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Abstract

In this paper we analyze the bottom of the energy-momentum spectrum of the
translation invariant Nelson model, describing one electron linearly coupled to a sec-
ond quantized massive scalar field. Our results are non-perturbative and include an
HVZ theorem, non-degeneracy of ground states, existence of isolated groundstates in
dimensions1 and2, non-existence of ground states embedded in the bottom of the
essential spectrum in dimensions3 and4, (i.e., at total momenta where no isolated
groundstate eigenvalue exists), and we study regularity and monotonicity properties
of the bottom of the essential spectrum, as a function of total momentum.
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1 Introduction and results

In this section we introduce the Nelson model and formulate our main results. The nota-
tion we use is standard, but for the sake of completeness we give the basic constructions
in Subsect. 2.1.

1.1 Non-relativistic QED: An overview

In the last decade there has been a surge of interest in non-relativistic QED, sparked
by a string of papers by Ḧubner and Spohn, and by Bach, Fröhlich, and Sigal. See e.g.
[5, 4, 39, 38]. The purpose of this subsection is to give an overview over different aspects
of the problem and place the model we study, as well as the results derived, into context.

The fundamental Hamiltonian in non-relativistic QED, describing one charged par-
ticle, with massM > 0 and chargee, coupled to a radiation field, is theminimally coupled
one

Hmin := 1l ⊗ dΓ(|k|) +
1

2M

(
p⊗ 1l − eA(x)

)2
, onL2(R3

x) ⊗ Γ(L2(R3
k)) . (1.1)

HeredΓ(|k|) is the kinetic energy of the radiation field,p = i∇x is the particle momentum
operator, andA is the second quantized (massless) Maxwell field in the Coulomb gauge,
i.e.∇x · A = 0. The Hilbert spaceΓ(L2(R3

k)) is the bosonic Fock-space. See [34] and
[5, 41]. In order to make sense of this operator (a priori as a form) one must introduce
an ultraviolet cutoff intoA. We recall that the model is translation invariant, in the sense
that it commutes with the operator of total momentumP := p ⊗ 1l + 1l ⊗ dΓ(k). We
remark that often the second quantized Pauli operator is taken as a starting point instead
of (1.1). It is defined by replacing(p − eA)2 by (σ · (p − eA))2, whereσ is the vector
of Pauli matrices. This operator differs from (1.1) by a magnetic termσ · (∇x × A) (and
with L2(R3

x) replaced byL2(R3
x)⊗C2, thus taking into account the spin of the particle).

The study ofHmin is a natural starting point in non-relativistic QED. In particular in
the context of scattering theory, where the dynamics ofHmin is a natural choice for ”free”
dynamics. Unfortunately there are not many non-perturbative (wheree is here viewed as
a coupling constant) rigorous results established for the minimally coupled model, as it is
formulated in (1.1). We refer the reader to [35, 40]. Most results obtained in the literature
are forHmin perturbed by an electric potential, and results then pertain to existence and
properties of ground states for the perturbed model, or localization inL2(R3

x) of states
below an ionization threshold. See [29, 30, 41, 42].

There are a number of different ways to obtain simpler problems. Some involve
passing to phenomenological Hamiltonians, which are simpler to analyze than (1.1). We
list some choices typically considered in the litterature:
S1)Consider the problem perturbatively, i.e., in the limit ofe small.
S2) Replace the massless photons by massive photons, which amounts to replacing the
massless dispersion relationk → |k| by a massive onek → √

k2 + m2, m > 0. This
removes the infrared problem.
S2’) Set the interaction between soft photons (photons with small momenta) equal to zero.
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S3) Replace the minimal coupling with a linear coupling to a scalar field, i.e. replace
Hmin by H = 1l⊗ dΓ(|k|) + 1

2M p2 ⊗ 1l + Φ(v), whereΦ(v) is a field operator.
S4)Place the system in a confining external electric potentialV , that islim|x|→∞ V (x) =
∞. This breaks the translation invariance of the problem. An extreme version of this are
the spin-boson and Wigner-Weisskopf models.
S4’) Place the system in an external potentialV such thatp2 +V has isolated eigenvalues
below the essential spectrum. Then considerHmin +V ⊗ 1l in a low energy regime where
states are isolated bound states ofp2 + V dressed with photons.
S5)A combination of the above.

In this paper we consider the massive translation invariant linearly coupled model
in any dimension, which can be viewed as a simplification of the minimally coupled
model, by applyingS2)andS3)as mentioned above. This model was considered by Nel-
son in [46], and it is distinguished by being renormalizable in a Hamiltonian setting, cf.
also [10, 32, 52]. This model is often referred to as theNelson model, a convention also
adopted here. The models discussed in this introduction is part of a body of models some-
times referred to asPauli-Fierz models. In this paper we do not consider renormalized
operators. In addition we note that we work with more general dispersion relationsω
andΩ than

√
k2 + m2 andp2/2M respectively. We emphasize that we are interested in

non-perturbativeresults. See Subsect. 1.2 below for a more detailed description of the
model.

We remark that one can formulate the model and the simplifications discussed above
for multiple particles coupled to a radiation field. For confined versions of the model, cf.
S4)andS4’) above, this makes no difference. However, for translation invariant models,
not much is known.

We pause to remind the reader that translation invariance, the fact that[H, P ] = 0,
gives a direct integral representation

∮
H(ξ)dξ of the Hamiltonian. What we study in this

paper is the bottom of the spectrum and essential spectrum ofH(ξ) as functions of total
momentumξ. The former function is also called theground state mass shell, or simply
the mass shell. We note that in the massive case isolated excited states could exist and
would give rise to excited mass shells.

We are mainly inspired by papers of Fröhlich [19, 20], Spohn [54], and one of
Derezínski and Ǵerard [14]. Fr̈ohlich considered non-perturbative properties of the ground
state mass shell for the massless translation invariant Nelson model. Most of his results
hold (suitably translated) also for massive photons. Dereziński and Ǵerard were con-
cerned with confined, in the sense ofS3)above, massive linearly coupled models. Using
non-perturbative methods they give a geometric proof of a HVZ theorem, thus locating the
essential spectrum. (They furthermore apply Mourre theory and time-dependent scattering
theory to the model.) Spohn proved a HVZ theorem for the translation invariant model,
using in part ideas of Glimm and Jaffe (via a reference to [20]). He furthermore showed,
in dimension1 and2, that the Hamiltonian at fixed total momentum admits an isolated
groundstate. The results of Spohn are for a class of massive and subadditive dispersion
relationsω. The result on existence of groundstates requires an additional assumption
which excludes the dispersion relation

√
k2 + m2, m > 0.

In this paper we prove the following results for the structure of the bottom of the
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spectrum of the massive translation invariant Nelson model: An HVZ theorem, Theo-
rem 1.2 (valid forω which are not necessarily subadditive). The ground state mass shell
is non-degenerate, Theorem 1.3, using a Perron-Frobenius argument of [19]. Existence of
an isolated groundstate for all total momenta, Theorem 1.6 i) (ν = 1, 2), thus extending
the result of Spohn to the caseω(k) =

√
k2 + m2. Non-existence of a ground state em-

bedded in the essential spectrum, Theorem 1.6 ii) (ν = 3, 4). Analyticity of the bottom
of the essential spectrum, away from a closed countable set, Theorem 1.11. Maximality
of the spectral gap and analyticity at local minima for the bottom of the essential spec-
trum, Theorem 1.12. See Subsect. 1.3 for a precise formulation of the main results. In
Subsect. 4.2 we discuss how to extend the results to the model with a cutoff in the photon
number operator.

The models considered in this paper only fails to include the socalled (optical mode)
polaron model of an electron in a crystal by the requirement thatω(k) → ∞, |k| → ∞.
This requirement is a consequence of our use of geometric methods to prove the HVZ
theorem, and an adoption of the Glimm-Jaffe approach, as used in [20], might remedy this.
However, the geometric approach is important for future work on Mourre and scattering
theory. For mathematical work on the polaron model see [32, 43, 52, 53, 54], and for a
textbook discussion see [18].

We remark that there are not many non-perturbative results on the translation in-
variant Nelson model, other than what we have already mentioned above. See however
[31], Lemma 4.1 in this paper. In [53] upper and lower bounds on the effective mass are
obtained (the effective mass is the inverse of the Hessian of the ground state mass shell at
zero total momentum). There are more complete results available if one imposes a cutoff
at small photon number, cf. [23] (the massless case with at most one photon).

In the perturbative case there are more results, cf. [11, 21, 47]. See also [33, 36, 37].
(We remark however, that although the photon dispersion relation in [21] is massless, the
interaction is of the type mentioned inS2’) above, and the model thus retains massive
features.)

Finally we recall that for confined massive models, cf.S4) andS4’) above, quite
strong non-perturbative results are available. See, apart from [14] mentioned above, the
papers [2, 3, 22]. As for the massless confined model we refer the reader to [7, 9, 24, 26,
38] for non-perturbative results.

1.2 The translation invariant Nelson model

We consider a particle moving inRν and interacting with a scalar radiation field. We
write x andp = −i∇x for the particle position and momentum respectively. The particle
Hilbert space is

K := L2(Rν
x) ,

and the Hamiltonian for a free particle is taken to beΩ(p), whereΩ : Rν → R is a
smooth dispersion relation. We are primarily interested in the standard non-relativistic
and relativistic choices, i.e.Ω(p) = p2

2M andΩ(p) =
√

p2 + M2. HereM > 0 is the
mass of the particle.
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The photon coordinates will be denoted byx = i∇k andk respectively and the
one-photon space is

hph := L2(Rν
k) .

The Hilbert space for the radiation field is the bosonic Fock-space

F ≡ Γ(hph) :=
∞⊕

n=0

F (n) , where F (n) ≡ Γ(n)(hph) := h⊗sn
ph . (1.2)

We write Ω = (1, 0, 0, . . . ) for the vacuum. The creation and annihilation operators,
a∗(k) anda(k) satisfy the canonical commutation relations (CCR for short)

[a∗(k),a∗(k′)] = [a(k),a(k′)] = 0 , [a(k),a∗(k′)] = δ(k − k′) , (1.3)

anda(k)Ω = 0. The free photon energy is the second quantization of the one-photon
dispersion relationω

dΓ(ω) :=
∫

Rν

ω(k)a∗(k)a(k) dk , where ω(k) :=
√

k2 + m2 . (1.4)

Herem > 0 is the mass of the scalar photon. Our methods do not extend to the case of
massless photons,m = 0. The full Hilbert space of the combined system is

H := K ⊗ F .

We will make the following identification

H ≡ L2(Rν
x ; F).

The interaction considered here is linear in the field operator and is given by

V :=
∫

Rν

{
eik·xv(k) 1lK ⊗ a∗(k) + e−ik·x v(k) 1lK ⊗ a(k)

}
dk ,

where the physical form of the interaction isv(k) = χ(k)/
√

ω(k) andχ is an ultraviolet
cutoff, which ensures thatv ∈ hph. The free and coupled Hamiltonians for the combined
system are

H := H0 + V , where H0 := Ω(p) ⊗ 1lF + 1lK ⊗ dΓ(ω) . (1.5)

The total momentum for the combined system is given by

P := p ⊗ 1lF + 1lK ⊗ dΓ(k) .

The property of translation invariance is contained in the statement that the Hamilto-
nian commutes with the total momentum. That is, the energy momentum vector(P,H)
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has mutually commuting coordinates. Translation invariance implies thatH0 andH are
fibered operators. We introduce a unitary transformation

Ifib := F Γ(e−ik·x) : H → L2(Rν
ξ ; F) ,

whereF is the Fourier transformF : L2(Rν
x;F) → L2(Rν

ξ ;F) andΓ(e−ik·x) restricted

toK ⊗F (n) is multiplication bye−i(k1+···+kn)·x. We have

Ifib H0 I∗fib =
∮

Rν

H0(ξ) dξ and Ifib H I∗fib =
∮

Rν

H(ξ) dξ .

The fiber operatorsH0(ξ) andH(ξ), ξ ∈ Rν , are operators onF given by

H(ξ) = H0(ξ) + Φ(v) where H0(ξ) = dΓ(ω) + Ω(ξ − dΓ(k)) (1.6)

and the interaction is

Φ(v) =
∫

Rν

{
v(k)a∗(k) + v(k)a(k)

}
dk . (1.7)

We will in general use the notationv ∈ hph to denote a form-factor. In this paper we study
the properties of the bottom of the joint spectrum of the vector(P, H).

1.3 Main results

In this subsection we will formulate precise conditions and state our main results. Proofs
will be given in Section 3. The first condition is on the particle dispersion relation. We use
the standard notation〈t〉 := (1 + t2)1/2.

Condition 1.1. (The particle dispersion relation)LetΩ ∈ C∞(Rν). There existssΩ ∈
{0, 1, 2} such that

i) There existsC such thatΩ(η) ≥ C−1〈η〉sΩ − C.

ii) For any multi-indexα there existsCα such that|∂αΩ(η)| ≤ Cα〈η〉sΩ−|α|.

We note that the standard choicesΩ(p) = p2

2M andΩ(p) =
√

p2 + M2 satisfy this
condition withsΩ = 2 andsΩ = 1 respectively.

Condition 1.2. (The photon dispersion relation)Letω ∈ C∞(Rν) satisfy

i) There existsm > 0, the photon mass, such thatinfk∈Rν ω(k) = ω(0) = m.

ii) ω(k) →∞, in the limit |k| → ∞.

iii) There existssω ≥ 0 andCω such that for any multi-indexα, with |α| ≥ 1,

ω(k) ≥ C−1
ω 〈k〉sω − Cω and |∂α

k ω(k)| ≤ Cα〈k〉sω−|α| .
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The condition iii) is used in connection with pseudo differential calculus. The phys-
ical choice ofω used in (1.4) satisfies this condition (withsω = 1), and so doesω(k) =
k2 + m (with sω = 2).

We introduce a space of test functions

C∞0 := Γfin(C∞0 (Rν)) . (1.8)

Note that sinceH0(ξ) is a bounded from below multiplication operator on eachn-particle
sector, we find that it is essentially self-adjoint onC∞0 . We recall the following result, cf.
[46], [19], and [20]. For completeness we give a proof in the beginning of Section 3

Proposition 1.1. Let v ∈ L2(Rν). AssumeΩ and ω, satisfy Conditions 1.1 and 1.2 i)
respectively. Then

i) D(H0(ξ)) is independent ofξ and we denote it byD.
ii) Φ(v) is H0(ξ)-bounded with relative bound0. In particular H(ξ) is bounded from

below, self-adjoint onD(H(ξ)) = D(H0(ξ)), and essentially self-adjoint onC∞0 .
iii) The bottom of the spectrum of the fiber Hamiltonians,ξ → Σ0(ξ) := inf σ(H(ξ)),

is Lipschitz continuous.

We introduce some notation. First the bottom of the spectrum of the full operator:

Σ0 := inf
ξ∈Rν

Σ0(ξ) > −∞ .

For n ≥ 1 andk = (k1, . . . , kn) ∈ Rnν we often writek(n) = k1 + · · · + kn. We
now introduce the bottom of the spectrum for a composite system at total momentumξ,
consisting of an interacting system at total momentumξ − k(n) andn non-interacting
photons with momentak:

Σ(n)
0 (ξ; k) := Σ(n)

0

(
ξ − k(n)

)
+

n∑

j=1

ω(kj) . (1.9)

The following functions are thresholds due to ground states dressed byn photons, at
critical momenta:

Σ(n)
0 (ξ) := inf

k∈Rnν
Σ(n)

0 (ξ; k) . (1.10)

The bottom of the essential spectrum (see Theorem 1.2 below)

Σess(ξ) := inf
n≥1

Σ(n)
0 (ξ) . (1.11)

We have the following elementary properties of the functions introduced above. Namely

0 ≤ Σess(ξ) − Σ0(ξ) ≤ m (1.12)

Σ0(ξ) = Σ0 ⇒ Σess(ξ) = Σ0(ξ) + m (1.13)

lim
|ξ|→∞

Σ0(ξ) = lim
|ξ|→∞

Σess(ξ) = lim
|ξ|→∞

Σ(n)
0 (ξ) = ∞ (1.14)

lim
n→∞

Σ(n)
0 (ξ) = ∞ . (1.15)

Our first result is
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Theorem 1.2. (HVZ) Letv ∈ L2(Rν). Assume Conditions 1.1, and 1.2. Then

i) Eigenvalues ofH(ξ) belowΣess(ξ) have finite multiplicity and can only accumulate
at Σess(ξ).

ii) σess(H(ξ)) = [Σess(ξ),∞).

The method of proof for the HVZ theorem is geometric and follows ideas of [14],
cf. Subsect. 3.2. See also [2, 1, 9, 15, 24]. The name ”HVZ” (Hunziker–van Winter–
Zhislin) is used because the geometric idea of the proof is quite similar to that employed
in the proof of the standard HVZ theorem forN -body Schr̈odinger operators, cf. [13,
Theorem 6.2.2]. We recall that there is another method, due to Glimm and Jaffe [28], one
can employ to obtain an HVZ theorem. See [54, Section 4], for the case of subadditive
dispersion relationsω, and in addition [8, 20].

We have the following result on non-degeneracy of groundstates. This type of result
is not new, cf. [31, Section 6] and [19, Section 3.2].

Theorem 1.3. (Non-degeneracy of ground states)Let v ∈ L2(Rν). Assume Condi-
tions 1.1 and 1.2. Suppose furthermore thatv(k) > 0 a.e. Then, ifΣ0(ξ) is an eigenvalue
for H(ξ), it is non-degenerate.

We note that the result of Gross [31] is for zero total momentum only, and assumed
thatp → exp(−tΩ(p)) is a positive definite function for allt > 0. However, Gross does
not assumev to have a sign. This is because one can pass to the Schrödinger representation
of the Fock-space, whereH0(ξ) is positivity improving if and only ifξ = 0.

In the following we will impose

Condition 1.3. ω ∈ C∞(Rν) satisfies

i) Subbadditivity: Fork1, k2 ∈ Rν we haveω(k1 + k2) ≤ ω(k1) + ω(k2).
i’) Strict subadditivity: Fork1, k2 ∈ Rν we haveω(k1 + k2) < ω(k1) + ω(k2).

The standard dispersion relationω(k) =
√

k2 + m2 satisfies Condition 1.3 i’), but
ω(k) = k2+m does not. Below we will discuss consequences of imposing Condition 1.3.

If ω is (strictly) subadditive we find, for allξ ∈ Rν ,

Σ(n)
0 (ξ) (<)

≤ Σ(n′)
0 (ξ) , for n < n′ . (1.16)

We thus get the following supplement to the HVZ Theorem, cf. also [54, Section 4],

Corollary 1.4. Letv ∈ L2(Rν). Assume Conditions 1.1, 1.2, and 1.3 i). ThenΣess(ξ) =
Σ(1)(ξ).

The following simple lemma can be used to check for subadditivity.

Lemma 1.5. Let ω ∈ C∞(Rν) be convex and satisfy: For anyk ∈ Rν , we haveω(k) −
k · ∇ω(k)(>)

≥ 0. Thenω is (strictly) subadditive.



The translation invariant massive Nelson model 9

We introduce the notation

I0 := { η ∈ Rν : Σ0(η) < Σess(η) } . (1.17)

We prove the following result on the nature of the bottom of the spectrum, at a total
momentum with no isolated ground state eigenvalue.

Theorem 1.6. (Existence/Non-existence of ground states)Let v ∈ L2(Rν). Assume
Conditions 1.1, 1.2, and 1.3 i’). Suppose furthermore thatv(k) > 0 a.e., locally uniformly
in k ∈ Rν . We have:

i) If 1 ≤ ν ≤ 2, thenI0 = Rν , that is;Σ0(ξ) is an isolated eigenvalue ofH(ξ) for
anyξ ∈ Rν .

ii) If 3 ≤ ν ≤ 4 and ξ 6∈ I0, thenH(ξ) has no ground state; i.e.Σ0(ξ) is not an
eigenvalue.

The statement i) above is an extension to the Nelson model of a result of Spohn,
[54, Section 5]. We give a new proof replacing Spohn’s functional integral approach by
the pull-through formula.

The remaining results are derived under the following condition

Condition 1.4. The functionsΩ, ω ∈ C∞(Rν) andv ∈ L2(Rν) and

i) Invariance under rotations: For anyξ ∈ Rν andO ∈ O(ν) (the orthogonal group),
we have:Ω(Oξ) = Ω(ξ), ω(Oξ) = ω(ξ), andv(Ok) = v(k) a.e.

ii) ω is convex.

iii) Ω andω are analytic.

The rotation invariance ofΩ, ω, andv, implies that the ground state mass shell
Σ0(ξ) is invariant under rotations, and so areΣ(n)

0 (ξ).
For ξ ∈ Rν andn ∈ N we define

I(n)
0 (ξ) := { k ∈ Rnν : ξ − k(n) ∈ I0 } . (1.18)

Our last theorem is concerned with the regularity of the functionsξ → Σ(n)
0 (ξ). Our

strategy is to study local minima ofk → Σ(n)
0 (ξ; k). The following lemma, in conjunc-

tion with (1.16), ensures that under Condition 1.3, the relevant local minima, i.e. global
minima, are located inI(n)

0 (ξ), where the bottom of the spectrum is smooth.

Lemma 1.7. Let v ∈ L2(Rν). Assume Conditions 1.1 and 1.2 i). Letξ ∈ Rν , n ≥ 1 and

k ∈ Rnν . If Σ(n)
0 (ξ; k) < infn′>n Σ(n′)

0 (ξ), thenk ∈ I(n)
0 (ξ).

The following lemma allows us to restrict the analysis to one dimension.

Lemma 1.8. Let v ∈ L2(Rν). Assume Conditions 1.1, 1.2 i), and 1.4 i),ii). Letξ ∈ Rν

andn ∈ N. Any local minimumk ∈ I(n)
0 (ξ) of k → Σ(n)

0 (ξ; k) is of the formk1 = · · · =
kn = θξ, for someθ ∈ R.
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Let ~u be a unit vector inRν . We write σ(t) = Σ0(t~u), for t ∈ R. By rotation
invariance,σ is independent of~u. Similarly we writeσ(n)(t) := Σ(n)

0 (t~u) andσess(t) :=
Σess(t~u). With a slight abuse of notation we writeω(t) = ω(t~u) andI0 to denote the set
of t’s such thatt~u ∈ I0. We furthermore use the symbolI(n)

0 (t), n > 0 (not necessarily
integer), to denote the set{s ∈ R : t− ns ∈ I0}.

In light of the previous lemma, we introduce now, forn > 0 and not necessarily
integer, the following functions

σ(n)(t; s) = σ(t − ns) + nω(t) and σ(n)(t) = inf
s∈R

σ(n)(t; s) .

Note that by Lemma 1.8 we have, for integern, Σ(n)
0 (ξ) = σ(n)(|ξ|), and in par-

ticular Σess(ξ) = σ(1)(|ξ|). In this connection we mention that a local minimum for
Σ(n)

0 (t; ·) induces a local minimum forσ(n)(t; ·). Conversely however, a local minimum
for σ(n)(t; ·), which is not a global minimum, could be associated with a saddle point for
Σ(n)

0 (t; ·).
We have, cf. also [19, Lemma 1.6],

Proposition 1.9. Assume Conditions 1.1, 1.2, and 1.4. Letλ < Σ0. The family of self
adjoint operatorst → (H(t~u) − λ)−1 is analytic of type A. Furthermore, the mapI0 3
t → σ(t) is analytic.

We introduce an index for a local minimum ofs → σ(n)(t; s).

Definition 1.10. Let n > 0, t ∈ R ands ∈ I(n)
0 (t). Assumes is a local minimum. We

define the index to beInd(n)(t; s) = min{` ∈ N : ∂2`
s σ(n)(t; s) > 0}, with the convention

that the index is∞ if ∂2`
s σ(n)(t; s) = 0 for all `. For simplicity we defineInd(n)(t; s) = 0

if s ∈ I(n)
0 (t) is not a local minimum fors′ → ∂sσ

(n)(t; s′).

We have the following regularity result

Theorem 1.11.Assume Conditions 1.1, 1.2, 1.3, and 1.4. Letn > 0. There exists a closed
countable setT (n) ⊂ R, and an analytic mapR\T (n) 3 t → Θ(n)(t) ∈ I(n)

0 (t) with
the property that the mapss → σ(n)(t; s), t ∈ R\T (n), has a unique global minimum
at s = Θ(n)(t), with Ind(n)(t; Θ(n)(t)) = 1. In particular R\T (n) 3 t → σ(n)(t) is
analytic and

d

dt
σ(n)(t) = ∂ω

(
Θ(n)(t)

)
, for t ∈ R \ T (n) . (1.19)

Our final main result is concerned with the structure of the spectrum near local
minima of the essential spectrum

Theorem 1.12. Assume Conditions 1.1, 1.2, 1.3, and 1.4. Lett0 be a local minimum of
t → σess(t). Then the spectral gap att0 is maximal, i.e.σess(t0) − σ(t0) = m, the map
t → σ(t) has a local minimum att0, the mapt → σess(t) is analytic neart0, and

∂2σess(t0) =
∂2ω(0) ∂2σ(t0)

∂2ω(0) + ∂2σ(t0)
.
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2 Notation and preliminaries

In this section we recall known facts. The reader is urged to consult in particular [14],
where most of the results pertaining to second quantization can be found.

2.1 The second quantization functorΓ

Let h be a complex Hilbert space with inner product〈·, ·〉, which is conjugate linear in the
first variable and linear in the second. We use the standard notationΓ(h) for the associated
bosonic Fock-space, see (1.2). For a (not necessarily dense) subspaceC ⊂ h, we write
Γfin(C) for the subspace ofΓ(h) consisting of finite linear combinations of elements of
the algebraic tensor productsC⊗sn, n ≥ 0. If C is dense inh, thenΓfin(C) is dense in
Γ(h).

We writea∗(f) anda(f), f ∈ h, for the creation and annihilation operators. Recall
that for u ∈ Γ(n)(h) := h⊗sn, then-particle sector;a∗(f)u =

√
n + 1Sn+1f ⊗ u ∈

Γ(n+1)(h). HereSk is the symmetrization operator onh⊗k. We furthermore recall that
a∗(f) anda(f) are closed and densely defined, and thatD(a(f)) = D(a∗(f)). They
satisfy the CCR:

[a∗(f),a∗(g)] = [a(f),a(g)] = 0 , [a(f),a∗(g)] = 〈f, g〉 (2.1)

anda(f)Ω = 0, for f ∈ h. The field operator

Φ(f) := a∗(f) + a(f) (2.2)

is self-adjoint onD(a∗(f)) = D(a(f)) and essentially self-adjoint onΓfin(h). In the
caseh = hph we have the relation with (1.3):a∗(f) =

∫
Rν f(k)a∗(k)dk anda(f) =∫

Rν f(k)a(k)dk. In particular (2.2) and (1.7) coincide. We frequently writea#(k) to
denote eithera(k) or a∗(k). Similarly for a#(f). Recall thata(k) is well-defined on
C∞0 = Γfin(C∞0 (Rν)), but it is not closable. The domain of its adjoint(a(k))∗ equals{0}.
The ”operator”a∗(k) should be understood as a form. See the monograph by Berezin [6].

Let b be a bounded operator between Hilbert spacesh1 andh2. We defineΓ(b) :
Γ(h1) → Γ(h2) by its restriction toΓ(n)(h1)

Γ(b)|Γ(n)(h1) :=

n times︷ ︸︸ ︷
b ⊗ · · · ⊗ b .

In particular we haveΓ(b)Ω = Ω. Recall thatΓ(b) is bounded if and only if‖b‖B(h1;h2) ≤
1.

We introducedΓ(a) for operatorsa : h → h with domainD(a) by

dΓ(a)|Γ(n)(h) := a ⊗ 1lh ⊗ · · · ⊗ 1lh + · · · + 1lh ⊗ · · · ⊗ 1lh ⊗ a , (2.3)

a priori on the domainΓfin(D(a)). In particular;dΓ(a)Ω = 0. The operatorsΓ(b) and
dΓ(a) are related through the formulaΓ(ea) = edΓ(a) (suitably interpreted). It is easy to
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see that ifa is closed (or closable) onD(a) thendΓ(a) is closable onΓfin(D(a)). See [24,
Section 3.2] for a simple proof, which applies also to similar situations below. In addition,
if a is self-adjoint, thendΓ(a) is essentially self-adjoint onΓfin(D(a)), cf. [50, Subsect.
VIII.10, Theorem VIII.33 and Example 2]. For closeda we will by dΓ(a) understand the
closure of (2.3). OtherwisedΓ(a) denotes the operator in (2.3) with the a priori domain
Γfin(D(a)).

For a quadratic forma with form-domainQ(a) we also writedΓ(a) for the quadratic
form defined onΓfin(Q(a)) by (2.3).

An important operator is the number operator

N := dΓ(1lh) , (2.4)

which in the caseh = hph can be written asN =
∫
Rν a∗(k)a(k)dk. See also (1.4).

Let a andb be densely defined operators onh andv ∈ D(a). We have the following
commutation properties, which should be interpreted as forms onΓfin(D(a∗)∩D(b∗))×
Γfin(D(a) ∩ D(b)) andΓfin(D(a∗))× Γfin(D(a)) respectively.

i[dΓ(a), dΓ(b)] = dΓ(i[a, b]) ,

[a∗(v), dΓ(a)] = −a∗(av) , [a(v), dΓ(a)] = a(av) , (2.5)

and i[Φ(v), dΓ(a)] = − Φ(iav) .

Let b : h1 → h2 be a contraction anda : h1 → h2 with domainD(a). We define
dΓ(b, a) : Γ(h1) → Γ(h2) onΓfin(D(a)) by

dΓ(b, a)|Γ(n)(h1) := a ⊗ b ⊗ · · · ⊗ b + · · · + b ⊗ · · · ⊗ b ⊗ a . (2.6)

In particular (in the caseh1 = h2 = h) dΓ(1lh, a) = dΓ(a); cf. (2.3). If a is closed (or
closable) we find, as above, thatdΓ(b, a) is closable onΓfin(D(a)). As for dΓ(a) we use
the notationdΓ(b, a) also in the case wherea is a form onh2 × h1.

Let b : h1 → h2 be a contraction,a1 : h1 → h1 anda2 : h2 → h2 be densely
defined. As a form onΓfin(D(a∗2))× Γfin(D(a1)) we have

(Γ(b) dΓ(a1) − dΓ(a2) Γ(b)) = dΓ(b, (ba1 − a2b)) . (2.7)

2.2 Basic estimates involvingΓ

We have the following lemma

Lemma 2.1. For f ∈ h and s ≥ 0, we havea#(f) : D(Ns+1/2) → D(Ns) and the
following holds true

i) Letf1, . . . , fn ∈ h. Then
∥∥(N + 1)k a#(f1) · · ·a#(fn) (N + 1)−

n
2−k

∥∥ ≤ Ck,n‖f1‖ · · · ‖fn‖ .
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ii) The map

hn 3 (f1, . . . , fn) → (N + 1)k a#(f1) · · ·a#(fn) (N + 1)−
n
2−k ∈ B(Γ(h))

is norm-continuous.

iii) Let {f1,l}l∈N, . . . , {fn,l}l∈N be uniformly bounded sequences, converging weakly
to zero inh. Then

s− lim
l→∞

(N + 1)k a(f1,l) · · ·a(fn,l) (N + 1)−
n
2−k = 0 .

Supposeb ∈ B(h1; h2) is a contraction,a1 : h1 → h̃ anda2 : h2 → h̃. Definea
as a form onD(a2) × D(a1) by (f, ag) := (a2f, a1g). Then, forv ∈ Γfin(D(a1)) and
u ∈ Γfin(D(a2)),

|〈u, dΓ(b, a)v〉| ≤ 〈u, dΓ(a∗2a2)u〉 1
2 〈v, dΓ(a∗1a1)v〉 1

2 . (2.8)

Herea∗#a# denote the obvious forms onh#. Taking in particular̃h = h2, a2 = 1lh2 , and
a1 = a we get, forv ∈ Γfin(D(a)),

‖(N + 1)−
1
2 dΓ(b, a)v‖ ≤ 〈v, dΓ(a∗a)v〉 1

2 . (2.9)

In connection with this bound we also use the easy property

a ≤ b =⇒ dΓ(a) ≤ dΓ(b) , (2.10)

wherea andb are self-adjoint operators (or symmetric forms) onh. We also make use of
the following estimate, cf. [27, Lemma A.2]. Letk ∈ N and leta andb be self-adjoint
operators onh. If 0 ≤ a` ≤ b` for all 1 ≤ ` ≤ k, with ` ∈ N. Then

(dΓ(a))k ≤ (dΓ(b))k . (2.11)

We note that there are several bounds involving powers of second quantized operators, cf.
e.g. [15, Lemma 3.2] and [24, Section 3.2] for a selection.

2.3 The extended space anďΓ

Let h0 and h∞ be two Hilbert spaces. We will use the standard unitary identification
U : Γ(h0 ⊕ h∞) → Γ(h0) ⊗ Γ(h∞), which is determined uniquely by linearity and the
two properties

U Ω = Ω ⊗ Ω (2.12)

U a∗((f, g)) =
(
a∗(f) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ a∗(g)

)
U . (2.13)

Let a0 : h0 → h0 anda∞ : h∞ → h∞. We have the intertwining property

U dΓ(a0 ⊕ a∞) =
(

dΓ(a0) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ dΓ(a∞)
)
U , (2.14)
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as an identity onΓfin(D(a0)⊕D(a∞)).
Let h, h0 andh∞ be Hilbert spaces and letb = (b0, b∞), whereb0 ∈ B(h; h0) and

b∞ ∈ B(h; h∞). We view b as an element ofB(h; h0 ⊕ h∞) and define the associated
operatořΓ(b) by

Γ̌(b) := U Γ(b) : Γ(h) → Γ(h0) ⊗ Γ(h∞) . (2.15)

In this paper we always requireb∗0b0 + b∗∞b∞ = 1lh, which implies‖b‖B(h;h0⊕h∞) = 1
andΓ̌(b) is an isometry:

Γ̌(b)∗ Γ̌(b) = 1lΓ(h) . (2.16)

We interpreťΓ(b) as a partition of unity.
Let b = (b0, b∞) be as above, and leta = (a0, a∞) be an operator fromh to h1⊕h2,

with domainD(a) = D(a0)∩D(a∞). We introduce the operatordΓ̌(b, a) : Γfin(D(a)) →
Γ(h0)⊗ Γ(h∞) by

dΓ̌(b, a) := U dΓ(b, a) . (2.17)

We use the same notation for formsa = (a0, a∞), wherea# are forms onh# × h.
Let r : h → h, q0 : h0 → h0 andq∞ : h∞ → h∞, be densely defined operators.

We have the following intertwining relation, viewed as an identity between forms on
{Γfin(D(q∗0))⊗ Γfin(D(q∗∞))} × Γfin(D(r)):

Γ̌(b)dΓ(r) − (
dΓ(q0) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ dΓ(q∞)

)
Γ̌(b) = dΓ̌(b, a) , (2.18)

wherea = (b0r − q0b0, b∞r − q∞b∞) has form-domain{D(q∗0)⊕D(q∗∞)} × D(r).

2.4 Basic estimates involvinǧΓ

Let b = (b0, b∞) be as in (2.17). Leta#,1 : h → h̃# anda#,2 : h# → h̃#, whereh̃#

are auxiliary Hilbert spaces. Here# denotes0 and∞. We define a forma = (a0, a∞)
on{D(a0,2)⊕D(a∞,2)}×{D(a0,1)∩D(a∞,1)} by prescribing the formsa0 anda∞ as
follows: (f, a#g) := (a#,2f, a#,1g) onD(a#,2)×D(a#,1).

Let u0 ∈ Γfin(D(a0,2)), u∞ ∈ Γfin(D(a∞,2)), v ∈ Γfin(D(a0,1) ∩ D(a∞,1)). The
following key estimate follows from (2.14) and (2.8)

|〈u0 ⊗ u∞, dΓ̌(b, a)v〉|
≤ {〈u0, dΓ(a0,2a

∗
0,2)u0〉 1

2 ‖u∞‖ + ‖u0‖ 〈u∞, dΓ(a∞,2a
∗
∞,2)u∞〉

1
2
}

×〈v, dΓ(a∗0,1a0,1 + a∗∞,1a∞,1)v〉 1
2 . (2.19)

Againa∗#,2a#,2 denote the obvious forms onD(a#,2), anda∗0,1a0,1+a∗∞,1a∞,1 is a form
onD(a0,1) ∩ D(a∞,1).

As for (2.9) this implies (herẽh# = h#, a#,2 = 1lh# , anda#,1 = a#)

‖(N0 + N∞)−
1
2 dΓ̌(b, a)v‖ ≤ 〈v, dΓ(a∗0,1a0,1 + a∗∞,1a∞,1)v〉 1

2 . (2.20)

Here and in the following we use the notation (cf. (2.4))

N0 = dΓ(1lh0) ⊗ 1lΓ(h∞) and N∞ = 1lΓ(h0) ⊗ dΓ(1lh∞) . (2.21)
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2.5 Auxiliary spaces and operators

In this subsection we introduce some notation which will be used in the proof of the HVZ
theorem in Subsect. 3.2.

We introduce auxiliary Hilbert spaces for an interacting system accompanied by a
fixed number̀ ≥ 1 of auxiliary photons

H(`) := F ⊗ F (`) ≡ L2
sym(R`ν ; F) .

Here the subscriptsym indicates that functions are symmetric under permutation, i.e.
f(kτ(1), . . . , kτ(`)) = f(k1, . . . , k`) a.e., for anyτ ∈ S(`) the group of permutations
of the set{1, . . . , `}.

For ` ∈ N we extend the notation for second quantization as follows

dΓ(`)(a) = dΓ(a) ⊗ 1lF(`) + 1lF ⊗ dΓ(a)|F(`) ,

for operatorsa on hph. Again dΓ(a) defined onΓfin(D(a)) ⊗ D(a)⊗s` is closable (es-
sentially self-adjoint) ifa is closable (essentially self-adjoint). For the Hamiltonian we
write

H(`)(ξ) := H
(`)
0 (ξ) + Φ(v) ⊗ 1lF(`) , (2.22)

where
H

(`)
0 (ξ) := dΓ(`)(ω) + Ω

(
ξ − dΓ(`)(k)

)
. (2.23)

We note thatH(`)
0 (ξ) is essentially self-adjoint on

C∞(`)
0 := C∞0 ⊗ Γ(`)(C∞0 (Rν)) . (2.24)

and writeD(`) = D(H(`)
0 (ξ)), which is independent ofξ. Observe that there is no inter-

action between thè auxiliary photons, nor are they coupled with the interacting system
(apart from the coupling coming from the dispersive structure). Note that as for Proposi-
tion 1.1,Φ(v)⊗1lF(`) is H

(`)
0 (ξ)-bounded with relative bound0, soH(`)(ξ) is essentially

self-adjoint onC∞(`)
0 and self-adjoint onD(`).

Using a direct integral representation we can write the auxiliary Hamiltonian for
each total momentumξ as

H(`)(ξ) =
∮

R`ν

H(`)(ξ; k) d`νk , (2.25)

where

H(`)(ξ; k) := H(ξ − k) +
( ∑̀

j=1

ω(kj)
)
1lF . (2.26)

Hered`νk = Π`
j=1d

νkj . We have a similar fibration ofH(`)
0 (ξ). The fiber operators, being

spectral translates of a Hamiltonian at a different total momentum, are clearly self-adjoint
onD and essentially self-adjoint onC∞0 .
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We note the following important observations

Σ(`)
0 (ξ; k) = inf

{
σ
(
H(`)(ξ; k)

)}
, (2.27)

Σ(`)
0 (ξ) = inf

{
σ
(
H(`)(ξ)

)}
. (2.28)

2.6 Geometric partition of unity and extended operators

In the analysis of the many-body problem, a central tool is a geometric partition of unity
in the configuration space; cf. [13]. Here we will need a similar notion, made complicated
by the fact that we have to partition an infinite number of particles. The type of partition
of unity used here was introduced in [14] and subsequently used by many authors, cf.
[2, 1, 15, 22, 24, 27].

Here h = h0 = h∞ = hph. Let j0, j∞ ∈ C∞(Rν) be non-negative functions
satisfying:j0 = 1 on{k : |k| ≤ 1}, j0 = 0 on{k : |k| > 2}, and finallyj2

0 + j2
∞ = 1. By

jR, R > 1, we understand the operatorjR = (j0(x/R), j∞(x/R)). Recall thatx = i∇k

is a differential operator. We viewjR as a map fromhph into hph ⊕ hph and the operator
Γ̌(jR) is an isometry, see (2.16),

Γ̌(jR) : F → Fext := F ⊗ F and Γ̌(jR)∗ Γ̌(jR) = 1lF . (2.29)

The partition of unity is used to decouple photons at infinity from photons near
the electron. In fact the reader should think of the first component as the Fock-space
for interacting photons and the second component as the Fock-space for non-interacting
photons at infinity.

As in the previous section we extend the notation for second quantization to these
extended spaces. We will in general call operators constructed this way, extended oper-
ators. The simplest extended operator is the extended number operator, already encoun-
tered in Subsect. 2.4

N ext := N0 + N∞ .

This is a particular case of the following notation, which will be used for operatorsa on
hph,

dΓext(a) = dΓ(a) ⊗ 1lF + 1lF ⊗ dΓ(a) . (2.30)

As in the previous sectiondΓext(a) is closable (essentially self-adjoint) ifa is closable
(essentially self-adjoint). Using this notation we introduce the extended Hamiltonian as

Hext(ξ) := Hext
0 (ξ) + Φ(v) ⊗ 1lF , (2.31)

where
Hext

0 (ξ) := dΓext(ω) + Ω
(
ξ − dΓext(k)

)
. (2.32)

The free extended Hamiltonian (2.32) is essentially self-adjoint onC∞0 ⊗ C∞0 and we
write Dext = D(Hext

0 (ξ)), which is independent ofξ. Note that as for Proposition 1.1,
Φ(v)⊗1lF isHext

0 (ξ)-bounded with relative bound0, soHext(ξ) is essentially self-adjoint
onC∞0 ⊗ C∞0 and self-adjoint onDext.
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Using the notation introduced in the previous subsection we have

Fext = F ⊕
{ ∞⊕

`=1

H(`)
}

, (2.33)

and

Hext(ξ) = H(ξ)⊕
{ ∞⊕

`=1

H(`)(ξ)
}

. (2.34)

2.7 The pull-through formula

In the following we use thata(k) makes sense as an operator onC0 = Γfin(hph∩C0(Rν)).
HereC0(Rν) denotes the space of continuous functions onRν . Note thata(k) : C0 → C0,
a(k) : C∞0 → C∞0 , and under the assumptionv ∈ L2(Rν) ∩ C0(Rν), we haveH(ξ) :
C∞0 → C0. For the definition ofC∞0 , see (1.8). The type of formula presented here has
been used previously in the study of ground states of translation invariant models, cf. [19],
and confined models, see e.g. [5, 24, 26].

Proposition 2.2. Supposev ∈ L2(Rν) ∩ C0(Rν). Let ξ ∈ Rν , n ≥ 1, k ∈ Rnν , and
z ∈ C. For ψ ∈ C∞0 we have the identity

a(k1) · · ·a(kn) (H(ξ) − z)ψ

=
(
H(ξ − k(n)) +

n∑

i=1

ω(ki) − z
)
a(k1) · · ·a(kn) ψ

+
n∑

i=1

v(ki)a(k1) · · · â(ki) · · ·a(kn)ψ ,

wherek(n) = k1 + · · ·+ kn.

The notationâ(ki) indicates that the terma(ki) is omitted from the product.
For n = 1 we formulate another pull through formula. Note that forψ ∈ D(N

1
2 ),

the mapk → a(k)ψ is in L2(Rν ;F). In general, forψ ∈ F we havek → a(k)ψ in
L2(Rν ;D(N

1
2 )∗). The following proposition can be proved directly as in [26, Proposition

3.4], or by using Proposition 2.2 and an approximation argument.

Proposition 2.3. Supposev ∈ L2(Rν). Letξ ∈ Rν andz ∈ C, Imz 6= 0. For ψ ∈ D, we
have theL2(Rν ;F)-identity

(
H(ξ − k) + ω(k) − z

)−1
a(k) (H(ξ) − z)ψ

= a(k)ψ + v(k)
(
H(ξ − k) + ω(k) − z

)−1
ψ .
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3 Spectral theory

We start this section by giving a proof of Proposition 1.1. First some simple observations.
Since1` ≤ m−`ω(k)` for any` ≥ 0, we obtain from (2.11) thatNk ≤ m−kdΓ(ω)k,

for k ∈ N. Since0 ≤ dΓ(ω) ≤ H0(ξ) and they commute, we find thatdΓ(ω)k ≤ H0(ξ)k

for anyk ∈ N. We thus getNk ≤ m−kH0(ξ)k, for k ∈ N. This estimate in particular
shows that fork ∈ N

N
k
2 is H0(ξ)

k
2 − bounded andN ext

k
2 is Hext

0 (ξ)
k
2 − bounded. (3.1)

Proof of Proposition 1.1:We begin by showing thatD(H0(ξ)) is independent ofξ.
We compute onC∞0 as an operator identityH(ξ)−H(0) = ξ · ∫ 1

0
∇Ω(tξ−dΓ(k))dt. By

Condition 1.1 i)–ii) and the estimateab ≤ aq + bp, q−1 + p−1 = 1 we obtain‖(H(ξ)−
H(0))ψ‖ ≤ ε‖Ω(dΓ(k))ψ‖ + C(ε, ξ)‖ψ‖, for anyε > 0 andψ ∈ C∞0 . That the domain
is independent ofξ now follows from the Kato-Rellich theorem [48, Theorem X.12].

As for ii), the observation (3.1) (applied withk = 1), together with theN1/2-
boundedness ofΦ(v), cf. Lemma 2.1 i), implies the result.

The last part follows from the variational principle and an argument similar to the
one given for i). We leave it to the reader. ¤

Clearly Proposition 1.1 also holds with{H0(ξ), H(ξ)} replaced by either of the
pairs{Hext

0 (ξ),Hext(ξ)} or {H(`)
0 (ξ),H(`)(ξ)}.

We note the following consequence, fork ∈ {1, 2},

N
k
2 is H(ξ)

k
2 − bounded, N ext

k
2 is Hext(ξ)

k
2 − bounded, (3.2)

N (`)
k
2 is H(`)(ξ)

k
2 − bounded. (3.3)

HereN (`) := dΓ(`)(1lhph).

3.1 Localization errors

In this subsection we show that localization errors arising when we applyΓ̌(jR) are small
for largeR.

Lemma 3.1. Let s ∈ N0 ∩ [0, sΩ] and f ∈ C∞(Rν) satisfy the bound|(∂αf)(η)| ≤
Cα〈η〉s−|α|, for any multi-indexα. Let t = 1, if s = 0, andt = (1 + sΩ − s)/2 if s ≥ 1.
We have as a form onFext ×F ,

(Hext
0 (ξ)− i)−1

(
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

)
(H0(ξ)− i)−1

= (Hext
0 (ξ)− i)−tB1(R) = B2(R)(H0(ξ)− i)−t ,

whereB1 andB2 are families of bounded operators which satisfy‖B1(R)‖+‖B2(R)‖ =
O(R−1/2), asR →∞, locally uniformly inξ.
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Proof. As a first step we compute as a form on(C∞0 ⊗ C∞0 )× C∞0 , for 1 ≤ p ≤ ν,

Γ̌(jR) dΓ(k;p) − dΓext(k;p) Γ̌(jR) = dΓ̌(jR, sR
p ) , (3.4)

sR
p = ([jR

0 , k;p], [jR
∞, k;p]). ClearlysR

p are bounded operators and

[jR
#, k;p] = O(R−1) , asR →∞ . (3.5)

Here we used the notationk;p to denote thep’th coordinate of a vectork ∈ Rν . (This
notation should not be confused with the labelingkj of a family of vectorskj ∈ Rν .)

We consider first the cases = 0. Let f̃ ∈ C∞(Cν) denote an almost analytic
extension off . Let χ ∈ C∞0 (Rν) be equal to1 near0. Write χn(η) = χ(η/n). Then
fn = χnf has almost analytic extensions̃fn satisfying that, for allz ∈ Cν : ∂̄f̃n(z) →
∂̄f̃(z), and the estimates

|∂̄f̃n(z)| ≤ C`〈z〉−1−`|Imz|` (3.6)

hold uniformly inn, cf. (A.3). If we take for example the Borel construction (A.2), for
f̃ and thef̃n’s, then this property is easy to verify. This well-known approximation tech-
nique has been used by many authors (in the caseν = 1), see e.g. [51, Section 5] and [45,
Section 4].

We use (3.4) to compute as a form on(C∞0 ⊗ C∞0 )× C∞0 , for Imz 6= 0,

T (z;R) := Γ̌(jR) |ξ − dΓ(k)− z|2 − |ξ − dΓext(k)− z|2 Γ̌(jR)

=
ν∑

p=1

{
dΓ̌(jR, sR

p ) (ξ;p − dΓ(k;p)− z;p) + (ξ;p − dΓext(k;p) + z;p) dΓ̌(jR, sR
p )

}
.

Using (2.10), (2.20) (withh = h̃# = h# = hph anda#,1 = [jR
#, k;p]), and (3.5), we

conclude the following estimate

(N ext + 1)−
1
2 |ξ − dΓext(k)− z|−1T (z;R) |ξ − dΓ(k)− z|−1(N + 1)−

1
2

= O
(|Imz|−1R−1

)
. (3.7)

The estimate is valid uniformly inξ andRez = {Rez1, . . . , Rezν}.
We proceed to compute

Γ̌(jR) |ξ − dΓ(k)− z|−2ν − |ξ − dΓext(k)− z|−2ν Γ̌(jR)

= −|ξ − dΓ(k)− z|−2ν
{

Γ̌(jR) |ξ − dΓ(k)− z|2ν

− |ξ − dΓext(k)− z|2ν Γ̌(jR)
}
|ξ − dΓ(k)− z|−2ν

= −
ν−1∑

j=0

|ξ − dΓ(k)− z|−2(ν−j)T (z; R) |ξ − dΓ(k)− z|−2(j+1) . (3.8)
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Combining this identity with (3.7), we obtain the estimate

(N ext + 1)−
1
2

{
Γ̌(jR) |ξ − dΓ(k)− z|−2ν

− |ξ − dΓext(k)− z|−2ν Γ̌(jR)
}

(N + 1)−
1
2

= |ξ − dΓext(k)− z|−1 O
(|Imz|−2νR−1

)

= O
(|Imz|−2νR−1

) |ξ − dΓ(k)− z|−1 . (3.9)

A small calculation using (3.4) (and again the estimates (2.10), (2.20), and (3.5)) in
conjunction with (3.6) and (3.9) gives the following estimate for all1 ≤ p ≤ ν and` ≥ 0

∂̄pf̃n(z)(N ext + 1)−
1
2

{
Γ̌(jR) (ξ;p − dΓ(k;p) + z;p) |ξ − dΓ(k)− z|−2ν

− (ξ;p − dΓext(k;p) + z;p) |ξ − dΓext(k)− z|−2ν Γ̌(jR)
}

(N + 1)−
1
2

= O
(〈z〉−`−1|Imz|`−2νR−1

)
. (3.10)

By choosing̀ = 2ν, in order to dampen the singularity at the real axis, we get an inte-
grable weight factor〈z〉−2ν−1, uniformly inn. We can now invoke the Lebesgue theorem
on dominated convergence, and remove the cutoff by takingn →∞ in the representation
formula (A.4). This gives finally

(N ext + 1)−
1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−

1
2

= O(R−1) .

Note that the term in the brackets above is a bounded operator with norm bounded uni-
formly in R andξ. We thus get by interpolation (and since powers ofN can be moved
around as we please) for0 ≤ ρ ≤ 1/2.

(N ext + 1)ρ− 1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−ρ

= O(R−
1
2 ) . (3.11)

By (3.1), this concludes the proof for the cases = 0.
Next we consider the cases = 1 (and hencesΩ ∈ {1, 2}). Use Taylor’s formula to

write f(η) = f(0) + η · F0(η), whereF0(η) =
∫ 1

0
(∇f)(tη)dt. It is easy to verify that

F0’s coordinate functions satisfy the assumption of the lemma withs = 0. From (3.4)
(again combined with (2.10), (2.20), and (3.5)) and (3.11) we get, as a form estimate on
(C∞0 ⊗ C∞0 )× C∞0 ,

(N ext + 1)ρ− 1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−ρ

= O(R−
1
2 ) +

ν∑
p=1

(ξ;p − dΓext(k;p)) O(R−
1
2 )

= O(R−
1
2 ) +

ν∑
p=1

O(R−
1
2 ) (ξ;p − dΓ(k;p)) . (3.12)
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Note that ifsΩ = 1 thendΓ(k) is H0(ξ)-bounded, and ifsΩ = 2 thendΓ(k) is H0(ξ)1/2-
bounded. Corresponding relative bounds for the extended operators hold as well. This
implies the lemma fors = 1.

In the remaining cases = 2 (and hencesΩ = 2). We proceed in a similar fashion,
writing f(η) = f(0)+η ·F1(η), whereF1’s coordinate functions satisfy the assumptions
of the lemma withs = 1. Since in this casedΓ(k) andF1(ξ − dΓ(k)) areH0(ξ)1/2-
bounded, the result follows (by a similar argument) from thes = 1 case. ¤
Lemma 3.2. We have as a form onFext ×F ,

(Hext
0 (ξ)− i)−1

{
Γ̌(jR)H(ξ) − Hext(ξ) Γ̌(jR)

}
(H0(ξ)− i)−1

= (Hext
0 (ξ)− i)−

1
2 B1(R) = B2(R)(H0(ξ)− i)−

1
2 ,

whereB1 andB2 are families of bounded operators satisfying‖B1(R)‖ + ‖B2(R)‖ =
o(1), asR →∞, locally uniformly inξ.

Proof. By Lemma 3.1, applied withf = Ω and s = sΩ, we only need to prove the
lemma withH(ξ) replaced bydΓ(ω) andΦ(v), andHext(ξ) replaced bydΓext(ω) and
Φ(v)⊗ 1lF respectively.

We begin by computing as a form onDext ×D

Γ̌(jR) dΓ(ω) − dΓext(ω) Γ̌(jR) = dΓ̌(jR, rR) ,

whererR = ([jR
0 , ω], [jR

∞, ω]). By Condition 1.2 iii) and pseudo differential calculus, the
components ofrR satisfies, as operators onD(ω

1
2 )∗,

ω−
1
2 [jR

#, ω]ω−
1
2 = O(R−1) , for R →∞ .

(Alternatively one could also use here the calculus of almost analytic extensions.) The
contribution toB1 and B2 coming fromdΓ(ω) thus satisfies the required bounds by
(2.10), (2.19), and (3.1). Here we chooseh = h# = hph, h̃# = D(ω

1
2 )∗, a#,2 = ω

1
2 , and

a#,1 = {ω− 1
2 [jR

#, ω]ω−
1
2 }ω 1

2 , when applying (2.19).
It remains to treat the contribution from the perturbation. We compute as a form on

Dext ×D, using [14, Lemma 2.14 (iii)]

Γ̌(jR)Φ(v) − Φ(v) ⊗ 1lF Γ̌(jR)

= − 1√
2

{(
a∗((1− jR

0 )v) ⊗ 1lF + 1lF ⊗ a∗(jR
∞v)

)
Γ̌(jR)

+ Γ̌(jR)a((1− jR
0 )v)

}
.

Eq. (3.1) and Lemma 2.1 ii) now yield the result, sinces−limR→∞ jR
∞ = s−limR→∞(1−

jR
0 ) = 0 andv ∈ L2(Rν). ¤

We immediately get the following two corollaries.
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Corollary 3.3. We have for anyR > 1

Γ̌(jR) : D → Dext
1/2 and Γ̌(jR)∗ : Dext → D1/2 ,

whereD1/2 = D(H0(ξ)1/2) andDext
1/2 = D(Hext

0 (ξ)1/2) are independent ofξ.

The first part of the following corollary follows from Lemma 3.2 while the second
part follows from the first part and the calculus of almost analytic extensions (withν = 1),
as presented in Subsect. A.1.

Corollary 3.4. We have, in the limitR →∞,
i) The following estimate holds true locally uniformly inξ andz ∈ C with Imz 6= 0

Γ̌(jR) (H(ξ)− z)−1 − (Hext(ξ)− z)−1 Γ̌(jR) = |Imz|−2 o(1) .

ii) For f ∈ C∞0 (R), we have uniformly inξ

Γ̌(jR) f(H(ξ)) − f(Hext(ξ)) Γ̌(jR) = o(1) .

3.2 The HVZ-Theorem

In this Subsect. we prove Theorem 1.2.
Recall the abbreviationsk = (k1, . . . , kn) ∈ Rnν andk(n) = k1 + · · · + kn. We

start by establishing three lemmas
Proof of Lemma 1.7:Suppose to the contrary thatk 6∈ I(n)

0 (ξ), that isΣ0(ξ − k(n)) ≥
Σess(ξ−k(n)), cf. (1.18). Then there exist` ≥ 1 andkn+1, . . . , kn+`, cf. (1.11), such that
(writing k(n+`) =

∑n+`
i=1 ki)

Σ(n)
0 (ξ; k) = Σ0

(
ξ − k(n)

)
+

n∑

i=1

ω(ki)

≥ Σ0

(
ξ − k(n+`)

)
+

n+∑̀

i=1

ω(ki)

≥ Σ(n+`)
0 (ξ) > Σ(n)

0 (ξ; k) ,

which is a contradiction. This proves the lemma. ¤
Lemma 3.5. Letn ≥ 1, andB ∈ L2

sym(Rnν ;B(F)). SupposeB(k) commute withN for
almost allk ∈ Rnν . Define forψ ∈ C∞0 the map

a(B)ψ :=
∫

Rnν

B(k)a(k1) · · ·a(kn)ψ dnνk .

Then(N + 1)−n/2a(B) extends fromC∞0 to a bounded operator onF and there exists
C = C(n) such that

C−1
∥∥(N + 1)−n/2 a(B)

∥∥
B(F)

≤ ‖B‖ :=
(∫

Rnν

‖B(k)‖2B(F) dnνk
) 1

2
. (3.13)
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Proof. Let ψ ∈ C∞0 andϕ ∈ F , with ‖ϕ‖ = 1. We estimate
∣∣〈ϕ, (N + n + 1)−n/2 a(B)ψ

〉∣∣

≤
∫

Rnν

∣∣〈ϕ, (N + n + 1)−
n
2 B(k)a(k1) · · ·a(kn) ψ

〉∣∣ dnνk

=
∫

Rnν

∣∣〈ϕ,B(k)a(k1) · · · a(kn) (N + 1)−
n
2 ψ

〉∣∣ dnνk

≤
∫

Rnν

‖B(k)‖B(F)

∥∥a(k1) · · ·a(kn) (N + 1)−
n
2 ψ

∥∥ dnνk

≤ ‖B‖
( ∫

Rnν

∥∥a(k1) · · ·a(kn) (N + 1)−
n
2 ψ

∥∥2
dnνk

) 1
2

≤ ‖B‖ ‖ψ‖ .

Here we used the representationN =
∫
Rν a∗(k)a(k)dνk repeatedly in the last step. This

estimate yields the lemma (withC = ((n + 1)/2)n/2). ¤
Lemma 3.6. Letχ ∈ C∞0 (R) andξ ∈ Rν . Then, for allk, ` ≥ 0, the formNkχ(H(ξ))N `

extends fromC∞0 to a bounded form onD∗.
Remark. We employ the standard triple:D ⊂ F ⊂ D∗ continuously and densely.

Proof: Recall from [14, Lemma 3.2] thatNkχ(H(ξ))N ` extends to a bounded form on
F . It remains to prove that it extends further by continuity toD∗. It is sufficient to verify
thatH(ξ)Nkχ(H(ξ)), viewed as a form onC∞0 ×F , extends to a bounded form onF⊗F .

Let ψ ∈ C∞0 andϕ ∈ F . We compute fork ≥ 1,
〈
H(ξ)ψ, (N + 1)kχ(H(ξ)) ϕ

〉

=
〈
Φ(v) ψ, (N + 1)kχ(H(ξ))ϕ

〉
+

〈
(N + 1)kψ, H0(ξ)χ(H(ξ))ϕ

〉

=
〈
(N + 1)−

1
2 Φ(v) ψ, (N + 1)k+ 1

2 χ(H(ξ)) ϕ
〉

+
〈
(N + 1)kψ, H(ξ)χ(H(ξ)) ϕ

〉

− 〈
(N + 1)−k− 1

2 Φ(v) (N + 1)kψ, (N + 1)k+ 1
2 χ(H(ξ))ϕ

〉
.

An application of Lemma 2.1 i) now yields the result. ¤
Proof of Theorem 1.2:We begin with i). Letξ ∈ Rν and letf ∈ C∞0 (R) be such that
supp f ⊂ (−∞,Σess(ξ)). By definition ofΣess(ξ) (see (1.9–1.11)), (2.21), (2.33), (2.34),
and (2.28), we observe that

Hext(ξ) 1l(N∞ ≥ 1) =
∞⊕

`=1

H(`)(ξ)

≥
∞⊕

`=1

Σ(`)
0 (ξ) 1lH(`) ≥ Σess(ξ) 1l(N∞ ≥ 1) .
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Here we used the identification1lH(`) = 1l(N∞ = `). The lower bound above, together
with (2.29) and Corollary 3.4 ii), yields

f(H(ξ)) = Γ̌(jR)∗ f(Hext(ξ)) Γ̌(jR) + o(1)
= Γ(jR

0 ) f(H(ξ)) Γ(jR
0 )

+ Γ̌(jR)∗ f(Hext(ξ)) 1l(N∞ ≥ 1) Γ̌(jR) + o(1)
= Γ(jR

0 ) f(H(ξ)) Γ(jR
0 ) + o(1) , for R →∞ .

The first term on the right-hand side is compact, by a standard argument using Condi-
tion 1.2 ii). This implies thatf(H(ξ)) is a compact operator, and hence; that the spectrum
of H(ξ) belowΣess(ξ) is locally finite.

As for ii), fix ξ ∈ Rν andλ ≥ Σess(ξ). We wish to show that there existsn0 ≥ 1
andη = (η1, . . . , ηn0) ∈ Rn0ν such that

λ = Σ0(ξ − η(n0)) +
n0∑

i=1

ω(ηi) and η ∈ I(n0)
0 (ξ) , (3.14)

whereη(n0) =
∑n0

i=1 ηi.

Let n0 be given byn0 + 1 = min{n : λ < minn′≥n Σ(n′)
0 (ξ)}. The minima

exist, andn0 ≥ 1, due to (1.11) and (1.15). There existsk = (k1, . . . , kn0) such that
Σ(n0)

0 (ξ) = Σ0(ξ − k(n0)) +
∑n0

i=1 ω(ki) ≤ λ, wherek(n0) = k1 + · · · + kn0 . By
Condition 1.2 ii), (1.14), and continuity ofΣ0(ξ), cf. Proposition 1.1, we can findη such
that the first part of (3.14) is fulfilled. The choice ofn0 and Lemma 1.7 implies the last
part.

By i); Σ0(ξ − η(n0)), given by (3.14), is an eigenvalue forH(ξ − η(n0)). We
write ϕ0 for a corresponding ground state;H(ξ − η(n0))ϕ0 = Σ0(ξ − η(n0))ϕ0. Let
f ∈ C∞0 (Rν) with f ≥ 0 and f(0) = 1. Write fi,`(k) = `ν/2f(`(k − ηi)). Then
{f1,`}`∈N, . . . , {fn0,`}`∈N is a family of uniformly bounded sequences inhph, which all
converge weakly to0.

Let ψ` = a∗(fn0,`) · · ·a∗(f1,`)ϕ0. The rest of the proof is concerned with showing
thatψ` is a Weyl sequence for the energyλ. Note that by Lemma 3.6 and Lemma 2.1 i), we
haveϕ0 ∈ D(a∗(fn0,`) · · ·a∗(f1,`)). Lemma 2.1 iii) furthermore implies that{ψ`}`∈N
converges weakly to zero inF .

For ψ` to be a Weyl sequence it must satisfy‖ψ`‖ > 0 uniformly in `. Let S(n)
denote the group of permutations ofn elements, and write(σk)j = kσ(j), for σ ∈ S(n)
andk ∈ Rnν .

Let n be such thatϕ(n)
0 6= 0. Pick a compact (and non-empty) setK ⊂ Rnν with the

following properties: (K1) If k ∈ K thenσk ∈ K, σ ∈ S(n). (K2) Fork ∈ K we have
ki 6= ηj , 1 ≤ i ≤ n and1 ≤ j ≤ n0. (K3) 1l(k ∈ K)ϕ(n)

0 6= 0.

Let ψK be defined byψ(n′)
K := 0, for n′ 6= n, andψ

(n)
K := 1l(k ∈ K)ϕ(n)

0 . By
property (K2), there exists̀0 such thata(fj,`)ψK = 0, for any1 ≤ j ≤ n0, and` ≥ `0.
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By the CCR (2.1) we thus get, for` ≥ `0,
〈
a∗(fn0,`) · · ·a∗(f1,`)ψK, ψ`

〉
=

∑

σ∈S(n0)

(
Πn0

j=1〈fj,`, fσ(j),`〉
) 〈ψK, ϕ0〉

=
∑

σ∈S(n0)

(
Πn0

j=1〈fj , fσ(j)〉
) 〈

ϕ
(n)
0 , 1l(k ∈ K)ϕ

(n)
0

〉

≥ ‖f‖2n0‖1l(k ∈ K) ϕ
(n)
0 ‖2 .

This estimate and property (K3), implies‖ψ`‖ > 0 uniformly in ` ≥ `0.
It remains to prove that‖(H(ξ)− λ)ψ`‖ → 0 as` →∞.
Let ṽ ∈ L2(Rν)∩C(Rν). Write H̃(ξ) for the fiber Hamiltonian with the interaction

Φ(v) replaced byΦ(ṽ). Compute, as an identity onD,

H̃(ξ − k(n0)) − H(ξ − η(n0))
= (k(n0) − η(n0)) · (∇Ω)(ξ − η(n0) − dΓ(k)) (3.15)

+
〈
(k(n0) − η(n0)), T (k(n0), η(n0)) (k(n0) − η(n0))

〉
+ Φ(ṽ − v) ,

whereT (ζ1, ζ2) =
∫ 1

0
(1 − t)(∇2Ω)(ξ − tζ1 − (1 − t)ζ2 − dΓ(k))dt. Note that this

operator is continuous and bounded uniformly inζ1 (and ζ2) and commutes with the
number operator.

Abbreviate

ωΣ(k, η) :=
n0∑

j=1

(
ω(kj) − ω(ηj)

)
.

By (3.14), (3.15), and the pull-through formula, Proposition 2.2, we get forψ ∈ C∞0
〈ϕ0,a(k1) · · · a(kn0) (H̃(ξ)− λ)ψ〉

=
〈{

H̃(ξ − k(n0)) − H(ξ − η(n0)) + ωΣ(k, η)
}
ϕ0,a(k1) · · ·a(kn0)ψ

〉

+
n0∑

i=1

ṽ(ki)
〈
ϕ0,a(k1) · · · â(ki) · · ·a(kn0)ψ

〉

= 〈Φ(ṽ − v)ϕ0,a(k1) · · · a(kn) ψ〉 + ωΣ(k, η) 〈ϕ0,a(k1) · · ·a(kn)ψ〉
− (k(n0) − η(n0)) · 〈(∇Ω)(ξ − η(n0) − dΓ(k)) ϕ0,a(k1) · · ·a(kn0) ψ

〉

+
〈〈

(k(n0) − η(n0)), T (k(n0), η(n0))(k(n0) − η(n0))
〉
ϕ0,a(k1) · · ·a(kn)ψ

〉

+
n0∑

i=1

ṽ(ki)
〈
ϕ0,a(k1) · · · â(ki) · · ·a(kn0)ψ

〉
.

Abbreviate

B1
` (k) := ωΣ(k, η)Πn0

j=1fj,`(kj) 1lF ,

B2
p,`(k) := (k(n0)

;p − η(n0)
;p )Πn0

j=1fj,`(kj) 1lF ,

B3
` (k) :=

〈
(k(n0) − η(n0)), T (k(n0), η(n0))(k(n0) − η(n0))

〉
Πn0

j=1fj,`(kj) .
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By construction of thefj,`’s we find (see (3.13) for the definition of the norm)

‖B1
` ‖ +

ν∑
p=1

‖B2
p,`‖ + ‖B3

` ‖ → 0 , for ` →∞ . (3.16)

Using the notation introduced in Lemma 3.5, we can now compute

〈ψ`, (H̃(ξ)− λ)ψ〉 = 〈ϕ0, Φ(ṽ − v)a(f1,`) · · ·a(fn0,`)ψ〉
+ 〈ϕ0,a(B1

` )ψ〉 +
〈
ϕ0,a(B3

` ) ψ
〉

+
ν∑

p=1

〈
∂pΩ(ξ − η(n0) − dΓ(k))ϕ0,a(B2

`,p) ψ
〉

+
n0∑

i=1

〈
fi,`, ṽ〉〈a∗(fn0,`) · · · â∗(fi,`) · · ·a∗(f1,`)ϕ0, ψ

〉

By Lemma 2.1 ii) we can take the limit̃v → v in L2(Rν). This amounts to replacing
ṽ by v and H̃(ξ) by H(ξ) in the equation above. The resulting identity together with
Condition 1.1, Lemma 2.1 i), and Lemma 3.6 implies thatψ` ∈ D and

∥∥(H(ξ)− λ)ψ`

∥∥ ≤ C
∥∥(N + 1)

n0
2 ϕ0

∥∥ (‖B1
` ‖ + ‖B3

` ‖
)

+ C

ν∑
p=1

∥∥∂pΩ(ξ − η(n0) − dΓ(k)) (N + 1)
n0
2 ϕ0

∥∥ ‖B2
`,p‖

+ C0,n0−1

(
max

1≤j≤ν
|〈fj,`, v〉|

) ∥∥(N + 1)
n0−1

2 ϕ0

∥∥
n0∑

i=1

Πk 6=i‖fk,`‖ .

By (3.16) and the fact thatw − lim`→∞ fj,` = 0, we thus find‖(H(ξ) − λ)ψ`‖ → 0 as
` →∞, and hence;ψ` is a Weyl-sequence. This concludes the proof. ¤

3.3 Uniqueness, existence, and non-existence of ground states

We begin by applying the Perron-Frobenius theorem of Farris, which is presented in Ap-
pendix A.2. See also Fröhlich [19].

We writehph = hphR⊕ ihphR, wherehphR is the real Hilbert space consisting of the
real valued functions inhph. We defineHR := ⊕∞n=0hph

⊗sn
R , which is also a real Hilbert

space. We take as a Hilbert cone, cf. Definition A.1,

C := ×∞n=0 C(n) ,

C(n) := { f ∈ hph
⊗sn
R : (−1)n f ≥ 0 } . (3.17)

In this section we assume that the coupling functionv ∈ L2(Rν) is strictly positive
almost everywhere.
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Clearlyf(H0(ξ)) is positivity preserving in the sense of Definition A.2 ii), for any
bounded non-negative Borel functionf .

Forµ > 0 sufficiently large, the Neumann series

(H(ξ) + µ)−1 =
∞∑

k=0

(H0(ξ) + µ)−1
{
(−Φ(v)) (H0(ξ) + µ)−1

}k
(3.18)

converge. Note that‖Φ(v)(H0(ξ) + µ)−1‖ ≤ Cµ−
1
2 ; cf. Lemma 2.1 i) and (3.1). Since

v ≥ 0 a.e., by assumption, we find from this formula that(H(ξ) + µ)−1 is positivity
preserving. In fact, we find from (3.18) that, the resolvent(H(ξ)+µ)−1 is a sum of terms
of the form

(H0(ξ) + µ)−1
{
a#(v) (H0(ξ) + µ)−1

}k
,

where all powersk and combinations ofa∗(v) anda(v) occur. Furthermore each of these
terms are positivity preserving.

Let u ∈ C\{0}. There existsn ≥ 0 such thatun ∈ hph
⊗sn
c , the projection onto

then-particle sector, is non-vanishing;un 6= 0. We wish to prove that(H(ξ) + µ)−1u
is strictly positive in the sense of Definition A.2 i). Letv ∈ C\{0}. There existsn′ ≥ 0
such thatvn′ ∈ hph

⊗sn′

c is non-zero;vn′ 6= 0. We estimate

〈
(H(ξ) + µ)−1u, v

〉 ≥ 〈
(H(ξ) + µ)−1un, vn′

〉

≥ 〈{
a(v) (H0(ξ) + µ)−1

}n
un,

{
(H0(ξ) + µ)−1 a(v)

}n′(H0(ξ) + µ)−1vn′
〉

≥ µ−n−n′−1

∫

Rνn

v(k1) · · · v(kn) (−1)nun(k1, . . . , kn) dk1 · · · dkn

×
∫

Rνn′
v(k1) · · · v(kn′) (−1)n′vn′(k1, . . . , kn) dk1 · · · dk′n .

The right-hand side is strictly positive and hence;(H(ξ)+µ)−1u is strictly positive. Since
u ∈ C\{0} was arbitrary we conclude that(H(ξ) + µ)−1 is positivity improving in the
sense of Definition A.2 iii). The abstract result of Faris, Theorem A.3 now implies that a
ground state, if it exists, is unique and strictly positive in the sense of Definition A.2 i).
This proves Theorem 1.3.

Before continuing with Theorem 1.6 we give the following:
Proof of Lemma 1.5:We Taylor expandω(k1) andω(k2) aroundk1 +k2 and estimate the
result using Condition 1.3

ω(k1) + ω(k2) = 2 ω(k1 + k2) − ∇ω(k1 + k2) · (k1 + k2)

+
1
2

∫ 1

0

(1− t)2
{〈

k2,∇2ω(k1,t)k2

〉
+

〈
k1,∇2ω(k2,t)k1

〉}
dt

(>)
≥ ω(k1 + k2) .

Herek1,t := k1 + (1− t)k2 andk2,t := k2 + (1− t)k1.
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Proof of Theorem 1.6 ii):Let ξ be such thatΣ0(ξ) = Σess(ξ). AssumeΣ0(ξ) is an eigen-
value. By Theorem 1.3, the eigenvalue is non-degenerate and we can choose an eigen-
functionψξ ∈ C which is strictly positive.

Recall from Corollary 1.4 thatΣess(ξ) = Σ(1)
0 (ξ), under Condition 1.3. LetM :=

{k ∈ Rν : Σ(1)
0 (ξ; k) = Σ(1)

0 (ξ)} be the set of minimizers. By (1.16) and Lemma 1.7,M
is a compact subset of the open setI(1)

0 (ξ). There existsk0 ∈ ∂M, a unit vector~u ∈ Rν ,
and a numberr > 0, with the following property: For anyδ > 0 we have

Ωr
δ := {k ∈ Rν : ‖k − k0‖ ≤ r and (k − k0) · ~u ≥ δ } ⊂ I(1)

0 (ξ) \M .

We also use this notation withδ = 0.
For anyδ > 0 there existsC(δ) such that

inf
k∈Ωr

δ

Σ0(ξ − k) + ω(k) − Σ0(ξ − k0) ≥ C(δ)−1 . (3.19)

Recall thatΣ0(ξ − k), k ∈ Ωr
0, are isolated eigenvalues and, again by Theorem 1.3,

they are non-degenerate and we can choose eigenfunctionsψξ−k ∈ C which are strictly

positive. SinceI(1)
0 (ξ) 3 k → ψξ−k is continuous, we find

inf
k∈Ωr

0

〈ψξ−k, ψξ〉 > 0 . (3.20)

Let Nδ := dΓ(1l(k ∈ Ωr
δ)) =

∫
Ωr

δ
a∗(k)a(k)dνk. Note that0 ≤ Nδ ≤ N , and

henceψξ ∈ D(Nδ) with ‖Nδψξ‖ ≤ ‖Nψξ‖ < ∞ uniformly in δ > 0. Using Propo-
sition 2.3, (3.19), and the Lebesgue theorem on dominated convergence (to replacez,
Imz 6= 0, by z = Σ0(ξ)), we get

〈ψξ, Nδψξ〉
≥

∫

Ωr
δ

v(k)2
∥∥(

H(ξ − k) + ω(k) − Σ0(ξ)
)−1

ψξ

∥∥2
dk

≥
∫

Ωr
δ

v(k)2
(
Σ0(ξ − k) + ω(k) − Σ0(ξ)

)−2 |〈ψξ−k, ψξ〉|2 dk (3.21)

≥ inf
k∈Ωr

0

{|〈ψξ−k, ψξ〉|2 v(k)2}
∫

Ωr
δ

(
Σ0(ξ − k) + ω(k) − Σ0(ξ)

)−2
dk .

SinceΣ0(ξ − k) is a smooth function ofk in I(1)
0 (ξ) andk0 is a global minimum of the

functionk → Σ0(ξ − k) + ω(k), we find that there existsC > 0 such that

0 ≤ Σ0(ξ − k) + ω(k) − Σ0(ξ) ≤ C |k − k0|2, for k ∈ Ωr
0 .

This estimate together with (3.20), (3.21), and the assumption3 ≤ ν ≤ 4 implies that
|〈ψξ, Nδψξ〉| → ∞, asδ → 0. This contradictsψξ ∈ D(N), and hence;Σ0(ξ) is not an
eigenvalue. ¤

The first step in the proof of Theorem 1.6 i) is the following Lemma.
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Lemma 3.7. Let ξ ∈ Rν andz < Σ0(ξ). Then

Ω(ξ) − z −
∫

Rν

v(k)2
〈
Ω, (H(ξ − k) + ω(k)− z)−1Ω

〉
dk > 0 .

Proof. Let PΩ := |Ω〉〈Ω|, andPΩ := 1lF − PΩ. Using the Feshbach projection method,
cf. e.g. [4, Section II], we find

〈
Ω, (H(ξ)− z)−1Ω

〉
=

(
Ω(ξ) − z − 〈

v, (H(ξ)− z)−1v
〉
Ran PΩ

)−1

. (3.22)

HereH(ξ) = PΩH(ξ)PΩ as an operator onRan PΩ, andv is viewed as an element of the
one-particle space which is contained inRanPΩ. By the spectral theorem the left-hand
side of (3.22) is strictly positive and hence

Ω(ξ) − z − 〈
v, (H(ξ)− z)−1v

〉
Ran PΩ

> 0 . (3.23)

Viewing (H(ξ)− z)−1v as an element ofF we write

〈
v, (H(ξ)− z)−1v

〉
Ran PΩ

=
∫

Rν

v(k)
〈
Ω, a(k)(H(ξ)− z)−1v

〉
dk . (3.24)

Applying the pull-through formula, Theorem 2.3, withψ = (H(ξ) − z)−1v ∈ D, yields
as anL2(Rν ;F) identity

a(k) (H(ξ)− z)−1v

= (H(ξ − k) + ω(k)− z)−1 a(k) (H(ξ)− z) (H(ξ)− z)−1v

− v(k) (H(ξ − k) + ω(k)− z)−1(H(ξ)− z)−1v . (3.25)

We now make two observations. The first is the identity

a(k) (H(ξ)− z) (H(ξ)− z)−1v = a(k) v = v(k) Ω . (3.26)

The second observation is that(H(ξ) − z)−1 is positivity preserving, with respect to
the coneC introduced in (3.3) (after extending it by zero to the vacuum sector). This
follows by a Neumann expansion, as for(H(ξ) + µ)−1 in (3.18), and Lemma A.4. Since
(H(ξ − k) + ω(k)− z)−1 is also positivity preserving we find that, for a.e.k ∈ Rν ,

〈
Ω, (H(ξ − k) + ω(k)− z)−1(H(ξ)− z)−1v

〉 ≤ 0 . (3.27)

Combining (3.25)–(3.27) we get the following estimate a.e.

v(k)
〈
Ω, a(k) (H(ξ)− z)−1v

〉 ≥ v(k)2
〈
Ω, (H(ξ − k) + ω(k)− z)−1Ω

〉
.

This estimate in conjunction with (3.23) and (3.24) concludes the proof. ¤

Proof of Theorem 1.6 i):Assume that the statement is false atξ, i.e.Σ0(ξ) = Σess(ξ).
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The aim is to show that the equation

Ω(ξ)− z =
∫

Rν

v(k)2
〈
Ω, (H(ξ − k) + ω(k)− z)−1Ω

〉
dk

has a solutionz < Σess(ξ), which would by Lemma 3.7 provide a contradiction.
In the limit z → −∞ the left-hand side dominates the right-hand side. A solution

exists (and is necessarily unique by monotonicity) if we can show that the righthand side
diverges asz approachesΣess(ξ) from below.

As in the proof of Theorem 1.6 ii) we choose a minimizerk0 ∈ Rν satisfying
Σ(1)

0 (ξ; k0) = Σ(1)
0 (ξ) = Σess(ξ). Then, by (1.16) and Lemma 1.7,k0 ∈ I(1)

0 (ξ) and

there exists a neighbourhoodO ⊂ I(1)
0 (ξ) of k0 satisfyinginfk∈O〈ψξ−k, Ω〉 > 0. Here

ψξ−k ∈ C, k ∈ O, are the strictly positive ground state eigenfunctions ofH(ξ − k). We
thus get

∫

Rν

|v(k)|2〈Ω, (H(ξ − k) + ω(k)− z)−1Ω
〉
dk

≥ inf
k∈O

{〈ψξ−k,Ω〉2v(k)2}
∫

O
(Σ0(ξ − k) + ω(k)− z)−1dk .

Since the righthand side diverges in dimension1 and2, asz → Σess(ξ) from below, we
conclude the result. ¤

3.4 Regularity of t → σess(t)

We begin with
Proof of Lemma 1.8:Let k be a local minimum ofI(n)

0 (ξ) 3 k → Σ(n)
0 (ξ; k). That

the kj ’s must be equal follows from strict convexity ofω: Assumen ≥ 2. Let kj,s =
(1 − s)kj + s 1

2 (k1 + k2), j = 1, 2 and0 ≤ s ≤ 1. Note thatk1,s + k2,s = k1 + k2, so

that substitutingk1,s, k2,s for k1, k2 only changes the contribution toΣ(n)
0 (ξ; k) coming

from ω. We compute

d

ds

{
ω(k1,s) + ω(k2,s)

}
=

1
2
(k2 − k1)

{∇ω(k1,s) − ∇ω(k2,s)} .

Since∇ω(k1) − ∇ω(k2) = (
∫ 1

0
∇2ω(tk1 + (1 − t)k2)dt(k1 − k2), we find that the

derivative is strictly negative ats = 0, unlessk1 = k2.
Write k1 = · · · = kn = Θ. We proceed to argue thatΘ is a multiple ofξ. A local

minimum is in particular a critical point, i.e. it satisfies∇jΣ(n)(ξ; k) = −∇Σ(ξ−k(n))+
∇ω(kj) = 0, 1 ≤ j ≤ n. By rotation invariance, this implies thatξ − nΘ is a multiple of
Θ. This completes the proof. ¤

Proposition 3.8. Let n > 0, t ∈ R and s ∈ I(n)
0 (t) be such thatInd(n)(t; s) ≥ 1.

There exist neighbourhoodsOt 3 t andOs 3 s, withOs ⊂ ∪t′∈OtI(n)
0 (t′), such that the

following holds
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1) If Ind(n)(t; s) = 1, then there exists an analytic mapΘ : Ot → Os, such that:
Ind(n)(t′; Θ(t′)) = 1 andInd(n)(t′; s′) = 0, if s′ 6= Θ(t′).

2) If Ind(n)(t; s) = 2, then: Fort′ ∈ Ot, s′ → σ(n)(t′; s′) has either one or two local
minima inOs. For t′ 6= t, they have index1.

3) If Ind(n)(t; s) = ` ∈ [3,∞), then there exists a countable setK ⊂ Ot\{t}, with
K∪ {t} closed, such that: Fort′ ∈ Ot, s′ → σ(n)(t′; s′) has between1 and` local
minima inOs. For t′ ∈ Ot\(K ∪ {t}), they all have index1. For t′ ∈ K all local
minimas′ ∈ Os satisfiesInd(n)(t′; s′) ≤ `− 1.

4) If Ind(n)(t; s) = ∞, then for t′ ∈ Ot\{t}, we haveInd(n)(t′; s′) = 0, for all
s′ ∈ Os.

Proof. 1) follows by analyticity int ands of ∂2
sσ(n)(t; s), and the implicit function theo-

rem.
As for 2) and 3), we writè = Ind(n)(t; s). We again invoke the implicit function

theorem to construct an analytic functionΘ from a neighbourhoodOt of t, into a neigh-
bourhoodOs of s, with the property that∂2`−1

s σ(n)(t′; Θ(t′)) = 0, t′ ∈ Ot. Note that by
choosingOt small enough we havet′ − nΘ(t′) ∈ I0.

We begin by showing that neart no local minima can disappear to the same order as
at t. We note that neart we may have at most` local minima, but there is at least one. Let
Ot 3 tj → t andOs 3 sj → s be such thatsj is a local minimum ofr → σ(n)(tj , r).
Assume∂k

s σ(n)(tj , sj) = 0 for k ≤ 2`− 1. Then necessarily, we must havesj = Θ(tj).
For 1 ≤ k ≤ 2` − 2, the functiont′ → ∂k

s σ(n)(t′,Θ(t′)) is analytic inOt and vanishes
on the sequence{tj}, hence it is identically zero inOt.

We can now compute

0 =
d

dt′
{
∂2`−2

s σ(n)(t′; Θ(t′))
}

= n2`−2 ∂2`−1σ(t′ − nΘ(t′)) .

This implies that∂2`−1ω(Θ(t′)) = 0. The function∂2`−1ω(s) has only isolated zeroes,
since it is a analytic (and not identically zero). HenceΘ(t′) = Θ0 is a constant function
onOt. Sincet′ → σ(t′ − nΘ0) + nω(Θ0) is thus linear neart, we find thatσ is linear
neart−ns. This implies in particular that∂2σ(n)(t; s) = n∂2ω(s) = 0. Recalling thatω
is strictly convex we arrive at a contradiction.

The statement 2) is now proved. The statement 3) follows from an induction argu-
ment in`, starting with` = 2.

As for 4) we note that we must haveσ(n)(t; s′) = C, for some constantC. In
other words:σ(t − ns′) = C − nω(s′), for s′ nears. Computeσ(t′ − ns′) + nω(s′) =
σ(t − n(s′ + (t − t′)/n)) + nω(s′) = C + n{ω(s′) − ω(s′ + (t − t′)/n)}. This gives
∂sσ

(n)(t′; s′) = n{∇ω(s′) − ∇ω(s′ + (t − t′)/n)}. This expression can only vanish if
t = t′. ¤
Proof of Theorem 1.11:We argue first that for a givent, the setM of global minima of
s → σ(n)(t; s) is finite. Note that by Lemma 1.7 we haveM ⊂ I(n)

0 (t). Suppose to the

contrary thatM is infinite. Then eitherM contains a connected component ofI(n)
0 (t)

or there is a sequence inM converging to∂I(n)
0 (t). In either case, this is a contradiction
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sinceM is closed andI(n)
0 (t) is bounded and open. We remark that this also implies that

a global minimum has finite index.
By Proposition 3.8 2)-3), we find that the setT0 of t for which at least one of the

global minima for the maps → σ(n)(t; s) has index strictly larger than1, is closed and
countable. It remains to show that the set oft for which there is more than one global
minimum, all with index1, is countable and can accumulate only atT0.

Supposet is such that the maps → σ(n)(t; s) has` global minima all with index
1. Note that fort′ near t these minima will persist at least as local minima, and any
global minima will be found amongst these. There exists` analytic mapst′ → Θj(t′),
which parameterize these local minima. they are all defined in a neighbourhood oft, and
satisfiesInd(n)(t′; Θj(t′)) = 1.

We estimate the rate of change of the global minima neart, using twice the critical
equation(∂sσ

(n))(t′; Θj(t′)) = 0,

d

dt′
σ(n)(t′; Θj(t′)) = ∂σ(t′ − nΘj(t′)) = ∂ω(Θj(t′)) . (3.28)

Since∂ω is monotonically increasing we find that that there exists a neighbourhoodOt

of t such that fort′ ∈ Ot\{t}, the maps → σ(n)(t′; s) has a unique global minimum,
with index1.

A compactness argument now concludes the proof. Note that (1.19) is implied by
(3.28) sinceσ(n)(t) = σ(n)(t; Θ(n)(t)), for t ∈ T (n). ¤

We proceed to study then dependence of local minima, and to prove Proposi-
tion 1.11. (This material is in the preprint version of the paper only.)

Proposition 3.9. Letn > 0, t ∈ R ands ∈ I(n)
0 (t) be such thatInd(n)(t; s) ≥ 1. There

exist neighbourhoodsOn 3 n andOs 3 s, with Os ⊂ ∪n′∈OnI(n′)
0 (t), such that the

following holds

1) If Ind(n)(t; s) = 1, then there exists an analytic mapΘ : On → Os, such that:

Ind(n′)(t; Θ(n′)) = 1 andInd(n′)(t; s′) = 0, if s′ 6= Θ(n′).

2) If Ind(n)(t; s) = 2, then: For Forn′ ∈ On, s′ → σ(n′)(t; s′) has either one or two
local minima inOs. For n′ 6= n, they have index1.

3) If Ind(n)(t; s) = ` ∈ [3,∞), then there exists a countable setK ⊂ On\{n}, with
K ∪ {n} closed, such that: Forn′ ∈ On, s′ → σ(n′)(t; s′) has between1 and `
local minima inOs. For n′ ∈ On\(K∪{n}), they all have index1. For n′ ∈ K, all

local minimas′ ∈ Os satisfiesInd(n′)(t; s′) ≤ `− 1.

4) If Ind(n)(t; s) = ∞, then forn′ ∈ On\{n}, Ind(n′)(t; s′) = 0, for all s′ ∈ Os.

Proof. As for 1) and 4), we refer the reader to the proof of the corresponding statements
in Proposition 3.8.

As for 2) and 3), again assume there exists a sequencenj , sj such thatnj → n,
sj → s, t − njsj ∈ I, andInd(nj)(t; sj) = `. Recall` = Ind(n)(t; s). By the implicit
function theorem we get an analytic functionΘ mapping a neighbourhood ofn into a
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neighbourhood ofs with the property that∂2`−1
s σ(n′)(t; Θ(n′)) = 0. Necessarily we

must havesj = Θ(nj), andInd(n′)(t; Θ(n′)) = ` in a neighbourhood ofn. We compute

0 =
d

dn′
{∂2`−2

s σ(n′)(t; Θ(n′))}
= −(n′)2`−2 ∂2`−1σ(t− n′Θ(n′))Θ(n′) + ∂2`−1ω(Θ(n′))
= −∂2`−1ω(Θ(n′))Θ(n′) + ∂2`−2ω(Θ(n′)) .

In the last step we used that∂2`−1
s σ(n′)(t; Θ(n′)) = 0. Taking a second derivative we

arrive at the equation

0 = −∂2`ω(Θ(n′)) Θ′(n′)Θ(n′) = −1
2

∂2`ω(Θ(n′))
d

dn′
(
Θ(n′))2 .

This equation implies thatΘ(n′) = Θ0 = s is a constant function.
If Θ0 6= 0 we argue as in the proof of Proposition 3.8. Thenσ(t − r) is a linear

function ofr nearns. Hence∂2
sσ(n′)(t; s′) = n′∂2ω(s′) > 0, which is a contradiction.

If s = Θ0 = 0 thenσ(t) = C − n′ω(s′) for n′ nearn ands′ near0. This is also a
contradiction.

The statement 2) is now proved. The statement 3) follows from an induction argu-
ment in`, starting with` = 2. ¤
Proof of Proposition 4.4:As in the proof of Theorem 1.11 we only need to study the`
local minima ofs → σ(n′)(t; s), n′ nearn, which comes from̀ global minima atn′ = n.
They are parameterized by` analytic functionsn′ → Θ(n′). We compute, using twice the

critical equations(∂sσ
(n′))(t; Θ(n′)

j ) = 0,

d

dn′
σ(n′)(t; Θ(n′)

j

)
= −∂σ

(
t− n′Θ(n′)

j

)
Θ(n′)

j + ω
(
Θ(n′)

j

)

= −∂ω
(
Θ(n′)

j

)
Θ(n′)

j + ω
(
Θ(n′)

j

)
. (3.29)

Note that the functions → ω(s) − s∂ω(s) is reflection invariant and, by Condi-
tion 1.3, strictly positive. We furthermore note thats∂(ω − s∂ω) = −s2∂2ω, so the
function is monotonically decreasing away from0.

Suppose first that no pairi 6= j satisfiesΘ(n)
i = −Θ(n)

j . Then the preceding para-
graph and (3.29) implies that there existsOn 3 n such that we have a unique global
minimum forn′ ∈ On\{n}.

Now suppose thatΘ(n)
1 = −Θ(n)

2 6= 0. Since the mapsn′ → σ(n′)(t; Θ(n′)
j ) are

analytic they are either identical or there exists a neighbourhood ofn where they differ

(for n′ 6= n). It hence remains to treat the case whereσ(n′)(t; Θ(n′)
1 ) = σ(n′)(t; Θ(n′)

2 ),
for n′ nearn. We argue below that this can only occur ifΘ(n′)

1 = −Θ(n′)
2 for n′ nearn.

Assume that the functionΘ(n′)
1 differs from−Θ(n′)

2 . Since they are analytic, there

exists̀ 0 ≥ 1 such that for0 ≤ ` < `0 we have d`

d`n′Θ
(n′)
1 = − d`

d`n′Θ
(n′)
2 and d`0

d`0n′Θ
(n′)
1 6=

− d`0

d`0n′Θ
(n′)
2 . By (3.29) this implies thatd

`0+1

d`0+1n′σ
(n′)(t; Θ(n′)

1 ) 6= d`0+1

d`0+1n′σ
(n′)(t; Θ(n′)

2 ),
contradicting the assumption.
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Write Θ(n′) := Θ(n′)
1 = −Θ(n′)

2 . We can now conclude thatσ(t − n′Θ(n′)) =
σ(t + n′Θ(n′)). It remains to prove that the analytic functionn′ → n′Θ(n′) is strictly
monotone nearn.

We compute first

0 =
d

dn′
∂sσ

(n′)(t; Θ(n′))

= ∂2
sσ(n′)(t; Θ(n′))

d

dn′
Θ(n′) + n′ ∂2σ(t− n′Θ(n′)) Θ(n′) .

This implies

d

dn′
Θ(n′) =

1
n′

Φ(n′) Θ(n′) , where Φ(n′) =
(n′)2∂2σ(t− n′Θ(n′))

∂2
sσ(n′)(t; Θ(n′))

< 1 .

Using this identity we find d
dn′ {n′Θ(n′)} = (1 − Φ(n′))Θ(n′). SinceΘ(n′) 6= 0, we

conclude thatσ(t− r) = σ(t + r), for r nearns. ¤

3.5 Local extrema oft → σess(t)

We begin with
Proof of Theorem 1.12:Let t0 be a local minimum oft → σess(t) and letU 3 t0 be an
open set such thatσess(t) ≥ σess(t0), t ∈ U .

The functionRν 3 s → σ(1)(t0; s) has finitely many global minimaΘ(1)
1 (t0) <

· · · < Θ(1)
` (t0), all in I(1)(t0) and with finite index, cf. the proof of Theorem 1.11.

Assume there exists1 ≤ j ≤ ` such thats0 := Θ(1)
j (t0) > 0. By Proposition 3.8

there existOt0 ,Os0 , andK, with t0 ∈ Ot0 ⊂ U , s0 ∈ Os0 ⊂ (0,∞) ∩ (∪t∈Ot0
I(1)

0 (t)),
andK ⊂ U is countable withK ∪ {t0} closed, such that: Fort ∈ Ot0\(K ∪ {t0}) all
local minima ofOs0 3 s → σ(1)(t; s) has index1 (and at least one such local minimum
exist). Furthermore, the setOt0\(K∪{t0}) can be written as a countable union of disjoint
open intervalsIλ. On each of these intervals we get from the Implicit Function Theorem,
that the number of local minimàλ ≥ 1, is independent oft ∈ Iλ, and the local minima,
Θλ,j(t), 1 ≤ j ≤ `λ, are analytic inIλ.

As for (3.28) we compute

∂tσ
(1)(t; Θλ,j(t)) = ∂ω(Θλ,j(t)) , for t ∈ Iλ . (3.30)

Let τ (1)(t) := infs∈Os0
σ(1)(t; s). Note thatτ (1) is continuous onOt0 and on anyIλ we

haveτ (1)(t) = min1≤j≤`λ
σ(1)(t; Θλ,j(t)). SinceΘλ,j(t) > 0 we conclude from (3.30)

thatτ (1) is monotonely strictly increasing on anyIλ and hence by continuity onOt0 .
We now arrive at a contradiction with the assumption thatt0 is local minumum for

σess = σ(1) as follows. Estimate fort ∈ (−∞, t0)∩Ot0 : σ(1)(t) ≤ τ (1)(t) < τ (1)(t0) =
σ(1)(t0).
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We conclude from the argument above that any global minimumΘ(1)
j (t0) must be

less than or equal to zero. Similarly one can show thatΘ(1)
j (t0) ≥ 0, thus leaving only the

possibility:` = 1 andΘ(1)(t0) ≡ Θ(1)
1 (t0) = 0. This implies the first part of the theorem,

namely thatσess(t0) = σ(1)(t0; 0) = σ(t0) + m.
Since the gap ism att0, andσess has a local minimum att0, we find from (1.12) that

σ also has a local minimum att0. In particularσ has a critical point att0, with ∂2σ(t0) ≥
0, which yields the bound∂2

sσ(1)(t0; s)|s=0 ≥ ∂2ω(0). HenceInd(1)(t0; 0) = 1. By
Proposition 3.8 1), this implies thatσess is analytic neart0 and∂σess(t) = ∂ω(Θ(1)(t))
neart0, cf. (3.28). Computing0 = ∂t(∂sσ

(1)(·; Θ(1)(·))), neart0, yields the formula

d

dt
Θ(1)(t) =

∂2σ(t − Θ(1)(t))
∂2

sσ(1)(t; Θ(1)(t))
.

From this identity, the equation for∂2σ(t0) now follows. ¤
In the rest of this subsection we describe the shape of local maxima ofσess, and of

points with maximal gap, i.e.t with σess(t) − σ(t) = m. We give no formal proofs, but
the reader can consult the proof above where most of the needed ingredients are put to
use.

Let t0 be a local maximum oft → σess(t). Then we are in one of the following
situations:

I) σess forms a wedge att0. That is, it is the maximum of two Lipschitz functions with
slopes bounded away from0 (and coinciding att0). This occurs if and only if there is at
least one negative and one positive global minimum ofs → σ(1)(t0; s).
II) σess forms a half-wedge att0. That isσess has its derivative bounded away from0 on
one side oft0 and is bounded from below byσess(t0) − C(t0 − t)2, for t neart0 and on
the other side oft0. This occurs if and only if: The spectral gap ism, and besides0, the
function s → σ0(t0; s) has at least one more global minimum, all with the same sign.
Furthermoret0 is either a saddle point forσ or a local maximum. (this includes the case
whereσess is constant on one side oft0.)
III) σess does not form a wedge (or a half-wedge) att0. That is,σess is bounded from
below byσess(t0)−C(t0 − t)2, for t neart0. This occurs if and only if: The spectral gap
ism and the functions → σ(1)(t0; s) hass = 0 as a unique global minimum. Furthermore
σ has a local maximum att0. (This includes the possibility thatσess is locally constant, in
which caset0 is also a local minimum.)

In both casesII) andIII) we must necessarily have∂2σ(t0) ≥ −∂2ω(t0), in order
to have a local minimum ats = 0.

Now supposet0 is such thatσess(t0)− σ(t0) = m. We have already discussed how
this can occur at local extrema. But there are two other possibilities where this may occur.

IV) σess is the minimum of two curves, intersecting att0. One with slope bounded away
from 0 (increasing or decreasing), and one which is analytic, non-decreasing away from
t0, and bounded from above byσess(t0)+C(t0− t)2. This occurs if and only if: the func-
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tion s → σ(1)(t0; s) has a global minimum at0 and at least one more global minimum,
all with the same sign. Furthermore,σ has a saddle point or a local minimum att0.

We end this section with a comment on jump discontinuities of the bounded function
∂σess(t) = ∂ω(Θ(1)(t)). Whent increases (away from0), global minima are a priori not
monotone, but when they jump, they jump from larges to smallers. Passing to largers,
can only happen analytically (where∂2σ(t − s) ≥ 0, and hence a local minimum has
index1). This implies that

V) Jump discontinuities of∂σess always decrease the derivative.

We note that a wedge can only coincide with a maximal spectral gap, at a local
maximum forσess, i.e, where the derivative jumps from being positive to negative.

4 Additional results

In this section we collect some additional results, most of which have appeared elsewhere
in some form. They serve to give a more complete picture of the bottom of the joint energy
momentum spectrum. In addition we explain how to extend the results described in this
paper to models with a number cutoff in the interaction.

4.1 Complimentary results

In this section we recall some known and partly known related results on the structure of
the ground state mass shell. The first is due to Gross [31, (6.30)].

Lemma 4.1. (Gross)Let v ∈ L2(Rν) andω(k) =
√

k2 + m2, m > 0. Assume Condi-
tion 1.1 and that, for anyt > 0, the mapp → e−tΩ(p) is positive definite. Then

Σ0(ξ) ≥ Σ0(0) .

The second result we mention is an extension of a result of Hiroshima and Spohn.
See [36, Lemma 3.1] and its proof.

Lemma 4.2. Let v ∈ L2(Rν) satisfyv > 0 a.e., and assume Conditions 1.1 and 1.2. Let
ξ ∈ I0, write ψξ for a normalized ground state eigenfunction, andP ξ := 1lF − |ψξ〉〈ψξ|.
Then

{∇2Σ0(ξ)}ij = 〈ψξ, ∂i∂jΩ(ξ − dΓ(k))ψξ〉
− 〈

P ξ ∂iΩ(ξ − dΓ(k))ψξ, (H(ξ) − Σ0(ξ))−1 P ξ ∂jΩ(ξ − dΓ(k)) ψξ

〉
.

In particular∇2Σ0(ξ) ≤ supp σ(∇2Ω(p)) 1lRν .

Note that by Theorem 1.3,H(ξ)− Σ0(ξ) is bounded invertible on the range ofP ξ.
If ξ ∈ I0 is a critical point forξ → Σ0(ξ), then∂jΣ0(ξ) = 〈ψξ, ∂jΩ(ξ−dΓ(k))ψξ〉 = 0,
1 ≤ j ≤ ν, and hence theP ξ in the formula above for the Hessian is superfluous. This
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is the case considered in [36] (see also [53]). We leave the proof to the reader. In the case
Ω(p) = p2/2M , Lemma 4.2 implies a lower boundMeff ≥ M on the effective mass,
whereM−1

eff := ∂2σ(0) (assuming rotation invariance). In [53] an upper bound for the
effective mass is derived, implying in particular that∂2σ(0) > 0. This is still an open
problem forΩ(p) 6= p2/2M .

We note that similarly one can prove the following statement: Replacev by gv,
whereg ∈ R is a coupling constant. Letg and ξ be such thatξ ∈ I0, which is ag-
dependent set. ThenΣ0(ξ) is an analytic function of the coupling constant in a neigh-
bourhood ofg, d

dg Σ0(ξ) = 〈ψξ, Φ(v)ψξ〉, and

d2

d2g
Σ0(ξ) = − 〈

P ξ Φ(v)ψξ, (H(ξ)− Σ0(ξ))−1 P ξ Φ(v) ψξ

〉
.

In particular, the functiong → Σ0(ξ) is concave in the set{g : ξ ∈ I0}.
Thirdly we formulate a result, which follows from the proof of [20, Theorem 3.2].

We give a short proof of the statement here because Fröhlich concentrated on the massless
case, and the proof simplifies for massive bosons. We remark that the infrared cutoffσ > 0
in [20] can be viewed as a mass.

Theorem 4.3. Let v ∈ L2(Rν). Assume Conditions 1.1, 1.2, and that the following
bounds hold for allp, k ∈ Rν

|∇Ω(p)| ≤ 1 and ω(k) − |k| > 0 . (4.1)

ThenI0 = Rν .

Remark. This theorem implies in particular that in the case of relativistic electrons, i.e.
Ω(p) =

√
p2 + M2 (M > 0), andω(k) =

√
k2 + m2 (m > 0), we have an isolated

ground state mass shell for all total momenta. This type of result was an important ingre-
dient in [21].

Proof. SupposeI0 6= Rν , and letξ ∈ R\I0.
Define, forξ, k ∈ Rν with k 6= 0,

F (ξ, k) := |k|−1
{
Ω(ξ − dΓ(k))− Ω(ξ − k − dΓ(k)

}
.

This self adjoint operator extends fromC∞0 to a bounded operator onF , and by (4.1) it
satisfies the bound

‖F (ξ, k)‖B(F) ≤ 1 . (4.2)

Let
n := max

{
n′ ≥ 1 : Σ(n′)(ξ) = Σess(ξ)

}
. (4.3)

By Theorem 1.2 and (1.15) this choice ofn is well defined. Fork ∈ I(n)
0 (ξ), we write

ψξ−k(n) ∈ D for the ground state eigenfunction at total momentumξ − k(n). Note that
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k(n) 6= 0. For suchk we use (4.2) and the Rayleigh-Ritz variational principle to estimate

Σ0(ξ) ≤ 〈ψξ−k(n) , H(ξ)ψξ−k(n)〉
= Σ0(ξ − k(n)) + |k(n)| 〈ψξ−k(n) , F (ξ, k(n))ψξ−k(n)

〉
(4.4)

≤ Σ0(ξ − k(n)) + |k(n)| .

Let U := I(n)
0 (ξ) ∩ {η ∈ Rnν : Σ0(ξ − η(n)) ≤ Σ0(ξ)}. The bound (4.4),

Lemma 1.7, and the choice (4.3) ofn, implies

Σ(n)
0 (ξ) = inf

k∈Rnν
Σ(n)

0 (ξ; k) = inf
k∈U

{
Σ0(ξ − k(n)) +

n∑

j=1

ω(kj)
}

≥ Σ0(ξ) + inf
k∈U

{ n∑

j=1

ω(kj) − |k(n)|} .

By (1.14) there existsCU > 0, independent ofn, such that|k(n)| ≤ CU , k ∈ U . Now
chooseR such thatω(k) ≥ CU + 1 for |k| ≥ R. Since|k(n)| ≤ |k1| + · · · + |kn|, we
arrive at the following estimate, cf. (4.3),

Σ0(ξ) = Σess(ξ) = Σ(n)
0 (ξ) ≥ Σ0(ξ) + min

{
1 , inf

k:|k|≤R
(ω(k) − |k|)} .

By (4.1) this is a contradiction. ¤
In addition to Theorem 1.11 we have a complimentary result which is concerned

with the regularity ofσ(n)(t) as a function ofn. The proof is at the end of Subsect. 3.4

Proposition 4.4. Assume Conditions 1.1, 1.2, 1.3, and 1.4. Lett ∈ R. There exists a
closed countable setT (t) ⊂ (0,∞), and an analytic map(0,∞)\T (t) 3 n → Θ(n)(t) ∈
I(n)

0 (t), with the property that the mapss → σ(n)(t; s), n ∈ (0,∞)\T (t), has a global
minimum ats = Θ(n)(t), with Ind(n)(t; Θ(n)(t)) = 1. Let (a, b) ⊂ (0,∞)\T (t). The
global minimum is either unique for alln ∈ (a, b), or it is accompanied by another global
minimum sitting ats = −Θ(n)(t), for all n ∈ (a, b). The case of two global minima can
occur if and only ifσ(t − r) = σ(t + r) for r in a neighbourhood ofnΘ(n)(t). We
furthermore have

d

dn
σ(n)(t) = ω

(
Θ(n)(t)

) − ∂ω
(
Θ(n)(t)

)
Θ(n)(t) , for n ∈ (0,∞) \ T (t) . (4.5)

The functionx → ω(x) − x∂ω(x) appearing on the right-hand side of (4.5), is the
one from Lemma 1.5. The identity (4.5) can be used to estimate the splittingΣ(n+1)

0 (ξ)−
Σ(n)

0 (ξ). (In the submitted version of this paper, the proof of Proposition 4.4 is left to the
reader.)
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4.2 Interactions with a number cutoff

In this subsection and the next we consider models of the form, cf. (1.5),

HN := H0 + 1lK ⊗ 1l(N ≤ N )V 1lK ⊗ 1l(N ≤ N ) .

HereN ∈ Z is the cutoff parameter. Clearly these operators also commute with the total
momentum and The corresponding fiber Hamiltonians are, cf. (1.6),

HN (ξ) := H0(ξ) + ΦN (v), where ΦN (v) := 1l(N ≤ N )Φ(v) 1l(N ≤ N ) .

Note that the notation is consistent sinceΦ0(v) = 0. ForN < 0 we clearly also have
HN (ξ) = H0(ξ).

We remark that forN = 1 a complete picture can be obtained, cf. [23], (mass zero
case). We note that the spin-boson model has been studied perturbatively forN = 2 in
[44]. See also [25, 38, 39].

We now formulate our main results from Subsection 1.3 in the context of the cutoff
models. We impose for brevity of exposition Conditions 1.1, 1.2, 1.3, and 1.4 throughout
this subsection. We furthermore impose the following additional condition

Condition 4.1. The form factor satisfies thatv > 0 a.e. locally uniformly.

LetN ≥ 1. We introduce some notation. First the bottom of the spectrum of the full
operator:

ΣN ,0 := inf
ξ∈Rν

ΣN ,0(ξ) , where ΣN ,0(ξ) := inf σ(HN (ξ)) .

Forn ≥ 1 andk = (k1, . . . , kn) ∈ Rnν we introduce

Σ(n)
N ,0(ξ; k) := ΣN−n,0

(
ξ − k(n)

)
+

n∑

j=1

ω(kj)

and
Σ(n)
N ,0(ξ) := inf

k∈Rnν
Σ(n)
N ,0(ξ; k) .

The bottom of the essential spectrum is

Σess,N (ξ) := Σ(1)
N ,0(ξ) = inf

k∈Rν
Σ(1)
N ,0(ξ; k) .

We furthermore write

IN ,0 :=
{
ξ ∈ Rν : ΣN ,0(ξ) < Σess,N (ξ)

}
,

I(n)
N ,0(ξ) :=

{
k ∈ Rnν : ξ − k(n) ∈ IN−n,0

}
.

The energiesΣ(n)
N ,0(ξ), n ≥ 1, are bottoms of branches of essential spectrum correspond-

ing to having stripped ofn photons to infinity, and having the interacting systems in a
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groundstate. Lemma 1.5, Condition 4.1, and the Rayleigh-Ritz variational principle en-
sures that the thresholds are ordered:

Σ(n)
N ,0(ξ) > Σ(n′)

N ,0(ξ) ,

for all n > n′ ≥ 1. This is where the assumptionv ≥ 0 comes in. It ensures that the
thresholds appear in an ordered fashion as in the full model.

Note that the properties (1.12) and (1.13) do not hold for the cutoff model. The gap
Σess,N (ξ)−ΣN ,0(ξ) may exceedm. However, we do have thatΣess,N (ξ)−ΣN−1,0(ξ) ≤
m (it may be negative).

We introduce, as in Subsect. 1.3, the following notation. Let~u be a unit vector in
Rν . We writeσN (t) = Σ0,N (t~u), for t ∈ R. By rotation invariance,σN is independent of

~u. Similarly we write, forn ∈ N, σ
(n)
N (t; s) := σN−n((t − ns)~u) + nω(s~u), σ

(n)
N (t) :=

Σ(n)
0,N (t~u), andσess,N (t) := Σess(t~u).

With a slight abuse of notation, we use the same symbolI0,N to denote the set of

t’s such thatt~u ∈ I0,N . We furthermore use the symbolI(n)
0,N (t), n ∈ N, to denote the set

{s ∈ R : t− ns ∈ I0,N }.
We now list a number of results, which we do not prove here. See however the

following subsection. In each case the reader can readily mimic the proofs, given in Sec-
tion 3, of the corresponding results for the full model.

· For eachN ≥ 1 andξ ∈ Rν , ΦN (v) is H0(ξ) bounded with relative bound zero. In
particularHN (ξ) is essentially self-adjoint onC∞0 , andD(HN (ξ)) is independent
of ξ.

· (HVZ) The bottom of the essential spectrum ofHN (ξ) is Σess,N (ξ). Eigenvalues
belowΣess,N (ξ) have finite multiplicity and can only accumulate atΣess,N (ξ). See
also [25, 38] for the cutoff spin-boson model.

· The ground state is non-degenerate, and in addition: If1 ≤ ν ≤ 2 thenIN ,0 = Rν .
If 3 ≤ ν ≤ 4 then the bottom of the spectrumΣN ,0(ξ) is an eigenvalue if and only
if ξ ∈ IN ,0. As a consequence of the non-degeneracy, the mapIN ,0 3 t → σN (t)
is analytic.

· Let n ∈ N. There exists a closed countable setT (n)
N ⊂ R, and an analytic map

R\T (n)
N 3 t → Θ(n)

N (t) ∈ I(n)
N ,0(t) with the property that the mapss → σ

(n)
N (t; s),

t ∈ R\T (n)
N , has a unique global minimum at the points = Θ(n)

N (t), with in-

dex Ind(n)(t; Θ(n)
N (t)) = 1. In particularR\T (n)

N 3 t → σ
(n)
N (t) is analytic and

d
dtσ

(n)
N (t) = ∂ω(Θ(n)

N (t)), for t ∈ R\T (n)
N . Recallσ(1)

N (t) = σ
(1)
ess,N (t).

· Let t0 be a local minimum oft → σess,N (t). Then the ’spectral gap’ att0 is maxi-
mal, i.e.σess,N (t0)− σN−1(t0) = m, the mapt → σN−1(t) has a local minimum
at t0, the mapt → σess,N (t) is analytic neart0, and

∂2σess,N (t0) =
∂2ω(0) ∂2σN−1(t0)

∂2ω(0) + ∂2σN−1(t0)
.
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4.3 Comments on proofs

The key difference between the cutoff models and the full model, lies in the self-similarity
of the full model. By self-similarity we mean that after removing a number of bosons to
infinity, the remaining interacting system has the same Hamiltonian as the original system,
albeit at a different total momentum. For the cutoff model the interacting system, after
removing bosons to infinity, has a different cutoff. This is manifested in two instances, in
the extended Hamiltonian and in the pull-through formula.

For the cutoff model(s) one should replace the extended Hamiltonian, cf. (2.31) and
(2.34), by

Hext
N (ξ) := HN (ξ) ⊕

{ ∞⊕

`=1

H
(`)
N (ξ)

}
,

whereH
(`)
N (ξ) =

∫
R`ν H

(`)
N (ξ; k)d`νk and

H
(`)
N (ξ; k) = HN−`(ξ − k(`)) +

∑̀

j=1

ω(kj) .

With this choice of extended Hamiltonian, the localization estimates derived in Sub-
sect. 3.1 applies. This is one of the inputs to the HVZ theorem.

The second manifestation of the lack of self-similarity is in the pull-through formula
which should be replaced by

a(k) (HN (ξ) − z) ψ =
(
HN−1(ξ − k) + ω(k) − z

)
a(k) ψ

+ v(k) 1l(N ≤ N − 1)ψ .

It is now left as an exercise to the reader to verify that the proofs go through. We just
remark that when applying the Perron Frobenius argument, as in Subsect. 3.3, one should
work only in the sub Hilbert space⊕Nj=0Γ

(j)(hph) of F . Any eigenfunction will vanish
in n-particle sectors withn > N , which is reflected in the fact that the cutoff resolvents,
(HN (ξ) + µ)−1, are not positivity improving in the full Hilbert cone.

Acknowledgments:The author thanks Z. Ammari, V. Bach, J. Fröhlich, and C. Ǵerard,
for useful discussions, and Dokuz Eylül University for hospitality. This work was sup-
ported in parts by Carlsbergfondet and by a Marie-Curie individual fellowship from the
European Union.

A Mathematical tools

A.1 Almost analytic extension

In this subsect. we briefly recall the functional calculus provided by almost analytic ex-
tensions. In particular we will use a version which handles functions of a vector of com-
muting operators. See the monographs by Davies [12] and Dimassi and Sjöstrand [16] for
details.
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Belowα will denote multi-indices. Lets ∈ R andf ∈ C∞(Rν) satisfy

∀α : ∃Cα such that|∂αf(x)| ≤ Cα 〈x〉s−|α| . (A.1)

We define an almost analytic extensioñf ∈ C∞(Cν) of f , through a Borel construc-
tion. Fix a functionχ ∈ C∞0 (R) to be equal to1 in a neighbourhood of0, and a se-
quence{λk}k∈N0 , going sufficiently fast to infinity. The following choice will do:λk :=
max{max|α|=k Cα, λk−1 + 1}, for k ≥ 1, andλ0 = C0. Here the constantsCα are
coming from (A.1). Then, writingz = u + iv ∈ Rν ⊕ iRν ,

f̃(z) :=
∑
α

∂αf(u)
α!

(iv)α
ν∏

j=1

χ
(λ|α|vj

〈u〉
)

. (A.2)

Note that there existsC > 0 such that

supp(f̃) ⊂ {u + iv : u ∈ supp(f), |v| ≤ C〈u〉} .

We furthermore have the property that

∀` ≥ 0 : ∃C` such that|∂̄f̃(z)| ≤ C` 〈z〉s−`−1 |Imz|` . (A.3)

Here∂̄ = (∂̄1, . . . , ∂̄ν), ∂̄j := ∂uj + i∂vj , andImz = (v1, . . . , vν).
If s < 0 we have the following representation,

f(x) = 2 |S2ν−1|−1

∫

Cν

〈
∂̄f̃(z),

(x + z)
|x− z|2ν

〉
d2νz ,

whered2νz = Πν
j=1dujdvj is the Lebesgue measure onCν , and|S2ν−1| is the volume

of the unit ball inR2ν . (Note that fors < 0 the integral is absolutely convergent.)
For a vector of pairwise commuting self-adjoint operatorsA = (A1, . . . , Aν), and

a functionf satisfying (A.1) withs < 0, the almost analytic extension thus provides a
functional calculus via the formula

f(A) = 2 |S2ν−1|−1
ν∑

j=1

∫

Cν

∂̄j f̃(z) (Aj + zj) |A− z|−2ν d2νz . (A.4)

In the caseν = 1 this reduces to

f(A) =
1
π

∫

C
∂̄f̃(z) (A − z)−1 du dv .

A.2 Invariant cones

In this subsect. we recall a result of Faris, cf. [17], which will be used to show non-
degeneracy of the ground state. It is an abstract version of the Perron-Frobenius Theorem
in L2-spaces, cf. [49, Theorem XIII.43], which together with theQ-space representation
of Fock-space, has been used frequently to show non-degeneracy of the ground state, cf.
[5, 28, 31].
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Definition A.1. LetHR be a real Hilbert space. We sayC ⊂ HR, C 6= {0}, is a Hilbert
cone if:

i) u, v ∈ C impliesu + v ∈ C.

ii) u ∈ C, λ ≥ 0 impliesλu ∈ C.

iii) C ∩ (−C) = {0}.
iv) C is closed.

v) u, v ∈ C implies〈u, v〉 ≥ 0.

vi) For all w ∈ HR there existsu, v ∈ C s. t.w = u− v and〈u, v〉 = 0.

An important example of a Hilbert cone is, as mentioned above, the subset of real
non-negative functions inL2(Q, dµ), whereQ is a measure space.

Definition A.2. LetHR be a real Hilbert space,C ⊂ HR a Hilbert cone andA a bounded
operator onHR.

i) We sayu ∈ C is strictly positive if〈u, v〉 > 0 for anyv ∈ C\{0}.
ii) A is positive preserving ifAC ⊂ C.

iii) A is positivity improving ifAu is strictly positive for allu ∈ C\{0}.
iv) A is ergodic if for anyu, v ∈ C\{0} there existsn ≥ 0 s. t.〈Anu, v〉 > 0.

Note that a positivity improving operator is in particular ergodic. The following
theorem is due to Faris

Theorem A.3. (Faris) LetHR be a real Hilbert space,C ⊂ HR a Hilbert cone andA
a bounded positive self-adjoint operator onHR. Suppose furthermore thatA is positivity
preserving and that‖A‖ is an eigenvalue forA. ThenA is ergodic if and only if‖A‖ is an
eigenvalue of multiplicity one and there exists a strictly positiveu ∈ C with Au = ‖A‖u.

The lemma below follows from the identitiese−s = limn→∞( s
n +1)−n ands−1 =∫∞

0
e−tsds, for s > 0, in conjunction with the first resolvent formula.

Lemma A.4. Let A be a bounded from below self-adjoint operator on a real Hilbert
space. Assume that there exists aλ0 < inf σ(A) such that(A − λ)−1 is positivity pre-
serving (improving) for allλ < λ0. Then(A − λ)−1 is positivity preserving (improving)
for all λ < inf σ(A).
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