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Abstract

If we find a representation of an infinite-dimensional dynamical system as a non-
linear kinetic system with conservation of supports of distributions, then (after some
additional technical steps) we can state that the asymptotics is finite-dimensional.
This conservation of support has a quasi-biological interpretation, inheritance (if a
gene was not presented initially in a isolated population without mutations, then
it cannot appear at later time). These quasi-biological models can describe vari-
ous physical, chemical, and, of course, biological systems. The finite-dimensional
asymptotic demonstrates effects of “natural” selection. The estimations of asymp-
totic dimension are presented. The support of an individual limit distribution is
almost always small. But the union of such supports can be the whole space even
for one solution. Possible are such situations: a solution is a finite set of narrow
peaks getting in time more and more narrow, moving slower and slower. It is pos-
sible that these peaks do not tend to fixed positions, rather they continue moving,
and the path covered tends to infinity at t →∞. The drift equations for peaks mo-
tion are obtained. Various types of stability are studied. In example, models of cell
division self-synchronization are studied. The appropriate construction of notion
of typicalness in infinite-dimensional spaces is discussed, and the “completely thin”
sets are introduced.

1 Introduction: Unusual conservation law

In the 1970th-1980th years, theoretical studies developed one more “common” field be-
longing simultaneously to physics, biology and mathematics. For physics it is (so far)
a part of the theory of approximations of a special kind, demonstrating, in particular,
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interesting mechanisms of discreteness in the course of evolution of distributions with ini-
tially smooth densities. But what for physics is merely a convenient approximation, is a
fundamental law in biology (inheritance), whose consequences comprehended informally
(selection theory [1, 2, 3, 4, 8, 9, 7])1 permeate most of the sections of this science.

Consider a community of animals. Let it be biologically isolated. Mutations can be
neglected in the first approximation. In this case new genes do not emerge.

And here is an example is from physics. Let waves with wave vectors k be excited in
some system. Denote K a set of wave vectors k of excited waves. Let the waves interaction
do not lead to generation of waves with new k /∈ K. Such an approximation is applicable
to a variety of situations. For the wave turbulence it was described in detail in [10, 11].

What is common in these examples is the evolution of a distribution with a support
not increasing in time.

What does not increase must, as a rule, decrease, if the decrease is not prohibited. This
naive thesis can be converted into rigorous theorems for the case under consideration [7].
The support is proved to decrease in the limit t →∞, if it was sufficiently large initially.
Considered usually are such system, for which at finite times the distributions support
conserves and decrease only in the limit t → ∞. Conservation of the support usually
results in the following effect: dynamics of initially infinite-dimensional system at t →∞
can be described by finite-dimensional systems.

The simplest and most common in applications class of equations for which the dis-
tributions support does not grow in time, is constructed as follows. To each distribution
µ is assigned a function kµ by which the distribution can be multiplied. Written down is
equation

dµ

dt
= kµ × µ. (1)

The multiplier kµ is called a reproduction coefficient. The right-hand side is the product
of the function kµ with the distribution µ, hence dµ/dt should be zero where µ is equal
to zero, therefore the support of µ is conserved in time (over the finite times).

Let us remind the definition of the support. Each distribution on a compact space X
is a continuous linear functional on the space of continuous functions C(X)2. The space
C(X) is the Banach space endowed with the norm

‖f‖ = max
x∈X

|f(x)|. (2)

Usually, when X is a bounded closed subset of a finite-dimensional space, we represent
this functional as the integral

µ[f ] =

∫
µ(x)f(x) dx,

where µ(x) is the (generalized) density function of the distribution µ. The support of
µ, suppµ, is the smallest closed subset of X with the following property: if f(x) = 0 on
suppµ, then µ[f ] = 0, i.e. µ(x) = 0 outside suppµ.

1We do not try to review the scientific literature about the evolution, and mention here only the
references that are especially important for our understanding of the selection theory and applications.

2We follow the Bourbaki approach [18]: a measure is a continuous functional, an integral. The book
[18] contains all the necessary notions and theorems (and much more material than we need here).
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Strictly speaking, the space on which µ is defined and the distribution class it belongs
to, should be specified. One should also specify are properties of the mapping µ 7→ kµ

and answer the question of existence and uniqueness of solutions of (1) under given initial
conditions. In specific situations the answers to these questions are not difficult.

Let us start with the simplest example

∂µ(x, t)

∂t
=

[
f0(x)−

∫ b

a

f1(x)µ(x, t) dx

]
µ(x, t), (3)

where the functions f0(x)andf1(x) are positive and continuous on the closed segment [a, b].
Let the function f0(x) reaches the global maximum on the segment [a, b] at a single point
x0. If x0 ∈ suppµ(x, 0), then

µ(x, t) → f0(x0)

f1(x0)
δ(x− x0), when t →∞, (4)

where δ(x− x0) is the δ-function.
We use in the space of measures the weak convergence, i.e. the convergence of averages:

µi → µ∗ if and only if

∫
µiϕ(x) dx →

∫
µ∗ϕ(x) dx (5)

for all continuous functions ϕ(x). This weak convergence of measures generates the weak
topology on the space of measures (the weak topology of conjugated space).

If f0(x) has several global maxima, then the right-hand side of (4) can be a sum of a
finite number of δ-functions. Here a natural question arises: is it worth to pay attention
to such a possibility? Should not we deem improbable for f0(x) to have more than one
global maximum? Indeed, such a case seems to be very unlikely to occur. More details
about this are given below.

Equations in the form (1) allow the following biological interpretation: µ is the dis-
tribution of the number (or of a biomass, or of another extensive variable) over inherited
units: species, varieties, supergenes, genes. Whatever is considered as the inherited unit
depends on the context, on a specific problem. The value of kµ(x) is the reproduction
coefficient of the inherited unit x under given conditions. The notion of “given conditions”
includes the distribution µ, the reproduction coefficient depends on µ. Equation (3) can
be interpreted as follows: f0(x) is the specific birth-rate of the inherited unit x (below, for
the sake of definiteness, x is a variety, following the spirit of the famous Darwin’s book
[1]), the death rate for the representatives of all inherited units (varieties) is determined

by one common factor depending on the density
∫ b

a
f1(x)µ(x, t) dx; f1(x) is the individual

contribution of the variety x into this death-rate.
On the other hand, for systems of waves with a parametric interaction, kµ(x) can be

the amplification (decay) rate of the wave with the wave vector x.
The first step in the routine of a dynamical system investigation is the question about

fixed points and their stability. And the first observation concerning the system (1) is that
asymptotically stable can be only the steady-state distributions, whose support is discrete
(i.e. the sums of δ-functions). This can be proved for all the consistent formalizations,
and can be understood as follows.

Let the “total amount” (integral of |µ| over U) be less than ε > 0 but not equal to zero
in some domain U . Substitute distribution µ by zero on U , the rest remains as it is. It is
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natural to consider this disturbance of µ as ε-small. However, if the dynamics is described
by (1), there is no way back to the undisturbed distribution, because the support cannot
increase. If the steady state distribution µ∗ is asymptotically stable, then for some ε > 0
any ε-small perturbation of µ∗ relaxes back to µ∗. This is possible only in the case if
for any domain U the integral of |µ∗| over U is either 0 or greater than ε. Hence, this
asymptotically stable distribution µ∗ is the sum of the finite number of δ-functions:

µ∗(x) =

q∑
i=1

Niδ(x− xi) (6)

with |Ni| > ε for all i.
So we have: the support of asymptotically stable distributions for the system (1)

is always discrete. This simple observation has many strong generalizations to general
ω-limit points, to equations for vector measures, etc.

Dynamic systems where the phase variable is a distribution µ, and the distribution
support is the integral of motion, frequently occur both in physics and in biology. Because
of their attractive properties they are frequently used as approximations: we try to find the
“main part” of the system in the form (1), and represent the rest as a small perturbation
of the main part.

In biology such an approximation is essentially all the classical genetics, and also the
formal contents of the theory of natural selection. The initial diversity is “thinned out”
in time, and the limit distribution supports are described by some extremal principles
(principles of optimality).

Conservation of the support in equation (1) can be considered as inheritance, and,
consequently, we call the system (1) and its nearest generalizations “systems with in-
heritance”. Traditional division of the process of transferring biological information into
inheritance and mutations, small in any admissible sense, can be compared to the descrip-
tion according to the following pattern: system (1) (or its nearest generalizations) plus
small disturbances. Beyond the limits of such a description, talking about inheritance
loses the conventional sense.

The first study of the dynamics systems with inheritance was due to J.B.S. Haldane.
He used the simplest examples, studied steady-state distributions, and obtained the ex-
tremal principle for them. His pioneering book “The Causes of Evolution” (1932) [2]
gives the clear explanation of the connections between the inheritance (the conservation
of distributions support) and the optimality of selected varieties.

Haldane’s work was followed by entirely independent series of works on the S-approximation
in the spin wave theory and on the wave turbulence [10, 11, 12], which studied wave con-
figurations in the approximation of “inherited” wave vector, and by “Synergetics” [17],
where the “natural selections” of modes is one of the basic concepts.

At the same time, a series of works on biological kinetics was done (see, for example, [5,
6, 8, 7]). The studies addressed not only steady-states, but also common limit distributions
[6, 7] and waves in the space of inherited units [5]. For the steady-states a new type of
stability was described – the stable realizability (see below).

The purpose of this paper is to present general results of the theory of systems with
inheritance: optimality principles the for limit distributions, theorems about selection,
and estimations of the limit diversity (estimates of number of points in the supports
of the limit distributions), drift effect and drift equations. Some of these result were
published in preprints in Russian [6] (and, partially, in the Russian book [7]).
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2 Optimality principle for limit diversity

Description of the limit behavior of a dynamical system does not necessarily reduce to
enumerating stable fixed points and limit cycles. The possibility of stochastic oscillations
is common knowledge, while the domains of structurally unstable (non coarse) systems
discovered by S. Smale [19]3 have so far not been mastered in applied and natural sciences).

The leading rival to adequately formalize the limit behavior is the concept of the “ω-
limit set”. It was discussed in detail in the classical monograph [20]. The fundamental
textbook on dynamical systems [21] and the introductory review [22] are also available.

If f(t) is the dependence of the position of point in the phase space on time t (i.e.
the motion of the dynamical system), then the ω-limit points are such points y, for which
there exist such sequences of times ti →∞, that f(ti) → y.

The set of all ω-limit points for the given motion f(t) is called the ω-limit set. If,
for example, f(t) tends to the equilibrium point y∗ then the corresponding ω-limit set
consists of this equilibrium point. If f(t) is winding onto a closed trajectory (the limit
cycle), then the corresponding ω-limit set consists of the points of the, cycle and so on.

General ω-limit sets are not encountered oft in specific situations. This is because of
the lack of efficient methods to find them in a general situation. Systems with inheritance
is a case, where there are efficient methods to estimate the limit sets from above. This is
done by the optimality principle.

Let µ(t) be a solution of (1). Note that

µ(t) = µ(0) exp

∫ t

0

kµ(τ) dτ. (7)

Here and below we do not display the dependence of distributions µ and of the reproduc-
tion coefficients k on x when it is not necessary. Fix the notation for the average value of
kµ(τ) on the segment [0, t]

〈kµ(t)〉t =
1

t

∫ t

0

kµ(τ) dτ. (8)

Then the expression (7) can be rewritten as

µ(t) = µ(0) exp(t〈kµ(t)〉t). (9)

If µ∗ is the ω-limit point of the solution µ(t), then there exists such a sequence of times
ti → ∞, that µ(ti) → µ∗. Let it be possible to chose a convergent subsequence of the
sequence of the average reproduction coefficients 〈kµ(t)〉t, which corresponds to times ti.
We denote as k∗ the limit of this subsequence. Then, the following statement is valid: on
the support of µ∗ the function k∗ vanishes and on the support of µ(0) it is non-positive:

k∗(x) = 0 if x ∈ suppµ∗,

k∗(x) ≤ 0 if x ∈ suppµ(0). (10)

3“Structurally stable systems are not dense”. Without exaggeration we can say that so entitled work
[19] opened a new era in the understanding of dynamics. Structurally stable (rough) systems are those
whose phase portraits do not change qualitatively under small perturbations. Smale constructed such
structurally unstable system that any other system close enough to it is also structurally unstable. This
result defeated hopes for a classification if not all, but at least “almost all” dynamical systems. Such
hopes were associated with the success of the classification of two-dimensional dynamical systems, among
which structurally stable systems are dense.
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Taking into account the fact that suppµ∗ ⊆ suppµ(0), we come to the formulation of
the optimality principle (10): The support of limit distribution consists of points of the
global maximum of the average reproduction coefficient on the initial distribution support.
The corresponding maximum value is zero.

We should also note that not necessarily all points of maximum of k∗ on suppµ(0)
belong to suppµ∗, but all points of suppµ∗ are the points of maximum of k∗ on suppµ(0).

If µ(t) tends to the fixed point µ∗, then 〈kµ(t)〉t → kµ∗ as t →∞, and suppµ∗ consists
of the points of the global maximum of the corresponding reproduction coefficient kµ∗ on
the support of µ∗. The corresponding maximum value is zero.

If µ(t) tends to the limit cycle µ∗(t) (µ∗(t+T ) = µ∗(t)), then all the distributions µ∗(t)
have the same support. The points of this support are the points of maximum (global,
zero) of the averaged over the cycle reproduction coefficient

k∗ = 〈kµ∗(t)〉T =
1

T

∫ T

0

kµ∗(τ) dτ, (11)

on the support of µ(0).
The supports of the ω-limit distributions are specified by the functions k∗. It is

obvious where to get these functions from for the cases of fixed points and limit cycles.
There are at least two questions: what ensures the existence of average reproduction
coefficients at t →∞, and how to use the described extremal principle (and how efficient
is it). The latter question is the subject to be considered in the following sections. In
the situation to follow the answers to these questions have the validity of theorems. Let
X be a space on which the distributions are defined. Assume it to be a compact metric
space (for example, a closed bounded subset of Euclidian space). The distribution µ is
identified with the Radon measure, that is the continuous linear functional on the space
of continuous functions on X, C(X). We use the conventional notation for this linear
functional as the integral of the function ϕ as

∫
ϕ(x)µ(x) dx. Here µ(x) is acting as the

distribution density, although, of course, the arbitrary X has no initial (Lebesgue, for
example) dx.

The sequence of continuous functions ki(x) is considered to be convergent if it converges
uniformly. The sequence of measures µi is called convergent if for any continuous function
ϕ(x) the integrals

∫
ϕ(x)µi(x) dx converge (weak convergence (5)). The mapping µ 7→ kµ

assigning the reproduction coefficient kµ to the measure µ is assumed to be continuous.
And, finally, the space of measures is assumed to have a bounded4 set M which is positively
invariant relative to system (1): if µ(0) ∈ M , then µ(t) ∈ M (and is non-trivial). This M
will serve as the phase space of system (1).

Most of the results about systems with inheritance use the theorem about weak
compactness: The bounded set of measures is precompact with respect to the the weak
convergence (i.e., its closure is compact). Therefore, the set of corresponding reproduction
coefficients kM = {kµ|µ ∈ M} is precompact, the set of averages (8) is precompact,
because it is the subset of the closed convex hull conv(kM) of the compact set. This
compactness allows us to claim the existence of the average reproduction coefficient k∗ for
the description of the ω-limit distribution µ∗ with the optimality principle (10).

4The set of measures M is bounded, if the sets of integrals {µ[f ]|µ ∈ M, ‖f‖ ≤ 1} is bounded, where
‖f‖ is the norm (2).

6



3 How many points

does the limit distribution support hold?

The limit distribution is concentrated in the points of (zero) global maximum of the
average reproduction coefficient. The average is taken along the solution, but the solution
is not known beforehand. With the convergence towards a fixed point or to a limit cycle
this difficulty can be circumvented. In the general case the extremal principle can be
used without knowing the solution, in the following way [7]. Considered is a set of all
dependencies µ(t) where µ belongs to the phase space, the bounded set M . The set of
all averages over t is {〈kµ(t)〉t}. Further, taken are all limits of sequences formed by these
averages – the set of averages is closed. The result is the closed convex hull conv(kM) of
the compact set kM . This set involves all possible averages (8) and all their limits. In
order to construct it, the true solution µ(t) is not needed.

The weak optimality principle is expressed as follows. Let µ(t) be a solution of (1) in
M , µ∗ is any of its ω-limit distributions. Then in the set conv(kM) there is such a function
k∗ that its maximum value on the support suppµ0 of the initial distribution µ0 equals to
zero, and suppµ∗ consists of the points of the global maximum of k∗ on suppµ0 only (10).

Of course, in the set conv(kM) usually there are many functions that are irrelevant to
the time average reproduction coefficients for the given motion µ(t). Therefore, the weak
extremal principle is really weak – it gives too many possible supports of µ∗. However,
even such a principle can help to obtain useful estimates of the number of points in the
supports of ω-limit distributions.

It is not difficult to suggest systems of the form (1), in which any set can be the
limit distribution support. The simplest example: kµ ≡ 0. Here ω-limit (fixed) is any
distribution. However, almost any arbitrary small perturbation of the system destroys
this pathological property.

In the realistic systems, especially in biology, the coefficients fluctuate and are never
known exactly. Moreover, the models are in advance known to have a finite error which
cannot be exterminated by the choice of the parameters values. This gives rise to an idea
to consider not individual systems (1), but ensembles of similar systems [7].

Having posed the questions of how many points can the support of ω-limit distributions
have, estimate the maximum for each individual system from the ensemble (in its ω-limit
distributions), and then, estimate the minimum of these maxima over the whole ensemble
– (the minimax estimation). The latter is motivated by the fact, that if the inherited
unit has gone extinct under some conditions, it will not appear even under the change of
conditions.

Let us consider an ensemble that is simply the ε-neighborhood of the given system
(1). The minimax estimates of the number of points in the support of ω-limit distribution
are constructed by approximating the dependencies kµ by finite sums

kµ = ϕ0(x) +
n∑

i=1

ϕi(x)ψi(µ). (12)

Here ϕi depend on x only, and ψi depend on µ only. Let εn > 0 be the distance from
kµ to the nearest sum (12) (the “distance” is understood in the suitable rigorous sense,
which depends on the specific problem). So, we reduced the problem to the estimation of
the diameters εn > 0 of the set conv(kM).
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The minimax estimation of the number of points in the limit distribution
support gives the answer to the question, “How many points does the limit distribution
support hold”: If ε > εn then, in the ε-vicinity of kµ, the minimum of the maxima of the
number of points in the ω-limit distribution support does not exceed n.

In order to understand this estimate it is sufficient to consider system (1) with kµ of
the form (12). The averages (8) for any dependence µ(t) in this case have the form

〈kµ(t)〉t =
1

t

∫ t

0

kµ(τ) dτ = ϕ0(x) +
n∑

i=1

ϕi(x)ai. (13)

where ai are some numbers. The ensemble of the functions (13) for various ai forms a
n-dimensional linear manifold. How many of points of the global maximum (equal to
zero) could a function of this family have?

Generally speaking, it can have any number of maxima. However, it seems obvious,
that “usually” one function has only one point of global maximum, while it is “improb-
able” the maximum value is zero. At least, with an arbitrary small perturbation of the
given function, we can achieve for the point of the global maximum to be unique and the
maximum value be non-zero.

In a one-parametric family of functions there may occur zero value of the global max-
imum, which cannot be eliminated by a small perturbation, and individual functions of
the family may have two global maxima.

In the general case we can state, that “usually” each function of the n-parametric
family (13) can have not more than n− 1 points of the zero global maximum (of course,
there may be less, and for the majority of functions of the family the global maximum,
as a rule, is not equal to zero at all). What “usually” means here requires a special
explanation given in the next section.

In application kµ is often represented by an integral operator, linear or nonlinear. In
this case the form (12) corresponds to the kernels of integral operators, represented in a
form of the sums of functions’ products. For example, the reproduction coefficient of the
following form

kµ = ϕ0(x) +

∫
K(x, y)µ(y) dy,

where K(x, y) =
n∑

i=1

ϕi(x)gi(y), (14)

has also the form (12) with ψi(µ) =
∫

gi(y)µ(y) dy.
The linear reproduction coefficients occur in applications rather frequently. For them

the problem of the minimax estimation of the number of points in the ω-limit distribution
support is reduced to the question of the accuracy of approximation of the linear integral
operator by the sums of kernels-products (14).

4 Selection efficiency

The first application of the extremal principle for the ω-limit sets is the theorem of the
selection efficiency. The dynamics of a system with inheritance indeed leads in the limit
t →∞ to a selection. In the typical situation, a diversity in the limit t →∞ becomes less
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than the initial diversity. There is an efficient selection for the “best”. The basic effects
of selection are formulated below.

Theorem of selection efficiency.

1. Almost always the support of any ω-limit distribution is nowhere dense in X (and
it has the Lebesgue measure zero for Euclidean space).

2. Let εn > 0, εn → 0 be an arbitrary chosen sequence. The following statement
is almost always true for system (1). Let the support of the initial distribution
be the whole X. Then the support of any ω-limit distribution µ∗ is almost finite.
This means that it is approximated by finite sets faster than εn → 0: there is a
number N , such that for n > N there exists a finite set Sn of n elements such that
dist(Sn, suppµ∗) < εn, where dist is the Hausdorff distance between closed subsets of
X:

dist(A,B) = max{sup
x∈A

inf
x∈B

ρ(x, y), sup
x∈B

inf
x∈A

ρ(x, y)}, (15)

where ρ(x, y) is the distance between points.

3. In the previous statement for any chosen sequence εn > 0, εn → 0, almost all
systems (1) have ω-limit distributions with supports that can be approximated by
finite sets faster than εn → 0. The order is important: “for any sequence almost all
systems...” But if we use only the recursive (algorithmic) analogue of sequences, then
we can easily prove the statement with the reverse order: “almost all systems for
any sequence...” This is possible because the set of all recursive enumerable countable
sets is also countable and not continuum. This observation is very important for
algorithmic foundations of probability theory [23]. Let L be a set of all sequences
of real numbers εn > 0, εn → 0 with the property: for each {εn} ∈ L the rational
subgraph {(n, r) : εn > r ∈ Q} is recursively enumerable. For almost all systems
(1) and any {εn} ∈ L the support of any ω-limit distribution µ∗ is approximated by
finite sets faster than εn → 0.

These properties hold for the continuous reproduction coefficients. It is well-known,
that it is dangerous to rely on the genericity among continuous functions. For example,
almost all continuous functions are nowhere differentiable. But the properties 1 and 2
hold also for the smooth reproduction coefficients on the manifolds and sometimes allow to
replace the “almost finiteness” by simply finiteness. In order to appreciate this theorem,
note that:

1. Support of an arbitrary ω-limit distribution µ∗ consist of points of global maximum
of the average reproduction coefficient on a support of the initial distribution. The
corresponding maximum value is zero.

2. Almost always a function has only one point of global maximum, and corresponding
maximum value is not 0.

3. In a one-parametric family of functions almost always there may occur zero values
of the global maximum (at one point), which cannot be eliminated by a small
perturbation, and individual functions of the family may stably have two global
maximum points.
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4. For a generic n-parameter family of functions, there may exist stably a function
with n− 1 points of global maximum and with zero value of this maximum.

5. Our phase space M is compact. The set of corresponding reproduction coefficients
kM in C(X) for the given map µ → kµ is compact too. The average reproduction
coefficients belong to the closed convex hull of this set conv(kM). And it is compact
too.

6. A compact set in a Banach space can be approximated by its projection on an
appropriate finite-dimensional linear manifold with an arbitrary accuracy. Almost
always the function on such a manifold may have only n−1 points of global maximum
with zero value, where n is the dimension of the manifold.

The rest of the proof is purely technical. The easiest demonstration of the “natural”
character of these properties is the demonstration of instability of exclusions: If, for
example, a function has several points of global maxima then with an arbitrary small
perturbation (for all usually used norms) it can be transformed into a function with the
unique point of global maximum. However “stable” does not always mean “dense”. In
what sense the discussed properties of the system (1) are usually valid? “Almost always”,
“typically”, “generically” a function has only one point of global maximum. This sentence
should be given an rigorous meaning. Formally it is not difficult, but haste is dangerous
when defining “genericity”.

Here are some examples of correct but useless statements about “generic” proper-
ties of function: Almost every continuous function is not differentiable; Almost every
C1 -function is not convex. Their meaning for applications is most probably this: the
genericity used above for continuous functions or for C1 -function is irrelevant to the
subject.

Most frequently the motivation for definitions of genericity is found in such a situation:
given n equations with m unknowns, what can we say about the solutions? The answer
is: in a typical situation, if there are more equations, than the unknowns (n > m), there
are no solutions at all, but if n ≤ m (n is less or equal to m), then, either there is a
(m− n)-parametric family of solutions, or there are no solutions.

The best known example of using this reasoning is the Gibbs phase rule in classical
chemical thermodynamics. It limits the number of co-existing phases. There exists a
well-known example of such reasoning in mathematical biophysics too. Let us consider a
medium where n species coexist. The medium is assumed to be described by m parame-
ters. In the simplest case, the medium is a well-mixed solution of m substances. Let the
organisms interact through the medium, changing its parameters – concentrations of m
substances. Then, in a steady state, for each of the coexisting species we have an equation
with respect to the state of the medium. So, the number of such species cannot exceed
the number of parameters of the medium. In a typical situation, in the m-parametric
medium in a steady state there can exist not more than m species. This is the Gause
concurrent exclusion principle [24]. This fact allows numerous generalizations. Theorem
of the natural selection efficiency may be considered as its generalization too.

Analogous assertion for a non-steady state coexistence of species in the case of equa-
tions (11) is not true. It is not difficult to give an example of stable coexistence under
oscillating conditions of n species in the m-parametric medium at n > m. But, if kµ

are linear functions of µ, then for non-stable conditions we have the concurrent exclusion
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principle, too. In that case, the average in time of reproduction coefficient kµ(t) is the
reproduction coefficient for the average µ(t) because of linearity. Therefore, the equation
for the average reproduction coefficient,

k∗(x) = 0 for x ∈ suppµ∗, (16)

transforms into the following equation for the reproduction coefficient of the average
distribution

k∗(〈µ〉) = 0 for x ∈ suppµ∗ (17)

(the Volterra averaging principle [25]). This system has as many linear equations as it
has coexisting species. The averages can be non-unique. Then all of them satisfy this
system, and we obtain the non-stationary Gause principle. And again, it is valid “almost
always”.

Formally, various definitions of genericity are constructed as follows. All systems (or
cases, or situations and so on) under consideration are somehow parameterized – by sets
of vectors, functions, matrices etc. Thus, the “space of systems” Q can be described.
Then the “thin sets” are introduced into Q, i.e. the sets, which we shall later neglect.
The union of a finite or countable number of thin sets, as well as the intersection of any
number of them should be thin again, while the whole Q is not thin. There are two
traditional ways to determine thinness.

1. A set is considered thin when it has measure zero. This is good for a finite-
dimensional case, when there is the standard Lebesgue measure – the length, the
area, the volume.

2. But most frequently we deal with the functional parameters. In that case it is
common to restore to the second definition, according to which the sets of first
category are negligible. The construction begins with nowhere dense sets. The set
Y is nowhere dense in Q, if in any nonempty open set V ⊂ Q (for example, in a
ball) there exists a nonempty open subset W ⊂ V (for example, a ball), which does
not intersect with Y . Roughly speaking, Y is “full of holes” – in any neighborhood
of any point of the set Y there is an open hole. Countable union of nowhere dense
sets is called the set of the first category. The second usual way is to define thin
sets as the sets of the first category.

But even the real line R can be divided into two sets, one of which has zero measure,
the other is of the first category. The genericity in the sense of measure and the genericity
in the sense of category considerably differ in the applications where both of these concepts
can be used. The conflict between the two main views on genericity stimulated efforts to
invent new and stronger approaches.

In Theorem of selection efficiency a very strong genericity was used. Systems (1)
were parameterized by continuous maps µ 7→ kµ. Denote by Q the space of these maps
M → C(X) with the topology of uniform convergence on M . So, it is a Banach space.
We shall call the set Y in the Banach space Q completely thin, if for any compact set K
in Q and arbitrary positive ε > 0 there exists a vector q ∈ Q, such that ‖q‖ < ε and
K + q does not intersect Y . So, a set, which can be moved out of intersection with any
compact by an arbitrary small translation, is completely negligible. In a finite-dimensional
space there is only one such set – the empty one. In an infinite-dimensional Banach
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space compacts and closed subspaces with infinite codimension provide us examples of
completely negligible sets. In Theorem of selection efficiency “usually” means “the set of
exceptions is completely thin”.

5 Gromov’s interpretation of selection theorems

In his talk [26], M. Gromov offered a geometric interpretation of the selection theorems.
Let us consider dynamical systems in the standard m-simplex σm in m + 1-dimensional
space Rm+1:

σm = {x ∈ Rm+1|xi ≥ 0,
m+1∑
i=1

xi = 1}.

We assume that simplex σm is positively invariant with respect to these dynamical sys-
tems: if the motion starts in σm at some time t0 then it remains in σm for t > t0. Let us
consider the motions that start in the simplex σm at t = 0 and are defined for t > 0.

For large m, almost all volume of the simplex σm is concentrated in a small neighbor-
hood of the center of σm, near the point c =

(
1
m

, 1
m

, . . . , 1
m

)
. Hence, one can expect that a

typical motion of a general dynamical system in σm for sufficiently large m spends almost
all the time in a small neighborhood of c.

Let us consider dynamical systems with an additional property (“inheritance”): all
the faces of the simplex σm are also positively invariant with respect to the systems with
inheritance. It means that if some xi = 0 initially at the time t = 0 then xi = 0 for t > 0
for all motions in σm. The essence of selection theorems is as follows: a typical motion
of a typical dynamical system with inheritance spends almost all the time in a small
neighborhood of low-dimensional faces, even if it starts near the center of the simplex.

Let us denote by ∂rσm the union of all r-dimensional faces of σm. Due to the selection
theorems, a typical motion of a typical dynamical system with inheritance spends almost
all time in a small neighborhood of ∂rσm with r ¿ m. It should not obligatory reside
near just one face from ∂rσm, but can travel in neighborhood of different faces from ∂rσm

(the drift effect). The minimax estimation of the number of points in ω-limit distributions
through the diameters εn > 0 of the set conv(kM) is the estimation of r.

6 Drift equations

To this end, we talked about the support of an individual ω-limit distribution. Almost
always it is small. But this does not mean, that the union of these supports is small even
for one solution µ(t). It is possible that a solution is a finite set of narrow peaks getting in
time more and more narrow, moving slower and slower, but not tending to fixed positions,
rather continuing to move along its trajectory, and the path covered tends to infinity as
t →∞.

This effect was not discovered for a long time because the slowing down of the peaks
was thought as their tendency to fixed positions. There are other difficulties related
to the typical properties of continuous functions, which are not typical for the smooth
ones. Let us illustrate them for the distributions over a straight line segment. Add to
the reproduction coefficients kµ the sum of small and narrow peaks located on a straight
line distant from each other much more than the peak width (although it is ε-small).
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However small is chosen the peak’s height, one can choose their width and frequency on
the straight line in such a way that from any initial distribution µ0 whose support is the
whole segment, at t → ∞ we obtain ω-limit distributions, concentrated at the points of
maximum of the added peaks.

Such a model perturbation is small in the space of continuous functions. Therefore, it
can be put as follows: by small continuous perturbation the limit behavior of system (1)
can be reduced onto a ε-net for sufficiently small ε. But this can not be done with the small
smooth perturbations (with small values of the first and the second derivatives) in the
general case. The discreteness of the net, onto which the limit behavior is reduced by small
continuous perturbations, differs from the discreteness of the support of the individual
ω-limit distribution. For an individual distribution the number of points is estimated,
roughly speaking, by the number of essential parameters (12), while for the conjunction
of limit supports – by the number of stages in approximation of kµ by piece-wise constant
functions.

Thus, in a typical case the dynamics of systems (1) with smooth reproduction coeffi-
cients transforms a smooth initial distributions into the ensemble of narrow peaks. The
peaks become more narrow, their motion slows down, but not always they tend to fixed
positions.

The equations of motion for these peaks can be obtained in the following way [7].
Let X be a domain in the n-dimensional real space, and the initial distributions µ0 be
assumed to have smooth density. Then, after sufficiently large time t, the position of
distribution peaks are the points of the average reproduction coefficient maximum 〈kµ〉t
(8) to any accuracy set in advance. Let these points of maximum be xα, and

qα
ij = −t

∂2〈kµ〉t
∂xi∂xj

∣∣∣∣
x=xα

.

It is easy to derive the following differential relations

∑
j

qα
ij

dxα
j

dt
=

∂kµ(t)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= − ∂2kµ(t)

∂xi∂xj

∣∣∣∣
x=xα

. (18)

These relations do not form a closed system of equations, because the right-hand parts
are not functions of xα

i and qα
ij. For sufficiently narrow peaks there should be separation

of the relaxation times between the dynamics on the support and the dynamics of the
support: the relaxation of peak amplitudes (it can be approximated by the relaxation
of the distribution with the finite support, {xα}) should be significantly faster than the
motion of the locations of the peaks, the dynamics of {xα}. Let us write the first term of
the corresponding asymptotics [7].

For the finite support {xα} the distribution is µ =
∑

α Nαδ(x− xα). Dynamics of the
finite number of variables, Nα obeys the system of ordinary differential equations

dNα

dt
= kα(N)Nα, (19)

where N is vector with components Nα, kα(N) is the value of the reproduction coefficient
kµ at the point xα:

kα(N) = kµ(xα) for µ =
∑

α

Nαδ(x− xα).
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Let the dynamics of the system (19) for a given set of initial conditions be simple:
the motion N(t) goes to the stable fixed point N = N ∗({xα}). Then we can take in the
right hand side of (18)

µ(t) = µ∗({xα(t)}) =
∑

α

N∗
αδ(x− xα(t)). (20)

Because of the time separation we can assume that (i) relaxation of the amplitudes of
peaks is completed and (ii) peaks are sufficiently narrow, hence, the difference between
true kµ(t) and the reproduction coefficient for the measure (20) with the finite support
{xα} is negligible. Let us use the notation k∗({xα})(x) for this reproduction coefficient.
The relations (18) transform into the ordinary differential equations

∑
j

qα
ij

dxα
j

dt
=

∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂2k∗({xβ})(x)

∂xi∂xj

∣∣∣∣
x=xα

. (21)

For many purposes it may be useful to switch to the logarithmic time τ = ln t and to new
variables

bα
ij =

1

t
qα
ij = −∂2〈k(µ)〉t

∂xi∂xj

∣∣∣∣
x=xα

.

For large t we obtain from (21)

∑
j

bα
ij

dxα
j

dτ
=

∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dbα
ij

dτ
= −∂2k∗({xα})(x)

∂xi∂xj

∣∣∣∣
x=xβ

− bα
ij. (22)

The way of constructing the drift equations (21,22) for a specific system (1) is as follows:

1. For finite sets {xα} one studies systems (19) and finds the equilibrium solutions
N ∗({xα});

2. For given measures µ∗({xα(t)}) (20) one calculates the reproduction coefficients
kµ(x) = k∗({xα})(x) and first derivatives of these functions in x at points xα. That
is all, the drift equations (21,22) are set up.

The drift equations (21,22) describe the dynamics of the peaks positions xα and of the
coefficients qα

ij. For given xα, qα
ij and N∗

α the distribution density µ can be approximated
as the sum of narrow Gaussian peaks:

µ =
∑

α

N∗
α

√
det Qα

(2π)n
exp

(
−1

2

∑
ij

qα
ij(xi − xα

i )(xj − xα
j )

)
, (23)

where Qα is the inverse covariance matrix (qα
ij).

If the limit dynamics of the system (19) for finite supports at t →∞ can be described
by a more complicated attractor, then instead of reproduction coefficient k∗({xα})(x) =
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kµ∗ for the stationary measures µ∗ (20) one can use the average reproduction coefficient
with respect to the corresponding Sinai–Ruelle–Bowen measure [21, 22]. If finite systems
(19) have several attractors for given {xα}, then the dependence k∗({xα}) is multi-valued,
and there may be bifurcations and hysteresis with the function k∗({xα}) transition from
one sheet to another. There are many interesting effects concerning peaks’ birth, desin-
tegration, divergence, and death, and the drift equations (21,22) describe the motion in
a non-critical domain, between these critical effects.

Inheritance (conservation of support) is never absolutely exact. Small variations, mu-
tations, immigration in biological systems are very important. Excitation of new degrees
of freedom, modes diffusion, noise are present in physical systems. How does small pertur-
bation in the inheritance affect the effects of selection? The answer is usually as follows:
there is such a value of perturbation of the right-hand side of (1), at which they would
change nearly nothing, just the limit δ-shaped peaks transform into sufficiently narrow
peaks, and zero limit of the velocity of their drift at t →∞ substitutes by a small finite
one.

The simplest model for “inheritance + small variability” is given by a perturbation of
(1) with diffusion term

∂µ(x, t)

∂t
= kµ(x,t) × µ(x, t) + ε

∑
ij

dij(x)
∂2µ(x, t)

∂xi∂xj

. (24)

where ε > 0 and the matrix of diffusion coefficients dij is symmetric and positively definite.
There are almost always no qualitative changes in the asymptotic behaviour, if ε is

sufficiently small. With this the asymptotics is again described by the drift equations
(21,22), modified by taking into account the diffusion as follows:

∑
j

qα
ij

dxα
j

dt
=

∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂2k∗({xβ})(x)

∂xi∂xj

∣∣∣∣
x=xα

− 2ε
∑

kl

qα
ikdkl(x

α)qα
lj. (25)

Now, as distinct from (21), the eigenvalues of the matrices Qα = (qα
ij) cannot grow

infinitely. This is prevented by the quadratic terms in the right-hand side of the second
equation (25).

Dynamics of (25) does not depend on the value ε > 0 qualitatively, because of the
obvious scaling property. If ε is multiplied by a positive number ν, then, upon rescalling
t′ = ν−1/2t and qα

ij
′ = ν−1/2qα

ij, we have the same system again. Multiplying ε > 0 by

ν > 0 changes only peak’s velocity values by a factor ν1/2, and their width by a factor
ν1/4. The paths of peaks’ motion do not change at this for the drift approximation (25)
(but the applicability of this approximation may, of course, change).

7 Three main types of stability

Stable steady-state solutions of equations of the form (1) may be only the sums of δ-
functions – this was already mentioned. There is a set of specific conditions of stability,
determined by the form of equations.
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Consider a stationary distribution for (1) with a finite support

µ∗(x) =
∑

α

N∗
αδ(x− x∗α).

Steady state of µ∗ means, that

kµ∗(x
∗α) = 0 for all α. (26)

The internal stability means, that this distribution is stable with respect to perturba-
tions not increasing the support of µ∗. That is, the vector N∗

α is the stable fixed point
for the dynamical system (19). Here, as usual, it is possible to distinguish between the
Lyapunov stability, the asymptotic stability and the first approximation stability (nega-
tiveness of real parts for the eigenvalues of the matrix ∂Ṅ∗

α/∂N∗
α at the stationary points).

The external stability means stability to an expansion of the support, i.e. to adding
to µ∗ of a small distribution whose support contains points not belonging to suppµ∗. It
makes sense to speak about the external stability only if there is internal stability. In
this case it is sufficient to restrict ourselves with δ-functional perturbations. The external
stability has a very transparent physical and biological sense. It is stability with respect
to introduction into the systems of a new inherited unit (gene, variety, specie...) in a small
amount.

The necessary condition for the external stability is: the points {x∗α} are points of
the global maximum of the reproduction coefficient kµ∗(x). It can be formulated as the
optimality principle

kµ∗(x) ≤ 0 for all x; kµ∗(x
∗α) = 0. (27)

The sufficient condition for the external stability is: the points {x∗α} and only these
points are points of the global maximum of the reproduction coefficient kµ∗(x

∗α). At the
same time it is the condition of the external stability in the first approximation and the
optimality principle

kµ∗(x) < 0 for x /∈ {x∗α}; kµ∗(x
∗α) = 0. (28)

The only difference from (27) is the change of the inequality sign from kµ∗(x) ≤ 0 to
kµ∗(x) < 0 for x /∈ {x∗α}. The necessary condition (27) means, that the small δ-functional
addition will not grow in the first approximation. According to the sufficient condition
(28) such a small addition will exponentially decrease.

If X is a finite set then the combination of the external and the internal stability is
equivalent to the standard stability for a system of ordinary differential equations.

For the continuous X there is one more kind of stability important from the appli-
cations viewpoint. Substitute δ-shaped peaks at the points {x∗α} by narrow Gaussians
and shift slightly the positions of their maxima away from the points x∗α. How will the
distribution from such initial conditions evolve? If it tends to µ without getting too dis-
tant from this steady state distribution, then we can say that the third type of stability –
stable realizability – takes place. It is worth mentioning that the perturbation of this type
is only weakly small, in contrast to perturbations considered in the theory of internal and
external stability. Those perturbations are small by their norms5.

5Let us remind that the norm of the measure µ is ‖µ‖ = sup|f |≤1 µ[f ]. If one shifts the δ-measure
of unite mass by any nonzero distance ε, then the norm of the perturbation is 2. Nevertheless, this
perturbation weakly tends to 0 with ε → 0.
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In order to formalize the condition of stable realizability it is convenient to use the drift
equations in the form (22). Let the distribution µ∗ be internally and externally stable in
the first approximations. Let the points x∗α of global maxima of kµ∗(x) be non-degenerate
in the second approximation. This means that the matrices

b∗αij = −
(

∂2kµ∗(x)

∂xi∂xj

)

x=x∗α

(29)

are strictly positively definite for all α.
Under these conditions of stability and non-degeneracy the coefficients of (22) can be

easily calculated using Taylor series expansion in powers of (xα− x∗α). The stable realiz-
ability of µ∗ in the first approximation means that the fixed point of the drift equations
(22) with the coordinates

xα = x∗α, bα
ij = b∗αij (30)

is stable in the first approximation. It is the usual stability for the system (22) of ordinary
differential equations.

8 Main results about systems with inheritance

1. If a kinetic equation has the quasi-biological form (1) then it has a rich system of
invariant manifolds: for any closed subset A ⊂ X the set of distributions MA = {µ |
suppµ ⊆ A} is invariant with respect to the system (1). These invariant manifolds
form important algebraic structure, the summation of manifolds is possible:

MA ⊕MB = MA∪B.

(Of course, MA∩B = MA ∩MB).

2. Typically, all the ω-limit points belong to invariant manifolds MA with finite A.
The finite-dimensional approximations of the reproduction coefficient (12) provides
the minimax estimation of the number of points in A.

3. For systems with inheritance (1) a solution typically tends to be a finite set of
narrow peaks getting in time more and more narrow, moving slower and slower.
It is possible that these peaks do not tend to fixed positions, rather they continue
moving, and the path covered tends to infinity at t →∞. This is the drift effect.

4. The equations for peak dynamics, the drift equations, (21,22,25) describe dynamics
of the shapes of the peaks and their positions. For systems with small variability
(“mutations”) the drift equations (25) has the scaling property: the change of the
intensity of mutations is equivalent to the change of the time scale.

5. Three specific types of stability are important for the systems with inheritance:
internal stability (stability with respect to perturbations without extension of dis-
tribution support), external stability (stability with respect to small one-point ex-
tension of distribution support), and stable realizability (stability with respect to
weakly small6 perturbations: small extensions and small shifts of the peaks).

6That is, small in the weak topology.
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Some exact results of the mathematical selection theory can be found in [27, 28]. There
exist many physical examples of systems with inheritance [10, 11, 12, 13, 14, 15, 16]. A
wide field of ecological applications was described in the book [8]. An introduction into
adaptive dynamics was given in notes [29] that illustrate largely by way of examples, how
standard ecological models can be put into an evolutionary perspective in order to gain
insight in the role of natural selection in shaping life history characteristics. The cell
division self-synchronization below demonstrates effects of unusual inherited unit, it is
the example of a “phase selection”.

9 Example: Cell division self-synchronization

The results described above admit for a whole family of generalizations. In particu-
lar, it seems to be important to extend the theorems of selection to the case of vector
distributions, when kµ(x) is a linear operator at each µ, x. It is possible also to make
generalizations for some classes of non-autonomous equations with explicit dependencies
of kµ(x) on t.

Availability of such a network of generalizations allows to construct the reasoning as
follows: what is inherited (i.e. for what the law of conservation of support holds) is the
subject of selection (i.e. with respect to these variables at t →∞ the distribution becomes
discrete and the limit support can be described by the optimality principles).

This section gives a somewhat unconventional example of inheritance and selection,
when the reproduction coefficients are subject additional conditions of symmetry.

Consider a culture of microorganisms in a certain medium (for example, pathogenous
microbes in the organism of a host). Assume, for simplicity, the following: let the time
period spent by these microorganisms for the whole life cycle be identical.

At the end of the life cycle the microorganism disappears and new several microorgan-
isms appear in the initial phase. Let T be the time of the life cycle. Each microorganism
holds the value of the inherited variable, it is “the moment of its appearance (modT )”.
Indeed, if the given microorganism emerges at time τ (0 < τ ≤ T ), then its first descen-
dants appear at time T + τ , the next generation – at the moment 2T + τ , then 3T + τ
and so on.

It is natural to assume that the phase τ (modT ) is the inherited variable. This implies
selection of phases and, therefore, survival of their discrete number τ1, . . . τm, only. But
results of the preceding sections cannot be applied directly to this problem. The reason is
the additional symmetry of the system with respect to the phase shift. But the typicalness
of selection and the instability of the uniform distribution over the phases τ (modT ) can
be shown for this case, too. Let us illustrate it with the simplest model.

Let the difference between the microorganisms at each time moment be related to
the difference in the development phases only. Let us also assume that the state of the
medium can be considered as a function of the distribution µ(τ) of microorganisms over
the phases τ ∈]0, T ] (the quasi-steady state approximation for the medium). Consider
the system at discrete times nT and assume the coefficient connecting µ at moments nT
and nT + T to be the exponent of the linear integral operator value:

µn+1(τ) = µn(τ) exp

[
k0 −

∫ T

0

k1(τ − τ ′)µn(τ ′) dτ ′
]

. (31)
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Here, µn(τ) is the distribution at the moment nT , k0 = const, k1(τ) is a periodic function
of period T .

The uniform steady-state µ∗ ≡ n∗ = const is:

n∗ =
k0∫ T

0
k1(θ) dθ

. (32)

In order to examine stability of the uniform steady state µ∗ (32), the system (31) is
linearized. For small deviations ∆µ(τ) in linear approximation

∆µn+1(τ) = ∆µn(τ)− n∗
∫ T

0

k1(τ − τ ′)∆µn(τ ′) dτ ′. (33)

Expand k1(θ) into the Fourier series:

k1(θ) = b0 +
∞∑

n=1

(
an sin

(
2πn

θ

T

)
+ bn cos

(
2πn

θ

T

))
. (34)

Denote by A operator of the right-hand side of (33). In the basis of functions

es n = sin

(
2πn

θ

T

)
, ec n = cos

(
2πn

θ

T

)

on the segment ]0, T ] the operator A is block-diagonal. The vector e0 is eigenvector,
Ae0 = λ0e0, λ0 = 1−n∗b0T . On the two-dimensional space, generated by vectors es n, ec n

the operator A is acting as a matrix

An =

(
1− Tn∗

2
bn −Tn∗

2
an

Tn∗
2

an 1− Tn∗
2

bn

)
. (35)

The corresponding eigenvalues are

λn 1,2 = 1− Tn∗

2
(bn ± ian). (36)

For the uniform steady state µ∗ (32) to be unstable it is sufficient that the absolute
value of at least one eigenvalue λn 1,2 be larger than 1: |λn 1,2| > 1. If there is at least one
negative Fourier cosine-coefficient bn < 0, then Reλn > 1, and thus |λn| > 1.

Note now, that almost all periodic functions (continuous, smooth, analytical – this does
not matter) have negative Fourier cosine-coefficient. This can be understood as follows.
The sequence bn tends to zero at n →∞. Therefore, if all bn ≥ 0, then, by changing bn at
sufficiently large n, we can make bn negative, and the perturbation value can be chosen
less than any previously set positive number. On the other hand, if some bn < 0, then this
coefficient cannot be made non-negative by sufficiently small perturbations. Moreover,
the set of functions that have all Fourier cosine-coefficient non-negative is completely
thin, because for any compact of functions K (for most of norms in use) the sequence
Bn = maxf∈K |bn(f)| tends to zero, where bn(f) is the nth Fourier cosine-coefficient of
function f .

19



The model (31) is revealing, because for it we can trace the dynamics over large times,
if we restrict ourselves with a finite segment of the Fourier series for k1(θ). Describe it for

k1(θ) = b0 + a sin

(
2π

θ

T

)
+ b cos

(
2π

θ

T

)
. (37)

Assume further that b < 0 (then the homogeneous distribution µ∗ ≡ k0

b0T
is unstable) and

b0 >
√

a2 + b2 (then the
∫

µ(τ) dτ cannot grow unbounded in time). Introduce notations

M0(µ) =

∫ T

0

µ(τ) dτ, Mc(µ) =

∫ T

0

cos
(
2π

τ

T

)
µ(τ) dτ,

Ms(µ) =

∫ T

0

sin
(
2π

τ

T

)
µ(τ) dτ, 〈µ〉n =

1

n

n−1∑
m=0

µm, (38)

where µm is the distribution µ at the discrete time m.
In these notations,

µn+1(τ) = µn(τ) exp
[
k0 − b0M0(µn)− (aMc(µn) + bMs(µn)) sin

(
2π

τ

T

)

+(aMs(µn)− bMc(µn)) cos
(
2π

τ

T

)]
. (39)

Represent the distribution µn(τ) through the initial distribution µ0(τ) and the functionals
M0,Mc,Ms values for the average distribution 〈µ〉n):

µn(τ) = µ0(τ)

× exp
{

n
[
k0 − b0M0(〈µ〉n)− (aMc(〈µ〉n) + bMs(〈µ〉n)) sin

(
2π

τ

T

)

+(aMs(〈µ〉n)− bMc(〈µ〉n)) cos
(
2π

τ

T

)]}
. (40)

The exponent in (40) is either independent of τ , or there is a function with the single
maximum on ]0, T ]. The coordinate τ#

n of this maximum is easily calculated

τ#
n = − T

2π
arctan

aMc(〈µ〉n) + bMs(〈µ〉n)

aMs(〈µ〉n)− bMc(〈µ〉n)
(41)

Let the non-uniform smooth initial distribution µ0 has the whole segment ]0, T ] as its
support. At the time progress the distributions µn(τ) takes the shape of ever narrowing
peak. With high accuracy at large a we can approximate µn(τ) by the Gaussian distri-
bution (approximation accuracy is understood in the weak sense, as closeness of mean
values):

µn(τ) ≈ M0

√
qn

π
exp[−qn(τ − τ#

n )2], M0 =
k0

k1(0)
=

k0

b0 + b
, (42)

q2
n = n2

(
2π

T

)4 [
(aMc(〈µ〉n) + bMs(〈µ〉n))2 + (aMs(〈µ〉n)− bMc(〈µ〉n))2

]
.

Expression (42) involves the average measure 〈µ〉n which is difficult to compute. However,
we can operate without direct computation of 〈µ〉n. At qn À 1

T 2 we can compute qn+1
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and τ#
n+1:

µn+1 ≈ M0

√
qn + ∆q

π
exp

[−(qn + ∆q)((τ − τ#
n −∆τ#)2

]
,

∆q ≈ −1

2
bM0

(
2π

T

2
)

, ∆τ# ≈ 1

q
M0

2π

T
. (43)

The accuracy of these expression grows with time n. The value qn grows at large n
almost linearly, and τ#

n , respectively, as the sum of the harmonic series (modT ), i.e. as
ln n (modT ). The drift effect takes place: location of the peak τ#

n , passes at n →∞ the
distance diverging as ln n.

Of interest is the case, when b > 0 but

|λ1|2 =

(
1 + n∗b

T

2

)2

+

(
n∗a

T

2

)2

> 1.

With this, homogeneous distribution µ∗ ≡ n∗ is not stable but µ does not tend to δ-
functions. There are smooth stable “self-synchronization waves” of the form

µn = γ exp

[
q cos

(
(τ − n∆τ#)

2π

T

)]
.

At small b > 0 (b ¿ |a|, bM0 ¿ a2) we can find explicit form of approximated expressions
for q and ∆τ#:

q ≈ a2M0

2b
, ∆τ# ≈ bT

πa
. (44)

At b > 0, b → 0, smooth self-synchronization waves become ever narrowing peaks, and
their steady velocity approaches zero. If b = 0, |λ1|2 > 1 then the effect of selection takes
place again, and for almost all initial conditions µ0 with the support being the whole
segment ]0, T ] the distribution µn takes at large n the form of a slowly drifting almost
Gaussian peak. It becomes narrower with the time, and the motion slows down. Instead
of the linear growth of qn which takes place at b < 0 (43), for b = 0, qn+1− qn ≈ constq−1

n

and qn grows as const
√

n.
The parametric portrait of the system for the simple reproduction coefficient (37) is

presented in Fig. 1.
As usual, a small desynchronization transforms δ-functional limit peaks to narrow

Gaussian peaks, and the velocity of peaks tends to small but nonzero velocity instead
of zero. The systems with small desynchronization can be described by equations of the
form (25).

There are many specific mechanisms of synchronization and desynchronysation in
physics and biology (see, for example, [30, 31, 32, 33, 34]). We described here very
simple mechanism: it requires only that the time of the life cycle is fixed, in this case in
a generic situation we should observe the self-synchronization. Of course, the real-world
situation can be much more complicated, with a plenty of additional factors, but the basic
mechanism of the “phase selection” works always if the life cycle has more or less fixed
duration.
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n*bT/2

n*aT/2

Stable
uniform
distribution

Stable waves
with non-zero
velocity

v≈≈≈≈b/( ππππa)

Waves with velocity

Vn ÷÷÷÷1/n →→→→0

v

Figure 1: The simplest model of cell division self-synchronization: The parametric por-
trait.
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