a , (1.3)

where χa denotes the multiplication operator by the characteristic function of a unit
cube centered at a. Operators that satisfy the covariance relation (1.2) will be called
covariant operators. If Aω = A is the vector potential of a constant magnetic field,
the operators U(a) are the magnetic translations. Note that the ergodic magnetic
Schrödinger operator may be random, quasi-periodic, or even periodic.

At time t = −∞, which we take as reference, the system is in equilibrium in
the state given by a one-particle density matrix ζω = f(Hω) where f is a non-
negative function with fast enough decay at infinity. At zero temperature, we have
ζω = P

(EF )
ω = χ(−∞,EF ](Hω), the Fermi projection. It is convenient to give the

technical statement of the condition on ζω in the language of the normed spaces
developed in Section 3. Hence we postpone it to Section 5 where it is stated as
Assumption 5.1. We note here, however, that the key point in that assumption is
that

E
{

‖xk ζωχ0‖2
2

}
< ∞ , or equivalently E

{
‖[xk, ζω]χ0‖2

2

}
< ∞ , (1.4)

for k = 1, · · · , d, where ‖S‖2 denotes the Hilbert-Schmidt norm of the operator S.
(This is essentially the condition identified in [BES].)

Of course, if ζω = P
(EF )
ω where EF falls inside a gap of the spectrum of Hω,

or ζω = f(Hω) with f smooth and appropriately decaying at high energies, then
(1.4) is readily fulfilled by general arguments (e.g. [GK2]). The main challenge is
to allow for the Fermi energy EF to be inside a region of localization, as described
for random operators in [AG, GK1, GK3, AENSS]. Note that the existence of
these regions of localization has been proven for random Landau Hamiltonians
with Anderson-type potentials [CH, W, GK4], and that assumption (1.4) holds in
these regions of localization [GK1, BoGK].

Under this assumption, as expected, the current is proved to be zero at equilib-
rium (Lemma 5.7):

T {vj,ωζω} = 0, j = 1, 2, . . . , d , (1.5)

where the velocity operator vj,ω is the self-adjoint closure of i[Hω, xj], initially
defined on C∞

c (Rd). Here T denotes the trace per unit volume, and reads, for
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suitable covariant operators Yω (applying the Birkhoff ergodic theorem),

T (Yω) := E {tr {χ0Yωχ0}} = lim
L→∞

1
|ΛL|tr {χΛLYωχΛL} for P-a.e. ω , (1.6)

where ΛL denotes the cube of side L centered at 0.
We then slowly, from time t = −∞ to time t = 0, switch on a spatially homoge-

neous electric field E; i.e., we take (with t− = min {t, 0}, t+ = max {t, 0})

E(t) = eηt−E . (1.7)

In the appropriate gauge, the dynamics are now generated by an ergodic time-
dependent Hamiltonian,

Hω(t) = (−i∇ − Aω − F(t))2 + Vω(x) = G(t)HωG(t)∗ , (1.8)

where

F(t) =
∫ t

−∞
E(s)ds =

(
eηt−

η + t+

)
E , (1.9)

and G(t) = eiF(t)·x is a gauge transformation on L2(Rd). (Note that, if ψt is a
solution of i∂tψt = Hω(t)ψ(t) then, at least formally,

i∂tG
∗(t)ψt = (Hω + E(t) · x)G∗(t)ψt ,

which represents E(t) in a more familiar way via a time dependent scalar potential.
This fact is made precise for weak solutions. See Subsection 2.2.)

It turns out that for all t the operators Hω(t) are self-adjoint with the com-
mon domain D = D(Hω), and Hω(t) is bounded from below uniformly in t.
Thanks to these facts, a general theory [Y, Theorem XIV.3.1] of time evolution for
time-dependent operators applies: there is a unique unitary propagator Uω(t, s),
i.e., a unique two-parameters family Uω(t, s) of unitary operators, jointly strongly
continuous in t and s, and such that Uω(t, r)Uω(r, s) = Uω(t, r), Uω(r, r) = I,
Uω(t, s)D = D, and i∂tUω(t, s)ψ = H(t)Uω(t, s)ψ for all ψ ∈ D.

A crucial advantage of our choice of gauge is that Hω(t) is a covariant opera-
tor for all t, which ensures that the unitary propagator Uω(t, s) is also covariant.
This is of great importance in calculating the linear response outside the trace per
unit volume, taking advantage of the centrality of this trace, a key feature of our
derivation.

To compute the time evolution of the density matrix %ω(t), we shall have to set
up and solve the Liouville equation which formally reads

{
i∂t%ω(t) = [Hω(t), %ω(t)]
limt→−∞ %ω(t) = ζω

, (1.10)

where ζω is the initial density matrix at t = −∞. (Thus ζω = P
(EF )
ω at zero

temperature.) We shall also give a meaning to the net current per unit volume
(area) in the j-th direction, j = 1, · · · , d, induced by the electric field, formally
given by

Jj(η,E; ζω) = T (vj,ω(0)%ω(0)) − T (vj,ωζω) = T (vj,ω(0)%ω(0)), (1.11)

with vj,ω(0), the self adjoint closure of i[Hω(0), xj ] defined on C∞
c (Rd), being the ve-

locity operator in the j-th direction at time t. Note that vj,ω(0) = G(0)vj,ωG(0)∗ =
vj,ω − 2Fj(0).

We remark that there is an alternative approach [ES, AES] to a derivation of the
Kubo-Str̆eda formula for the quantum Hall current in a two dimensional sample,
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based on the calculation of a conductance rather than a conductivity. Conductance
is the linear response coefficient relating a current to the electric potential difference,
whereas conductivity relates a current density to the electric field strength. In
[ES, AES] the affect of a finite potential drop is analyzed by considering the affect
of adding to the Hamiltonian a term g(t)Λ1 with g(t) a time dependent scalar
coupling and Λ1(x) = Λ1(x1) → ±1 as x1 → ±∞ a smooth switch function. This
term models the effect of a modulated (in time) potential difference between the
left and right edges of a physical sample, with the edges formally considered to be
located at x1 = ±∞. With g(t) of the form g(t) = φ(t/τ ) with φ a fixed function,
an expression for the net current across the line x2 = 0 has been derived, which
in the adiabatic (τ → ∞) limit gives the corresponding Kubo-Str̆eda formula for
continuum operators with a gap condition [ES] and for discrete operators with a
localization assumption [AES].

Let us now briefly describe the normed spaces of measurable covariant operators
we construct to carry out this derivation – see Section 3 for their full description.
We let Hc denote the subspace of functions with compact support, and set L =
L(Hc, H) to be the vector space of linear operators on H with domain Hc (not
necessarily bounded). We introduce the vector space Kmc of measurable covariant
maps Yω : Ω → L; where we identify maps that agree P-a.e. We consider the
C∗-algebra

K∞ = {Yω ∈ Kmc; |||Yω |||∞ < ∞} , where |||Yω|||∞ = ‖ ‖Yω‖ ‖L∞(Ω,P) . (1.12)

Bounded functions of Hω(t) as well as the unitary operators Uω(t, s) belong to this
algebra.

However, since we must deal with unbounded operators (think of [xk, P
(EF )
ω ] with

EF in a region of localization), we must look outside K∞ and consider subspaces
of Kmc which include unbounded operators. We introduce norms on K∞ given by

|||Yω|||1 = E tr{χ0|Yω|χ0}, |||Yω|||2 =
{
E ‖Yωχ0‖2

2
} 1

2 , (1.13)

and consider the normed spaces

K(0)
i = {Yω ∈ K∞, |||Yω|||i < ∞} , i = 1, 2 . (1.14)

We denote the (abstract) completion of K(0)
i in the norm |||·|||i by Ki, i = 1,2. In

principle, elements of the completion Ki may not be identifiable with elements of
Kmc: they may not be covariant operators defined on the domain Hc. Since it is
important for our analysis that we work with operators, we set Ki = Kmc ∩ Ki.
That is,

Ki = {Yω ∈ Kmc, |||Yω|||i < ∞} . (1.15)

(We are glossing over the technical, but important, detail of defining the norms
|||Yω|||i on Kmc. In fact, we shall do this only for locally bounded operators Yω – see
Definition 3.1(iii) – for which the absolute value |Yω| may be defined.)

It turns out that K2 = K2 (Proposition 3.7), and the resulting set is a Hilbert
space with inner product 〈〈Yω, Zω〉〉 = E tr{(Yωχ0)∗(Zωχ0)}. However, K1 6= K1
(Proposition 3.13), and the dense subspace K1 is not complete. Nonetheless, it
represents a natural space of unbounded covariant operators on which the trace per
unit volume (1.6) is well defined. The trace per unit volume T is naturally defined
on K1, where it is bounded by the K1 norm, and hence it extends to a continuous
linear functional on K1; but (1.6) is only formal for Yω ∈ K1 \ K1.
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There is a natural norm preserving conjugation on the spaces Ki, given by Yω
‡ =

(Yω
∗)|Hc

, which extends to a conjugation on K1. Moreover, the spaces Ki, i = 1,2,
are left and right K∞-modules, with left and right multiplication being explicitly
defined for Bω ∈ K∞ and Yω ∈ K2 or K1 by

Bω ¯L Yω = BωYω , Yω ¯R Bω = (B∗
ω ¯L Yω

‡)‡ = Yω
‡∗Bω . (1.16)

(It is not obvious that the latter equality makes sense!) The properties of left and
right multiplication, as well as the fact that they commute, can be read immediately
from (1.16). There is also a bilinear map ♦ : K2×K2 → K1 with dense range, written
♦(Yω, Zω) = Yω ¦ Zω, such that T (Yω ¦ Zω) = 〈〈Yω

‡, Zω〉〉.
Another crucial ingredient is the centrality of the trace per unit volume: if either

Yω, Zω ∈ K2 or Yω ∈ K1 and Zω ∈ K∞, we have either

T (Yω ¦ Zω) = T (Zω ¦ Yω) or T (Yω ¯R Zω) = T (Zω ¯L Yω) . (1.17)

There is a connection with noncommutative integration: K∞ is a von Neumann
algebra, T is a faithful normal semifinite trace on K∞, Ki = Li(K∞, T ) for i = 1,2
– see Subsection 3.5. But our explicit construction plays a very important role in
our analysis.

The Liouville equation (1.10) will be given a precise meaning and solved in the
spaces K1 and K2. Note that the assumption (1.4) is equivalent to [xj , ζω] ∈ K2
for all j = 1, 2, . . . , d. (We will also have [xj , ζω] ∈ K1 for all j = 1, 2, . . . , d. See
Remark (i) following Assumption 5.1, and Proposition 4.2.)

If Yω ∈ Ki, i = 1, 2, ∞, is such that Ran Yω ⊂ D = D(Hω(t)) and Hω(t)Yω ∈ Ki,
and similarly for Yω

‡, we set

[Hω(t), Yω]‡ = Hω(t)Yω − (Hω(t)Yω
‡)‡ ∈ Ki .

Our first main result is

Theorem 1.1. Under Assumptions 4.1 and 5.1, the Liouville equation
{

i∂t%ω(t) = [Hω(t), %ω(t)]‡
limt→−∞ %ω(t) = ζω

(1.18)

has a solution in K1 ∩ K2, unique in both K1 and K2, given by

%ω(t) = lim
s→−∞

U(t, s) (ζω) = lim
s→−∞

U(t, s) (ζω(s)) (1.19)

= ζω(t) − i

∫ t

−∞
dr eηr−U(t, r) ([E · x, ζω(r)]) , (1.20)

where

U(t, s)(Yω) = Uω(t, s) ¯L Yω ¯R Uω(s, t) for Yω ∈ Ki, i = 1, 2 , (1.21)

ζω(t) = G(t)ζωG(t)∗ = f(Hω(t)) (ζω = f(Hω)) . (1.22)

We also have

%ω(t) = U(t, s)(%ω(s)) , |||%ω(t)|||i = |||ζω|||i , (1.23)

for all t, s and i = 1,2, ∞. Furthermore, %ω(t) is non-negative and if ζω = PEF
ω

then %ω(t) is an orthogonal projection for all t.

We actually prove a generalization of Theorem 1.1, namely Theorem 5.3, in which
the commutator in (1.18) is replaced by the Liouvillian (defined in Corollary 4.12),
the closure of Yω 7→ [Hω(t), Yω]‡ as an operator on Ki, i = 1, 2. As a by-product
of the theorem, we prove that Ran %ω(t) ∈ D and vj,ω(t)%ω(t) ∈ K1, and hence the
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current T (vj,ω(t)%ω(t)) is well-defined for any time t. In particular, the net current
per unit volume Jj(η,E; ζω) is well defined and, since %ω(t) is non-negative, is a
real number.

Our next main contribution states the validity of the linear response theory, and
provides a Kubo formula.

Theorem 1.2. Let η > 0. Under Assumptions 4.1 and 5.1, the map E → J(η,E; ζω)
is differentiable with respect to E at E = 0 and the derivative σ(η; ζω) is given by

σjk(η; ζω) = ∂
∂Ek

Jj(η, 0; ζω) = −T
{∫ 0

−∞ dr eηrvj,ω U (0)(−r) (i[xk, ζω])
}

, (1.24)

where U (0)(r)(Yω) = e−irHω ¯L Yω ¯R eirHω .

Note that we prove a result stronger than the existence of the partial derivatives
of J(η,E; ζω) at E = 0: we prove differentiability at E = 0.

Next, taking the limit η → 0, we recover the expected form for the quantum
Hall conductivity at zero temperature, the Kubo-Str̆eda formula [St, ThKNN, B,
NB, BES, AG, Na].

Theorem 1.3. Under Assumptions 4.1 and 5.1, if ζω = P
(EF )
ω , an orthogonal

projection, then for all j, k = 1, 2, . . . , d, we have

σ
(EF )
j,k := lim

η→0
σjk(η; P (EF )

ω ) = −iT
{
P (EF )

ω ¯L

[[
xj , P

(EF )
ω

]
,
[
xk, P (EF )

ω

]]
¦

}
,(1.25)

where [Zω, Yω ]¦ = Zω ¦ Yω − Yω ¦ Zω ∈ K1 if Zω , Yω ∈ K2. As a consequence, the
conductivity tensor is antisymmetric; in particular the direct conductivity is zero in
all directions, i.e., σ

(EF )
j,j = 0 for j = 1, 2, . . . , d.

If the system is time-reversible the conductivity is zero in the region of localiza-
tion, as expected.

Corollary 1.4. Under Assumptions 4.1 and 5.1, if Aω = 0 (no magnetic field),
we have σ

(EF )
j,k = 0 for all j, k = 1, 2, . . . , d.

We remark that under Assumptions 4.1 and 5.1
[[

xj , P
(EF )
ω

]
,
[
xk, P

(EF )
ω

]]
¦

is

an element of K1, but may not be in K1. (That is, it may not be representable as
a covariant operator with domain Hc). In particular, the product ¯L in (1.25) is
defined via approximation from K1 and may not reduce to an ordinary operator
product. However, under a stronger localization assumption such as

E ‖χxP (EF )
ω χy‖2

2 ≤ Ce−|x−y|α , (1.26)

which holds throughout the regime in which (1.4) has been verified [GK1, BoGK],
the products in (1.25) reduce to ordinary products of operators, and we have

σ
(EF )
j,k = −iT

{
P (EF )

ω

[[
xj , P

(EF )
ω

]
,
[
xk, P (EF )

ω

]]}
. (1.27)

2. Magnetic and time-dependent electromagnetic Schrödinger

operators

In this section we review some well known facts about Schrödinger operators
incorporating a magnetic vector potential A, and present a basic existence and
uniqueness result for associated propagators in the presence of a time-dependent
electric field.
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2.1. Magnetic Schrödinger operators. Let

H = H(A, V ) = (−i∇ − A)2 + V on L2(Rd), (2.1)

where the magnetic potential A and the electric potential V satisfy the Leinfelder-
Simader conditions:

• A(x) ∈ L4
loc(Rd; Rd) with ∇ · A(x) ∈ L2

loc(Rd).
• V (x) = V+(x)−V−(x) with V±(x) ∈ L2

loc(Rd), V±(x) ≥ 0, and V−(x) relatively
bounded with respect to ∆ with relative bound < 1, i.e., there are 0 ≤ α < 1
and β ≥ 0 such that

‖V−ψ‖ ≤ α‖∆ψ‖ + β‖ψ‖ for all ψ ∈ D(∆). (2.2)

Leinfelder and Simader have shown that H(A, V ) is essentially self-adjoint on
C∞

c (Rd) [LS, Theorem 3] (see also [CyFKS, Theorem 1.15], [Si2, Theorem B.13.4]),
with

Hψ = −∆ψ + 2iA · ∇ψ +
(
i∇ · A + A2 + V

)
ψ for ψ ∈ C∞

c (Rd). (2.3)

Note that (2.2) implies that for all α′ > α we have [RS2, Proof of Theorem X.18]

0 ≤ 〈ψ, V−ψ〉 ≤ α′〈ψ, −∆ψ〉 + α′

α′−αβ‖ψ‖2 . (2.4)

A similar bound holds for H(A, V+) [LS, Eq. (4.11)]: for all α′ > α we have

‖V−ψ‖ ≤ α′‖H(A, V+)ψ‖ + α′

α′−αβ‖ψ‖ for all ψ ∈ D(H(A, V+)) , (2.5)

from which we immediately get the lower bound [K, Theorem V.4.11][RS2, Theorem
X.12]

H(A, V ) ≥ − min
α′∈(α,1)

α′β

(α′ − α)(1 − α′)
= − β

(1 −
√

α)2
. (2.6)

But we can get a better lower bound. We have the a.e. pointwise inequality [LS,
Proof of Lemma 2] [BeG]

|∇(|ψ|)| ≤ |(−i∇ − A)ψ| for all ψ ∈ C∞
c (Rd) . (2.7)

Thus it follows for all α′ > α that we have (using (2.4))

〈ψ,V−ψ〉 ≤ 〈|ψ|, V−|ψ|〉 ≤ α′〈|ψ|, −∆|ψ|〉 + α′

α′−αβ||ψ||2 (2.8)

= α′ ‖∇|ψ|‖2 + α′

α′−αβ||ψ||2 ≤ α′ ‖(−i∇ − A)ψ‖2 + α′

α′−αβ||ψ||2

≤ α′〈ψ, H(A, V+)ψ〉 + α′

α′−αβ||ψ||2

for all ψ ∈ C∞
c (Rd). We conclude that

H(A, V ) ≥ − min
α′∈(α,1)

α′β

(α′ − α)
= − β

(1 − α)
. (2.9)

For convenience we write

γ = γ(α,β) :=
β

1 − α
+ 1 , (2.10)

and note that

H + γ ≥ 1 . (2.11)

We also have the diamagnetic inequality
∣∣∣e−tH(A,V )ψ

∣∣∣ ≤ e−tH(0,V )|ψ| (2.12)
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for all ψ ∈ L2(Rd) and t > 0, see [CyFKS, Proof of Theorem 1.13]. Note that the
diamagnetic inequality and (2.9) imply (using

∫ ∞
0 tqe−t(x+λ)dt = Γ(q)(x + λ)−q)

∣∣∣(H(A, V ) + λ)−q
ψ

∣∣∣ ≤ (H(0, V ) + λ)−q |ψ| (2.13)

for all ψ ∈ L2(Rd), λ > β
(1−α) , and q > 0.

An important consequence of (2.13) is that the usual trace estimates for −∆+V
are valid for the magnetic Schrödinger operator H(A, V ), with bounds independent
of A and depending on V only through α and β. We state them as in [GK3, Lemma
A.4]. (We do not need the Leinfelder-Simader conditions here, just the conditions
for the diamagnetic inequality: A(x) ∈ L2

loc(Rd; Rd), V+(x) ∈ L1
loc(Rd; Rd), and

V−(x) relatively form bounded with respect to ∆ with relative bound < 1. See
[CyFKS, Theorem 1.13] where this is shown for V− = 0. The general case, with
V− relatively bounded as above, is proved by an approximation argument, see [F,
Theorems 7.7, 7.9].)

Proposition 2.1. Let ν > d
4 . There is a finite constant Tν,d,α,β, depending only

on the indicated constants, such that

tr
{

〈x〉−2ν (H(A, V ) + γ)−2[[ d
4 ]] 〈x〉−2ν

}
≤ Tν,d,α,β , (2.14)

where [[d
4 ]] is the smallest integer bigger than d

4 and γ is the constant defined in
(2.10). Thus, letting

Φd,α,β(E) = χ[− β
1−α ,∞)(E) (E + γ)2[[

d
4 ]]

, (2.15)

we have

tr
(
〈x〉−2ν

f(H) 〈x〉−2ν
)

≤ Tν,d,α,β‖fΦd,α,β‖∞ < ∞ (2.16)

for every Borel measurable function f ≥ 0 on the real line.

Proof. The proposition follows once the estimate (2.13) is converted into an esti-
mate on traces, because then the well known trace estimates for −∆ + V , e.g.,
[GK3, Lemma A.4], finish the argument. Hence (2.14) follows from the following
lemma, with

A = 〈x〉−2ν (H(A, V ) + γ)−2[[d
4 ]] 〈x〉−2ν

,

B = 〈x〉−2ν (H(0, V ) + γ)−2[[ d
4 ]] 〈x〉−2ν

,
(2.17)

using the fact that the operator (H(0, V ) + γ)−2[[ d
4 ]] is positivity preserving.

Lemma 2.2. Let A and B be bounded positive operators on L2(Rd), with B a
positivity preserving operator, such that

〈ψ, Aψ〉 ≤ 〈|ψ|,B|ψ|〉 for all ψ ∈ L2(Rd). (2.18)

Then tr A ≤ trB.

Proof. First note that the lemma is obvious if we replace L2(Rd) by `2(Zd), since
in this case we have a basis of positive functions (|δx| = δx). Note also that we may
assume tr B < ∞ without loss of generality.

For L2(Rd), let Hn be the sub-Hilbert space with ortho-normal basis

{χ̃n,x = 2
nd
2 χΛ2−n (2−nx); x ∈ Zd},
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where ΛL(x) denotes the cube centered at x and of length L; and let Pn be the
orthogonal projection onto Hn. Note that Pn is positivity preserving. Set

An = PnAPn and Bn = PnBPn (2.19)

It follows from (2.18) and the fact that both B and Pn are positivity preserving
that

〈ψ, Anψ〉 ≤ 〈|Pnψ|, B|Pnψ|〉 ≤ 〈|ψ|, Bn|ψ|〉 for all ψ ∈ Hn. (2.20)

Since Hn has a basis of positive functions, we get

trAn ≤ trBn ≤ trB . (2.21)

Thus
√

APn is Hilbert-Schmidt, and it follows that

tr
√

APn

√
A ≤ trB . (2.22)

Since Pn → I strongly, we conclude that trA ≤ tr B.

The velocity operator v = i[H,x], where x is the operator from L2(Rd) to
L2(Rd; Cd) of multiplication by the coordinate vector x, plays an important role in
the linear response theory. To give precise meaning to v, we note that on C∞

c (Rd)
we have

i[H,x] = 2(−i∇ − A) . (2.23)

We let D = D(A) be the closure of (−i∇ − A) as an operator from L2(Rd) to
L2(Rd; Cd) with domain C∞

c (Rd). Each of its components Dj = Dj(A) = (−i ∂
∂xj

−
Aj), j = 1, . . . , d, is essentially self-adjoint on C∞

c (Rd) since A(x) ∈ L2
loc(Rd;Rd)

(see [Si1, Lemma 2.5]). We define

v = v(A) = 2D(A) . (2.24)

Proposition 2.3. We have
(i): D(

√
H + γ) ⊂ D(D). In fact there exists Cα,β < ∞ such that

∥∥∥D (H + γ)− 1
2

∥∥∥ ≤ Cα,β. (2.25)

(ii): For all χ ∈ C∞
c (Rd) we have χD(H) ⊂ D(H) and

Hχψ = χHψ − (∆χ)ψ − 2i(∇χ) · Dψ for all ψ ∈ D(H). (2.26)

(iii): Let

Φ̃d,α,β(E) := (E + γ)
1
2 Φd,α,β(E) = χ[− β

1−α ,∞)(E) (E + γ)2[[
d
4 ]]+ 1

2 . (2.27)

If f is Borel measurable function on the real line with ‖f Φ̃d,α,β‖∞ < ∞, the

bounded operator |Df(H)| =
{
f(H)D∗Df(Hω)

} 1
2 satisfies

tr
{
〈x〉−2ν |Df(H)| 〈x〉−2ν

}
≤ T̃ν,d,α,β, (2.28)

where T̃ν,d,α,β < ∞ for ν > d/4 and depends only on the indicated constants.

Proof. To prove (i), note that D∗D = (−i∇ − A)2 and by (2.8)

δα′D∗D ≤ (1 + δ)α′(−i∇ − A)2 − V− +
α′

α − α′ β ≤ H +
α′

α − α′ β (2.29)
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for α′ ∈ (α, 1) and δ such that (1 + δ)α′ < 1. Choosing α′ and δ such that

α′

α − α′ β = γ and (1 + δ)α′ = 1 , (2.30)

we have

(1 − α′)D∗D ≤ H + γ (2.31)

as quadratic forms. Since α′ = α′(α, β) is strictly less than one, it follows that
D(D) ⊂ D(

√
H + γ) and furthermore

(H + γ)− 1
2 D∗D (H + γ)− 1

2 ≤ 1
1 − α′ , (2.32)

which gives (2.25) with Cα,β =
√

1
1−α′ .

Part (ii) follows from (2.25), since the identity holds for ψ ∈ C∞
c by (2.3). Part

(iii) is a result of combining Proposition 2.1, and the estimate

|Df(H)| ≤ Cα,β(H + γ)
1
2 |f |(H) , (2.33)

which follows from (2.31) and monotonicity of the square root.

We shall also need to consider commutators [x, f(H)] with functions of H. For
smooth functions, the easiest way to do this is to use the Helffer-Sjöstrand formula
[HS, D]. Specifically, we restrict our attention to functions which are finite in one
of the following norms:

|||f |||m =
m∑

r=0

∫

R
|f (r)(u)|〈u〉r−1du , m = 1, 2, . . . . (2.34)

If |||f |||m < ∞ with m ≥ 2, then we have [HS, D]

f(H) =
∫

df̃(z)(z − H)−1 , (2.35)

where the integral converges absolutely in operator norm:

‖f(H)‖ ≤
∫

|df̃(z)| 1
Im z

≤ c |||f |||m < ∞ , (2.36)

with c independent of m ≥ 2. Here z = x+ iy, f̃(z) is an almost analytic extension
of f to the complex plane, and df̃(z) = − 1

2π ∂z̄f̃(z) dxdy, with ∂z̄ = ∂x + i∂y. For
various purpose it is useful to note that

∫
|df̃(z)|〈Re z〉p−1

|Im z|p ≤ cp |||f |||m < ∞ , (2.37)

for m ≥ p + 1. (See [HuS, Appendix B] for details. Notation: < y >=
√

1 + |y|2.)
Note that if f ∈ S(R) we have |||f |||m < ∞ for all m = 1,2, . . . .

Proposition 2.4. Let f ∈ C∞(R) with |||f |||3 < ∞ . Then
(i): f(H)L2

c(Rd) ⊂ D(H) ∩ D(x).
(ii): The operator [x, f(H)] is well defined on L2

c(Rd) and has a bounded closure:
there exists a constant Cα,β < ∞ such that

∥∥∥[x, f(H)]
∥∥∥ ≤ Cα,β |||f |||3 . (2.38)
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Proof. The Combes-Thomas argument [CT] shows that R(z)Hc ⊂ D(x), with
R(z) = (H − z)−1, whenever Im z 6= 0 . In fact, we have R(z)Hc ⊂ D(eµ(z)|x|)
with the explicit estimate

∥∥∥eµ(z)|x−y|R(z)χy

∥∥∥ ≤ Cα,β
1

|Im z| , for every unit cube χy, (2.39)

where µ(z) = Cα,β |Im z|/(〈Re z〉 + |Imz|). (See [GK2, Theorem 1] for details in
this context. We denote by the same Cα,β possibly different constants depending
only on the parameters α and β given in (2.2).) We conclude that

‖xR(z)χy‖ ≤ Cα,β,y
1

µ(z)|Im z| ≤ Cα,β,y

{ 〈Rez〉
|Im z|2 , |Im z| ≤ 〈Re z〉 ,

1
|Im z| , |Im z| ≥ 〈Re z〉 ,

(2.40)

which gives (i) in light of (2.37).
Furthermore, we see that [x, R(z)] is well defined on Hc. In particular, for

ψ ∈ Hc ∩ D we have

[x, R(z)] (H − z)ψ = xψ − R(z)x(H − z)ψ , (2.41)

where (H − z)ψ ∈ Hc, since H is local. As ψ is compactly supported, the compo-
nents of xψ are in D by Prop. 2.3ii. Thus

(H − z) [x, R(z)] (H − z)ψ = (H − z)xψ − x(H − z)ψ = 2iD(A)ψ , (2.42)

where to obtain the last equality it is useful to consider ψ ∈ C∞
c initially and pass

to ψ ∈ Hc ∩ D by a limiting argument. Thus

[x, R(z)] (H − z)ψ = 2iR(z)D(A)R(z)(H − z)ψ , (2.43)

whenever ψ ∈ Hc ∩ D, which is a domain of essential self-adjointness for H. Thus
(H − z)Hc ∩D is dense, and we conclude that [x, R(z)] is a bounded operator with

[x, R(z)] = 2iR(z)D(A)R(z) . (2.44)

Specifically we have

‖[x, R(z)]‖ ≤ 2
∥∥∥R(z)

√
H + γ

∥∥∥ ·
∥∥∥∥

1√
H + γ

D(A)
∥∥∥∥ · ‖R(z)‖ , (2.45)

with the middle factor bounded by Proposition 2.3(iii), and the first and last factors
bounded by

√
|z + γ|/|Imz| and 1/|Imz| respectively. Plugging these bounds into

the Helffer-Sjöstrand formula (2.35), and using (2.37), we find

‖[x, f(H)]‖ ≤ Cα,β

∫
|df̃(z)|

√
|z| + γ

|Imz|2
≤ Cα,β |||f |||3 < ∞ . (2.46)

2.2. Time-dependent electric fields. Consider a quantum particle in the pres-
ence of a background potential V (x), a magnetic vector potential A(x), and a time
dependent spatially uniform electric field E(t). We will refer to the time-dependent
self-adjoint generator of the unitary evolution as the Hamiltonian.

One’s initial impulse might be to add the electric potential E(t)·x to the magnetic
Schrödinger operator H(A,V ) and consider the Hamiltonian:

H̃(t) = H(A, V ) + E(t) · x = (−i∇ − A(x))2 + V (x) + E(t) · x . (2.47)

However, this choice is not dictated by the physics under consideration. In fact,
there is an infinite family of choices for the Hamiltonian, related to one another by
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time-dependent gauge transformations, all equally valid from the standpoint of the
underlying physics.

The operators defined by (2.47) suffer from the fact that they are unbounded
from below, and for general A, V it is not obvious if there is a unitary propagator
Ũ(t, s) obeying

{
i∂tŨ (t, s) = H̃(t)Ũ (t, s)
Ũ (s, s) = I

. (2.48)

However, there is a physically equivalent choice of Hamiltonian:

H(t) = (−i∇ − A − F(t))2 + V (x) = H(A + F(t), V ) , (2.49)

with F(t) =
∫ t

t0
E(s)ds (with perhaps t0 = −∞), for which the propagator can be

shown to exist for quite general A, V . It turns out that there is a general theory of
propagators with a time dependent generator [Y, Theorem XIV.3.1] which applies
to H(t) but does not obviously apply to H̃(t). Note that H = H(t0).

What is the justification for taking the Hamiltonian (2.49)? In classical elec-
trodynamics (Maxwell’s equations), one expresses the electric and magnetic field
E(x, t) and B(x, t) in terms of a “scalar potential” φ(x, t) and a “vector potential”
A(x, t):

E(x, t) = −∂tA(x, t) − ∇φ(x, t) ,
B(x, t) = ∇ × A(x, t) .

(2.50)

The key observation is that E and B are not changed if A and φ are perturbed by
a “gauge transformation”:

A(x, t) 7→ A(x, t) + ∇α(x, t) ,
φ(x, t) 7→ φ(x, t) − ∂tα(x, t) .

(2.51)

In particular, A and φ are not uniquely determined by the “observable” fields E
and B. Note that a spatially uniform electric field E(t) may be obtained from the
time dependent vector potential F(t).

This non-uniqueness carries over to one particle quantum mechanics. Consider
a Hamiltonian associated to an electron in the presence of the electromagnetic field
described by A(x, t) and φ(x, t):

H(A(x, t), φ(x, t)) = (−i∇ − A(x, t))2 + φ(x, t) , (2.52)

acting on L2(Rd) (in units with the electric charge equal to one). To implement the
gauge transformation (2.51), we must also transform the wave function ψ(x, t) by

ψ(x, t) 7→ eiα(x,t)ψ(x, t) . (2.53)

Indeed, if ψ(x, t) obeys the Schrödinger equation

i∂tψ(x, t) = H(A(x, t), φ(x, t))ψ(x, t) (2.54)

then it is easy to check that, formally,

i∂teiα(x,t)ψ(x, t) = −(∂tα(x, t))eiα(x,t)ψ(x, t) + ieiα(x,t)∂tψ(x, t)

=
[
eiα(x,t)H(A(x, t), φ(x, t))e−iα(x,t) − ∂tα(x, t)

]
eiα(x,t)ψ(x, t)

= H(A(x, t) + ∇α(x, t), φ(x, t) − ∂tα(x, t))eiα(x,t)ψ(x, t) . (2.55)
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Effectively the gauge transformation (2.53) implements a “moving frame” in L2(Rd),
and we must transform the Hamiltonian accordingly to account for the shift in the
time derivative in Schrödinger’s equation.

The possibility always exists to “choose a gauge” with φ ≡ 0 and work only
with A: take ∂tα(x, t) = φ(x, t), effectively replacing φ by zero and A by A +∫ t

to
∇φ(x, s)ds. Generally, this gauge transformation is not used in time independent

quantum mechanics, since it replaces a time-independent scalar potential with a
time-dependent vector potential, introducing an extra level complexity. However,
our Hamiltonian is intrinsically time-dependent, and there is not really any greater
complexity to be found working with A(x, t) in place of φ(x, t).

For the problem at hand, we do not want to take the extreme step of setting the
scalar potential identically to zero. Instead it is convenient to fix a time independent
scalar potential φ(x, t) = V (x) and a time dependent vector potential A(x, t) =
A(x)+ F(t) with F(t) =

∫ t

t0
E(s)ds. This leads to the Hamiltonian H(t) presented

in (2.49). Note that on C∞
c (Rd) we have

H(t) = G(t)
[
(−i∇ − A)2 + V

]
G(t)∗ , (2.56)

where G(t) denotes the gauge transformation

[G(t)ψ](x) = eiF(t)·xψ(x) . (2.57)

Repeating the formal calculation leading to (2.55), we find that if ψ(t) obeys
Schrödinger equation

i∂tψ(t) = H(t)ψ(t), (2.58)

then, formally,

i∂tG(t)∗ψ(t) =
[
(−i∇ − A)2 + V + E(t) · x

]
G(t)∗ψ(t) = H̃(t)G(t)∗ψ(t) , (2.59)

although this begs the question of whether G(t)∗ψ(t) is in the domain of either
E(t) · x or H̃(t).

While there is no physical reason to work with one particular gauge, it is com-
forting to know that the choice truly does not affect the results. One difficulty is
that we do not know (in general) if strong solutions to the Schrödinger equation

i∂tψt = H̃(t)ψt (2.60)

exist with H̃(t) given by (2.47). Thus we must consider weak solutions. Given a
time dependent Hamiltonian K(t) with C∞

c (Rd) ⊂ D(K(t)) for all t ∈ R, a weak
solution to the Schrödinger equation i∂ψt = K(t)ψt is a map t 7→ ψt ∈ L2(Rd) such
that

i∂t〈φ,ψt〉 = 〈K(t)φ,ψt〉 for all φ ∈ C∞
c (Rd) . (2.61)

It is easy to see that the weak solutions of the Schrödinger equations (2.58) and
(2.60) are related by the gauge transformation G(t): ψt is a weak solution of (2.58)
if and only if the gauge transformed G(t)∗ψt is a weak solution of (2.60).

2.3. Time-dependent Hamiltonians and their propagators. We assume through-
out that A(x) and V (x) satisfy the Leinfelder-Simader conditions and E(t) ∈
C(R; Rd). (If in addition E(t) ∈ L1((−∞,0]; Rd) we take t0 = −∞.)
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Proposition 2.5. H(t), given in (2.49), is essentially self-adjoint on C∞
c (Rd) with

H(t) = H − 2F(t) · (−i∇ − A) + F(t)2 on C∞
c (Rd) , (2.62)

= H − 2F(t) · D(A) + F(t)2 on D(H) . (2.63)

Hence

D := D(H) = D(H(t)) for all t ∈ R, (2.64)

and on D we have that for all t and s,

H(t) = H(s) − 2(F(t) − F(s)) · D(A) + (F(t)2 − F(s)2) . (2.65)

In addition, all H(t) satisfy the lower bound given in (2.9):

H(t) ≥ − β

1 − α
for all t ∈ R. (2.66)

Proof. Clearly A(x) + F(t) and V (x) satisfy the Leinfelder-Simader conditions
with the parameters α, β independent of t, hence H(t) is essentially self-adjoint
on C∞

c (Rd), (2.62) follows from (2.3), and we have (2.66). The equality (2.63)
follows from (2.62) and Proposition 2.3(i), and implies (2.64).

Lemma 2.6. Let G(t) be as in (2.57). Then

G(t)D = D , (2.67)
H(t) = G(t)HG(t)∗ , (2.68)

D(A + F(t)) = D(A) − F(t) = G(t)D(A)G(t)∗ . (2.69)

Moreover, i[xj ,H(t)] = 2D(A + F(t)) as quadratic forms on D ∩ D(xj), j =
1,2, . . . , d.

Proof. The lemma follows from (2.56) and Propositions 2.5 and 2.3.

We now discuss the existence of a propagator U (t, s) satisfying

i∂tU(t, s) = H(t)U(t, s), U(s, s) = I. (2.70)

We note that

H(t) + γ ≥ 1 for all t ∈ R, (2.71)

where γ is given in (2.10). We also set

C(t, s) = (H(t) − H(s)) (H(s) + γ)−1 (2.72)

= (F(t) − F(s)) · {−2D(A) + (F(t) + F(s))} (H(s) + γ)−1
.

By Proposition 2.3(i), we have
∥∥∥D(A) (H(s) + γ)−1

∥∥∥ ≤
∥∥∥D(A) (H + γ)−1

∥∥∥ + |F(s)| ≤ Cα,β + |F(s)| , (2.73)

with Cα,β a finite constant. Since F (t) ∈ C1(R;Rd), we conclude that both C(t, s)
and 1

t−sC(t, s) (with t 6= s) are uniformly continuous and uniformly bounded in
operator norm for t, s restricted to a compact interval. Moreover,

C(t) = lim
s→t

1
t−sC(t, s) = 2E(t) · (D(A) − F(t)) (H(t) + γ)−1 (2.74)

= 2E(t) · G(t)D(A) (H + γ)−1
G(t)∗

exists and is continuous in operator norm, and

‖C(t)‖ ≤ 2Cα,β|E(t)| . (2.75)
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Theorem 2.7. The time-dependent Hamiltonian H(t) has a unique unitary prop-
agator U (t, s), i.e., there is a unique two-parameter family U (t, s) of unitary oper-
ators, jointly strongly continuous in t and s, such that

U (t, r)U (r, s) = U(t, s) (2.76)
U (t, t) = I (2.77)

U(t, s)D = D , (2.78)
i∂tU (t, s)ψ = H(t)U (t, s)ψ for all ψ ∈ D , (2.79)
i∂sU (t, s)ψ = −U (t, s)H(s)ψ for all ψ ∈ D . (2.80)

In addition, W (t, s) = (H(t) + γ)U (t, s) (H(s) + γ)−1 is a bounded operator,
jointly strongly continuous in t and s, with

‖W (t, s)‖ ≤ e
∫ max{s,t}
min{s,t} ‖C(r)‖ dr

, (2.81)

the operators U(t, s) (H(s) + γ)−1 and (H(t) + γ)−1
U (t, s) are jointly continuous

in t and s in operator norm, and

i∂t

{
U (t, s) (H(s) + γ)−2

}
= H(t)U(t, s) (H(s) + γ)−2

, (2.82)

i∂s

{
(H(t) + γ)−2

U (t, s)
}

= − (H(t) + γ)−2
U(t, s)H(s) , (2.83)

in operator norm.
Furthermore, if we define the unitary operators Uk(t, s), k = 1, 2, . . . , by

Uk(t, s) = e−i(t−s)H
(

m+ i−1
k

)

if m + i−1
k ≤ s, t < m + i

k , (2.84)

where m ∈ Z, i = 1,2, . . . , k, and

Uk(t, r) = Uk(t, s)Uk(s, r) for all t, s, r , (2.85)

then

U(t, s) (H(s) + γ)−1 = lim
k→∞

Uk(t, s) (H(s) + γ)−1 (2.86)

in operator norm, uniformly for t, s restricted to a compact interval.

Proof. The uniqueness and unitarity of the propagator U (t, s) follows from existence
and the fact that i∂tφt = H(t)φt with H(t) self-adjoint implies ∂t‖φt‖2 = 0.

To prove the existence of the propagator we apply [Y, Theorem XIV.3.1] (see
also [RS2, Theorem X.70]) with

A(t) = −i(H(t) + γ) . (2.87)

Note that

C(t, s) = A(t)A(s)−1 − I = (A(t) − A(s))A(s)−1 . (2.88)

The hypotheses of [Y, Theorem XIV.3.1] (and [RS2, Theorem X.70]) require that (a)
0 /∈ σ(A(t)), (b) A(t) have a common domain, and (c) C(t, s) and C(t) = limt→s(t−
s)−1C(t, s) are uniformly bounded and strongly continuous for t, s restricted to a
compact interval. Clearly D(A(t)) = D(H(t)) = D for all t, and it follows from
(2.71) that 0 /∈ σ(A(t)) for all t. Boundedness and continuity of C(t, s) and C(t)
were discussed before the statement of the theorem.

Thus the hypotheses of [Y, Theorem XIV.3.1] are satisfied. If we set

U(t, s) = ei(t−s)γ Û (t, s) , (2.89)
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where Û(t, s) is the propagator for the A(t) given in [Y, Theorem XIV.3.1] (and
[RS2, Theorem X.70]) if s ≤ t, and Û(t, s) = Û (s, t)∗ if s ≥ t, we obtain unitary
operators U(t, s), strongly continuous in t and s, satisfying (2.76)-(2.79). To prove
(2.80), we use the chain rule: Since U(t, s)U(s, t) = I , it follows from (2.78) and
(2.79) that for ϕ ∈ D we have, with ψ = U (s, t)ϕ,

0 = ∂sU (t, s)U (s, t)ϕ = ∂sU (t, s)ψ + U (t, s)∂sU (s, t)ϕ (2.90)
= ∂sU (t, s)ψ − iU (t, s)H(s)U (s, t)ϕ = ∂sU (t, s)ψ − iU (t, s)H(s)ψ ,

since D = U (s, t)D.
The estimate (2.81) is given in [Y, Theorem XIV.3.1]. A careful reading of the

proof of [Y, Theorem XIV.3.1], using our stronger hypotheses on C(t, s), shows that
the operators U (t, s) (H(s) + γ)−1 and (H(t) + γ)−1

U(t, s) are jointly continuous
in t and s in operator norm, and we have (2.82). Since the adjoint operation is an
isometry in operator norm, (2.83) follows from (2.82).

To compute the linear response, we shall make use of the following “Duhamel
formula”.

Lemma 2.8. Let U (0)(t) = e−itH. For all ψ ∈ D and t, s ∈ R we have

U(t, s)ψ = U (0)(t − s)ψ + i

∫ t

s

U (0)(t − r)(2F(r) · D(A) − F(r)2)U (r, s)ψ dr .

(2.91)

Moreover,

lim
E→0

U(t, s) = U (0)(t − s) strongly . (2.92)

Proof. Eq. (2.91) follows simply by calculating ∂tU
(0)(s − t)U(t, s)ψ with ψ ∈ D,

using (2.78), (2.79), and (2.63). The strong limit in (2.92) follows from (2.91) for
vectors in D, and hence everywhere since all the operators are unitary.

3. Covariant operators and the trace per unit volume

3.1. Measurable covariant operators. We fix the notation H = L2(Rd) and let
Hc denote the dense linear subspace of functions with compact support. We set
L = L(Hc, H) to be the vector space of linear operators on H with domain Hc.
Elements of L need not be bounded.

We also fix “magnetic translations”: for each a ∈ Zd we define a unitary operator

U (a) = eia·SxT (a), with (T (a)ψ) (x) = ψ(x − a) , (3.1)

where S is a given d × d real matrix. Note that a 7→ U (a) is a projective represen-
tation of the translation group Zd since

U (a)U (b) = e−ib·SaU(a + b), (3.2)

and that U(a) leaves Hc invariant, in fact

U (a)χbU(a)∗ = χb+a . (3.3)

Let (Ω, P) be a probability space equipped with an ergodic group {τ(a); a ∈ Zd}
of measure preserving transformations. We study operator–valued maps A : Ω → L,
which we will simply call operators Aω. We identify maps that agree P-a.e., and
all properties stated are supposed to hold for P-a.e. ω.
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Definition 3.1. Let A = Aω : Ω → L. Then
(i): Aω is measurable if 〈ϕ, Aωψ〉 is a measurable function for all ϕ, ψ ∈ Hc.

(Or, equivalently, if Aω is strongly measurable on Hc, i.e., Aωψ is a mea-
surable H-valued function for all ψ ∈ Hc.)

(ii): Aω is covariant if

U (a)AωU(a)∗ = Aτ(a)ω for all a ∈ Zd. (3.4)

(iii): Aω is locally bounded if

‖Aωχx‖ < ∞ and ‖χxAω‖ < ∞ for all x ∈ Zd. (3.5)

We let Kmc denote the vector space of measurable covariant operators Aω, with
Kmc,lb being the subspace of locally bounded operators. We define the Banach
space

K∞ = {Aω ∈ Kmc; |||Aω|||∞ < ∞} ⊂ Kmc,lb , (3.6)

where

|||Aω|||∞ = ‖ ‖Aω‖ ‖L∞(Ω,P) . (3.7)

If Aω ∈ K∞, we identify Aω with its extension to H (i.e., with its closure Aω). If we
define multiplication in K∞ by AωBω := AωBω, and the adjoint by (Aω)∗ := A∗

ω,
then K∞ becomes a C∗-algebra.

Whenever Aω ∈ Kmc,lb, we have D(A∗
ω) ⊃ Hc, since χxAω is bounded for all x.

We define A‡
ω to be the restriction of A∗

ω to Hc. It follows that A‡
ω ∈ Kmc,lb , and

the map Aω → A‡
ω is a conjugation in Kmc,lb. (Note that Aω ∈ Kmc,lb if and only if

there exist symmetric operators Bω, Cω ∈ Kmc such that ‖Bωχx‖ + ‖Cωχx‖ < ∞
for all x ∈ Zd and Aω = Bω + iCω. In this case A‡

ω = Bω − iCω.)
Thus, given Aω ∈ Kmc,lb, we have that A∗

ω is densely defined and therefore Aω

is closable. The closure of Aω, denoted Aω , has a polar decomposition and Hc is
a core for the self-adjoint operator |Aω|. We will abuse notation and denote the
restriction of |Aω| to Hc by |Aω|. It is not hard to see that |Aω| is covariant, i.e., it
satisfies (3.4). Similarly, local boundedness of |Aω | is a simple consequence of the
identities

‖ |Aω|χx‖ = ‖Aωχx‖ and ‖χx|Aω| ‖ = ‖ |Aω|χx‖. (3.8)

It is also true that |Aω| is measurable, so |Aω| ∈ Kmc,lb, but this requires a little
more work.

Lemma 3.2. Let Aω ∈ Kmc,lb , and consider the polar decomposition Aω = Uω|Aω|.
Then |Aω| ∈ Kmc,lb and Uω ∈ K∞. We also have f(|Aω|) ∈ K∞ for any bounded
Borel function f on the real line.

Proof. Let Aω ∈ Kmc,lb. We start by proving that (|Aω|2 +1)−1 is strongly measur-
able on H, from which it follows that g(|Aω |2) is also strongly measurable for any
bounded Borel function g on the real line. It then follows that f(|Aω|) ∈ K∞ for
any bounded Borel function f on the real line (covariance is easy to see). Picking
fn(t) = tχ[−n,n](t), it is clear that fn(|Aω|) → |Aω| strongly on Hc, and hence |Aω|
is strongly measurable. We conclude that |Aω| ∈ Kmc,lb.

To prove measurability of (|Aω|2 +1)−1, we pick an ortho-normal basis {ϕn}n∈N

for the subspace H0 = χ0H ∼= L2(Rd, χ0(x)dx) of H, and set ϕ
(a)
n = T (a)ϕn for

a ∈ Zd. Then {ϕ
(a)
n }n∈N,a∈Zd is a an ortho-normal basis for H, which we relabel as
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{φn}n∈N, and let Ĥc be the subspace of finite linear combinations of the φn’s. Note
that Ĥc is a dense subspace of Hc and hence is a core for Aω, since Aω is locally
bounded.

Let Pn be the orthogonal projection onto the finite dimensional subspace spanned
by φ1, φ2, . . . , φn. We set

M (n)
ω = (AωPn)∗AωPn . (3.9)

Then M
(n)
ω is a bounded operator since Aω is locally bounded. Because 〈ϕ, M

(n)
ω ψ〉 =

〈AωPnϕ, AωPnψ〉 for ϕ, ψ ∈ H, we conclude that M
(n)
ω is weakly, and hence

strongly, measurable on H. Proceeding as in [PF, Proof of Lemma 2.8], we see
that (M (n)

ω + 1)−1 is measurable on H (basically, because a matrix element of the
inverse may be expressed as a ratio of determinants, which are measurable func-
tions). We now show that (M (n)

ω + 1)−1 → (|Aω|2 + 1)−1 weakly as n → ∞, and
hence (|Aω|2 + 1)−1 is measurable on H.

For this purpose, let ϕ, ψ ∈ Ĥc. For sufficiently large n we have

〈Aωϕ, Aω(M (n)
ω + 1)−1ψ〉 = 〈AωPnϕ, AωPn(M (n)

ω + 1)−1ψ〉
= 〈ϕ,M (n)

ω (M (n)
ω + 1)−1ψ〉 , (3.10)

and hence

〈Aωϕ,Aω(M (n)
ω + 1)−1ψ〉 + 〈ϕ, (M (n)

ω + 1)−1ψ〉 = 〈ϕ, ψ〉 . (3.11)

Now let φ ∈ D(Aω). Given ε > 0 we pick ϕ ∈ Ĥc such that

‖(φ − ϕ)‖ + ‖Aω(φ − ϕ)‖ < ε . (3.12)

Since

‖AωPn(M (n)
ω + 1)−1‖2 = ‖(M (n)

ω + 1)−1M (n)
ω (M (n)

ω + 1)−1‖ ≤ 1
4

, (3.13)

we have∣∣∣〈Aω(φ − ϕ), Aω(M (n)
ω + 1)−1ψ〉 + 〈φ − ϕ, (M (n)

ω + 1)−1ψ〉 − 〈φ − ϕ, ψ〉
∣∣∣

≤ 3ε‖ψ‖ , (3.14)

whenever ψ ∈ Ĥc and n is correspondingly large. Therefore, it follows from (3.11)
that for all φ ∈ D(Aω) we have

lim
n→∞

〈Aωφ,Aω(M (n)
ω + 1)−1ψ〉 + 〈φ, (M (n)

ω + 1)−1ψ〉 = 〈φ, ψ〉 (3.15)

for all ψ ∈ Ĥc.
Taking φ ∈ D(A∗

ωAω) ⊂ D(Aω), we get

lim
n→∞

〈(A∗
ωAω + 1)φ, (M (n)

ω + 1)−1ψ〉 = 〈φ,ψ〉 (3.16)

for all ψ ∈ Ĥc, and hence for all ψ ∈ H. Writing η = (|Aω|2 + 1)φ, we get

lim
n→∞

〈η, (M (n)
ω + 1)−1ψ〉 = 〈(|Aω|2 + 1)−1η,ψ〉 (3.17)

for all η, ψ ∈ H. We conclude that (M (n)
ω + 1)−1 → (|Aω|2 + 1)−1 weakly.

We now turn to the partial isometry Uω. We recall that

Uω = lim
ε→0

Aω(|Aω| + ε)−1 strongly on H . (3.18)

Thus Uω is clearly covariant and measurable, so Uω ∈ K∞.
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Lemma 3.3. Let Aω ∈ Kmc,lb. Then, for each n,

A(n)
ω =

(
1
n |A‡

ω|2 + 1
)−1

2
Aω ∈ K∞ , (3.19)

with ‖A
(n)
ω ‖ ≤ n, and A

(n)
ω → Aω strongly on Hc.

Proof. We clearly have A
(n)
ω ∈ Kmc since

(
1
n |A‡

ω|2 + 1
)−1

2 ∈ K∞ by Lemma 3.2.

As
(

1
n |A‡

ω|2 + 1
)− 1

2 → I strongly, we conclude that A
(n)
ω → Aω strongly on Hc.

Thus we only need to show that ‖A
(n)
ω ‖ ≤ n. To do so, let

Ã
(n)
ω =

( 1
n |A∗

ω|2 + 1
)−1

2 Aω , (3.20)

and recall ‖Ã
(n)
ω ‖ ≤ n. Since A‡ is the restriction of A∗ to Hc, we have |A∗

ω|2 ≤ |A‡
ω|2

as quadratic forms (see [RS1, p. 375]) and hence
(

1
n |A‡

ω|2 + 1
)−1

≤
( 1

n |A∗
ω|2 + 1

)−1 (3.21)

by [RS1, Theorem S.17]. We conclude that

‖A(n)
ω ‖ ≤ ‖Ã

(n)
ω ‖ ≤ n . (3.22)

Lemma 3.4. If Aω ∈ Kmc,lb, Bω ∈ K∞, and BωAω ∈ Kmc,lb, we have that
D(A∗

ω) ⊃ B∗
ωHc and

(BωAω)‡ϕ = A∗
ωB∗

ωϕ for all ϕ ∈ Hc . (3.23)

Remark 3.5. Note that BωAω is not necessarily in Kmc,lb, since we have no con-
trol on ‖χxBωAω‖ for x ∈ Zd.

Proof. For any ϕ, ψ ∈ Hc we have

〈ϕ, BωAωψ〉 = 〈(BωAω)‡ϕ, ψ〉 . (3.24)

On the other hand,

〈ϕ, BωAωψ〉 = 〈B∗
ωϕ,Aωψ〉 . (3.25)

It follows that

B∗
ωϕ ∈ D(A∗

ω) for all ϕ ∈ Hc (3.26)

and (3.23) holds.

Let us define

K¯ =
{
Aω ∈ Kmc,lb; BωAω, BωA‡

ω ∈ Kmc,lb if Bω ∈ K∞
}

. (3.27)

Note that K¯ ⊂ Kmc,lb is a vector space, and in K¯ we can define left and, using
Lemma 3.4, right multiplication by an element of K∞:

Bω ¯L Aω = BωAω , (3.28)

Aω ¯R Bω = A‡∗
ω Bω|Hc , (3.29)

where Aω ∈ K¯ and Bω ∈ K∞. Note that for Bω ∈ K∞ we have B‡∗
ω = Bω since

we identify Bω with its closure, so (3.28) could also have been written as

Bω ¯L Aω = B‡∗
ω Aω . (3.30)
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Proposition 3.6. Let Aω ∈ K¯ and Bω, Cω ∈ K∞. We then have Bω¯LAω, Aω¯R

Bω ∈ K¯. Moreover,

Aω ¯R Bω =
(
B∗

ω ¯L A‡
ω

)‡
, (3.31)

Bω ¯L Aω ¯R Cω := (Bω ¯L Aω) ¯R Cω = Bω ¯L (Aω ¯R Cω) , (3.32)

(Bω ¯L Aω ¯R Cω)‡ = C∗
ω ¯L A‡

ω ¯R B∗
ω , (3.33)

{Bω ¯L Aω ¯R Cω}ϕ = BωA‡∗
ω Cωϕ for all ϕ ∈ Hc . (3.34)

Proof. The proof is a simple exercise.

3.2. The Hilbert space K2. Let

K2 = {Aω ∈ Kmc; |||Aω|||2 < ∞} , (3.35)

K(0)
2 = K2 ∩ K∞ , (3.36)

where

|||Aω|||2 =
{
E

(
‖Aωχ0‖2

2
)} 1

2 . (3.37)

Proposition 3.7. (i) K2 is a Hilbert space with the inner product

〈〈Aω,Bω〉〉 = E {tr {(Aωχ0)∗Bωχ0}} , (3.38)

and ||| |||2 is the corresponding norm, i.e.,

|||Aω|||22 = 〈〈Aω, Aω〉〉 . (3.39)

(ii) K2 ⊂ Kmc,lb and the conjugation Aω → A‡
ω is antiunitary in K2, i.e.,

〈〈Aω,Bω〉〉 = 〈〈B‡
ω, A‡

ω〉〉 . (3.40)

(iii) For all Aω ∈ K2 we have

(Aωχ0)∗ = χ0A∗
ω = χ0A

‡
ω , (3.41)

and hence

〈〈Aω, Bω〉〉 = E
{

tr
{
χ0A

‡
ωBωχ0

}}
, (3.42)

|||Aω|||2 =
{
E

(
‖χ0A

‡
ω‖2

2
)} 1

2 =
{
E

(
‖χ0Aω‖2

2
)} 1

2 . (3.43)

(iv) K(0)
2 is dense in K2.

Proof. We first note that K2 is a vector space, since

|||Aω + Bω|||22 ≤ E
{
(‖Aωχ0‖2 + ‖Bωχ0‖2)

2
}

≤ 2
(
|||Aω|||22 + |||Bω|||22

)
. (3.44)

Since the right hand side of (3.38) is well defined for Aω,Bω ∈ K2, it clearly defines
an inner product.

To show that K2 is complete it suffices to show that every summable series in
K2 converges. So consider the series

∞∑

n=1

|||An,ω|||2 < ∞ , An,ω ∈ K2 . (3.45)
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It follows that

E

( ∞∑

n=1

‖An,ωχ0‖2

)
=

∞∑

n=1

E (‖An,ωχ0‖2) ≤
∞∑

n=1

|||An,ω |||2 < ∞ , (3.46)

and hence
∞∑

n=1

‖An,ωχ0‖2 < ∞ . (3.47)

Using the completeness of H and the covariance property we conclude that
∑∞

n=1 An,ω

converges strongly in Hc to an operator Aω ∈ Kmc. Since the Hilbert-Schmidt op-
erators on H are also complete, we also conclude that Aωχ0 =

∑∞
n=1 An,ωχ0 with

convergence in Hilbert-Schmidt norm. Thus, using Fatou’s lemma,

|||Aω|||22 = E


 lim

N→∞

∥∥∥∥∥

N∑

n=1

An,ωχ0

∥∥∥∥∥

2

2


 ≤ lim inf

N→∞
E




∥∥∥∥∥

N∑

n=1

An,ωχ0

∥∥∥∥∥

2

2




≤

(
lim

N→∞

N∑

n=1

|||An,ω|||2

)2

=

( ∞∑

n=1

|||An,ω |||2

)2

< ∞ , (3.48)

and hence Aω ∈ K2. Since Aω −
∑N

n=1 An,ω =
∑∞

n=N+1 An,ω, the same argument
gives

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣Aω −
N∑

n=1

An,ω

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2

2

≤

( ∞∑

n=N+1

|||An,ω|||2

)2

→ 0 as N → ∞ , (3.49)

and hence K2 is complete.
To show K2 ⊂ Kmc,lb it suffices to show A∗

ωχ0 is well defined and almost surely
bounded, since Aωχ0 is almost surely Hilbert-Schmidt and thus bounded. Given
Aω ∈ K2, we set Aω,x,y = χxAωχy for x, y ∈ Z2, a Hilbert-Schmidt operator. Then
note that (Aω,x,y)∗ = χy(Aω,x,y)∗χx and

∑

y∈Z2

E {tr (Aω,x,y(Aω,x,y)∗)} =
∑

y∈Z2

E {tr (χxAω,x,yχy(Aω,x,y)∗χx)}

=
∑

y∈Z2

E
{
tr

(
χx−yAτ(y)ω,x−y,0χ0A

∗
τ(y)ω,x−y,0χx−y

)}
(3.50)

=
∑

y∈Z2

E
{
tr

(
χ0A

∗
ω,x−y,0χx−yAω,x−y,0χ0

)}
= |||Aω|||22 ;

we used (3.4), the invariance of the expectation under the transformations {τ(a); a ∈
Zd}, and cyclicity of the trace, plus the fact that, as all terms in the expressions
are positive, we can interchange the sum with the trace and the expectation. Pro-
ceeding as in (3.46)-(3.49) we conclude that the operator Bω =

∑
x,y∈Z2(Ay,x)∗ is

in K2. (Note that covariance only holds for the sum over all x, y ∈ Z2). It is easy
to see that Bω ⊂ A∗

ω , so D(A∗
ω) ⊃ Hc and Bω = A‡

ω. Thus
∣∣∣∣∣∣A‡

ω

∣∣∣∣∣∣2
2 =

∑

y∈Z2

E {tr (Aω,0,y(Aω,0,y)∗)} = |||Aω |||22 (3.51)

by (3.50), and (3.40) follows using the polarization identity.
The equality (3.41) is an easy consequence of D(A∗) ⊃ Hc; (3.42) and (3.43)

then follow from (3.38) and (3.40).
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It remains to show that K(0)
2 is dense in K2. Let Aω ∈ K2, then Aω, A‡

ω ∈
Kmc,lb, and A

(n)
ω , defined in (3.19), is clearly in K(0)

2 , and
∣∣∣
∣∣∣
∣∣∣Aω − A

(n)
ω

∣∣∣
∣∣∣
∣∣∣
2

→ 0 by a
dominated convergence argument.

Left and right multiplication by elements of K∞ leave K2 invariant.

Proposition 3.8. K2 ⊂ K¯. Moreover, if Aω ∈ K2 and Bω ∈ K∞ we have
Bω ¯L Aω ,Aω ¯R Bω ∈ K2 with

|||Bω ¯L Aω|||2 ≤ |||Bω|||∞ |||Aω|||2 , (3.52)
|||Aω ¯R Bω|||2 ≤ |||Bω|||∞ |||Aω|||2 . (3.53)

Proof. Since we clearly have Bω ¯L Aω ∈ K2 with (3.52), Proposition 3.7(ii) gives
K2 ⊂ Kmc¯. The estimate (3.53) follows from (3.31), (3.52), and (3.40).

The following lemma will be very useful.

Lemma 3.9. Let Bn,ω be a bounded sequence in K∞ such that Bn,ω → Bω strongly.
Then for all Aω ∈ K2 we have Bn,ω¯LAω → Bω¯LAω and Aω¯RBn,ω → Aω¯RBω

in K2.

Proof. It suffices to prove the result for left multiplication in view of (3.31). By
considering the sequence Bn,ω − Bω we may assume Bω = 0. We have, with
Aω ∈ K(0)

2 ,

|||Bn,ω ¯L Aω|||22 = E tr{χ0A
∗
ωB∗

n,ωBn,ωAωχ0} → 0 (3.54)

by dominated convergence. Since Bn,ω is bounded and K(0)
2 is dense in K2, this

extends to general Aω ∈ K2.

3.3. The normed space K1. Let

K1 = {Aω ∈ Kmc,lb; |||Aω|||1 < ∞} , (3.55)

K(0)
1 = K1 ∩ K∞, (3.56)

where

|||Aω|||1 = E {tr {χ0|Aω|χ0}} . (3.57)

Note that |||Aω|||1 is well defined (possibly infinite) for Aω ∈ Kmc,lb by Lemma 3.2.

Lemma 3.10. Let Aω ∈ K1. Then

E {tr |χ0Aωχ0|} ≤ |||Aω|||1 < ∞ , (3.58)

and hence E {tr {χ0Aωχ0}} is well defined.

Proof. Let Aω = Uω|Aω| be the polar decomposition of Aω . We have

χ0Aωχ0 = χ0Uω|Aω|
1
2 |Aω|

1
2 χ0 . (3.59)

Since Aω ∈ K1, |Aω| 1
2 ∈ K2 and, by Lemma 3.2, Uω ∈ K∞. (More precisely, the

restriction |Aω |12 of |Aω| 1
2 to Hc is in K2. Note that Hc is a core for |Aω| 1

2 .) Thus
Uω|Aω| 1

2 ∈ K2, and χ0Uω|Aω| 1
2 is a Hilbert-Schmidt operator by (3.41). Hence it

follows from (3.59) that χ0Aωχ0 is trace class. The inequality (3.58) now follows
from (3.59), Hölder’s inequality, and (3.43).
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Lemma 3.11. Let Aω ∈ K1 and Bω ∈ K∞. Then BωAω ∈ K1 and

|||BωAω|||1 ≤ |||Bω|||∞ |||Aω|||1 . (3.60)

Proof. We have

|BωAω| = W ∗
ωBωAω = W ∗

ωBωUω|Aω| = W ∗
ωBωUω|Aω| 1

2 |Aω| 1
2 , (3.61)

where Wω and Uω are partial isometries coming from the polar decompositions
of BωAω and Aω respectively. Since |Aω| 1

2 ∈ K2 and BωUω|Aω| 1
2 ∈ K2, we may

proceed as in Lemma 3.10 to conclude that BωAω ∈ K1 and (3.60) holds.

Proposition 3.12. (i) K1 is a normed vector space with the norm ||| |||1. .
(ii) The conjugation Aω → A‡

ω is an isometry on K1, i.e.,
∣∣∣∣∣∣A‡

ω

∣∣∣∣∣∣
1 = |||Aω|||1 . (3.62)

(iii) K(0)
1 is dense in K1

Proof. We first prove the triangle inequality for ||| |||1. So let Aω,Bω ∈ K1. We have

|Aω + Bω| = W ∗
ω(Aω + Bω) = W ∗

ωAω + W ∗
ωBω , (3.63)

with Wω a partial isometry. It follows from Lemmas 3.10 and 3.11 that Aω +Bω ∈
K1 and |||Aω + Bω|||1 ≤ |||Aω|||1 + |||Bω|||1. We conclude that K1 is a normed space.

Given Aω ∈ K1, we have

χ0|A‡
ω|χ0 = χ0V

∗
ω A‡

ωχ0 = χ0V
∗
ω A∗

ωχ0 = χ0V
∗
ω |Aω|U∗

ωχ0

=
(
χ0V ∗

ω |Aω| 1
2

) (
|Aω| 1

2 U∗
ωχ0

)
, (3.64)

where Aω = Uω|Aω| and A‡
ω = Vω|A‡

ω|, and the operators in parentheses are Hilbert-
Schmidt by Propositions 3.7 and 3.8. It also follows that

∣∣∣∣∣∣A‡
ω

∣∣∣∣∣∣
1 ≤ |||Aω|||1 . (3.65)

Since A = A‡‡, the reverse inequality follows, yielding (3.62).
Finally, we prove that K(0)

1 is dense in K1. Given Aω ∈ K1, let A
(n)
ω ∈ K∞ be as

in (3.19). Since

Ran
(

1
n |A‡

ω|2 + 1
)− 1

2
= D(|A‡

ω|) = D(A‡
ω) ⊂ D(A∗

ω) , (3.66)

we have

A(n)
ω

∗
= A∗

ω

(
1
n |A‡

ω|2 + 1
)− 1

2
(3.67)

and

|A(n)
ω |2 = A∗

ω

(
1
n |A‡

ω |2 + 1
)−1

Aω ≤ |Aω|2 , (3.68)

and hence |A(n)
ω | ≤ |Aω|. It follows that A

(n)
ω ∈ K(0)

1 . To prove that
∣∣∣
∣∣∣
∣∣∣Aω − A

(n)
ω

∣∣∣
∣∣∣
∣∣∣
1

→
0, we first remark that by a similar argument we have

|Aω − A(n)
ω | ≤ |Aω| . (3.69)

So let {ϕk}k∈N be an ortho-normal basis for the subspace χ0H, we have
∣∣∣
∣∣∣
∣∣∣Aω − A(n)

ω

∣∣∣
∣∣∣
∣∣∣
1

= E

{
∑

k∈N

〈ϕk, |Aω − A(n)
ω |ϕk〉

}
≤ |||Aω|||1 < ∞, (3.70)
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since Aω ∈ K1 and

〈ϕk, |Aω − A(n)
ω |ϕk〉 ≤ 〈ϕk, |Aω|ϕk〉 . (3.71)

On the other hand, using Jensen’s inequality we get

〈ϕk, |Aω − A(n)
ω |ϕk〉 ≤ 〈ϕk, |Aω − A(n)

ω |2ϕk〉
1
2 (3.72)

= ‖(Aω − A(n)
ω )ϕk‖ → 0 as k → ∞ .

Thus
∣∣∣
∣∣∣
∣∣∣Aω − A

(n)
ω

∣∣∣
∣∣∣
∣∣∣
1

→ 0 by the Dominated Convergence Theorem.

We will denote the (abstract) completion of K1 by K1.

Proposition 3.13. The normed space K1 is not complete, i.e., K1 6= K1.

Proof. Let us denote by K(cst)
mc,lb and K

(cst)
1 the subset of constant operators in Kmc,lb

and K1, respectively. In view of (3.4), A ∈ K(cst)
mc,lb can always be written in the

form

A =
∑

x,y∈Zd

χxU (x)Sx−yU (−y)χy , (3.73)

where S = {Sx}x∈Zd is a family of bounded operators in χ0H such that the se-
ries

∑
x∈Zd χxU(x)Sxχ0 converges strongly to a bounded operator. A sufficient

condition for the latter is ∑

x∈Zd

‖Sx‖2 < ∞ . (3.74)

Operators A as in (3.73) can be partially diagonalized by a Floquet transform
given by

F = (2π)− d
2

∑

x∈Zd

eik·xU(−x)χx , (3.75)

a unitary map from H = L2(Rd, dx) to L2(Td, dk;χ0H), where Td = [−π
2 , π

2 )d is
the d-dimensional torus. Its inverse, F∗, is given by

F∗ = (2π)− d
2

∑

x∈Zd

χxU (x)〈eik·x, ·〉L2(Td,dk) (3.76)

For A as in (3.73) with
∑

x∈Zd ‖Sx‖2 < ∞ we have

(FAF∗Φ)(k) = Â(k)Φ(k) for all Φ ∈ FHc , (3.77)

where

Â(k) = (2π)− d
2

∑

x∈Zd

eik·xSx . (3.78)

Since F is unitary, in this case we also have

(F|A|F∗Φ)(k) = |Â(k)|Φ(k) for all Φ ∈ FHc , (3.79)

and

|||A|||1 = tr χ0|A|χ0 = (2π)−d

∫

Td

tr |Â(k)|dk . (3.80)

It follows that the completion K(cst)
1 of K(cst)

1 is isomorphic to the Banach space

L1(Td, (2π)−ddk;T1(χ0H)) ,
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where T1(χ0H)) denotes the Banach space of trace class operators on χ0H.
To see that there are elements in L1(Td, (2π)−ddk; T1(χ0H)) that do not cor-

respond to operators in K(cst)
1 , let us consider A as in (3.73) with Sx = sxY

for all x ∈ Zd, where Y ∈ T1(χ0H)) and the scalars {sx}x∈Zd are chosen such
ŝ(k) ∈ L1(Td, dk) but ŝ(k) /∈ L2(Td, dk), where ŝ(k) is defined as in (3.78). (This
can always be done.) We clearly have Â(k) ∈ L1(Td, (2π)−ddk;T1(χ0H)), but for
each ϕ ∈ χ0H we have

‖Aϕ‖2 =


 ∑

x∈Zd

|sx|2

 ‖Y ϕ‖2 = ‖ŝ(k)‖2

L2(Td,dk)‖Y ϕ‖2 = ∞ (3.81)

unless Y ϕ = 0. Thus A /∈ K(cst)
1 as it does not contain Hc in its domain. (In fact,

A /∈ K(cst)
mc,lb .)

Note that we proved that for any ϕ ∈ χ0H we can find A ∈ K
(cst)
1 which cannot

be represented by an operator with ϕ in its domain. In fact, we proved more: for
appropriate Y the constructed A has the property that its domain is disjoint from
Hc.

Remark 3.14. More generally, it follows from (3.4) that Aω ∈ Kmc,lb can always
be written in the form

A =
∑

x,y∈Zd

χxU (x)Sτ(−y)ω,x−yU(−y)χy , (3.82)

where Sω = {Sω,x}x∈Zd is a family of bounded operators on χ0H such that the series∑
x∈Zd χxU (x)Sω,xχ0 converges strongly to a bounded operator. As in (3.74), we

have

‖Aωχx‖2 ≤
∑

y∈Zd

‖Sτ(−x)ω,y‖2, and also ‖Aωχx‖2
2 =

∑

y∈Zd

‖Sτ(−x)ω,y‖2
2 . (3.83)

In particular,

|||Aω|||22 =
∑

y∈Zd

E
(
‖Sω,y‖2

2
)
. (3.84)

In the constant case we could write |||A|||1 as in (3.80), but we do not have a
similarly simple expression for |||Aω|||1.

Although K1 is not complete, it is closed in the following sense:

Proposition 3.15. Let Aω ∈ Kmc,lb and suppose there exists a Cauchy sequence
An,ω in K1 such that An,ωχ0 → Aωχ0 weakly. Then Aω ∈ K1 and An,ω → Aω in
K1.

Proof. Let Aω = Uω|Aω| be the polar decomposition. It follows that

U∗
ωAn,ωχ0 → |Aω|χ0 weakly. (3.85)
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Thus, if {ϕj}j∈N is an ortho-normal basis for the subspace χ0H, we have, using
Fatou’s Lemma,

|||Aω|||1 = E
∑

j∈N

〈ϕj , |Aω|ϕj〉 = E
∑

j∈N

lim
n→∞

|〈ϕj , U
∗
ωAn,ωϕj〉| (3.86)

≤ lim inf
n→∞

E
∑

j∈N

|〈ϕj , U
∗
ωAn,ωϕj〉| ≤ lim inf

n→∞
|||An,ω |||1 < ∞ ,

and hence Aω ∈ K1.
For fixed m we have that An,ω − Am,ω is a Cauchy sequence in K1, and that

(An,ω − Am,ω)χ0 → (Aω − Am,ω)χ0 weakly as n → ∞. Thus the above argument
gives

|||Aω − Am,ω|||1 ≤ lim inf
n→∞

|||An,ω − Am,ω|||1 → 0 as m → ∞. (3.87)

Corollary 3.16. Let K1,2 = K1 ∩ K2 with the norm ||| |||1,2 = ||| |||1 + ||| |||2. Then
K1,2 is a Banach space.

The corollary is an immediate consequence of Propositions 3.7(i) and 3.15. Its
value is that given a sequence An,ω ∈ Kmc,lb which converges in K1, if it also
converges in K2 then its limit in K1 is actually in K1.

Left and right multiplication by elements of K∞ leave K1 invariant.

Proposition 3.17. K1 ⊂ K¯. Moreover, if Aω ∈ K1 and Bω ∈ K∞ we have
Bω ¯L Aω ,Aω ¯R Bω ∈ K1 with

|||Bω ¯L Aω|||1 ≤ |||Bω|||∞ |||Aω|||1 , (3.88)
|||Aω ¯R Bω|||1 ≤ |||Bω|||∞ |||Aω|||1 . (3.89)

Proof. We have Bω ¯L Aω ∈ K2 and (3.52) from Lemma 3.11, so it follows from
Proposition 3.12(ii) that K1 ⊂ K¯. The estimate (3.89) follows from (3.31), (3.88),
and (3.62).

We consider one other sort of multiplication, namely the bilinear map ♦ : K(0)
2 ×

K(0)
2 → K1 given by

Aω ¦ Bω := ♦(Aω,Bω) = AωBω . (3.90)

Proposition 3.18. We have

|||Aω ¦ Bω|||1 ≤ |||Aω|||2 |||Bω|||2 for all Aω,Bω ∈ K(0)
2 . (3.91)

Thus ♦ extends by continuity to a bilinear map (we do not change notation) ♦ : K2×
K2 → K1, which satisfies (3.91) and has dense range. In fact,

K(0)
1 = ♦

(
K(0)

2 × K(0)
2

)
(3.92)

and

K1 Ã Ran ♦ . (3.93)

Moreover, given Aω, Bω ∈ K2, we have

Aω ¦ Bω = Aω ¯L Bω if Aω ∈ K(0)
2 , (3.94)

Aω ¦ Bω = Aω ¯R Bω if Bω ∈ K(0)
2 (3.95)

(Aω ¦ Bω)‡ = B‡
ω ¦ A‡

ω . (3.96)
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Proof. To prove (3.91) we proceed as in the proof of Lemma 3.11. The inclusion
in (3.93) was exhibited in the proof of Lemma 3.10; note that it also gives (3.92).
(3.94) is proven by an approximation argument. (3.96) follows from the special case
when Aω,Bω ∈ K(0)

2 and (3.62). (3.95) follows from (3.94), (3.96) and (3.31).
To show that we do not have equality in (3.93) we proceed as in the proof of

Proposition 3.13. Let A be as in (3.73) with Sx = sxZ for all x ∈ Zd, where
Z ∈ T2(χ0H)) and ŝ(k) ∈ L2(Td, dk) but ŝ(k) /∈ L4(Td, dk). (This can always be
done.) Then A ∈ K2 but A ¦ A /∈ K1 since ŝ(k)2 /∈ L2(Td, dk).

Lemma 3.19. Let Bn,ω be a bounded sequence in K∞ such that Bn,ω → Bω

strongly. Then for all Aω ∈ K1 we have Bn,ω¯LAω → Bω¯LAω and Aω¯RBn,ω →
Aω ¯R Bω in K1.

Proof. Again it suffices to prove the result for left multiplication in view of (3.31).
Since the sequence Bn,ω is bounded and K(0)

1 is dense in K1 it suffices to prove
the result for Aω ∈ K(0)

1 . But then we can write Aω = CωDω = Cω ¦ Dω, with
Cω, Dω ∈ K(0)

2 . Since

Bn,ω ¯L Aω = Bn,ωCωDω = (Bn,ωCω)Dω = (Bn,ω ¯L Cω) ¦ Dω , (3.97)

the desired conclusion follows from Lemma 3.9 and Proposition 3.18.

3.4. The trace per unit volume. Given A = Aω ∈ K1 we define

T (A) = E {tr{χ0Aωχ0}} . (3.98)

Lemma 3.10 says that T is a well defined linear functional on K1 such that

|T (A)| ≤ |||A|||1 . (3.99)

In fact, T is the trace per unit volume.

Proposition 3.20. Given A = Aω ∈ K1 we have

T (A) = lim
L→∞

1
|ΛL|tr {χΛLAωχΛL} for P-a.e. ω , (3.100)

where ΛL denotes the cube of side L = 1, 3,5, . . . centered at 0.

Proof. We have

tr {χΛLAωχΛL} =
∑

x∈Zd∩ΛL

tr {χxAωχx} =
∑

x∈Zd∩ΛL

tr
{
χ0Aτ(x)ωχ0

}
. (3.101)

Thus (3.100) follows from (3.58) and the ergodic theorem.

Lemma 3.21. Let Aω, Bω ∈ K2. Then

T (Aω ¦ Bω) = 〈〈A‡
ω, Bω〉〉 . (3.102)

In particular we have centrality for the trace per unit volume:

T (Aω ¦ Bω) = T (Bω ¦ Aω) . (3.103)

Moreover, given Cω ∈ K∞, we have

T ((Cω ¯L Aω) ¦ Bω) = T (Aω ¦ (Bω ¯R Cω)) . (3.104)
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Note that if Aω,Bω ∈ K(0)
2 equation (3.103) reads

T (AωBω) = T (BωAω) , (3.105)

and equation (3.104) reads

T (CωAωBω) = T (AωBωCω) . (3.106)

Proof. It suffices to prove the Lemma for Aω,Bω ∈ K(0)
2 , in which case it follows

from Propositions 3.7 and 3.8

We also have a “K∞, K1” version of centrality for the trace per unit volume:

Lemma 3.22. Let Aω ∈ K1 and Cω ∈ K∞, then

T (Cω ¯L Aω) = T (Aω ¯R Cω) . (3.107)

Proof. Just use Aω = (Uω|Aω| 1
2 ) ¦ |Aω| 1

2 , with Uω|Aω| the polar decomposition of
Aω, and (3.104).

We will also use the following lemmas.

Lemma 3.23. Let Aω ∈ K1 be such that T (Cω ¯L Aω) = 0 for all Cω ∈ K∞. Then
Aω = 0.

Proof. Let Uω|Aω| be the polar decomposition of Aω. Then Uω ∈ K∞ and |||Aω|||1 =
T (U∗

ωAω) = 0.

Lemma 3.24. Let Bn,ω be a bounded sequence in K∞ such that Bn,ω → Bω weakly.
Then for all Aω ∈ K1 we have T (Bn,ω ¯L Aω) → T (Bω ¯L Aω) and T (Aω ¯R

Bn,ω) → T (Aω ¯R Bω).

Proof. It suffices to consider the case Bω = 0. If Uω|Aω| is the polar decomposition,

T (Bn,ω ¯L Aω) = T (|Aω| 1
2 ¦ {Bn,ω ¯L (Uω |Aω |12 )}) → 0 (3.108)

by dominated convergence. The other limit then follows from Lemma 3.22.

3.5. The connection with noncommutative integration. There is a connec-
tion with noncommutative integration: K∞ is a von Neumann algebra, T is a
faithful normal semifinite trace on K∞, and Ki = Li(K∞, T ) for i = 1, 2. (We
assume that K(0)

1 is not trivial, which is guaranteed by Assumption 4.1 in view of
Proposition 4.2.) But our explicit construction plays a very important role in our
analysis.

That K∞ is a von Neumann algebra can be seen a follows. Let H̃ = L2((Ω, P);H) =∫ ⊕
Ω HdP (see [RS4, Section XIII.16] for the notation). Then the collection K̃∞

of strongly measurable maps A = Aω : Ω → B(H) with |||Aω|||∞ < ∞, where
|||Aω|||∞ is as in (3.7), form the von Neumann algebra of decomposable operators
on H̃ [RS4, Theorems XIII.83 and XIII.84]. If we define unitary operators Ũ(a)
on H̃ for a ∈ Zd by (Ũ(a)Φ)(ω) = U (a)Φ(τ(−a)ω) for Φ ∈ H̃, it follows that
K∞ = {Aω ∈ K̃∞; [Ũ(a), Aω] = 0 for all a ∈ Zd}, and hence K∞ is a von Neumann
algebra.

T is a faithful normal semifinite trace (e.g., [T, Definition 2.1]) on K∞. That
T is faithful is clear; to see that T is normal note that the condition given in
[BrR, Theorem 2.7.11(i)] can be verified using properties of the usual trace and the
monotone convergence theorem. To show that T is semifinite, pick a self-adjoint



30 J.-M. BOUCLET, F. GERMINET, A. KLEIN, AND J.H. SCHENKER

0 6= Bω ∈ K(0)
1 , note that we have the orthogonal projections Qn,ω := χ[−n,n](Bω) ∈

K(0)
1 by Lemma 3.2, and hence we conclude that T is semifinite since Qn,ω ↗ I

strongly.
Note that if Aω ∈ Kmc,lb then its closure Aω is affiliated with K∞ by Lemma 3.2.

The converse cannot be true in view of Proposition 3.13.

4. Ergodic magnetic media

4.1. The ergodic Hamiltonian. We now state the technical assumptions on our
ergodic Hamiltonian Hω .

Assumption 4.1. The ergodic Hamiltonian ω 7→ Hω is a measurable map from
the probability space (Ω, P) to the self-adjoint operators on H such that

Hω = H(Aω, Vω) = (−i∇ − Aω)2 + Vω , (4.1)

almost surely, where Aω (Vω) are vector (scalar) potential valued random variables
which satisfy the Leinfelder-Simader conditions (see Subsection 2.1) almost surely.
It is furthermore assumed that Hω is covariant:

U (a)HωU (a)∗ = Hτ(a)ω for all a ∈ Zd . (4.2)

Measurable in this context means that 〈ψ, Hωφ〉 is a Borel measurable function
for every ψ,φ ∈ C∞

c (Rd). As a consequence f(Hω) ∈ K∞ for every bounded Borel
function f on the real line. (The only subtle point here is measurability, but that
is well known. See [PF].)

Note that it follows from ergodicity that Vω− satisfies (2.2) almost surely with
the same constants α, β.

We remark that much more detailed knowledge of Hω is required to verify As-
sumption 5.1 below, at least for ζω = P

(EF )
ω . In particular, one might require Vω

to be of the form Vω(x) =
∑

a∈Zd ηau(x−a), where ηa are independent, identically,
distributed random variables and u is a function of compact support. However, the
only fact we need here regarding localization for ergodic Schrödinger operators is
(5.2) below for suitable functions h. Thus we prefer to take the general Assump-
tion 4.1 and note that Assumption 5.1 for ζω = P

(EF )
ω follows, for suitable Aω, Vω

and EF , by the methods of, for example, [GK1, BoGK, AENSS].
It is absolutely crucial to our analysis that the parameters α, β in the Leinfelder-

Simader conditions may be chosen independently of ω. In particular, this allows us
to prove:

Proposition 4.2. Let f be a Borel measurable function on the real line such that
‖fΦd,α,β‖∞ < ∞, where Φd,α,β is given in (2.15). Then

(i): We have f(Hω) ∈ K(0)
1 , and if ‖f2Φd,α,β‖∞ < ∞ then f(Hω) ∈ K(0)

2 .
(ii): If f(Hω) = g(Hω) for some g ∈ S(R), we have [xj , f(Hω)] ∈ K(0)

1 ∩ K(0)
2 ,

j = 1, 2, . . . , d.
(iii): If f(Hω) = g(Hω)h(Hω) with g ∈ S(R) and h a Borel measurable function

with ‖h2Φd,α,β‖∞ < ∞, and for some j ∈ {1, 2, . . . , d} we have [xj , h(Hω)] ∈
K2, then we also have [xj , f(Hω)] ∈ K1 ∩ K2.

(iv): We have P
(E)
ω ∈ K(0)

1 ∩ K(0)
2 , where P

(E)
ω = χ(−∞,E](Hω), i.e., P

(E)
ω =

f(Hω) with f = χ(−∞,E]. If in addition we have
[
xj , P

(E)
ω

]
∈ K2 for some

j ∈ {1,2, . . . , d}, then we also have
[
xj , P

(E)
ω

]
∈ K1.
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(v): If f is as in either (ii), (iii), or (iv), we also have

T {[xj , f(Hω)]} = 0 . (4.3)

Proof. (i) is an immediate consequence of (2.16). To prove (ii), first note that
[xj, f(Hω)] is in K∞ by Proposition 2.4(ii). We recall that [GK3, Eq. (3.8)]

‖χxf(Hω)χ0‖2
2 ≤ Cd,α,β,ν,k ‖fΦd,α,β‖∞ |||g|||k+2 〈x〉−k+2ν (4.4)

for P-a.e. ω and all k = 1, 2, . . . and ν > d
4 , and set a to be a step function

approximation to the operator x; i.e., a is the operator given by multiplication by
the discretized coordinates a ∈ Zd: a =

∑
a∈Zd aχa. Note that multiplication by

xj − aj is a bounded operator for each j ∈ {1, 2, . . . , d}; in fact, ‖xj − aj‖ ≤ 1
2 .

Since

[xj, f(Hω)] = [ajf(Hω)] + [xj − aj , f(Hω)] , (4.5)

to prove [xj , f(Hω)] ∈ K2 it suffices to prove [aj , f(Hω)] ∈ K2. This follows from
(4.4) with sufficiently large k:

‖[aj , f(Hω)]χ0‖2
2 =

∥∥∥∥∥
∑

a∈Zd

χa[aj , f(Hω)]χ0

∥∥∥∥∥

2

2

=
∑

a∈Zd

‖χa[aj, f(Hω)]χ0‖2
2 (4.6)

=
∑

a∈Zd

|aj|2 ‖χaf(Hω)χ0‖2
2 ≤ Cd,α,β,ν,k ‖fΦd,α,β‖∞ |||g|||k+2

∑

a∈Zd

|aj |2 〈a〉−k+2ν
.

That [xj , f(Hω)] it is also in K1 follows from (iii), since we can write g(t) =
(〈t〉ng(t))〈t〉−n with n ∈ N, (〈t〉ng(t)) ∈ S(R) and h(t) = 〈t〉−n is as in (iii) for n
large.

To prove (iii), we note that [xj , g(Hω)] ∈ K∞ by (2.38) and, since [xj , h(Hω)] ∈
K2, xjh(Hω)χ0 is a bounded operator. Hence

[xj , f(Hω)] χ0 = [xj , g(Hω)h(Hω)] χ0 (4.7)
= [xj , g(Hω)] h(Hω)χ0 + g(Hω) [xj, h(Hω)] χ0 .

Noting that g(Hω), h(Hω) ∈ K2 by (i), we conclude that

[xj, f(Hω)] = [xj , g(Hω)] ¯R h(Hω) + g(Hω) ¯L [xj , h(Hω)] ∈ K2 , (4.8)

and, as [xj , g(Hω)] ∈ K2 by (ii),

[xj , f(Hω)] = [xj , g(Hω)] ¦ h(Hω) + g(Hω) ¦ [xj , h(Hω)] ∈ K1 . (4.9)

Item (iv) is an immediate consequence of (i) and (iii). To see (v), note xjχ0 =
χ0xjχ0 is bounded and χ0f(Hω)xjχ0 = (χ0f(Hω)χ0)(xjχ0) is trace class. Since
[xj, f(Hω)] ∈ K1, we conclude that χ0xjf(Hω)χ0 is also trace class, and

T {[xj , f(Hω)]} = E tr (χ0xjf(Hω)χ0) − E tr (χ0f(Hω)xjχ0) = 0 (4.10)

using centrality of the ordinary trace tr.

4.2. Commutators of measurable covariant operators. In this subsection,
Hω stands either for the time independent Hω or for Hω(t) incorporating a time-
dependent electric field. By HωAω ∈ Ki we mean AωHc ⊂ D and the operator
HωAω with domain Hc is in Ki.

Definition 4.3. We define the following (generalized) commutators:
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(i): If Aω ∈ K¯ and Bω ∈ K∞, then

[Bω, Aω]¯ = Bω ¯L Aω − Aω ¯R Bω ∈ K¯ , (4.11)

[Aω,Bω]¯ = Aω ¯R Bω − Bω ¯L Aω =
(
[B∗

ω,A‡
ω]¯

)‡ ∈ K¯. (4.12)

(ii): If Aω, Bω ∈ K2, then

[Bω, Aω]¦ = Bω ¦ Aω − Aω ¦ Bω ∈ K1 . (4.13)

(iii): If Aω ∈ K¯ is such that HωAω and HωA‡
ω are in K¯, then

[Hω,Aω]‡ = HωAω − (HωA‡
ω)‡ ∈ K¯ . (4.14)

Remark 4.4. These commutators agree when any two of them make sense. More
precisely:

(a): If Aω, Bω ∈ K∞ then [Bω, Aω]¯ = [Bω, Aω] = BωAω − AωBω , the usual
commutator.

(b): (4.13) agrees with either (4.11) or (4.12) if either Bω or Aω are in K∞.
(c): (4.14) should be interpreted as an extension of (4.11) to unbounded Bω.

Note that (4.11) can be rewritten as [Bω, Aω]¯ = BωAω − (B∗
ωA‡

ω)‡, and the
right hand side makes sense as long as BωAω and B∗

ωA‡
ω are in Kmc,lb. In

addition, (4.14) reduces to the usual commutator on Hc ∩ D, as shown in the
following lemma.

Lemma 4.5. Let Aω ∈ K¯ be such that HωAω ∈ K¯. Then

(HωAω)‡ψ = A‡
ωHωψ for all ψ ∈ Hc ∩ D . (4.15)

In addition, we have D((HωAω)∗) ∩ D = D(A∗
ωHω) and

(HωAω)∗ψ = A∗
ωHωψ for all ψ ∈ D((HωAω)∗) ∩ D . (4.16)

As a consequence, if HωAω and HωA‡
ω are in K¯, then

[Hω, Aω]‡ψ = HωAωψ − AωHωψ for all ψ ∈ Hc ∩ D . (4.17)

Proof. If HωAω ∈ K¯, for all ψ ∈ Hc ∩ D and ξ ∈ Hc we have

〈(HωAω)‡ψ, ξ〉 = 〈ψ,HωAωξ〉 = 〈Hωψ, Aωξ〉 = 〈A‡
ωHωψ, ξ〉 , (4.18)

where we used the fact that Hωψ ∈ Hc since Hω is a local operator. Thus (4.15)
follows. A similar argument proves (4.16).

The following lemma will also be useful.

Lemma 4.6. Let Aω, Bω ∈ K2, Cω ∈ K∞. Then

T {[Cω,Aω]¯ ¦ Bω} = T {Cω ¯L [Aω,Bω]¦} . (4.19)

Proof. It follows from (4.11), (4.13), and Lemma 3.21.

4.3. Time evolution on spaces of covariant operators. For P-a.e. ω let
Uω(t, s) be the unitary propagator given by Theorem 2.7. Note that Uω(t, s) ∈ K∞.
(Since we apply Theorem 2.7 independently for each ω, there is the subtle question
of measurability for Uω(t, s). However, measurability follows from the construction
(2.86), since the propagator Uω(t, s) is expressed as a limit of “Riemmann prod-
ucts,” i.e., multiplicative Riemmann sums, each of which is manifestly measurable
since it is a product of finitely many propagators e−i∆tHω(tk))
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It will be important at times to keep track of the dependence of Uω(t, s) on the
electric field E, in which case we will write Uω(E, t, s). Note that

Uω(E = 0, t, s) = U (0)
ω (t − s) := e−i(t−s)Hω . (4.20)

We omit E from the notation in what follows.

Proposition 4.7. Let

U(t, s)(Aω) = Uω(t, s) ¯L Aω ¯R Uω(s, t) for Aω ∈ K¯ . (4.21)

Then U(t, s) is a linear operator on K¯, leaving K¯, K∞, K1, and K2 invariant,
with

U(t, r)U(r, s) = U(t, s) , (4.22)
U(t, t) = I , (4.23)

{U(t, s)(Aω)}‡ = U(t, s)(A‡
ω) . (4.24)

Moreover, U(t, s) is unitary on K2 and an isometry in K1 and K∞; it extends to
an isometry on K1 with the same properties. In addition, U(t, s) is jointly strongly
continuous in t and s on K1 and K2.

Proof. The first part of the proposition follows from Propositions 3.6, 3.8, and 3.17.
U(t, s) is clearly an isometry on K∞. To see that U(t, s) is an isometry on K1 and
K2, note that from Propositions 3.8 and 3.17 we have

|||U(t, s)(Aω)|||i ≤ |||Aω|||i ≤ |||U(t, s)(Aω)|||i (4.25)

for i = 1, 2, where we used Aω = U(s, t) (U(t, s)(Aω)). As for (4.24), it follows from
(3.33).

The joint strong continuity of U(t, s) on K1 and K2 follows from the joint strong
continuity of Uω(t, s) on H and Lemmas 3.9 and 3.19.

Lemma 4.8. Let Aω ∈ Ki be such that Hω(r0)Aω ∈ Ki for some r0 ∈ [−∞, ∞),
where i ∈ {¯,1, 2, ∞}. Then Hω(r)Aω ∈ Ki for all r ∈ [−∞, ∞).

Proof. In view of (2.65) it suffices to show Dj,ωAω ∈ Ki if Hω(r0)Aω ∈ Ki for some
r0 ∈ [−∞, ∞). But this follows immediately from (2.73).

Proposition 4.9. Let Aω ∈ Ki be such that Hω(r0)Aω and Hω(r0)A‡
ω are in Ki

for some r0 ∈ [−∞,∞) Then the map r → U(t, r)(Aω) ∈ Ki is differentiable in Ki,
and

i∂r U(t, r)(Aω) = −U(t, r)([Hω(r), Aω]‡) , (4.26)

with [Hω(r),Aω]‡ defined in (4.14).

Proof. Fix i = 1 or i = 2. All the expressions make sense as elements of Ki. Write
i

h
(U(t, r + h)(Aω) − U(t, r)(Aω)) (4.27)

=
i

h
(Uω(t, r + h) − Uω(t, r)) ¯L Aω ¯R Uω(r + h, t) (4.28)

+ Uω(t, r) ¯L Aω ¯R
i

h
(Uω(r + h, t) − Uω(r, t)) . (4.29)

We first focus on (4.28). Since Hω(r)Aω ∈ Ki by Lemma 4.8, one has

Bω ¯L Aω = BωAω = Bω(Hω(r) + γ)−1(Hω(r) + γ)Aω (4.30)
= Bω(Hω(r) + γ)−1 ¯L (Hω(r) + γ)Aω .
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Theorem 2.7 asserts that
1
h

(Uω(t, r + h) − Uω(t, r)) (Hω(r) + γ)−1 → iUω(t, r)Hω(r)(Hω(r) + γ)−1

strongly with uniformly bounded norm, as h → 0. Using either Lemma 3.19 or
Lemma 3.9, and the strong continuity of Uω(r, t) in r, we get

lim
h→0

i

h
(Uω(t, r + h) − Uω(t, r)) ¯L Aω ¯R Uω(r + h, t) (4.31)

= −Uω(t, r)Hω(r)(Hω(r) + γ)−1 ¯L (Hω(r) + γ)Aω ¯R Uω(r, t)
= −Uω(t, r) ¯L Hω(r)Aω ¯R Uω(r, t).

We now turn to (4.29). Note that if Bω ∈ K∞ then

Aω ¯R Bω = (B∗
ω ¯L A‡

ω)‡ =
(
((Hω(r) + γ)−1Bω)∗ ¯L (Hω(r) + γ)A‡

ω

)‡
. (4.32)

Since the map Aω → A‡
ω is an isometry on Ki, the same argument as above implies

that

lim
h→0

Uω(t, r) ¯L Aω ¯R
i

h
(Uω(t, r + h) − Uω(t, r)) (4.33)

= Uω(t, r) ¯L

(
((Hω(r) + γ)−1Hω(r)Uω(r, t))∗ ¯L (Hω(r) + γ)A‡

ω

)‡

= Uω(t, r) ¯L (Hω(r)A‡
ω)‡ ¯R Uω(r, t).

Proposition 4.10. Let Aω ∈ Ki be such that Hω(r0)Aω and Hω(r0)A‡
ω are in Ki

for some r0 ∈ [−∞,∞), , where i ∈ {1,2, ∞}. Then Hω(t)Uω(t, r)Aω, Hω(t)Uω(t, r)A‡
ω,

Hω(t)U(t, r)(Aω), and Hω(t)U(t, r)(A‡
ω) are in Ki, and the map t → U(t, r)(Aω) ∈

Ki is differentiable, with

i∂t U(t, r)(Aω) = [Hω(t), U(t, r)(Aω)]‡ , (4.34)

with the proviso that in K∞ the meaning of the derivative is as a bounded and
P-a.e.-weak limit.

Moreover, we have

|||(Hω(t) + γ)U(t, r)(Aω)|||i ≤ |||Wω(t, r)|||∞ |||(Hω(r) + γ)Aω|||i , (4.35)

|||[Hω(t), U(t, r)(Aω)]‡|||i ≤ |||Wω(t, r)|||∞
(
|||(Hω(r) + γ)Aω|||i +

∣∣∣∣∣∣(Hω(r) + γ)A‡
ω

∣∣∣∣∣∣
i

)
,

(4.36)

and, for all ϕ ∈ Hc ∩ D,

[Hω(t), U(t, r)(Aω)]‡ϕ = Hω(t)Uω(t, r)A‡∗
ω Uω(r, t)ϕ − Uω(t, r)A‡∗

ω Uω(r, t)Hω(t)ϕ.
(4.37)

We need the following lemma. (Recall that Aω = A‡∗
ω for Aω ∈ Kmc,lb.)

Lemma 4.11. Let Aω ∈ Ki with Hω(t)Aω ∈ Ki (i ∈ {¯,1, 2, ∞}). If ϕ ∈ D(A‡∗
ω )∩

D((Hω(t)Aω)‡∗), it follows that A‡∗
ω ϕ ∈ D and

(Hω(t)Aω)‡∗ϕ = Hω(t)A‡∗
ω ϕ. (4.38)

As a consequence, Hω(t)(Aω ¯R Cω) ∈ Ki for any Cω ∈ K∞, and

(Hω(t)Aω) ¯R Cω = Hω(t)A‡∗
ω Cω = Hω(t)(Aω ¯R Cω) . (4.39)

Lemma 4.11 can be seen as a generalization of (3.32), where Bω ∈ K∞ is replaced
by the unbounded operator Hω(t) whose domain does not contain Hc.
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Proof of Lemma 4.11. Let ϕ ∈ D(A‡∗
ω )∩D((Hω(t)Aω)‡∗) and ψ ∈ Hc ∩D, we have,

using Lemma 4.5,

〈(Hω(t)Aω)‡∗ϕ, ψ〉 = 〈ϕ, (Hω(t)Aω)‡ψ〉 = 〈ϕ, A‡
ωHω(t)ψ〉 = 〈A‡∗

ω ϕ,Hω(t)ψ〉 .
(4.40)

Since Hc ∩ D is a core for Hω(t), it follows that A‡∗
ω ϕ ∈ D and

〈(Hω(t)Aω)‡∗ϕ, ψ〉 = 〈Hω(t)A‡∗
ω ϕ, ψ〉. (4.41)

Since D ∩ Hc is dense in H (it contains C∞
c (Rd)), (4.38) follows.

Proof of Proposition 4.10. Since Hω(r0)Aω ∈ Ki, AωHc ⊂ D. Since Uω(t, r)D ⊂
D, the operator Hω(t)Uω(t, r)Aω is well-defined on Hc and (use Lemma 4.8)

Hω(t)Uω(t, r)Aω = Hω(t)Uω(t, r)(Hω(r) + γ)−1 ¯L (Hω(r) + γ)Aω ∈ Ki , (4.42)

as Hω(t)Uω(t, r)(Hω(r) + γ)−1 = Wω(t, r) − γUω(t, r)(Hω(r) + γ)−1 is an element
of K∞. The estimate (4.35) follows.

Furthermore, as in (4.31), on account of Theorem 2.7 we have

lim
h→0

i

h
(Uω(t + h, r) − Uω(t, r)) ¯L Aω ¯R Uω(r, t + h) (4.43)

= Hω(t)Uω(t, r)(Hω(r) + γ)−1 ¯L (Hω(r) + γ)Aω ¯R Uω(r, t)
= (Hω(t)Uω(t, r)Aω) ¯R Uω(r, t),

where we used associativity of left and right multiplication in Ki according to
Proposition 3.6, and in K∞ we took a bounded and P-a.e.-weak limit.

By the same reasoning as above Hω(t)Uω(t, r)A‡
ω ∈ Ki, and we have an estimate

similar to (4.35). Thus we can differentiate the second term as in (4.43) simply by
using the conjugates:

lim
h→0

Aω ¯R
i

h
(Uω(r, t + h) − Uω(r, t)) (4.44)

=
(

lim
h→0

i

h
(Uω(t + h, r) − Uω(t, r)) ¯L A‡

ω

)‡

= (Hω(t)Uω(t, r)A‡
ω)‡.

Combining (4.43) and (4.44) we get

i∂t U(t, r)(Aω) = (Hω(t)Uω(t, r)Aω) ¯R Uω(r, t) − Uω(t, r) ¯L (Hω(t)Uω(t, r)A‡
ω)‡ .

(4.45)

Recalling that Hω(t)Uω(t, r)Aω ∈ Ki, it follows from Lemma 4.11 that

(Hω(t)Uω(t, r)Aω) ¯R Uω(r, t) = Hω(t)Uω(t, r)A‡∗
ω Uω(r, t)

= Hω(t)Uω(t, r)(Aω) . (4.46)

Likewise, since Hω(t)Uω(t, r)A‡
ω ∈ Ki, we conclude that

Uω(t, r) ¯L (Hω(t)Uω(t, r)A‡
ω)‡ =

(
(Hω(t)Uω(t, r)A‡

ω) ¯R Uω(r, t)
)‡

=
(
Hω(t)U(t, r)(A‡

ω)
)‡

. (4.47)

Eq. (4.34) follows. Furthermore, by Lemma 4.5 we have

(HωUω(t, r)A‡
ω)‡ϕ = (Uω(t, r)A‡

ω)‡Hωϕ = A‡∗
ω Uω(r, t)Hωϕ (4.48)

for any ϕ ∈ D ∩ Hc, so (4.37) holds.
The bound (4.36) follows from (4.35) and its counterpart for A‡

ω.
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In the special case when E = 0 we have the following corollary, with

U (0)(t)(Aω) = U (0)
ω (t) ¯L Aω ¯R U (0)

ω (−t) for Aω ∈ K¯ , (4.49)

where U
(0)
ω (t) = e−itHω as in (4.20). The operator Li introduced in the following

lemma is usually called the Liouvillian.

Corollary 4.12. U (0)(t) is a one-parameter group of operators on K¯, leaving Ki

invariant for i = 1, 2,∞. U (0)(t) is unitary on K2 and an isometry on K1 and K∞,
so it extends to an isometry in K1. It is strongly continuous on K1 and K2; we
denote by Li, i = 1, 2, the corresponding infinitesimal generators :

U (0)(t) = e−itLi for all t ∈ R . (4.50)

Let

D(0)
i =

{
Aω ∈ Ki; HωAω, HωA‡

ω ∈ Ki

}
, i = 1, 2, ∞ . (4.51)

Then D(0)
i is an operator core for Li, i = 1, 2 (note that L2 is essentially self-adjoint

on D(0)
2 ), and

Li(Aω) = [Hω, Aω]‡ for all Aω ∈ D(0)
i , i = 1,2 . (4.52)

Moreover, for every Bω ∈ K∞ there exists a sequence Bn,ω ∈ D(0)
∞ such that Bn,ω →

Bω as a bounded and P-a.e.-strong limit.

Proof. Most of the Corollary follows immediately from Propositions 4.7, 4.9, 4.10,
and Stone’s Theorem for the Hilbert space K2, the Hille-Yosida Theorem for the
Banach space K1. Since f(Hω)Aωg(Hω) ∈ D(0)

i for all f, g ∈ C∞
c (R) and Aω ∈ Ki,

i = 1, 2, ∞, we conclude that elements in K∞ can approximated by sequences in D(0)
∞

as a bounded and P-a.e.-strong limit, and also that D(0)
i is a core for Li for i = 1,2,

as in the usual proofs of Stone’s Theorem and the Hille-Yosida Theorem,

4.4. Gauge transformations in spaces of measurable operators. The map

G(t)(Aω) = G(t)AωG(t)∗ , (4.53)

with G(t) = ei
∫ t

−∞ E(s)·x as in (2.57), is an isometry on K∞, K(0)
1 , and K(0)

2 , and
hence extends to an isometry on K1 and on K2. Moreover, since G(t) and χx

commute, (4.53) holds for Aω either in K1 or K2.

Lemma 4.13. The map G(t) is strongly continuous on both K1 and on K2, and

lim
t→−∞

G(t) = I strongly (4.54)

on both K1 and on K2. Moreover, if Aω ∈ Ki, i = 1 or 2, with [xj , Aω] ∈ Ki for
j = 1, ..., d, then G(t)(Aω) is continuously differentiable in Ki with

∂tG(t)(Aω) = i [E(t) · x, G(t)(Aω)] = iG(t) ([E(t) · x, Aω]) . (4.55)

Proof. We start by proving the lemma on K2. For Aω ∈ K2, we have

G(t + h)(Aω) − G(t)(Aω) = G(t)(G(t + h)G(−t) − 1)(Aω) . (4.56)

Since G(t) is an isometry, continuity follows if we show that

lim
h→0

|||(Gt(h) − 1)(Aω)|||2 = 0 , (4.57)
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where Gt(h)(Aω) = Gt(h)(Aω)Gt(h)∗, with Gt(h) = G(t + h)G(−t) being the uni-
tary operator given by multiplication by the function e−i

∫ t+h
t

E(s)·x ds. Thus

(Gt(h) − 1)(Aω) = Gt(h) [(1 − Gt(h)∗)Aω + Aω(Gt(h)∗ − 1)] (4.58)

Since Gt(h) is unitary, we have

|||(Gt(h) − 1)(Aω)|||22 ≤ 2
{

E ‖(1 − Gt(h)∗)Aωχ0‖2
2 + E ‖Aω(Gt(h)∗ − 1)χ0‖2

2

}

= 2
{

E ‖(1 − Gt(h)∗)Aωχ0‖2
2 + E ‖Aωχ0(Gt(h)∗ − 1)‖2

2

}
. (4.59)

Although Gt(h)∗ /∈ K∞ because it is not covariant, we can use the argument in
the proof of Lemma 3.9 to conclude that both terms in (4.59) go to 0 as h → 0,
obtaining (4.57). The limit in (4.54) is just continuity at t = −∞ and is proven in
the same way.

The result in K1 now follows from the result in K2 using the ♦ map, since for
Bω, Cω ∈ K(0)

2 , we have on K1 that

G(t)(BωCω) = G(t)(Bω)G(t)(Cω) = (G(t)(Bω)) ¦ (G(t)(Cω)) , (4.60)

and, as G(t) are isometries, it suffices to prove strong continuity on a dense subset.
It only remains to prove differentiability and (4.55) assuming [xj , Aω] ∈ Ki,

since continuity of the derivative follows from (4.57) and the strong continuity just
obtained for G(t). We see by (4.56) that it suffices to show

lim
h→0

1
h(Gt(h) − 1) (Aω) = i [E(t) · x, Aω] , (4.61)

with convergence in Ki. Since [x, Aω] ∈ Ki, the (Bochner) integral

Φ(h) = i
1
h

∫ h

0
du Gt(u) ([E(t + u) · x, Aω]) (4.62)

is, for each h > 0, a well defined element of K1. Furthermore, as Gt(·) is strongly
continuous, the integrand is continuous and

lim
h→0

Φ(h) = i [E(t) · x,Aω] . (4.63)

We claim that Φ(h) = h−1(Gt(h) − 1) (Aω). Indeed it suffices to verify

hχxΦ(h)χy = (Gt(h) − 1) (χxAωχy)) (4.64)

for each x, y (since χx, χy commute with G(t)). But this identity follows since
the derivatives of the two sides are equal, and both expressions vanish at h = 0.
(Derivation is permitted here because of the cut-off induced by χx, χy.)

5. Linear response theory and Kubo formula

In this section we prove our main results. We assume throughout this section
that Assumptions 4.1 and 5.1 (stated below) hold.
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5.1. Adiabatic switching of the electric field. We now fix an initial equilib-
rium state of the system, i.e., we specify a density matrix ζω which is in equilibrium,
so [Hω, ζω] = 0. For physical applications, we would generally take ζω = f(Hω)
with f the Fermi-Dirac distribution at inverse temperature β ∈ (0, ∞] and Fermi
energy EF ∈ R, i.e., f(E) = 1

1+eβ(E−EF ) if β < ∞ and f(E) = χ(−∞,EF ](E) if
β = ∞; explicitly

ζω =

{
F

(β,EF )
ω := 1

1+eβ(Hω−EF ) , β < ∞ ,

P
(EF )
ω := χ(−∞,EF ](Hω) , β = ∞ .

(5.1)

The fact that we have a Fermi-Dirac distribution is not so important at first, al-
though when we compute the Hall conductivity we will restrict our attention to the
zero temperature case with the Fermi projection P (EF ).

The key property we need is that the hypothesis of either Proposition 4.2(ii) or
Prop. 4.2(iii) holds:

Assumption 5.1. The initial equilibrium state ζω is non-negative, i.e., ζω ≥ 0,
and, either

(a): ζω = g(Hω) with g ∈ S(R),
or

(b): ζω decomposes as ζω = g(Hω)h(Hω) with g ∈ S(R) and h a Borel measur-
able function which satisfies ‖h2Φd,α,β‖∞ < ∞ and

E
{

‖xh(Hω)χ0‖2
2

}
< ∞ . (5.2)

(Condition (5.2) is equivalent to [xj , h(Hω)] ∈ K2 for all j = 1,2, . . . , d.)

Remark 5.2. We make the following observations about Assumption 5.1:
(i): By Proposition 4.2, either (ii) or (iii), we have [xj , ζω] ∈ K1 ∩ K2 for all

j = 1, 2, . . . , d.
(ii): The equivalence between (5.2) and [xj , h(Hω)] ∈ K2 for j = 1, . . . , d follows

from the facts that h(Hω) ∈ K2 by Prop. 4.2(i) and

‖x h(Hω)χ0‖2 ≤ ‖[x, h(Hω)]χ0‖2 + ‖h(Hω)χ0‖2 . (5.3)

Although |x|2 = x ·x is not covariant, it follows from (5.2) that for any a ∈ Zd

we have

E
{
‖x h(Hω)χa‖2

2

}
< ∞ , (5.4)

and hence the operators [xj , h(Hω)] are well defined on Hc for j = 1, . . . , d.
(iii): The Fermi-Dirac distributions f (β,EF )(E) := (1+eβ(E−EF ))−1 with finite

β satisfy Assumption 5.1(a). Just take g(E) = k(E)f (β,EF )(E), where k(E)
is any C∞ function which is equal to one for E ≥ −γ (defined in (2.10)) and
equal to 0 for E ≤ −γ1 for some γ1 > γ.

(iv): For a Fermi projection P
(EF )
ω (β = ∞), it is natural to take h(Hω) =

P
(EF )
ω and for g any Schwartz function identically 1 on [−γ, EF ]. Condition

(5.2) does not hold automatically in this case; rather it holds only for EF in
the “localization regime,” as discussed in the introduction. The existence of a
region of localization been established for random Landau Hamiltonians with
Anderson-type potentials [CH, W, GK4].
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Let us now switch on, adiabatically, a spatially homogeneous electric field E, i.e.,
we take (with t− = min {t, 0}, t+ = max {t, 0})

E(t) = eηt−E , (5.5)

and hence

F(t) =
∫ t

−∞
E(s)ds =

(
eηt−

η + t+

)
E . (5.6)

The system is now described by the ergodic time dependent Hamiltonian Hω(t), as
in (2.49). We write

ζω(t) = G(t)ζωG(t)∗ = G(t)(ζω), i.e., ζω(t) = f(Hω(t)). (5.7)

Assuming the system was in equilibrium at t = −∞ with the density matrix
%ω(−∞) = ζω, the time dependent density matrix %ω(t) would be the solution of
the following Cauchy problem for the Liouville equation:

{
i∂t%ω(t) = [Hω(t), %ω(t)]‡
limt→−∞ %ω(t) = ζω

, (5.8)

where we have written the commutator [·, ·]‡ in anticipation of the fact that this is
to be understood as an evolution in Ki, i = 1, 2. The main result of this subsection
is the following theorem on solutions to (5.8), which relies on the ingredients intro-
duced in Sections 2 and 3. In view of Corollary 4.12, we replace the commutator
in (5.8) by the Liouvillian at time t:

Li(t) = G(t)LiG(−t), i = 1, 2 . (5.9)

Note that Li(t) has D(0)
i as an operator core for all t, since it follows from Lemma 4.8

that D(0)
i = G(t)D(0)

i for i = 1, 2,∞.
We have the following generalization of Theorem 1.1.

Theorem 5.3. The Cauchy problem
{

i∂t%ω(t) = Li(t)(%ω(t))
limt→−∞ %ω(t) = ζω

, (5.10)

has a unique solution in both K1 and K2, with Li(t), i = 1, 2, being the corresponding
Liouvillian. The unique solution %ω(t) is in D(0)

1 (t) ∩ D(0)
2 (t) ⊂ K1 ∩ K2 for all t,

solves the stronger Cauchy problem (5.8) in both K1 and K2, and is given by

%ω(t) = lim
s→−∞

U(t, s) (ζω) (5.11)

= lim
s→−∞

U(t, s) (ζω(s)) (5.12)

= ζω(t) − i

∫ t

−∞
dr eηr−U(t, r) ([E · x, ζω(r)]) . (5.13)

We also have

%ω(t) = U(t, s)(%ω(s)) , |||%ω(t)|||i = |||ζω|||i , (5.14)

for all t, s and i = 1, 2, ∞. Furthermore, %ω(t) is non-negative, and if ζω = PEF
ω ,

then %ω(t) is an orthogonal projection for all t.

Before proving the theorem we need a technical but crucial lemma. We write
Dj,ω = Dj(Aω).

Lemma 5.4. Let j = 1, · · · , d.
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(i): For all ϕ ∈ Hc we have xjζωϕ ∈ D and

2Dj,ωζωϕ = iHωxjζωϕ − ixjHωζωϕ = i[Hω, xj ]ζωϕ . (5.15)

(ii): Hω [xj , ζω] ∈ K1 ∩ K2. In fact, the operators Hω[xj, ζω] and [xj , Hωζω] are
well defined (as commutators) on Hc, we have

Hω[xj , ζω] = [xj ,Hωζω] − 2iDj,ωζω on Hc , (5.16)

and the two operators in the right hand side of (5.16) are in K1 ∩ K2.
(iii): Hω[E · x, ζω] ∈ K1 ∩ K2.

Proof. It follows from (2.3) that

Hωxjφ = xjHωφ − 2iDj,ωφ for all φ ∈ C∞
c (Rd) . (5.17)

Thus if φ ∈ D ∩ D(xj) with Hωφ ∈ D(xj), we conclude by an approximation
argument that xjφ ∈ D and (5.17) holds for φ.

That [xj , Hωζω] ∈ K1 ∩ K2 follows from Assumption 5.1 and Proposition 4.2(ii)-
(iii) since the function Eg(E) ∈ S(R). In particular, this tells us that HωζωHc ⊂
D(xj). Thus, given ϕ ∈ Hc, we set φ = ζωϕ ∈ D(xj), so we have Hωφ ∈ D(xj) and
φ ∈ D(xj) (because [xj , ζω] ∈ K2). We conclude that (5.15) follows from (5.17).
This proves (i).

Since xjζωϕ ∈ D for all ϕ ∈ Hc, the operator Hω[xj, ζω ] is well defined on Hc, and
(5.16) follows from (5.15). That Dj,ωζω ∈ K1 ∩ K2 follows from Proposition 2.3(i).
Thus (ii) is proven, and (iii) follows immediately.

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. Let us first apply Proposition 4.9 and Lemma 4.13 to

%ω(t, s) := U(t, s)(ζω(s)). (5.18)

We get

i∂s%ω(t, s) = −U(t, s)
(
[Hω(s), ζω(s)]‡

)
+ U(t, s) (− [E(s) · x, ζω(s)])

= −U(t, s) ([E(s) · x, ζω(s)]) , (5.19)

where we used (5.7). As a consequence, with E(r) = eηr−E,

%ω(t, t) − %ω(t, s) = i

∫ t

s

dr eηr−U(t, r) ([E · x, ζω(r)]) . (5.20)

Since

|||U(t, r) ([E · x, ζω(s)])|||i = |||[E · x, ζω ]|||i , (5.21)

the integral is absolutely convergent and the limit as s → −∞ can be performed. It
yields the equality between (5.12) and (5.13). Equality of (5.11) and (5.12) follows
from Lemma 4.13 which gives

ζω = lim
s→−∞

ζω(s) in both K1 and K2. (5.22)

Since U(t, s) are isometries on Ki, i = 1, 2, ∞ (Proposition 4.7), it follows from
(5.11) that |||%ω(t)|||i = |||ζω |||i. We also get %ω(t) = %ω(t)‡, and hence %ω(t) = %ω(t)∗

as %ω(t) ∈ K∞. Moreover, (5.11) with the limit in both K1 and K2 implies that
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%ω(t) is nonnegative. Furthermore, if ζω = P
(EF )
ω then %ω(t) is a projection, since

denoting by lim(i) the limit in Ki, i = 1,2, we have

%ω(t) = lim(1)
s→−∞

U(t, s)
(
P (EF )

ω

)
= lim(1)

s→−∞
U(t, s)

(
P (EF )

ω

)
¦ U(t, s)

(
P (EF )

ω

)

=
{

lim(2)
s→−∞

U(t, s)
(
P (EF )

ω

)}
¦

{
lim(2)

s→−∞
U(t, s)

(
P (EF )

ω

)}
= %ω(t)2 . (5.23)

To see that %ω(t) is a solution of (5.8) in Ki, we differentiate the expression
(5.13) using Proposition 4.10 and Lemma 4.13; the hypotheses of Proposition 4.10
are satisfied in view of Lemma 5.4(iii) and the fact that i[E ·x, ζω(r)] is a symmetric
operator. Moreover, it follows from (4.36) that

|||[Hω(t), U(t, r) ([E · x, ζω(r)])]|||i ≤ (5.24)

2‖Wω(t, r)‖ |||(Hω(r) + γ) [E · x, ζω(r)]|||i = 2‖Wω(t, r)‖ |||(Hω + γ) [E · x, ζω]|||i ,

where

sup
r; r≤t

‖Wω(t, r)‖ ≤ Ct < ∞ (5.25)

by (2.81) and (2.75). Recalling (5.13), we therefore get

i∂t%ω(t) = −i

∫ t

−∞
dr eηr− [Hω(t),U(t, r) ([E · x, ζω(r)])]‡ (5.26)

= −
[
Hω(t),

{
i

∫ t

−∞
dr eηr−U(t, r) ([E · x, ζω(r)])

}]

‡
(5.27)

=
[
Hω(t),

{
ζω(t) − i

∫ t

−∞
dr eηr−U(t, r) ([E · x, ζω(r)])

}]

‡

= [Hω(t), %ω(t)]‡ , (5.28)

the integrals being Bochner integrals in Ki. We justify going from (5.26) to (5.27)
as follows: Since Hω(t)(Hω(t) + γ)−1 ∈ K∞ and (Hω(t) + γ)−1 ∈ K∞, we have, as
operators on Hc,
∫ t

−∞
dr eηr−Hω(t)U(t, r) ([E · x, ζω(r)]) (5.29)

=
(
Hω(t)(Hω(t) + γ)−1) ¯L

∫ t

−∞
dr eηr−(Hω(t) + γ)U(t, r) ([E · x, ζω(r)])

= Hω(t)
(

(Hω(t) + γ)−1 ¯L

∫ t

−∞
dr eηr−(Hω(t) + γ)U(t, r) ([E · x, ζω(r)])

)

= Hω(t)
∫ t

−∞
dr eηr−U(t, r) ([E · x, ζω(r)]) .

Since the map Aω → A‡
ω is an antilinear isometry, we also have the identity conju-

gate to (5.29). We thus have (5.28).
It remains to show that the solution of (5.10) is unique in both K1 and K2. It

suffices to show that if νω(t) is a solution of (5.10) with ζω = 0 then νω(t) = 0 for all
t. We give the proof for K1, the proof for K2 being similar and slightly easier. For
any s ∈ R, set ν̃

(s)
ω (t) = U(s, t)(νω(t)). If Aω ∈ D(0)

∞ , we have, using Lemma 4.10 in
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K∞ and (5.10), that

i∂tT
{

Aω ¯L ν̃(s)
ω (t)

}
= i∂tT {U(t, s)(Aω) ¯L νω(t)} (5.30)

= T {[Hω(t), U(t, s)(Aω)]‡ ¯L νω(t)} + T {U(t, s)(Aω) ¯L L1(t)(νω(t))}
= −T {U(t, s)(Aω) ¯L L1(t)(νω(t))} + T {U(t, s)(Aω) ¯L L1(t)(νω(t))} = 0 .

In the final step we have used the fact that for Aω ∈ D(0)
∞ and Bω ∈ D1 we have

T {[Hω(t), Aω]‡ ¯L Bω} = −T {Aω ¯L L1(t)(Bω)} . (5.31)

Indeed, since D(0)
1 is a core for L1(t) it suffices to consider Bω ∈ D(0)

1 . For such
B, (5.31) follows by cyclicity of the trace, with some care needed since Hω(t) is
unbounded:

T {[Hω(t), Aω ]‡ ¯L Bω} (5.32)

= T {Hω(t)Aω ¯L Bω} − T
{
(Hω(t)A‡

ω)‡ ¯L Bω

}

= T
{
(Hω(t) + γ)Aω ¯L ((Hω(t) + γ)B‡

ω)‡ ¯R (Hω(t) + γ)−1}

− T
{
((Hω(t) + γ)A‡

ω)‡ ¯L (Hω(t) + γ)−1(Hω(t) + γ)Bω

}

= −T {Aω ¯L [Hω(t),Bω]‡} = −T {Aω ¯L L1(t)(Bω)} .

We conclude that for all t and Aω ∈ D(0)
∞ we have

T
{

Aω ¯L ν̃(s)
ω (t)

}
= T

{
Aω ¯L ν̃(s)

ω (s)
}

= T {Aω ¯L νω(s)} , (5.33)

and hence (5.33) holds for all Aω ∈ K∞ by Corollary 4.12 and Lemma 3.19 (or
Lemma 3.24) . Thus ν̃

(s)
ω (t) = νω(s) by Lemma 3.23, that is, νω(t) = U(t, s)(νω(s)).

Since lims→−∞ νω(s) = 0 by hypothesis, we get νω(t) = 0 for all t.

5.2. The current and the conductivity. ¿From now on %ω(t) will denote the
unique solution to (5.10), given explicitly in (5.13). We set

Dω(t) = D(Aω + F(t)) = G(t)D(Aω)G(t)∗ = G(t)DωG(t)∗. (5.34)

Since Hω(t)%ω(t) ∈ K1,2 we have %ω(t)Hc ⊂ D, hence the operators Dj,ω(t)%ω(t)
are well-defined on Hc, j = 1,2, . . . , d, and we have

Dj,ω(t)%ω(t) =
(
Dj,ω(t)(Hω(t) + γ)−1) ¯L ((Hω(t) + γ)%ω(t)) ∈ K1,2 . (5.35)

Definition 5.5. Starting with a system in equilibrium in state ζω, the net current
(per unit volume), J(η,E; ζω) ∈ Rd, generated by switching on an electric field E
adiabatically at rate η > 0 between time −∞ and time 0, is defined as

J(η,E; ζω) = T (vω(0)%ω(0)) − T (vωζω) , (5.36)

where the velocity operator vω(t) at time t is as in (2.24), i.e.,

vω(t) = 2Dω(t) = {2Dj,ω(t))}j=1,··· ,d , (5.37)

a vector of essentially self-adjoint operators on D (or C∞
c (R)).

Remark 5.6. (a): The term T (vωζω) = {T (vj,ωζω)}j=1,··· ,d is the current at
time t = −∞. Since the system is then at equilibrium one expects this term to
be zero, a fact which we prove in Lemma 5.7. It follows that the net current
is equal to the first term of (5.36), which is the current at time 0. We will
simply call this the current.
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(b): The current J(η, E; ζ) is a real vector. This follows from the fact that
0 ≤ %ω(t) ∈ K1, and hence

√
%ω(t) ∈ K2, the fact that Dj,ω(t)

√
%ω(t) ∈ K2

by the same argument as in (5.35), the centrality of T , and the essential
self-adjointness of the components of vω(t).

Lemma 5.7. Let f be a Borel measurable function on the real line, such that
‖fΦ̃d,α,β‖∞ is finite. Then

T (Dj,ωf(Hω)) = 0 . (5.38)

As a consequence, we have T
(
vωP

(EF )
ω

)
= 0.

This result appears in [BES], with a detailed proof in the discrete case and some
remarks for the continuous case. The latter is treated in [KeS]. Their proof relies
on a Duhamel formula and the Fourier transform. We give an alternative proof
based on the Helffer-Sjöstrand formula.

Proof of Lemma 5.7. First note that by a limiting argument it suffices to consider
f ∈ S(R). In fact, we may find a sequence gn ∈ S(R) such that supn ‖gnΦ̃d,α,β‖∞ <
∞ and gn(Hω) → f(Hω) strongly. Then

Dj,ω(f(Hω) − gn(Hω)) = (5.39)

Dj,ω
1√

Hω + γ
¯L

1

(Hω + γ)2[[
d
4 ]]

¯R (Hω + γ)2[[
d
4 ]]+ 1

2 (f(Hω) − gn(Hω)) ,

where the left hand factor is in K∞ by Proposition 2.3(i), the middle factor is in
K1 by Proposition 2.14, and the right hand factor is a uniformly bound sequence
in K∞ converging strongly to zero. By dominated convergence, we conclude that
the K1 norm, and thus the trace per unit volume, converges to zero.

Therefore, suppose f ∈ S(R). Let G(t) =
∫ ∞

t
dt f(t), and set F (t) = b(t)G(t),

where b(t) ∈ C∞(R) is such that b(t) = 1 for t > −γ and b(t) = 0 for t < −γ − 1
(so b(t) = 1 in a neighborhood of the spectrum of Hω). We have F ∈ S(R),
G(Hω) = F (Hω), and f(Hω) = F ′(Hω).

We now recall the generalization of the Helffer-Sjöstrand formula given in [HuS,
Lemma B.2]: given a self-adjoint operator A and f ∈ S(R) we have

1
p!f

(p)(A) =
∫

df̃(z)(z − A)−p−1 for p = 0, 1, . . . , (5.40)

where the integral converges absolutely in operator norm by (2.37). (See [HuS,
Appendix B] for details.)

By (2.44) from the proof of Proposition 2.4, we have

[xj ,Rω(z)] = 2iRω(z)Dj,ωRω(z) ∈ K∞ , (5.41)

for Rω(z) = (Hω − z)−1 with Im z 6= 0. By the usual Helffer-Sjöstrand formula
(2.35) we have

[xj , F (Hω)] = −
∫

dF̃ (z)[xj ,Rω(z)] = −2i

∫
dF̃ (z)Rω(z)Dj,ωRω(z) , (5.42)

which in particular gives another proof to the fact that [xj , F (Hω)] ∈ K∞, which
we already knew by Proposition 4.2(ii).

There is a slight technical difficulty due to the fact that Rω(z)Dj,ωRω(z) may
not be in K1 (although [xj , F (Hω)] is). Thus we introduce a cutoff by picking a
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sequence hn ∈ C∞
c (R), |hn| ≤ 1, hn = 1 on [−n, n], and apply (5.40) with p = 0

and p = 1 to obtain

T {[xj, F (Hω)] ¯L hn(Hω)} = −2i

∫
dF̃ (z)T {Rω(z)Dj,ωRω(z) ¯L hn(Hω)}

= −2i

∫
dF̃ (z)T

{
Dj,ωRω(z)2 ¯L hn(Hω)

}
= −2iT {Dj,ωf(Hω) ¯L hn(Hω)} .

(5.43)

In the limit n → ∞, we get

T {Dj,ωf(Hω)} = i
2T {[F (Hω), xj ]} = 0 (5.44)

by Proposition 4.2(v).

It is useful to rewrite the current (5.36), using (5.13) and the argument in (5.29),
as

J(η,E; ζω) = T {2Dω(0) (%ω(0) − ζω(0))} (5.45)

= −T
{

2
∫ 0

−∞
dr eηrDω(0) U(0, r) (i[E · x, ζω(r)])

}
,

which is justified, since

T (Dω(0)ζω(0)) = T (G(0)DωζωG(0)∗) = T (Dωζω) , (5.46)

by cyclicity of the trace, and anyway all three terms are zero.
The conductivity tensor σ(η; ζω) is defined as the derivative (or differential) of

the function J(η, ·; ζω) : Rd → Rd at E = 0. Note that σ(η; ζω) is a d × d matrix
{σjk(η; ζω)}:

Definition 5.8. For η > 0 the conductivity tensor σ(η; ζω) is defined as

σ(η; ζω) = ∂EJ(η,0; ζω) , (5.47)

if it exists. The conductivity tensor σ(ζω) is defined by

σ(ζω) := lim
η↓0

σ(η; ζω) , (5.48)

whenever the limit exists.

5.3. Computing the linear response: a Kubo formula for the conductiv-
ity. The next theorem gives a “Kubo formula” for the conductivity.

Theorem 5.9. Let η > 0. The current J(η,E; ζω) is differentiable with respect to
E at E = 0 and the derivative σ(η; ζω) is given by

σjk(η; ζω) = −T
{

2
∫ 0

−∞
dr eηrDj,ω U (0)(−r) (i[xk, ζω])

}
, (5.49)

where U (0)(r)(Aω) = e−irHω ¯L Aω ¯R eirHω .

We also have the analogue of [BES, Eq. (41)] and [SB2, Theorem 1]; L1 is the
Liouvillian on K1 (see Corollary 4.12).

Corollary 5.10. The conductivity σjk(η; ζω) is given by

σjk(η; ζω) = −T
{
2Dj,ω (iL1 + η)−1 (i[xk, ζω])

}
, (5.50)
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Proof. Since Hω[xk, ζω] ∈ K1 ∩ K2 by Lemma 5.4(ii), we have

Dj,ω U (0)(−r) (i[xk, ζω]) = Dj,ω(Hω + γ)−1 ¯L (Hω + γ)U (0)(−r) (i[xk, ζω])

= Dj,ω(Hω + γ)−1 ¯L U (0)(−r) ((Hω + γ)i[xk, ζω]) , (5.51)

and it follows from (5.49) that

σjk(η; ζω) = −2T
{
Dj,ω(Hω + γ)−1 ¯L (iL1 + η)−1 ((Hω + γ)i[xk, ζω])

}

= −2T
{
Dj,ω(iL1 + η)−1 (i[xk, ζω])

}
, (5.52)

since (iL1 + η)−1 ((Hω + γ)i[xk, ζω ]) and (iL1 + η)−1 (i[xk, ζω]) are in K1 ∩ K2 and
hence in K1 (not just in K1), where

(Hω + γ)−1 ¯L (iL1 + η)−1 ((Hω + γ)i[xk, ζω ]) = (iL1 + η)−1 (i[xk, ζω ]) . (5.53)

Proof of Theorem 5.9. From (5.45) and Jj(η,0; ζω) = 0 (Lemma 5.7), we have

σjk(η; ζω) = − lim
E→0

2T
{∫ 0

−∞
dr eηrDj,ω(0)U(0, r) (i[xk, ζω(r)])

}
, (5.54)

where Dj,ω(0) = Dj,ω(E,0) and ζω(r) = ζω(E, r) depend on E through the gauge
transformation G and Uω(0, r) = Uω(E,0, r) also depends on E. (For clarity, in this
proof we display the argument E in all functions which depend on E.)

Let us first understand that we can interchange integration and the limit E → 0,
i.e., that

σjk(η; ζω) = −2
∫ 0

−∞
dr eηr lim

E→0
T {Dj,ω(E, 0)U(E,0, r) (i[xk, ζω(E, r)])} .

(5.55)

Note that

Dj,ω(E, 0)U(E, 0, r) (i[xk, ζω(E, r)])

=
{
Dj,ω(E, 0)(Hω(E, 0) + γ)−1(Hω(E,0) + γ)Uω(E,0, r)(Hω(E, r) + γ)−1}

¯L {(Hω(E, r) + γ) (i[xk, ζω(E, r)])} ¯R Uω(E, r, 0) (5.56)

=
{
G(E, 0)

(
Dj,ω(Hω + γ)−1)} ¯L Wω(E, 0, r)

¯L {G(E, r) ((Hω + γ)[ixk, ζω])} ¯R Uω(E, r,0) .

Using (2.73), (4.35), gauge invariance of the norms, (2.81), (2.75), and Lemma 5.4(ii),
we get

sup
|E|≤1,r≤0

|||Dj,ω(E, 0)U(E, 0, r) (i[xk, ζω(E, r)])|||1 (5.57)

≤
∣∣∣∣∣∣Dj,ω(Hω + γ)−1

∣∣∣∣∣∣
∞

{
sup

|E|≤1,r≤0
|||Wω(E, 0, r)|||∞

}
|||(Hω + γ)[xk, ζω ]|||1 < ∞ .

Eq. (5.55) follows from (5.54), (5.57), (3.99), and dominated convergence.
Next, we note that for any s we have

lim
E→0

G(E, s) = I strongly in K1 , (5.58)
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which can be proven by a argument similar to the one used to prove Lemma 4.13.
Along the same lines, for Bω ∈ K∞ we have

lim
E→0

G(E, s)(Bω) = Bω strongly in H, with |||G(E, s)(Bω)|||∞ = |||Bω|||∞ . (5.59)

It therefore follows from (5.56) that

lim
E→0

T {Dj,ω(E, 0)U(E,0, r) (i[xk, ζω(E, r)])} (5.60)

= lim
E→0

T
{
(Dj,ω − Fj(0)) Uω(E,0, r)(Hω(E, r) + γ)−1¯L

¯L (Hω + γ)[ixk, ζω] ¯R Uω(E, r, 0)}

= lim
E→0

T
{
Dj,ωUω(E, 0, r)(Hω(E, r) + γ)−1 ¯L (Hω + γ)[ixk, ζω] ¯R U (0)

ω (r)
}

= lim
E→0

T
{
Dj,ωUω(E,0, r)(Hω + γ)−1 {

(Hω + γ)(Hω(E, 0) + γ)−1} ¯L

¯L(Hω + γ)[ixk, ζω] ¯R U (0)
ω (r)

}

= lim
E→0

T
{
Dj,ωUω(E, 0, r)(Hω + γ)−1 ¯L (Hω + γ)[ixk, ζω] ¯R U (0)

ω (r)
}

,

where we used (5.58), (2.92), the fact that Dj,ω(E, 0) = Dj,ω −Fj(0), (2.72)-(2.73),
and Lemma 3.19. (Technically, we have not shown convergence yet. This equation
should be read as saying that if any of these limits exists, then they all exist and
agree.)

To proceed it is convenient to introduce a cutoff so that we can deal with Dj,ω

as if it were in K∞. Thus we pick fn ∈ C∞
c (R), real valued, |fn| ≤ 1, fn = 1 on

[−n,n]. Using Proposition 2.3(i) and Lemma 3.19 we have

T
{
Dj,ωUω(E,0, r)(Hω + γ)−1 ¯L (Hω + γ)[ixk, ζω] ¯R U (0)

ω (r)
}

(5.61)

= lim
n→∞

T
{
Dj,ωfn(Hω)Uω(E, 0, r) ¯L [ixk, ζω] ¯R U (0)

ω (r)
}

(5.62)

= lim
n→∞

T
{

Uω(E, 0, r) ¯L i[xk, ζω] ¯R

(
U (0)

ω (r)Dj,ωfn(Hω)
)}

(5.63)

= lim
n→∞

T
{

Uω(E, 0, r) ¯L ((Hω + γ)i[xk, ζω])‡ ¯R (5.64)

¯RU (0)
ω (r)(Hω + γ)−1Dj,ωfn(Hω)

}

= T
{
Uω(E, 0, r) ¯L ((Hω + γ)i[xk, ζω])‡ ¯R U (0)

ω (r)(Hω + γ)−1Dj,ω

}
, (5.65)

where we used Lemma 3.22 to go from (5.62) to (5.63). The step from (5.63) to
(5.64) is justified because (Hω + γ)−1 commutes with U (0). Finally, since (Hω +
γ)−1Dj,ω ∈ K∞ (that is, its bounded closure is in K∞), we can take the limit
n → ∞, using Lemma 3.19 again. (Note (i[xk, ζω])‡ = i[xk, ζω].)

Finally, combining (5.60) and (5.61)-(5.65), we get

lim
E→0

T {Dj,ω(E, 0)U(E, 0, r) (i[xk, ζω(E, r)])} (5.66)

= T
{

U (0)
ω (−r) ¯L ((Hω + γ)i[xk, ζω])‡ ¯R U (0)

ω (r)
(
Dj,ω(Hω + γ)−1)∗

}

= T
{
Dj,ω(Hω + γ)−1U (0)(−r) ¯L (Hω + γ)i[xk, ζω] ¯R U (0)

ω (r)
}

(5.67)

= T
{
Dj,ωU (0)(−r) (i[xk, ζω])

}
, (5.68)



LINEAR RESPONSE THEORY FOR MAGNETIC SCHRÖDINGER OPERATORS 47

where to obtain (5.67) we used (5.61)-(5.65) in the reverse direction, with U
(0)
ω (r)

substituted for Uω(E, 0, r), and in the last step used again that (Hω + γ)−1 com-
mutes with U (0)(r).

The Kubo formula (5.49) now follows from (5.55) and (5.68).

5.4. The Kubo-Str̆eda formula for the Hall conductivity. Following [BES,
AG], we now recover the well-known Kubo-St̆reda formula for the Hall conductivity
at zero temperature. We write

σ
(Ef )
j,k = σj,k(P (EF )

ω ) , and σ
(Ef )
j,k (η) = σj,k(η; P (EF )

ω ) . (5.69)

Theorem 5.11. If ζω = P
(EF )
ω is a Fermi projection satisfying (5.2), we have

σ
(EF )
j,k = −iT

{
P (EF )

ω ¯L

[[
xj , P

(EF )
ω

]
,
[
xk, P (EF )

ω

]]
¦

}
(5.70)

for all j, k = 1, 2, . . . , d. As a consequence, the conductivity tensor is antisymmet-
ric; in particular σ

(EF )
j,j = 0 for j = 1,2, . . . , d.

Clearly the direct conductivity vanishes, σ
(EF )
jj = 0. Note that, if the system is

time-reversible the off diagonal elements are zero in the region of localization, as
expected.

Corollary 5.12. Under the assumptions of Theorem 5.11, if A = 0 (no magnetic
field), we have σ

(EF )
j,k = 0 for all j, k = 1, 2, . . . , d.

Proof. Let J denote complex conjugation on H, i.e., Jϕ = ϕ̄, an antiunitary oper-
ator on H. The time reversal operation is given by Θ(S) = JSJ , where S is a self-
adjoint operator (an observable). We have JHc = Hc, and hence Θ(Aω)ϕ = JAωJ
gives a complex conjugation on Ki, i = 1,2, ∞.

If A = 0, we have Θ(Hω) = Hω, and thus Θ(f(Hω)) = f(Hω) for any real
valued Borel measurable function f . Moreover Θ(i[xj , P

(EF )
ω ]) = −i[xj , P

(EF )
ω ] and

Θ([Aω, Bω]¦) = [Θ(Aω),Θ(Bω)]¦. On the other hand if Aω ∈ K1 is symmetric,
then T (Θ(Aω)) = T (Aω). Since P

(EF )
ω ¯L i

[
i[xj, P

(EF )
ω ], i[xk, P

(EF )
ω ]

]
¦

¯R P
(EF )
ω

is symmetric, it follows from Theorem 5.11 and the above remarks that

σ
(EF )
j,k = T

{
P (EF )

ω ¯L i
[
i[xj , P

(EF )
ω ], i[xk, P (EF )

ω ]
]

¦
¯R P (EF )

ω

}
(5.71)

= −T
{

P (EF )
ω ¯L i

[
i[xj , P

(EF )
ω ], i[xk, P (EF )

ω ]
]

¦
¯R P (EF )

ω

}
= −σ

(EF )
j,k ,

and hence σ
(EF )
j,k = 0.

Before proving Theorem 5.11, we recall that under Assumption 5.1 the operator
[xk, P

(EF )
ω ] ∈ K1 ∩ K2 is defined on Hc as xkP

(EF )
ω − P

(EF )
ω xk thanks to (5.2).

Lemma 5.13. We have (as operators on Hc)[
P (EF )

ω ,
[
P (EF )

ω , [xk, P (EF )
ω ]

]
¯

]

¯
= [xk, P (EF )

ω ]. (5.72)

Proof. Since P
(EF )
ω ∈ K∞ and [xk, P

(EF )
ω ] ∈ K1 ∩ K2, the left hand side of (5.72)

makes sense in K1 and K2, and thus as an operator on Hc.
Note that the orthogonal projection 1−P

(EF )
ω is in K∞, although it is not in K1 or

K2. Furthermore (1−P
(EF )
ω )Hc ⊂ Hc+P

(EF )
ω Hc ⊂ D(x). Thus P

(EF )
ω xk(1−P

(EF )
ω )
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and (1 − P
(EF )
ω )xkP

(EF )
ω make sense as operators on Hc (almost surely), and we

have[
xk, P (EF )

ω

]
= (1 − P (EF )

ω )xkP (EF )
ω − P (EF )

ω xk(1 − P (EF )
ω ) on Hc. (5.73)

Since P
(EF )
ω (1 − P

(EF )
ω ) = 0, the right hand side of this expression is unchanged if

we replace xk by [xk, P
(EF )
ω ] in the first term and by −[xk, P

(EF )
ω ] in the second.

As technically [xk, P
(EF )
ω ] is defined on Hc, we should introduce the products ¯L,R

here. Thus,
[
xk, P (EF )

ω

]
= (1 − P (EF )

ω ) ¯L [xk, P (EF )
ω ] ¯R P (EF )

ω

+ P (EF )
ω ¯L [xk, P (EF )

ω ] ¯R (1 − P (EF )
ω ) . (5.74)

Now, given any Aω ∈ K¯ we have
[
P (EF )

ω , Aω

]
¯

= −
[
1 − P (EF )

ω , Aω

]
¯

, (5.75)

and thus[
P (EF )

ω ,
[
P (EF )

ω , Aω

]
¯

]

¯
= (5.76)

P (EF )
ω ¯L Aω ¯R (1 − P (EF )

ω ) + (1 − P (EF )
ω ) ¯L Aω ¯R P (EF )

ω ,

using that P
(EF )
ω ¯ (1 − P

(EF )
ω ) = 0. Finally, (5.72) follows from (5.74) and (5.76).

Remark 5.14. (i)Eq. (5.74) appears in [BES] (and then in [AG]) as a key step in
the derivation of the expression of the Hall conductivity.
(ii) In (5.72) we use crucially the fact that we work at temperature zero, i.e. that
the initial density matrix is the orthogonal projection P

(EF )
ω . The argument does

not go through at positive temperature.

Proof of Theorem 5.11. We first regularize the velocity Dj,ω with a smooth func-
tion fn ∈ C∞

c (R), |fn| ≤ 1, fn = 1 on [−n, n], so that Dj,ωfn(Hω) ∈ K1 ∩K2 ∈ K∞.
We have, using the centrality of the trace T (see Lemma 3.22), that

σ̃
(EF )
jk (r) := −T

{
2Dj,ωU (0)(−r)(i[xk, P (EF )

ω ])
}

(5.77)

= − lim
n→∞

T
{

(2Dj,ωfn(Hω)) ¯L U(0)(−r)(i[xk, P (EF )
ω ])

}

= − lim
n→∞

T
{

U (0)(r)(2Dj,ωfn(Hω)) ¯L i[xk, P (EF )
ω ]

}
. (5.78)

Next, it follows from Lemma 3.22 that, for Aω, Bω ∈ K∞ and Cω ∈ K1, we have

T {Aω ¯L [Bω , Cω]¯} = T {[Aω, Bω] ¯L Cω} . (5.79)

It follows, on the account of Lemma 5.13, that

T
{
U (0)(r)(2Dj,ωfn(Hω)) ¯L i[xk, P (EF )

ω ]
}

(5.80)

= T

{
U (0)(r)(2Dj,ωfn(Hω)) ¯L

[
P (EF )

ω ,
[
P (EF )

ω , i[xk, P (EF )
ω ]

]
¯

]

¯

}

= T
{

U (0)(r)
([

P (EF )
ω ,

[
P (EF )

ω ,2Dj,ωfn(Hω)
]])

¯L i[xk, P (EF )
ω ]

}
,
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where we used that P
(EF )
ω commutes with U

(0)
ω .

We now claim that[
P (EF )

ω , 2Dj,ωfn(Hω)
]

=
[
Hω, i[xj , P

(EF )
ω ]

]
‡
¯R fn(Hω) . (5.81)

To see this, we use (5.16) to conclude that
[
Hω, i[xj, P

(EF )
ω ]

]
‡
¯R fn(Hω) = 2

(
Dj,ωP (EF )

ω

)‡
¯R fn(Hω) − 2Dj,ωP (EF )

ω fn(Hω)

= 2
(
P (EF )

ω Dj,ωfn(Hω) − Dj,ωP (EF )
ω fn(Hω)

)
(5.82)

= 2
(
P (EF )

ω Dj,ωfn(Hω) − Dj,ωfn(Hω)P (EF )
ω

)
,

which is just (5.81). Combining (5.78), (5.80), and (5.81), we get after taking
n → ∞,

σ̃
(EF )
jk (r) = −T

{
U (0)(r)

([
P (EF )

ω ,
[
Hω, i[xj , P

(EF )
ω ]

]
‡

]

¯

)
¦ i[xk, P (EF )

ω ]

}
.

(5.83)

Here it is useful to note that, by Proposition 2.3(i), the restriction to Hc of[
P

(EF )
ω ,2Dj,ω

]
is in K∞ ∩ K1 ∩ K2, and
[
Hω, i[xj , P

(EF )
ω ]

]
‡

=
[
P

(EF )
ω ,2Dj,ω

]
∈ K1 ∩ K2 . (5.84)

In addition, on Ki, i = 1,2, we have

P (EF )
ω ¯L (Hωi[xj , P

(EF )
ω ]) = Hω(P (EF )

ω ¯L i[xj , P
(EF )
ω ]) , (5.85)

and, on the account of Lemma 4.11,

(Hωi[xj , P
(EF )
ω ]) ¯R P (EF )

ω = Hω(i[xj , P
(EF )
ω ] ¯R P (EF )

ω ) . (5.86)

It also follows from (5.85) and (5.86) that

Hω

[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

=
[
P (EF )

ω , Hωi[xj , P
(EF )
ω ]

]
¯

, (5.87)

all terms being well defined in Ki. Therefore,
[
P (EF )

ω ,
[
Hω, i[xj , P

(EF )
ω ]

]
‡

]

¯
=

[
Hω,

[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

]

‡
. (5.88)

We thus get

σ̃
(EF )
jk (r) = −T

{
U (0)

ω (r)

([
Hω,

[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

]

‡

)
¦ i[xk, P (EF )

ω ]

}

= −
〈〈

e−irLωL2

([
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

)
, i[xk, P (EF )

ω ]
〉〉

, (5.89)

where we used (3.102) and Corollary 4.12. Recall that 〈〈·, ·〉〉 is the inner product
on H2 and L2 is the Liouvillian in K2 – the self-adjoint generator of the unitary
group U (0)(t). Combining (5.49), (5.77), and (5.89), we get

σ
(EF )
jk (η) = −

〈〈
i (L2 + iη)−1 L2

([
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

)
, i[xk, P (EF )

ω ]
〉〉

.

(5.90)
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It follows from the spectral theorem (applied to L2) that

lim
η→0

(L2 + iη)−1 L2 = P(Ker L2)⊥ strongly in K2 , (5.91)

where P(KerL2)⊥ is the orthogonal projection onto (Ker L2)⊥. Moreover, we have
[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

∈ (Ker L2)⊥ . (5.92)

To see this, note that if Aω ∈ KerL2, then for all t we have U (0)(r)(Aω) = Aω,
and hence e−itHω ¯L Aω = Aω ¯R e−itHω , so it follows that f(Hω) ¯L Aω =
Aω ¯R f(Hω) for all f ∈ S(R), i.e., [Aω, f(Hω)]¯ = 0. An approximation argument
using Lemma 3.9 gives [Aω, P

(EF )
ω ]¯ = 0. Thus

〈〈
Aω,

[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

〉〉
=

〈〈
[Aω, P (EF )

ω ]¯, i[xj , P
(EF )
ω ]

〉〉
= 0 , (5.93)

and (5.92) follows.
Combining (5.90), (5.91), (5.92), and Lemma 4.6, we get

σ
(EF )
j,k = i

〈〈[
P (EF )

ω , i[xj , P
(EF )
ω ]

]
¯

, i[xk, P (EF )
ω ]

〉〉

= −iT
{[

P (EF )
ω , i[xj , P

(EF )
ω ]

]
¯

¦ i[xk, P (EF )
ω ]

}
(5.94)

= −iT
{

P (EF )
ω ¯L

[
i[xj , P

(EF )
ω ], i[xk, P (EF )

ω ]
]

¦

}
,

which is just (5.70). The theorem is proved.

Acknowledgement. We thank Jean Bellissard for many discussions on the Kubo
formula. We are grateful to Daniel Lenz for the proof that K∞ is a von Neumann
algebra. We thank Vladimir Georgescu for bringing the inequality (2.7) to our
attention.

References

[AENSS] Aizenman, M., Elgart, A., Naboko, S., Schenker, J.H., Stolz, G.: Moment Analysis for
Localization in Random Schrödinger Operators. 2003 Preprint, math-ph/0308023.

[AES] Aizenman, M., Elgart, A., Schenker, J.H.: Adiabatic charge transport,localization, and
the Kubo formula for 2D Hall conductance in a gapless state. In preparation.

[AG] Aizenman, M., Graf, G.M.: Localization bounds for an electron gas, J. Phys. A: Math.
Gen. 31, 6783-6806, (1998).

[AvSS] Avron, J., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison
of dimensions. Comm. Math. Phys. 159, 399-422 (1994).

[B] Bellissard, J.: Ordinary quantum Hall effect and noncommutative cohomology. In Lo-
calization in disordered systems (Bad Schandau, 1986), pp. 61-74. Teubner-Texte Phys.
16, Teubner, 1988.

[BES] Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non commutative geometry of the
quantum Hall effect. J. Math. Phys. 35, 5373-5451 (1994).

[BeG] Berthier, A., Georgescu, V.: On the point spectrum of Dirac operators. J. Funct. Anal.
71, 309-338 (1987).

[BoGK] Bouclet, J.M., Germinet, F., Klein, A.: Sub-exponential decay of operator kernels for
functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 132 , 2703-2712
(2004).

[BrR] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statitical Mechanics I.
Springer-Verlag, 1979.

[CH] Combes, J.M., Hislop, P.D.: Landau Hamiltonians with random potentials: localization
and the density of states. Commun. Math. Phys. 177, 603-629 (1996).



LINEAR RESPONSE THEORY FOR MAGNETIC SCHRÖDINGER OPERATORS 51
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