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Abstract. Under open and dense conditions we show that Arnold diffusion orbits
exist in a priori unstable and time-periodic Hamiltonian systems with two degrees of

freedom.

1, Introduction and Results

By the KAM (Kolmogorov, Arnold and Moser) theory we know that there are
many invariant tori in nearly integrable Hamiltonian systems with arbitrary n de-
grees of freedom. These tori are of n dimension and occupy a nearly full Lebesgue
measure set in the phase space. As an important consequence, all orbits are stable
in autonomous system with two degrees of freedom, or time-periodic system with
one degree of freedom, in the sense that the actions do not change much along the
orbits. However, the KAM theory does not guarantee such stability when the system
has three or more degrees of freedom for the autonomous case or when it has two or
more degrees of freedom for the time-periodic case, simply because the KAM torus
can not separate the phase space (or integral manifold) into two disconnected parts.

In his celebrated paper [Ar], Arnold constructed an example of nearly integrable
Hamiltonian system, where some orbits are unstable. His example is a time peri-
odic system with two degrees of freedom. In Arnold’s example the perturbations
are chosen so specifically that all hyperbolic invariant tori preserve in the perturbed
system. Hence one can use so called Melnikov method to construct transition chain
along which the action has substantial variation. However, in generic case the per-
turbed systems do not possess such a good property, some resonant gaps between
invariant tori break up the transition chain, thus it seems unclear whether one can
apply Arnold’s method to find diffusion orbits. Despite of this technical difficulty,
Arnold asked whether there is such a phenomenon for a “typical” small perturbation.
After near four decades of study some remarkable generalizations of Arnold’s result
have been announced ([X1],[DLS1],[Ma5]). A few years ago, Xia [X1] announced
that Arnol’d diffusion exists in generic a priori unstable systems, recently Mather
announced ([Ma5]) that, under so-called cusp residual condition, Arnold diffusion
exists in a priori stable systems with two degrees of freedom in time-periodic case, or
with three degrees of freedom in autonomous case. They claim that diffusion orbits
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can be constructed by variational method. Using geometrical method, some demon-
stration was provided in [DLS2] to show that diffusion orbits exist in some types of a
priori unstable and time-periodic Hamiltonian systems with two degrees of freedom.

In this paper, we study generic perturbations of a priori unstable Hamiltonian sys-
tems which have two degrees of freedom and are time-periodic, and give a complete
proof of the existence of diffusion orbits by using variational method. The approach
of our proof is different from the approaches proposed by Mather and by Xia (cf.
[Ma5] and [X2]). The starting point of our proof is based on the previous work of
Mather ([Ma3], [Ma4]). With his profound insight, Mather opened a way to study
Hamiltonian dynamics in higher dimensions. In [Ma3] Mather established the varia-
tional set-up of time-dependent positive definite Lagrangian systems and showed the
existence of minimal measures. By exploiting the properties of barrier functions in
[Ma4], he introduced the idea of C-equivalence and pointed out a possible way to
construct connecting orbits. The difficulty to apply this method to interesting prob-
lem in higher dimensions is that we do not know the structures of related c-minimal
orbit sets. In this paper we have succeeded in getting sufficient information about
the topological structure of the relevant Mañé sets and in providing the proof of a
theorem of connecting C-equivalent Mañé sets formulated by Mather in [Ma4]. Con-
sequently, we are able to construct the diffusion orbits crossing the gaps. However,
it appears unclear whether such C-equivalence can be established at the place where
uncountably many whiskered tori cluster together. Fortunately, this is the place
where there is no big gap. Arnold’s mechanism can be used here because a transition
chain of whisker tori clearly exists in this case. Crucially relying on such geometric
structure, we are able to establish local variational principle (cf. [Bs], [BCV]), the
local minimum corresponds to some diffusion orbits crossing these whisker tori. It is
the variational version of Arnold’s mechanism. Another step in our proof is to show
that we can join the orbits constructed by C-equivalence smoothly with the orbits
which realize the minimum of the local variational principle. In this way we do find
some diffusion orbits in generic systems.

Given a Hamiltonian function H(p, q, t) the Hamiltonian equation has the form:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (1.1)

The Hamiltonian function studied here has the following form:

H(p, q, t) = f(p1) + g(p2, q2) + P (p, q, t) (1.2)

where p = (p1, p2) ∈ R2, q = (q1, q2) ∈ T2, H ∈ Cr (r ≥ 3), P is a time-1-periodic
small perturbation. We assume it satisfies following conditions:

1, f + g is a convex function in p i.e. the Hessian matrix ∂pp(f + g) is positive
definite, finite everywhere and has superlinear growth in p, (f + g)/‖p‖ → ∞ as
‖p‖ → ∞;
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2, it is a priori unstable in the sense that g has non-degenerate saddle critical
point, i.e. ∂p2q2g

2 − ∂p2p2g∂q2q2g > 0 at (p∗2, q
∗
2). The function g(p∗2, q2) : T → R

attains its maximum at q∗2 : g(p∗2, q
∗
2) = maxq2 g(p∗2, q2). Without loss of generality,

we assume (p∗2, q
∗
2) = 0.

Let Bε,K denote a ball in the function space Cr({(p, q) ∈ T2×R2 : ‖p‖ ≤ K} → R),
centered at the origin with radius of ε. Now we can state the theorem which was
formulated by Arnold in [Ar]:

Theorem 1.1. Let A < B be two arbitrarily given numbers and assume H satisfies
the above two conditions. There exist a small number ε > 0, a large number K > 0
and an open and dense set Sε,K ⊂ Bε,K such that for each P ∈ Sε,K there exists an
orbit of the Hamiltonian flow which connects the region with p1 < A to the region
with p1 > B.

We shall use variational argument to complete the proof. In the section 2, by using
Legender transformation we follow Mather’s work [Ma4] and put this problem into the
Lagrangian formalism. The diffusion orbits are found by searching for the minimal
action of the Lagrangian. Some properties such as upper semi-continuity of some
set-valued functions are also proved in this section. In the section 3, we investigate
the topological structure of some relevant Mañé sets. The section 4 is devoted to
the study of the barrier function when the Aubry set contains a codimension one
torus. In the section 5, by making use of the semi-continuity property shown in
the section 2 we obtain the proof of a theorem of connecting C-equivalent Mañé
sets, formulated by Mather in [Ma4]. Based on the understanding of the topological
structure of the relevant Mañé sets shown in the section 3, we establish the C-
equivalence among those relevant Mañé sets and use this C-equivalence to construct
the diffusion orbits crossing resonant gaps. In virtue of the techniques developed in
[BCV] and the analytic expression of the barrier function obtained in the section 4
we join the orbits constructed by C-equivalence smoothly with the orbits constructed
via transition chain. Thus we obtain the diffusion orbits. In the section 6 we show
the open and dense property.
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thanks the mathematics department of Harvard University, where the partial work
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2, Variational set-up

Roughly speaking, the diffusion orbits are constructed by connecting different c-
minimal orbit sets, along which the Lagrange action takes its minimum. Therefore,
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we shall study the Lagrangian equation equivalent to the Hamiltonian equation (1.1):

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (2.1)

where the Lagrangian function L(q̇, q, t) is obtained from the Hamiltonian function
(1.1) by using Legendre transformation L: (p, q, t) → (q̇, q, t) such that

L(q̇, q, t) = max
p
{〈p, q̇〉 −H(p, q, t)}. (2.2)

Here q̇ = q̇(p, q, t) is implicitly determined by q̇ = ∂H
∂p . Since we study a nearly

integrable system, the Lagrangian has the form of

L = L0(q2, q̇) + L1(q, q̇, t)

where L0 corresponds to f + g through the Legendre transformation.

Throughout this paper, we use φt to denote the Euler-Lagrange flow determined
by L, use Φt to denote the Hamiltonian flow determined by H. To specify the Euler-
Lagrange (Hamiltonian) flow determined by other functions we add the subscript,
e.g. φt

L0
, Φt

f+g, etc.

Clearly, the equation (2.1) corresponds to the critical point of the functional

A(γ) =
∫

L(γ, γ̇, t)dt.

We can think that L is a function defined on TM ×T where M = T2. As f + g is an
integrable system and H is its small perturbation, every solution of H is well defined
for t ∈ R. By the assumptions on H, we see that L satisfies the following conditions
introduced by Mather [Ma3]:

Positive definiteness. For every (q, t) ∈ M ×T, the Lagrangian function is strictly
convex in velocity: the Hessian Lq̇q̇ is positive definite.

Superlinear growth. We suppose that L has fiber-wise superlinear growth: for
every (q, t) ∈ M × T, we have L/‖q̇‖ → ∞ as ‖q̇‖ → ∞.

Completeness. All solutions of the Lagrange equations are well defined for all t ∈ R.

Under these conditions Mather established the theory of c-minimal measure and c-
minimal orbits [Ma3, Ma4]. To introduce some basic results of Mather, let us observe
the fact that the functional

∫
Ldt has the same critical point as

∫
(L − ηc)dt does

if ηc is a closed 1-form on M × T, whose first de Rham co-homology class is c, i.e.
[ηc] = c, in other words, their Lagrange equations are the same.
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Let I = [a, b] be a compact interval of time. A curve γ ∈ C1(I, M) is called a
c-minimizer or a c-minimal curve if it minimizes the action among all curves ξ ∈
C1(I, M) which satisfy the same boundary conditions:

Ac(γ) = min
ξ(a)=γ(a)
ξ(b)=γ(b)

∫ b

a

(L− ηc)(dξ(t), t)dt. (2.3)

As we have the condition of completeness the minimizer must be a C1-curve by
Tonelli’s theorem. Without the completeness the minimizer can fail to be ([BM]). If
J is a non compact interval, the curve γ ∈ C1(J,M) is said a c-minimizer if γ|I is c-
minimal for any compact interval I ⊂ J . An orbit X(t) of φt is called c-minimizing if
the curve π◦X is c-minimizing, where the operator π is the standard projection from
tangent bundle to the underlying manifold along the fibers; a point (z, s) ∈ TM ×R
is c-minimizing if its orbit φt(z, s) is c-minimizing. We use G̃L(c) ⊂ TM × R to
denote the set of minimal orbits of L − ηc (the c-minimal orbits of L). We shall
drop the subscript L when it is clear which Lagrangian is under consideration. It is
not necessary to assume the periodicity of L in t for the definition of G̃. When it is
periodic in t, G̃(c) ⊂ TM × R is a nonempty compact subset of TM × T, invariant
for the Euler-Lagrange flow φt.

We can extend the definition of action along a C1-curve to the action on a prob-
ability measure. Let M be the set of Borel probability measures on TM × T. For
each ν ∈ M, the action Ac(ν) is defined as the following:

Ac(ν) =
∫

(L− ηc)dν. (2.4)

Mather has proved [Ma3] that for each first de Rham cohomology class c there is a
probability measure µ which minimizes the actions over M

Ac(µ) = inf
ν∈M

∫
(L− ηc)dν.

This µ is invariant to the Euler-Lagrange flow. We use M̃(c) to denote the closure
of the union of the support of all such measures, use −α(c) = Ac(µ) to denote
the minimum c-action. It defines a function α: H1(M,R) → R, usually called α-
function. Its Legendre transformation β: H1(M,R) → R is usually called β-function.
Both functions are convex, finite everywhere and have super-linear growth [Ma3]. As
M̃(c) is defined as the limit measure of c-minimal orbits, the following lemma is a
straightforward result of topological dynamics:

Lemma 2.1. For each co-homological class c and each positive number ε, there exists
a positive number T0 = T0(c, ε), such that if T ≥ T0 and γ: [0, T ] → M×T is a curve
minimizing the action of L− ηc, [ηc] = c, then there is t ∈ [0, T ] such that

d(dγ(t),M̃(c)) ≤ ε.

Before starting the existence proof of diffusion orbits we need to introduce some
more concepts and investigate some relevant properties, which shall be made use of
below for our purpose.
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We have defined the sets M̃(c) and G̃(c). It is easy to see that M̃(c) is contained
in the set G̃(c). Between the set G̃ and set M̃ we can also define so-called Aubry set
Ã(c) and Mañé set Ñ (c) as well as the limit point set L̃(c).

As all orbits are well defined on the whole R, they have ω-limit sets and α-limit sets.
Let ω̃(c) be the union of ω-limit points of c-minimal orbits X(t) : [0,∞) → TM ×T,
let α̃(c) be the union of α-limit points of c-minimal orbits X(t) : (−∞, 0] → TM ×T.
We call L̃(c) = ω̃(c) ∪ α̃(c) the limit set.

To define the Aubry set and the Mañé set let us define

hc(x, x′, t, t′) = min
γ∈C1([t,t′],M)
γ(t)=x,γ(t′)=x′

∫ t′

t

(L− ηc)(dγ(s), s)ds + (t′ − t)α(c), (2.5)

Fc(x, x′, s, s′) = inf
s=t mod 1

s′=t′mod 1
t′≥t+1

hc(x, x′, t, t′).

hc(x, x′) = hc(x, x′, 0, 1), Fc(x, x′) = Fc(x, x′, 0, 0). (2.6)

Let

hn
c (x, x′) = min

{ n−1∑

i=0

hc(mi,mi+1) : m0 = x,mn = x′

and mi ∈ M for 0 ≤ i ≤ n
}

,

and let

h∞c (x, x′) = lim inf
n→∞

hn
c (x, x′) (2.7)

dc(x, x′) = h∞c (x, x′) + h∞c (x′, x) (2.8)

Mather showed in [Ma4] that dc is a pseudo-metric on the set {x ∈ M : h∞c (x, x) = 0}.
A curve γ ∈ C1(R,M) is called c-semi-static if

Ac(γ|[a,b]) + α(c)(b− a) = Fc(γ(a), γ(b), a mod 1, b mod 1)

for each [a, b] ⊂ R. A curve γ ∈ C1(R,M) is called c-static if, in addition

Ac(γ|[a,b]) + α(c)(b− a) = −Fc(γ(b), γ(a), b mod 1, a mod 1)

for each [a, b] ⊂ R. An orbit X(t) = (dγ(t), t mod 1) is called static (semi-static) if
γ is static (semi-static). We call the Mañé set Ñ (c) the union of global c-semi-static
orbits, the set Ã(c) is defined as the union of global c-static orbits, we call it Aubry
set.
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We use M(c), L(c), A(c), N (c) and G(c) to denote the standard projection of
M̃(c), L̃(c), Ã(c), Ñ (c) and G̃(c) from TM × T to M × T respectively. We have the
following inclusions ([Be])

M̃(c) ⊆ L̃(c) ⊆ Ã(c) ⊆ Ñ (c) ⊆ G̃(c). (2.9)

The set G̃(c) and Ñ (c) have the good property of upper semi-continuity in c. Re-
stricted on A(c), the map π−1 : A(c) → Ã(c) is Lipschitz. We use Ñs(c) = Ñ (c)|t=s

to denote the time section, and so on.

When necessary, we use the symbols G̃L(c), ÑL(c), ÃL(c) and M̃L(c) to denote
the minimal orbit set, Mañé sets, Aubry set and Mather set determined by some
Lagrangian L respectively, omitting the subscript L when the Lagrangian is clearly
defined.

To describe these minimal orbit sets, Mather introduced two kinds of barrier func-
tions Bc and B∗

c , it is defined as follows

Bc(q) = h∞c (q, q)

B∗
c (q) = min{h∞c (ξ, q) + h∞c (q, η)− h∞c (ξ, η) : ∀ ξ, η ∈M0(c)}. (2.10)

Clearly, we have 0 ≤ B∗
c ≤ Bc. When dc(ξ, η) = 0 for all ξ, η ∈M0(c), then Bc = B∗

c

([Ma4]). It is not hard to see that A0(c) = {x ∈ M : Bc(x) = 0}. The following
lemma is a modified version of the proposition 2.1 in [Be].

Lemma 2.2. Let M be a compact, connected Riemanian manifold. Assume L ∈
Cr(TM × R,R) (r ≥ 2) satisfies the positive definite, superlinear-growth and com-
pleteness conditions. Considered as the function of t, L is assumed periodic for
t ∈ (−∞, 0] and for t ∈ [1,∞). Then the map L → G̃L ⊂ TM × R is upper
semi-continuous. As an immediate consequence, G̃(c) is a non-empty compact set in
TM × T and the map c → G̃(c) is upper semi-continuous if L is periodic in t.

We can consider t is defined on (T∨ [0, 1]∨T)/ ∼, where ∼ is defined by identifying
{0} ∈ [0, 1] with some point on one circle, and identifying {1} ∈ [0, 1] with some point
on another circle. Let Uk = {(ζ, q, t) : (q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ζ‖ ≤ k, },
∪∞k=1Uk = TM × R. Let Li ∈ Cr(TM × T,R). We say Li converges to L if for each
ε > 0 and each Uk there exists i0 such that ‖L− Li‖Uk

≤ ε if i ≥ i0.

Proof: Since M is connected and compact, any two point x1 x2 ∈ M can be con-
nected by a geodesic. Let `(x1, x2) be the length of the shortest geodesic connecting
these two points, there is an upper bound K1 > 0 of `(x1, x2) uniformly for all x1,
x2 ∈ M . Let

K = max
(q,t)∈T2×(T∨[0,1]∨T)/∼

‖ζ‖≤K1

L(q, ζ, t).

Given time interval [a, b] with b−a ≥ 1, if we reparemetrize the shortest geodesic γ(s)
by γ̄(t) = γ(`(x1, x2)(t − a)/(b − a)), then γ̄(t) is a C1-curve such that γ̄(a) = x1,
γ̄(b) = x2. Clearly, the action of L along this curve is not bigger than K(b − a).
Obviously, there is an upper bound uniformly for all minimizing action of L′ if they
close to L on {‖ζ‖ ≤ K1}, still denoted by K(b− a).
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Since the super-linear growth is assumed, there are two constant C and D such
that L′(q, q̇, t) ≥ C‖q̇‖ −D for all (q, q̇, t) ∈ TM × [a, b] and for all L′ close to L. It
follows that

dist(γ(a), γ(b))
b− a

≤ 1
b− a

∫ b

a

‖dγ‖ ≤ (K + D)
C

(2.11)

if γ is a minimizer. As (2.11) holds for any b − a ≥ 1, it implies that there must
be some τi ∈ [a + i, a + i + 1] (i ∈ Z) such that ‖γ̇(τi)‖ ≤ C−1(K + D). By the
compactness of M × (T ∨ [0, 1] ∨ T)/ ∼ we see that there exists K2 > 0 such that
∪s∈[0,1]φ

s({q, ξ, t : (q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ξ‖ ≤ C−1(K + D)}) ⊂ {q, ξ, t :
(q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ξ‖ ≤ K2}.

Let Li ∈ Cr(TM ×R,R) be a sequence converging to L, let γi: [a, b] → M be the
minimizer of Li with b − a ≥ 1. By the argument above, we see there exists some
Uk ⊃ {ξ, q, t : (q, t) ∈ M × R, ‖ξ‖ ≤ K2}, so that ‖(L(z, t) − Li(z, t)‖Uk

≤ εi. Here
εi → 0 as i →∞. Thus

∫ b

a

L(dγi(t), t)dt ≤ (K + εi)(b− a). (2.12)

As all γi is a C1-curve and the actions of L on each γi are bounded by [2.12], the set
{γi}i∈Z+ is compact in the C0-topology (cf [Ma3]). Moreover this set is compact in
the C1([a, b],M)-topology as we have ‖γ̇i‖ ≤ K2 and as ∂2L/∂q̇2 is positive definite
so we can write the Lagrange equations in the form of q̈ = f(q, q̇, t), which implies γi

is bounded in C2-topology.

Let γ: [a, b] → M be one of the accumulation points of this set. Clearly, γ:
[a, b] → M is the minimizer of L and we have

Ac(γ) = lim
i→∞

∫ b

a

Li(dγi(t), t)dt.

We let Ii = [−Ti, Ti] and let Ti → ∞, there is a sequence of minimizers of Li, γi:
Ii → M . By diagonal extraction argument we can find a subsequence of γi which
converges C1 uniformly on each compact set to a C1-curve γ: R → M which is the
minimizer of L on any compact interval of R. This proves the upper semi-continuity
of L → G̃L.

Given L periodic in t, we let Lc = L− ηc where ηc is a closed one form such that
[ηc] = c. ηc is a linear function in q̇. If ci → c, we can choose a sequence of closed
1-form ηci such that [ηci ] = ci and |ηci−ηc|‖q̇‖≤K1 → 0. In this case Lci → Lc implies
ci → c. Since the c-minimal orbits are independent of the choice of ηi, applying the
argument above we obtain the upper semi-continuity c → G̃(c). ¤

In the application, the set G̃(c) seems too big to be used for the construction of
connecting orbits in interesting problems. Mañé sets seem good candidates. In the
time-periodic case, Mañé set can be a proper subset of G̃(c), Ñ (c) ( G̃(c). It is
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closely related to the problem whether the Lax-Oleinik semi-group converges or not,
some example can be found in [FM]. To establish the connection between two Mañé
sets we consider a modified Lagrangian

Lη,µ = L− η − µ

where η is a closed 1-form on M such that [η] = c, µ is a 1-form depending on t in
the way that the restriction of µ on {t ≤ 0} is 0, the restriction on {t ≥ 1} is a closed
1-form µ̄ on M with [µ̄] = c′ − c. Let m0,m1 ∈ M , we define

hT0,T1
η,µ (m0,m1) = inf

γ(−T0)=m0
γ(T1)=m1

∫ T1

−T0

(L− η − µ)(dγ(t), t)dt

+ T0α(c) + T1α(c′). (2.13)

Clearly ∃ m∗ ∈ M and some constants Cµ, Cη,µ, independent of T0, T1, such that

hT0,T1
η,µ (m0,m1) ≤ hT0

c (m0,m
∗) + hT2

c′ (m∗,m2) + Cµ

≤ Cη,µ.

Thus its limit infimum is bounded

h∞η,µ(m0,m1) = lim inf
T0,T1→∞

hT0,T1
η,µ (m0,m1)

≤Cη,µ. (2.14)

Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such that T i
j → ∞

(j = 0, 1) as i →∞ and the following limit exists

lim
i→∞

h
T i

0 ,T i
1

η,µ (m0,m1) = h∞η,µ(m0,m1).

Let γi(t,m0,m1): [−T i
0, T

i
1] → M be a minimizer connecting m0 and m1

h
T i

0 ,T i
1

η,µ (m0,m1) =
∫ T i

1

−T i
0

(L− η − µ)(dγi(t), t)dt + T i
0α(c) + T i

1α(c′).

From the proof of the lemma 2.2 we can see that for any compact interval [a, b] there
is some I ∈ Z+ such that the set {γi}i≥I is pre-compact in C1([a, b],M).

Lemma 2.3. Let γ: R→ M be an accumulation point of {γi}. If s ≥ 1 then

ALη,µ
(γ|[s, τ ]) = inf

τ1−τ∈Z,τ1>s
γ∗(s)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s

(L− η − µ)(dγ∗(t), t)dt

+ (τ1 − τ)α(c′); (2.15a)
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if τ ≤ 0 then

ALη,µ
(γ|[s, τ ]) = inf

s1−s∈Z,s1<τ
γ∗(s1)=γ(s)
γ∗(τ)=γ(τ)

∫ τ

s1

(L− η − µ)(dγ∗(t), t)dt

− (s1 − s)α(c); (2.15b)

if s ≤ 0 and τ ≥ 1 then

ALη,µ
(γ|[s, τ ]) = inf

s1−s∈Z,τ1−τ∈Z
s1≤0,τ1≥1

γ∗(s1)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s1

(L− η − µ)(dγ∗(t), t)dt

− (s1 − s)α(c)− (τ1 − τ)α(c′). (2.15c)

Proof: To show that let us suppose the contrary, for instance, (2.15b) does not hold.
Thus there would exist ∆ > 0, s < τ ≤ 0, s1 < τ ≤ 0, s1 − s ∈ Z and a curve γ∗:
[s1, τ ] → M with γ∗(s1) = γ(s), γ∗(τ) = γ(τ) such that

ALη,µ(γ|[s, τ ]) ≥
∫ τ

s1

(L− η − µ)(dγ∗(t), t)dt− (s1 − s)α(c) + ∆.

Let ε = 1
4∆. By the definition of limit infimum there exist T i0

0 > 0 and T i0
1 > 0 such

that

hT0,T1
η,µ (m0,m1) ≥ h∞η,µ(m0,m1)− ε, ∀ T0 ≥ T i0

0 , T1 ≥ T i0
1 , (2.16)

there exist subsequences T ik
j (j = 0, 1, k = 0, 1, 2, · · · ) such that for all k > 0

T ik
0 − T i0

0 ≥ s− s1, (2,17)

|hT
ik
0 ,T

ik
1

η,µ (m0,m1)−h∞η,µ(m0,m1)| < ε. (2.18)

By taking a further subsequence we can assume γik
→ γ. In this case, we can

choose sufficiently large k such that γik
(s) and γik

(τ) are so close to γ(s) and γ(τ)
respectively that we can construct a curve γ∗ik

: [s1, τ ] → M which has the same
endpoints as γik

: γ∗i (s1) = γi(s), γ∗i (τ) = γi(τ) and satisfies the following

ALη,µ
(γik

|[s, τ ]) ≥
∫ τ

s1

(L− η − µ)(dγ∗ik
(t), t)dt− (s1 − s)α(c) +

3
4
∆. (2.19)

Let T ′0 = T ik
0 + (s− s1), if we extend γ∗ik

to R→ M such that

γ∗ik
=





γik
(t− s1 + s), t ≤ s1,

γ∗ik
(t), s1 ≤ t ≤ τ,

γik
(t), t ≥ τ,
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then we obtain from (2.18) and (2.19) that

h
T ′0,T

ik
1

η,µ (m0,m1) ≤ALη,µ
(γ∗ik

|[−T ′0, T
ik
1 ])− T ik

1 α(c′)− T ′0α(c)

≤ALη,µ
(γik

|[−T ik
0 , T ik

1 ])− T ik
1 α(c′)− T ik

0 α(c)− 3
4
∆

≤h∞η,µ(m0,m1)− 2ε.

but this contradicts (2.16) since T ′0 ≥ T i0
0 and T ik

1 ≥ T i0
1 , guaranteed by (2.17).

(2.15a) and (2.15c) can be proved in the same way. ¤
We define

Ñη,µ = {dγ ∈ G̃Lη,µ : (2.15a) (2.15b) and (2.15c) hold }.

This definition is similar to the definition of a Mañé set, but L is replaced by Lη,µ.

Lemma 2.4. The map (η, µ) → Ñη,µ is upper semi-continuous. Ñη,0 = Ñ (c) if
[η] = c. Consequently, the map c → Ñ (c) is upper semi-continuous.

Proof: Let ηi → η and µi → µ, let γi ∈ Ñηi,µi and let γ be an accumulation point
of the set {γi ∈ Ñηi,µi

}i∈Z+ . Clearly, γ ∈ Ñη,µ. If γ /∈ Ñη,µ there would be two
point γ(s),γ(τ) ∈ M such that one of the following three possible cases takes place.
Either γ(s) and γ(τ) ∈ M can be connected by another curve γ∗: [s + n, τ ] → M
with smaller action

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s + n, τ ])− nα(c)

in the case τ < 0; or there would a curve γ∗: [s, τ + n] → M such that

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s, τ + n])− nα(c′)

in the case s ≥ 1, or when s ≤ 0 and τ ≥ 1 there would be a curve γ∗: [s+n1, τ+n2] →
M such that

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s + n1, τ + n2])− n1α(c)− n2α(c′)

where s + n1 ≤ 0, τ + n2 ≥ 1. Since γ is an accumulation point of γi, for any small
ε > 0, there would be sufficiently large i such that ‖γ − γi‖C1[s,t] < ε, it follows that
γi /∈ Ñηi,µi

but that is absurd.

Let us consider the case that µ = 0. In this case, L − η is periodic in t. If some
orbit γ ∈ Ñη,0: R→ M is not semi-static, then there exist s < τ ∈ R, n ∈ Z, ∆ > 0
and a curve γ∗: [s, τ + n] → M such that γ∗(s) = γ(s), γ∗(τ + n) = γ(τ) and

Aη,0(γ|[s, τ ]) ≥ Aη,0(γ∗|[s, τ + n])− nα(c) + ∆.



12

We can extend γ∗ to [s1, τ1 + n] → M such that s1 ≤ min{s, 0}, min{τ1, τ1 + n} ≥ 1,
τ1 ≥ τ and

γ∗ =





γ(t), s1 ≤ t ≤ s,

γ∗(t), s ≤ t ≤ τ + n,

γ(t− n), τ + n ≤ t ≤ τ1 + n.

Since L− η is periodic in t, we would have

Aη,0(γ|[s1, τ1]) ≥ Aη,0(τ∗γ|[s1, τ1 + n])− nα(c) + ∆.

but this contradicts to (2.15c). ¤

The upper semi-continuity of c → Ñ (c) will be fully exploited to build the C-
equivalence among some Ñ (c), the construction of diffusion orbits in this paper
depends crucially on this property. Towards that, we shall also make use of the
Lipschitz property of the Aubry sets. Let π: TM × T → M × T be the projection
along the fibers. Mather discovered the following (cf. [Ma3,4]):

Lemma 2.5. π: Ã(c) → M × T is injective. Its inverse (considered as a map from
A(c) = πÃ(c) to Ã(c)) is Lipschitz, i.e. ∃ a constant CL such that for any x, y ∈ A(c)
we have

dist(π−1(x), π−1(y)) ≤ CLdist(x, y).

The concept of of regular Lagrangian is useful for us in this paper. L is said to be
c-regular if the following limit exists for all (x, x′, s, s′)

h∞c (x, x′, s, s′) = lim
k→∞

hk
c (x, x′, s, s′). (2.20)

Lemma 2.6. (Bernard 2002) If M̃(c) is minimal in the sense of topological dynamics
and if there exists a sequence γn of n-periodic curves such Ac(γn) → 0 as n → ∞,
then Lc is regular, hence Ã(c) = Ñ (c) = G̃(c).

For the completeness sake, we shall present his proof in the appendix. Applying
this lemma to the area-preserving twist map we have the following:

Corollary 2.7. Let ω ∈ R\Q be the rotation number and c = β′(ω), then Lc is
regular and G̃(c) = Ã(c).

3, Structure of some c-minimal orbit sets

Our construction of connecting orbits between different c-minimal orbit sets exploit
fully the upper-semi continuity of the set-valued function c → Ñ (c), and the structure
of the relevant Mañé sets.
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Let us consider the Hamiltonian flow Φt which is a small perturbation of Φt
f+g. Let

Φ and Φf+g be their time-1-maps. As the cylinder T× R× {(q2, p2) = (0, 0)} = Σ0

is the normally hyperbolic invariant manifold for Φf+g and the a priori unstable
condition is assumed, it follows from the fundamental theorem of normally hyperbolic
invariant manifold (cf. [HPS]) that there is ε = ε(A,B) > 0 such that if ‖P‖Cr ≤ ε
on the region {|p| ≤ max(|A|, |B|) + 1} the map Φs+k (k ∈ Z) also has a Cr−1

invariant manifold Σ(s) ⊂ R2 × T2, provided that r ≥ 2. This manifold is a small
deformation of the manifold Σ0|{|p1|≤max(|A|,|B|)+1}, and is also normally hyperbolic
and time-1-periodic. Let Σ = Σ(0), it can be considered as the image of a map ψ:
Σ0 → R2×T2, Σ = {p1, q1, p2(p1, q1), q2(p1, q1)}. This map induces a 2-form ψ∗ω on
Σ0

ψ∗ω =
(

1 +
∂(p2, q2)
∂(p1, q1)

)
dp1 ∧ dq1.

Since the second de Rham co-homology group of Σ0 is trivial, by using Moser’s
argument on the isotopy of symplectic forms [Mo], we find that there exists a diffeo-
morphism ψ1 on Σ0|{|p1|≤max(|A|,|B|)+1} such that

(ψ ◦ ψ1)∗ω = dp1 ∧ dq1. (3.1)

Since Σ is invariant for Φ and Φ∗ω = ω, we have
(
(ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1)

)∗
dp1 ∧ dq1 = dp1 ∧ dq1

i.e. (ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1) preserves the standard area. Clearly, it is exact and
twist since it is a small perturbation of Φf . In this sense, we say that the restriction
of Φ on Σ is obviously area-preserving and twist. If r > 4 there are many invariant
homotopically non-trivial curves, including many KAM curves. As it still remains
open whether the invariant curves of irrational rotation number must be differen-
tiable, we can only assume all these curves are Lipschitz. Given ρ ∈ R there is an
Aubry-Mather set with rotation number ρ, which is either an invariant circle, or a
Denjoy set if ρ ∈ R\Q, or periodic orbits if ρ ∈ Q. Under the generic condition
we can assume there is no homotopically non-trivial invariant curves with rational
rotation number for Φ|Σ, and there is only one minimal periodic orbit on Σ for each
rational rotation number.

Let us consider the Legendre transformation L. By abuse of terminology we
continue to denote Σ(s) and its image under the Legendre transformation by the
same symbol. Let

Σ̃ =
⋃

s∈T
(Σ(s), s),

which has the normal hyperbolicity as well. Under the Legendre transformation those
Aubry-Mather sets (invariant curves, Denjoy sets or minimal periodic orbits) on Σ
correspond to the support of some c-minimal measures. Recall H1(M,R) = R2. We
claim that each of these sets corresponds to an interval or a rectangle in H1(M,R),
in other words, for all c in this interval (rectangle), the time-1-section of the support
of the c-minimal measure is exactly this Aubry-Mather set.
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Towards that goal, we introduce the coordinate transformation (p1, q2, p2, q2) →
(p1, q2, p2 + ζ(q2), q2) where ζ is defined in the way such that

∂g

∂p2
(ζ(q2), q2) = 0, (3.2)

and let g′(p2, q2) = g(p2 + ζ(q2), q2). By the assumption on g we now have

∂2g′

∂q2
2

(0, 0) < 0,
∂2g′

∂p2∂q2
(0, q2) = 0.

To simplify the notation we still use g to denote the function g′. Let L0 be the
Lagrangian obtained from f + g by Legendre transformation, it has the form

L0(q2, q̇) = `1(q̇1) + `2(q2, q̇2)

where `1 and `2 are the Legendre transformation of f and g respectively. As g is
a convex function in p2, q̇2 = q̇2(p2, q2) = ∂p2g(p2, q2), we find from (3.2) and the
convexity of g that q̇2(0, q2) = 0 and ∂q̇2/∂p2 > 0, thus `2 can be written in the form

`2(q2, q̇2) = V (q2) + U(q2, q̇2)

where V (q2) = −g(0, q2), U ≥ 0 is a convex function in q̇2 with super-linear growth,
attains its minimum at q̇2 = 0 (∀q2 ∈ T). By the assumption, V has a global
minimum at q2 = 0 which is non-degenerate.

Now let us consider the β function of L0. Under the flow φt
L0

an invariant circle on
Σ with irrational rotation number ρ is the support of a unique minimal measure µ(ρ,0)

whose rotation vector is (ρ, 0). There exist c1 ∈ R and −∞ < c−2 < 0 < c+
2 < ∞ such

that µ(ρ,0) is c-minimal for c ∈ {c1}× [c−2 , c+
2 ]. We have c−2 < c+

2 since the β function
of the twist map has corner at rational numbers. β is differentiable at some rational
number p/q if and only if there exists a homotopically non-trivial invariant curve
of rotation number p/q, consists entirely of periodic orbits of period q ([Ba],[Ma2]).
From the property that both α and β functions are finite everywhere and has super-
linear growth we find that −∞ < c−2 and c+

2 < ∞.

Next, let us consider the α function of L. We use c = (c1, c2) ∈ R2 to denote a first
de Rham cohomology class of M . For each c ∈ R × (c−2 , c+

2 ) the action variable on
each c-minimal orbit of L0 takes value (p1, 0) which is independent of t. Let A∗, B∗

be such numbers that for each c ∈ [A∗, B∗]× (c−2 , c+
2 ) the corresponding p1 satisfies

the condition
A− 1 ≤ p1 ≤ B + 1.
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Lemma 3.1. There exists ε0 > 0, if ‖P‖C2 ≤ ε0 on the region {|p| ≤ max(|A|, |B|)+
1}, there is a strip C = [A∗, B∗]× [−c∗2, c

∗
2] ⊂ H1(M,R) (c∗2 > 0), such that for each

c ∈ C, the c-minimal orbit set G̃(c) ⊂ Σ̃.

Proof: Note the Lagrange flow of L0 is integrable and is decoupled between two
phase sub-space (q1, q̇1) and (q2, q̇2). The second component of the flow φt

L0
, φt

`2
has

two homoclinic loops Γ+ and Γ−, which can be thought as the graph of the functions
G±(q2), i.e. Γ± = {q2, G

±(q2)}. The orbit dq+
2 on Γ+ encircles the cylinder T × R

in counter clockwise direction (q̇2 > 0), the orbit dq−2 on Γ− encircles the cylinder in
clockwise direction (q̇2 < 0). Clearly we have some positive numbers C±A > 0 such
that ∫ ∞

−∞
`2(q±2 (t), q̇±2 (t))dt = C±A .

Let
c+
2 =

1
2π

C+
A , c−2 =

1
2π

C−A .

It is obvious that for each c ∈ R × (−c−2 , c+
2 ), G̃L0 is contained in Σ̃. By the upper

semi-continuity of the set function (c, L) → G̃L(c), there exist ε = ε(A,B) > 0 and
c∗2 > 0 such that if c ∈ [A∗, B∗]× [−c∗2, c

∗
2] and if ‖L1‖C2 ≤ ε then G̃(c) is contained

in a small neighborhood of G̃L0(c). Here, ‖ · ‖C2 is the norm in the function space
C2({(q̇, q) ∈ R2 × T2 : ‖q̇‖ ≤ K} → R), K > 0 is a sufficiently large number. Since
G̃(c) is invariant, by the normal hyperbolicity of the invariant cylinder, L̃ ⊂ Σ̃. ¤

Although the structure of minimal measures is unclear in general case, we know
very well the structures of those M̃(c) ⊂ Σ̃ since the time-1-map Φ is an area-
preserving twist map when it is restricted to Σ. Under the projection from TM × T
to TM × {t = 0}, the support of those c-minimal measures are the image of those
Anbry-Mather sets under the Legendre transformation L, they are homotopically
non-trivial invariant curves, Denjoy sets or minimal periodic orbits on Σ. We use Γ
to denote those Aubry-Mather sets on Σ in the Hamitonian formalism, let Γ(t) =
Φt

H(Γ) ⊂ Σ(t), Γ̃ = ∪t∈T(L(Γ(t)), t).

Before going onto the study of some c-minimal measures, let us note a fact as
follows:

Proposition 3.2. Let c′, c∗ ∈ H1(M,R), µ′ and µ∗ be the corresponding minimal
measures respectively. If 〈c′ − c∗, ρ(µ′)〉 = 〈c′ − c∗, ρ(µ∗)〉 = 0, then α(c′) = α(c∗).

Proof. By the definition of the α function we find that

−α(c′) = inf
ν∈M

∫
(L− ηc′)dν =

∫
(L− ηc′)dµ′

=
∫

(L− ηc∗)dµ′ + 〈c∗ − c′, ρ(µ′)〉
≥ − α(c∗).

In the same way we find that α(c∗) ≤ α(c′). ¤
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Lemma 3.3. Assume Γ̃ ∈ M̃(c̄) for some c̄ = (c̄1, c̄2) ∈ [A∗, B∗]× [−c∗2, c
∗
2]. There

is an interval I = I(c̄1) = {(c1, c2) ∈ H1(M,R) : c1 = c̄1, a(c1) ≤ c2 ≤ b(c1)} with
−∞ < a(c1) < 0 < b(c1) < ∞, such that M̃(c) = Γ̃ for all c ∈ IntI, M̃(c) ⊇ Γ̃ for
c ∈ ∂I. If there is an invariant curve containing Γ we have further M̃(c) = Γ̃ for all
c ∈ I.

Proof: Let µ̄ be a c̄-minimal measure. We have shown in the lemma 3.1 that the
support of µ̄ must be contained in Σ̃. Note the time-1-map is an area-preserving twist
map when it is restricted on the cylinder, supp(µ̄)|t=0 is exactly an Aubry-Mather
set. When the rotation number is irrational, it follows from the theory for twist map
that µ̄ is uniquely ergodic; if the rotation number is rational, we have assumed that
there is only one minimal periodic orbit. Thus, the minimal measure of consideration
here is always uniquely ergodic, i.e. supp(µ̄) = Γ̃. Let φt(z, θ) ∈ TM × T be the
Lagrangian flow, zt be the TM component, η̂ = dq2. For any invariant measure µ, if
supp(µ) ⊂ Σ̃, we have

∫
η̂dµ =

1
T

∫ T

0

ds

∫
(η̂ ◦ φs)dµ

=
1
T

∫ T

0

ds

∫
〈η̂, zs〉dµ(z)

≤ 1
T

∫ ∣∣∣
∫ T

0

〈η̂, zs〉ds
∣∣∣dµ(z)

≤2π

T
→ 0 (3.3)

as T → ∞. Since
∫

η̂dµ is independent of T ,
∫

η̂dµ = 0. Therefore, it follows from
the proposition 3.2 that α(c̄) = α(ĉ) if both c̄- and ĉ-minimal measures are on Σ̃ with
c̄ − ĉ = (0, c2). As the β function for a twist map is strictly convex, M̃(c̄) = M̃(ĉ).
Let I(c̄1) = {c ∈ H1(M,R) : c1 = c̄1, M̃(c) ⊇ Γ̃}. As the α function is convex and
has super-linear growth, I is connected and −∞ < a < 0 < b < ∞. What remains
to show is that I is closed. If not, there was a sequence ck → c such that Γ̃ ⊂ M̃(ck)
and Γ̃ * M̃(c), consequently, there would exist µ such that Ac(µΓ̃) > Ac(µ), where
µΓ̃ is the invariant measure on Γ̃. Let k be sufficiently large so that ck is sufficiently
close to c, then

Ack
(µ) =

∫
Ldµ− 〈ρ(µ), ck〉 = Ac(µ)− 〈ρ(µ), ck − c〉 < Ac(µΓ̃).

On the other hand, it follows from 〈c−ck, ρ(µΓ̃)〉 = 0 that Ac(µΓ̃) = Ack
(µΓ̃), thus we

have Ack
(µΓ̃) > Ack

(µ), but it contradicts to the fact that µΓ̃ is ck-minimal measure.

If there is another measure µ which can also minimize the c-action of L when
a(c1) < c2 < b(c1), then 〈dq2, µ〉 = 0. Indeed, for all a(c1) < c′2 < b(c1) we have
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∫ (
L− c1q̇1 − c′2q̇2

)
dµΓ =

∫ (
L− c1q̇1 − c2q̇2

)
dµΓ

=
∫ (

L− c1q̇1 − c2q̇2

)
dµ (by assumption)

=
∫ (

L− c1q̇1 − c′2q̇2

)
dµ + (c′2 − c2)〈dq2, µ〉,

thus we can choose c′2 in the way that (c′2 − c2)〈dq2, µ〉 > 0 if 〈dq2, µ〉 6= 0. But this
contradicts to the minimality of µΓ. Consequently, we always have

∫
(L− c1q̇1)dµ =

∫
(L− c1q̇1)dµΓ̃,

which is independent of the value c2 takes between a(c1) and b(c1), it implies that
µ = µΓ̃ since µΓ̃ is the only c-minimal measure when |c2| ≤ c∗2.

Let us consider the case when Γ is contained in an invariant curve and c2 ∈ ∂I.
Recall that there exists an invariant curve if and only if the Peier’s barrier function
is identically equal to zero, the Aubry set Ã(c) contains a co-dimensional one torus
in this case. Let π be the projection TM × T → M × T. Because the inverse map
π−1 defined the Aubry sets is Lipschitz and πΓ̃ contains a codimension 1 torus, any
c-minimal curve γ ⊂ A(c) can not cross the 2-torus πΓ̃ ⊂ T 2 × T. Thus there exist
δ > 0 such that for any T > 0

−δ ≤
∣∣∣∣∣
∫ T

−T

˙̄γ2(t)dt

∣∣∣∣∣ ≤ 2π + δ.

So, if µ is also a c-minimal measure and c′ = (c1, 0), then

Ac′(µΓ̃) =
∫

(L− c1q̇1)dµΓ̃

=
∫

(L− c1q̇1 − c2q̇2)dµ (by condition)

=
∫

(L− c1q̇1)dµ (by (3.3))

=Ac′(µ)

it implies that the only minimal measure is µΓ̃. ¤
It follows from the lemma 3.3 that there is a strip S = {(c1, c2) ∈ H1(M,R) :

c1 ∈ R, a(c1) ≤ c2 ≤ b(c1), A∗ < c1 < B∗, −∞ < a(c1) < 0 < b(c1) < ∞},
such that if c ∈ intS, the c-minimal measure is on Σ̃ and is uniquely ergodic. If
c ∈ ∂S ∩ {A∗ < c1 < B∗} and Γ ⊂ M̃(c) is contained in an invariant curve, the
c-minimal measure is also uniquely ergodic. In these cases, we have Ã(c) = Ñ (c).
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In the following, we use I(c1) = {c = (c1, c2) : a(c1) ≤ c2 ≤ b(c1)} to denote the
maximal interval in the following sense: for each c′ = (c1, c

′
2) with a(c1) < c′2 < b(c1),

the c′-minimal measure has some Γ̃ ⊂ Σ̃ as its support, this Γ̃ is not contained in
the support of any c∗-minimal measure where c∗ = (c1, c

∗
2) with either c∗c < a(c1) or

c∗2 > b(c1).

Lemma 3.4. Let Γ̃ ⊂ Σ̃ be the support of some minimal measure for c̄ ∈ I(c1), we
assume that it has dense orbit. Then Ñ (c) ⊂ Σ̃ for each c ∈ intI(c1) = {(c1, c2) :
a(c1) < c2 < b(c1)}. If Γ is an invariant curve or a Denjoy set contained in an
invariant curve, and if c ∈ ∂I = {(c1, c2) : c2 = a(c1) or c2 = b(c1)} we have further
that Ñ (c) consists of Γ̃ and the c-minimal orbits homoclinic to Γ̃.

Proof. Let us consider a c-minimal orbit dγ with c ∈ intI(c1) (c ∈ I(c1) if Γ is
an invariant curve). If this orbit is not contained in M̃(c) = Γ̃, then dγ is semi-
asymptotic to Γ̃ as t → ±∞. We say an orbit is semi-asymptotic to an invariant set
Γ as t → ∞ if every invariant subset of its ω-limit set that is minimal in Birkhoff
sense is contained in Γ. We use the argument in [Bo] to show it. Let N is a minimal
(in Birkhoff sense) invariant subset of the ω-limit set of dγ, there exists a sequence
tk → ∞ such that dist(dγ(tk), N) → 0. We claim that there is a sequence Tk → ∞
such that

lim sup
k→∞

{dist(dγ(t), N) : tk ≤ t ≤ tk + Tk} → 0. (3.4)

If not, there exist d > 0, T > 0 and a subsequence tj of the sequence tk such that
dist(dγ(t), N) ≥ d for every j and some sj ∈ [tj , tj + T ]. As γ(t) is a c-minimal
curve, dγ lies in a bounded region of TM × T, the closure of the orbit is compact.
Thus, for some subsequence ti of the sequence tj , the sequence dγ(ti) and dγ(si) are
convergent to some points x ∈ N and y ∈ TM×T respectively, where dist(y, N) ≥ d.
Consequently, φt0(x) = y for some 0 < t0 ≤ T . This contradicts to the invariance of
N to the Euler-Lagrange flow.

Let µn be the probability measure evenly distributed along dγ[tk, tk + Tk], µ be
an accumulation point of {µn}. As dγ is a c-minimal orbit of the Lagrange system
µ is a c-minimal measure, i.e. µ = µΓ̃. From (3.4) we see dist(N, Γ̃) = 0. As Γ̃ has
dense orbit, N = Γ̃, i.e. the ω-limit set of dγ has only one minimal invariant subset
Γ̃ (in Birkhoff sense). In the same way we can show that the α-limit set of dγ has
only one minimal invariant subset Γ̃ also.

Let c ∈ intI and dγ ∈ Ñ (c). Note Ñ (c) = Ã(c) in this case. For each ξ ∈ π(Γ), if
kij → ∞ (i = 1, 2) as j → ∞ are the two sequences such that dγ(−k1j), dγ(k2j) →
π−1(ξ), then we claim that

lim
j→∞

∫ k2j

−k1j

γ̇2(t)dt = 0. (3.5)

In fact, for any ξ ∈ π(Γ) there exist two sequences kij →∞ as j →∞ (i = 1, 2) such
that dγ(−kij) → π−1(ξ) and dγ(k2j) → π−1(ξ) as j → ∞. It follows from the fact
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that γ is c-static that

hk1j
c (γ(−k1j), γ(0)) + hk2j

c (γ(0), γ(k2j)) → 0.

If (3.5) does not hold, by choosing a subsequence again (we use the same symbol) we
would have ∣∣∣∣∣ lim

j→∞

∫ k2j

−k1j

γ̇2(t)dt

∣∣∣∣∣ ≥ 2π > 0.

In this case, let us consider the barrier function B∗
c′ where c′ = (c1, c

′
2). Since

c− c′ = (0, c2 − c′2), we obtain from the proposition 3.2 that α(c′) = α(c), so

Bc′(γ(0)) ≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t)− c1γ̇1(t)− c′2γ̇2(t)− α(c′)) dt

≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t)− c1γ̇1(t)− c2γ̇2(t)− α(c)) dt

+ (c2 − c′2) lim
j→∞

∫ k2j

−k1j

γ̇2(t)dt

≤− 2|c2 − c′2|π < 0

as we can choose c′2 > c2 or c′2 < c2 accordingly. But this is absurd since barrier
function is non-negative.

Now let us derive from (3.5) that there is no c-semi-static orbit that is not contained
in Σ̃. In fact, we find that dγ ∈ Ñ ((c1, 0)). To see that, we obtain from (3.5) that
the term c2γ̇2 has no contribution to the action along the curve γ|[−k1j ,k2j ]:

∫ k2j

−k1j

(L− c1γ̇1 − c2γ̇2)dt →
∫ k2j

−k1j

(L− c1γ̇1)dt, as j →∞. (3.6)

Note kij → ∞ as j → ∞ (i = 1, 2). If dγ /∈ Ñ ((c1, 0)), there would exist j′ ∈ Z+,
k′ ∈ Z, E > 0 and a curve ζ: [−k1j , k2j + k′] → M such that ζ(−k1j′) = γ(−k1j′),
ζ(k2j + k′) = γ(k2j′)

∫ k2j′

−k1j′
(L(dγ(t), t)− c1γ̇1 + α((c1, 0)))dt

≥
∫ k2j′+k′

−k1j′
(L(dζ(t), t)− c1ζ̇1 + α((c1, 0))))dt + E

≥ F(c1,0)(γ(−k1j′), γ(k2j)) + E (3.7)

and ∣∣∣∣∣
∫ k2j′+k′

−k1j′
ζ̇2dt

∣∣∣∣∣ → 0. (3.8)
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The second condition (3.10) follows from the facts that Ñ ((c1, 0)) ⊂ Σ̃ and that
γ(−kij) → ξ ∈ M0((c1, 0)) = M0(c). Let j − j′ be sufficiently large, we construct a
curve ζ ′: [−k1j , k2j + k′] → M such that

ζ ′(t) =





γ(t), t ∈ [−k1j ,−k1j′ ];
ζ(t), t ∈ [−k1j′ , k2j′ + k′];
γ(t− k′), t ∈ [k2j′ + k′, k2j + k′].

It follows from (3.5∼8) that
∫ k2j+k′

−k1j

(L(dζ ′(t), t)− 〈c, ζ̇ ′〉)dt <

∫ k2j

−k1j

(L(dγ(t)− c1γ̇1)dt− E

≤
∫ k2j

−k1j

(L(dγ(t), t)− 〈c, γ̇〉)dt− E

2
,

but this contradicts to the property that dγ ∈ Ñ (c).

Finally, let us consider the case when c ∈ ∂I and there is an invariant circle
containing Γ. In this case, we obtain from the lemma 3.3 that µΓ̃ is the only minimal
measure still. According to the upper semi-continuity of the set-valued function
c → Ñ (c) that Ñ (c′) should be in a small neighborhood of Ñ (c) if c′ is close to c.
It implies that Ñ (c) should contain some orbits outside of Σ̃. If this is not true,
Ñ (c′) would be in a small neighborhood of Σ̃ for some c′ = (c1, c

′
2) with c2 < a(c1)

or c2 > b(c1). As we have normally hyperbolic structure in the neighborhood of Σ̃,
any invariant set should be on Σ̃, consequently, we would have M̃(c′) = Γ̃ as the
map induced by the Euler-Lagrange flow on this manifold corresponds to a twist
area-preserving map on Σ. But this contradicts to the definition of I(c1).

At the beginning of the proof we have shown that any c-minimal orbits must be
semi-asymptotic to the support of the minimal measure if it is uniquely ergodic. What
remain to show is such orbit is homoclinic to the invariant circle in this case. As Γ is
contained in an invariant circle, denoted by Γ∗, the Aubry set contains a codimension
1 torus Γ̃∗ = ∪t∈[0,1](φt(L(Γ∗)), t), because Pω(q) = Bc(q) for all q ∈ π(Γ∗) when
ω = ∂1α(c) is irrational, and because the necessary and sufficient condition for the
existence of invariant circle is the Peierl’s barrier function is identically equal to zero.
Due to the Lipschitz property of the Aubry set, any c-minimal curve can not cross
π(Γ̃∗), so ∫ k

−k

γ̇2(t)dt ≤ 2π +O(‖P‖), ∀ k ∈ Z+.

As dγ is semi-asymptotic to Γ̃, dγ enters the small neighborhood of Σ̃. If dγ does not
fall either on the stable manifold or on the unstable manifold, then it will go outside of
the neighborhood again. It implies that dγ is a multi-bump solution of the Lagrange
equation. As we did in the proof of the lemma 3.1, we can construct a curve ζ by
cutting off all other bumps and leave only one bump. In this case the c-action of ζ is
smaller than that of γ, but this is absurd. Thus, dγ(t) ∈ W s

loc(Γ̃
∗) ∪Wu

loc(Γ̃
∗)\{Γ̃∗}

when dγ(t) is in a small neighborhood of Σ̃. ¤
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To each orbit dγ homoclinic to Γ̃ we can associate an element [γ] ∈ H1(M ×
T, Ũ ,Z) = Z where Ũ is a small neighborhood of π(Γ̃∗) ⊂ M×T when Γ is contained
in an invariant circle Γ∗. We can see from this lemma that the necessary condition
for a homoclinic orbit {dγ} ⊂ Ñ (c) is [γ] = ±1. In general, the time-1-section
N0(c)\π(L(Γ)) is homotopically trivial. By definition we mean that there exists an
open neighborhood U = ∪m

i=1Ui of N0(c) such that Ui ∩ Uj = ∅ if i 6= j, U0 is an
open neighborhood of L(Γ) and each Ui (i 6= 0) is contractible to one point. In this
case we have

i∗H1(U,R) ⊂ span([ζ]),

where i is the standard inclusion map, ζ = (ζ1, 0) : [0, 1] → M with ζ1(0) = ζ1(1).
By the Lipschitz property of Ã(c) = Ñ (c) in this case, we may choose bounded,
mutually disjoint open sets Ũi in TM such that πŨi = Ui and ∪Ũi ⊃ Ñ0(c). Under
this assumption we have

Lemma 3.5. Assume c = (c1, b(c1)), M̃(c) = Γ̃ and N0(c)\π(Γ̃) is homotopi-
cally trivial. Let c′ = (c1, c

′
2) with c′2 − b(c1) > 0 being sufficiently small. If

M̃(c′) is uniquely ergodic, then there exists a neighborhood Nc′ of N0(c′) such that
i∗H(Nc′ ,R) = 0.

Proof. By assumption, we can choose Ũ = ∪m
i=0Ũi, a neighborhood of Ñ (c) such

that π(Ũi) ∩ π(Ũj) = ∅ if i 6= j, Ũ0 is an open neighborhood of L(Γ) and each Ui

(i 6= 0) is contractible to one point. By the upper-semi continuity of c → Ñ (c),
Ñ (c′) ⊂ Ũ if c′2 − b(c1) sufficiently small. We claim that for each z ∈ Ũ0 ∩ Ñ (c′), ∃
an integer k(z) ∈ Z+ such that φk(z)(z) /∈ Ũ0 and there is a uniform upper bound
K ∈ Z+ for all these k(z). If this is not true, for any k > 0, k ∈ Z there is zk ∈ Ũ0

such that φl(zk) ∈ Ũ0, ∀0 ≤ l ≤ k. Let νk be a probability measure distributed
evenly on φt(z) (0 ≤ t ≤ k) and let k → ∞, we find there is an accumulation point
ν, supp(ν) ⊂ Ũ0. Obviously, ν ∈ M̃(c). As there is normally hyperbolic structure on
Σ̃, the invariant set in Ũ0 must be on Σ̃, it follows that M̃(c) ⊂ Σ̃, but it contradicts
the definition of I(c1).

By the upper semi-continuity of c → Ñ (c) and the assumption on the intersection
of the stable and unstable manifolds we see that Ñ0(c′)\Ũ0 can be covered by finite
mutually disjoint open sets, each of them is homotopic to a point. As each point in
Ũ0 shall go outside under the time-1-map φ1, the whole Ñ0(c′) can be covered by
finite mutually disjoint, homotopically trivial open sets. Because M̃(c′) is assumed
uniquely ergodic we obtain from the lemma 2.5 that Ñ (c′) = Ã(c′). The Lipschitz
property of A(c′) guarantees that N0(c′) = A0(c′) is also homotopically trivial. ¤

4, Some Barrier functions

In this section we consider a co-homology class c = (c1, b(c1)) such that A(c)
contains a 2-torus in T2 × T, i.e. its time-1-sections has an invariant circle on the
cylinder, and study the relevant barrier functions introduced in [Ma4]. The study
for c = (c1, a(c1)) is the same. According to our assumptions, the rotation number
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of this circle is irrational. To go further with our proof, let us turn back to the
Hamiltonian formalism temporarily to look at something.

Let ΦH = Φ1
H be the time-1-map of the Hamiltonian flow Φt

H . It has an invariant
cylinder Σ. Restricted to the cylinder Σ this map is clearly twist and area-preserving,
thus the invariant circle Γ is Lipschitz. When P = 0, we have the cylinder T ×
R × {q2 = p2 = 0} as the normally hyperbolic manifold for Φf+g. Each orbit
on this manifold lies in an invariant circle and has zero Lyapunov exponent only.
Both the stable and unstable manifolds have two branches. Each of them has an
invariant fibration {q1 = p1 = constant, p2 = G̃±(q2)} if we use {q2, G̃

±(q2)} to
denote the homoclinic loops of Φg in the space of (q2, p2). Under a small perturbation,
the invariant circle on Σ is the graph of a small function, i.e. Γ = {q1 ∈ T, p =
pΓ(q1), q2 = q2Γ(q1)}. From the theory of normally hyperbolic manifolds we know
that the fibration has Cr−2-smoothness on the base points. As Γ is an invariant
circle, all stable (unstable) fibers with base points on Γ constitute the local stable
(unstable) manifold W s,u

H (Γ) of Γ. Both the stable and the unstable manifold have
two branches corresponding to (c1, b(c1)) and (c1, a(c1)) respectively. Let us consider
the branch corresponding to (c1, b(c1)). In the covering space T (T × R), one lift of
a unstable manifold originates from {p = pΓ(q1), q2 = q2Γ(q1)} and extends to right,
one lift of stable manifold originates from {p = pΓ(q1), q2 = q2Γ(q1)+2π} and extends
to left. When P = 0, these two manifolds coincide with each other and are graphs
above 0 ≤ q2 ≤ 2π. Thus, for suitably small a > 0, there exists ε > 0 such that if
‖P‖ ≤ ε the unstable manifold is a graph above the region {q2Γ(q1) ≤ q2 ≤ 2π − a}
and the stable manifold keeps horizontal in the region {a ≤ q2 ≤ q2Γ(q1) + 2π}, i.e.
they are the graphs of some functions in the relevant regions,

Wu(Γ) ={q, pu(q) : q1 ∈ T, q2Γ(q1) ≤ q2 ≤ 2π − a},
W s(Γ) ={q, ps(q) : q1 ∈ T, a ≤ q2 ≤ q2Γ(q1) + 2π}. (4.1)

Although each stable (unstable) fiber has Cr−2-smoothness, the base points of these
fibers fall on a circle for which we can only assume Lipschitz smoothness, these
manifolds are at least Lipschitz, i.e. ps,u(q) in (4.1) are at least Lipschitz. We choose
suitably small a > 0 such that the time for any dγ2 to cross the strip {a ≤ q2 ≤ 2π−a}
is longer than 1. Such assumption is feasible as Φt

H is a small perturbation of Φt
f+g

for which this assumption is clearly true.

If there is another invariant circle Γ1 very close to Γ, by the smoothness of the
invariant fibration we see that W s,u

H (Γ1) are also graphs above the relevant region.
Let Γ(A) be the highest circle on Σ where p1 ≤ A, let Γ(B) be the lowest circle where
p1 ≥ B. As all invariant circles on Σ make up a closed set, it is reasonable to assert
that we have some ε > 0 such that if ‖P‖ ≤ ε, the stable and unstable manifolds of all
Γ between Γ(A) and Γ(B) can keep horizontal in the region {a ≤ q2 ≤ q2Γ(q1) + 2π}
and {q2Γ(q1) ≤ q2 ≤ 2π − a} respectively.

As the Hamiltonian system under study has standard symplectic structure, each
horizontal Lagrangian sub-manifold is a graph of some closed 1-form defined on M .
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We know that the stable (unstable) manifold of some smooth isotropic manifold is
a Lagrangian manifold, therefore, if we use (q, p(q)) (p(q) ∈ C1) to denote such a
smooth manifold, then

∂p1

∂q2
=

∂p2

∂q1
, (4.2)

it follows that there exists a C2-function S(q) and constant vector c ∈ R2 such that

∂S

∂q1
+ c1 = p1,

∂S

∂q2
+ c2 = p2. (4.3)

If we consider the manifold as the graph of some closed 1-form, c ∈ H1(M,R) is the
cohomology class of this closed 1-form. Since a Lipschitz function is differentiable
almost everywhere, we claim that there exists a C1,1-function S so that (4.3) holds,
here we use Ck,α to denote those functions whose k-th derivative is α-Hölder.

Lemma 4.1. Let Γ be an invariant circle on the cylinder Σ, let W s,u(Γ) be its
stable (unstable) manifold, which is a graph over a connected open set U ⊂ M with
π(Γ) ∈ U , then there exists C1,1 functions Ss,u: U → R and a constant vector c ∈ R2

such that {W s,u
H : q ∈ U} = {(q, dSs,u(q)) + c : q ∈ U}.

Proof: Let us consider the case of a stable manifold. By the condition that W s(Γ)
is a graph there is a Lipschitz function p = (p1, p2): U → R2 such that W s(Γ) =
{(q, ps(q)) : q ∈ U}. Let γ be a closed curve which is the boundary of some topological
disk σ on W s. Since γ is on the stable manifold, Φk

H(γ) approaches uniformly to Γ,
it implies that Φk

H(γ) is such a closed curve going from a point to another point and
returning back along almost the same path when k is sufficiently large. As ΦH is a
symplectic diffeomorphism, k can be arbitrary large, we have

∫∫

σ

dp ∧ dq =
∮

γ

pdq =
∮

Φk
H(γ)

pdq = 0. (4.4)

Note p is Lipschitz, by the theorem of Rademacher ([R]), p is differentiable almost
everywhere in U . As γ is arbitrarily chosen, (4.2) holds for almost all q ∈ U . Conse-
quently, there exists a C1,1-function Ss and c ∈ R2 such that ps = dSs + c. In the
same way, we obtain a C1,1-function Su and c′ ∈ R2 such that pu = dSu + c′. As
W s

H intersects Wu
H at the whole Γ, c′ = c. ¤

In fact, for almost all initial points (q, ps(q)), p is differentiable at all Φk
H(q, ps(q))

(∀k ∈ Z+). To see that, let O be an open set in U , for each k ∈ Z+, there is a full
Lebesgue measure set Ok ⊂ π(Φk

H{O, p(O)}) where p is differentiable, since Φ is a
diffeomorphism, the set

O∗ =
∞⋂

k=0

π
(
Φ−k

H {Ok, ps(Ok)}
)

is a full Lebesgue measure subset of O. For any point q ∈ O∗, p is differentiable at
the points π(Φk

H(q, ps(q))) for all k ∈ Z+.
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Let us consider the Hamiltonian flow. If the locally horizontal stable (unstable)
manifold has the form

W s,u
H = {(q, ps,u(q, t), t) : (q, t) ∈ U × T}

and if we call the 2-form Ω =
∑

dpi ∧ dqi − dH ∧ dt, then (ps,u, t)∗Ω = 0. In
the covering space R2 × R we find that there exists S̄s,u(q, t) such that dS̄s,u =
ps,u(q, t)dq−H(ps,u(q, t), q, t)dt. By applying the standard argument (see for instance
the appendix 2 in [Ma3]), we find that

Ls,u = L− 〈∂qS̄
s,u, q̇〉 − ∂tS̄

s,u (4.5)

attains its minimum at ∂qS̄
s,u as the function q̇. Note Ls,u

q̇ = Lq̇−∂qS̄
s,u is Lipschitz,

dLs,u
q̇ /dt and Ls,u

q exist almost everywhere. Since W s,u is a manifold consisting of the
trajectories of the Euler-Lagrange flow, it follows from the Euler-Lagrange equation
dLq̇/dt = Lq and (4.2) that Ls,u

q = 0 almost everywhere. The absolute continuity of
L implies that Ls,u is a function of t alone. Therefore, by adding some function of t to
S̄s,u, we can make Ls,u = 0. Note the local stable (unstable) manifold can be thought
as the graph of some function defined on {(q, t) ∈ T2 × T : a ≤ q2 ≤ q2Γ(q1, t) + 2π}
({(q, t) ∈ T2 × T : q2Γ(q1, t) ≤ q2 ≤ 2π − a}), where q2Γ(q1, t) is such a function that
π(Γ̃) = {(q, t) : q2 = q2Γ(q1, t)}, q2Γ(q1) = q2Γ(q1, 0). The first co-homology group is
R × {0} × R. Thus, there exists a function Su(q, t): {{(q, t) ∈ T2 × T : q2Γ(q1, t) ≤
q2 ≤ 2π − a} → R, Ss(q, t): {(q, t) ∈ T2 × T : a ≤ q2 ≤ q2Γ(q1, t) + 2π} → R and
(c∗1, 0, α∗) such that S̄s,u(q, t) = Ss,u(q, t) + c∗1q1 + α∗t, where we have used the fact
that both the stable and the unstable manifolds coincide with each other at Γ̃. In
this case we obtain from (4.5) that

Ls,u = L− 〈(c∗1, 0), q̇〉 − 〈∂qS
s,u, q̇〉 − ∂tS

s,u

attains its minimum at W s,u as the function of q̇ with Ls,u|W s,u = α∗. Thus, for all
dγ on Γ̃ we have
∫ ∞

−∞

(
L(dγ(t), t)−〈(c∗1, 0), γ̇〉−〈∂qS

s,u(γ(t), t), γ̇〉−∂tS
s,u(γ(t), t)−α∗

)
dt = 0. (4.6)

We have mentioned before that the Euler-Lagrange equation for L−ηc is the same
as that for L if ηc is a closed 1-form. In local coordinates we can write ηc = 〈c(q), q̇〉.
If we use Hηc

(p, q, t) to denote the Legendre transformation

Hηc
(p, q, t) = max

p

{
〈p, q̇〉 −

(
L− 〈c(q), q̇〉

)}

then we obtain
p + c(q) =

∂L

∂q̇
.

It implies that Hηc
(p, q, t) = H(p + c(q), q, t). As ηc is closed, the coordinate trans-

lation (p, q) → (p + c(q), q) is symplectic. Under such a coordinate translation the
horizontal stable (unstable) manifold is the graph of the function ps,u(q)− c(q).
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We know that Γ̃ is contained in some Aubry set A(c) = {Bc = 0} where c = (c1, c
′
2)

with a(c1) ≤ c′2 ≤ b(c1). From above arguments and the proposition 3.2 we can see
that c1 = c∗1 and α∗ = α(c).

To study the barrier function B∗
c , we consider the covering of T2 given by T× R,

let Γ̃k be the lift of Γ̃ which is close to T×{2kπ}×{p1 = const., p2 = 0}×T. Without
lose of generality we single out one lift of the unstable manifold Wu that extends from
Γ̃0 and keep horizontal over {(q, t) ∈ T2 × T : q2Γ(q1, t) ≤ q2 ≤ 2π − a} and single
out one lift of the stable manifold W s that extends from Γ̃1 and keep horizontal over
{(q, t) ∈ T2 × T : a ≤ q2 ≤ q2Γ(q1, t) + 2π}.

Recall c = (c1, b(c1)). Since Ls,u attains its minimum on the local horizontal
stable (unstable) manifold, for q ∈ T× (a, 2π−a) we claim that there exists only one
c-minimal orbit dγs

c : R+ → TM as well as only one c-minimal orbit dγu
c : R− → TM

such that γs,u(0) = q. In fact, such an orbit dγs,u
c lies on the local stable (unstable)

manifold.

There are two steps to verify our claim. The first step is to show that γs,u does
not cross the codimension one torus Γ̃ ⊂ T2 × T. It follows immediately from the
lemma 4.2 below. To state this lemma, we define the set of forward and backward
semi-static curves:

Ñ+(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|[0,+∞) is c-semi-static},

Ñ−(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|(−∞,0] is c-semi-static}.

Lemma 4.2. If M(c) is uniquely ergodic, u ∈ A0(c), then there exists a unique
v ∈ TuM such that (u, v) ∈ Ñ+

0 (c) (or Ñ−
0 (c)). Moreover, (u, v) ∈ Ã0(c).

Proof: Let us suppose the contrary. Then there would exist (u, v) ∈ Ã0(c) and a
forward c-semi-static curve γ+(t) with γ+(0) = u and γ̇+(0) 6= v. In this case, for
any u1 ∈M0(c) there exist two sequences ki, k

′
i →∞ such that

π ◦ φki

L (u, v) → u1, γ+(k′i) → u1

and

lim
ki→∞

∫ ki

0

(L− ηc)(φt
L(u, v), t)dt + kiα(c)

= lim
k′i→∞

∫ k′i

0

(L− ηc)(dγ+(t), t)dt + kiα(c)

= h∞c (u, u1).

Thus, we obtain that

h∞c (π ◦ φ−1
L (u, v), u1)

=Fc(π ◦ φ−1
L (u, v), u) + h∞c (u, u1)

=Fc(π ◦ φ−1
L (u, v), u) + lim

k′i→∞

∫ k′i

0

(L− ηc)(dγ+(t), t)dt

>h∞c (π ◦ φ−1
L (u, v), u1)
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where the last inequality follows from the facts that γ̇+(0) 6= v and the minimizer
must be a C1-curve. But this is absurd. ¤

For the second step of the proof, we consider the problem in the covering space
T × R and single out a lift of the stable (unstable) manifold of the invariant circle.
The stable (unstable) manifold has two branches: W s,u

l,r

W s,u
r =W s,u ∩ {q2Γ(q1, t) ≤ q2 ≤ 2π − a},

W s,u
l =W s,u ∩ {−2π + a ≤ q2 ≤ q2Γ(q1, t)}.

These two branches of the manifold joined together smoothly at the invariant torus.
Let us consider the unstable manifold. There is a smooth function Su: {−2π + a ≤
q2 ≤ 2π − a} → R such that graph(dSu) = Wu

l ∪ Wu
r . Note Wu

l |(q1,t)=constant is
below the zero section of the cotangent bundle while Wu

r |(q1,t)=constant is above the
zero section if we restrict them in the sub-cotangent bundle T ∗T. If L1 is sufficiently
small, then there exist some c′2 > 0 and a periodic function q2 = q2(q1, t) such that
q2(q1, t) ≤ a, |q2(q1, t)− a| very small and

Su(q1, 2π − q2(q1, t), t)− Su(q1,−q2(q1, t), t)− 2πc′2 = 0.

Thus we can extend Su− c′2q2 periodically so that Su− c′2q2 is a continuous function
defined on T2 × T. Note, this function is not differentiable at the 2-dimensional
torus {(q, t) ∈ T3 : q2 = q2(q1, t)}. Since Lu + α(c) = 0} when it is restricted on
Wu ∩ {−q2(q1) ≤ q2 ≤ 2π − q2(q1)} and strictly positive elsewhere, the backward
c-semi static orbits must lies on Wu

r if it approaches Γ̃ from the right hand side.

There might be another possibility that the backward c-semi static orbits ap-
proaches Γ̃ from the left hand side. Similarly, There exist c̃2 < 0 and a periodic
function q̃2 = q̃2(q1, t) with |q̃2(q1, t)− a| very small such that

Su(q1, q̃2(q1, t), t)− Su(q1,−2π + q̃2(q1, t), t)− 2πc̃2 = 0.

In this case, we can also extend Su−c̃2q2 periodically so that Su−c̃2q2 is a continuous
function defined on T2 × T. Because γu(0) ∈ {a < q2 < 2π − a}, and c = (c1, b(c1)),
it is clear that the c-action along the orbit lying on Wu

l is bigger than the c-action
along the orbit lying on Wu

r . This asserts our claim.

Since Ls,u + α(c) = 0 on W s,u, for arbitrary T > 0 we have

∫ 0

−T

(
L(dγu

c (t), t)− 〈c, γ̇u
c (t)〉 − α(c)

)
dt =Su(γu

c (0), 0)− Su(γu
c (−T ),−T )

− b(c1)(γ̄u
c2(0)− γ̄u

c2(−T )),
∫ T

0

(
L(dγs

c (t), t)− 〈c, γ̇s
c (t)〉 − α(c)

)
dt =Ss(γs

c (T ), T )− Ss(γs
c (0), 0)

− b(c1)(γ̄s
c2(T )− γ̄s

c2(0)). (4.7)
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Since Φ is an area-preserving twist map when it is restricted on the cylinder, from
the lemma 2.6 and the corollary 2.7 we see that Lc is regular. Therefore, for any
ε > 0, 0 ≤ s < 1, 0 ≤ t < 1 and q′, q∗ ∈ M , there exists K0 ∈ Z+ such that

|h∞c (q′, q∗, s, t)− hK
c (q′, q∗, s, t)| ≤ ε, ∀K0 ≤ K ∈ Z.

Since M(c) is uniquely ergodic in this case, for any δ > 0, 0 ≤ t < 1, γs: R+ → M
with γs(0) = q ∈ T× (a, 2π − a) and q∗ ∈ Mt(c) there exists a sequence of {Ki}∞i=1

(Ki ∈ Z+) such that
d(γs(t + Ki), q∗) ≤ δ.

It is easy to construct an absolutely continuous curve ζ: [s,Ki + t] → M such that
ζ(t) = γs(t) as s ≤ t ≤ Ki + t− 2, d(dζ(t), dγs(t)) ≤ δ as Ki + t− 2 ≤ t ≤ Ki + t and
ζ(Ki + t) = q∗. As L̄s attains its minimum at W s for each (q, t) ∈ U , it follows from
the convexity of L in q̇ and (4.7) that

0 ≤
∫ Ki+t

s

(
Lc(dζ(t), t))− α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q′, s)− b(c1)(q∗2 − q2)

≤o(δ),

where Lc = L − 〈c, q̇〉. If γs
Ki

: [s,Ki + t] → M is the minimizer of hKi
c (q, q∗, s, t),

then

0 ≤
∫ Ki+t

s

(
Lc(dγs

Ki
(t), t))− α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q, s) + b(c1)
∫ Ki+t

s

γ̇s
Ki2(t)dt

≤
∫ Ki+t

s

(
Lc(dζ(t), t))− α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q, s) + b(c1)(q∗2 − q2)

≤o(δ).

It is easy to see that dγs
Ki

(t) keeps close to the branch of the stable manifold which
corresponds to the cohomology class c = (c1, b(c1)) if Ki is sufficiently large. Thus,
we have ∫ Ki+t

s

γ̇s
Ki2(t)dt = q∗2 + 2π − q2.

Therefore, we assert that for all q ∈ T× (a, 2π − a), q∗ ∈ π(Γ̃t(c)) and s, t ∈ T

h∞c (q, q∗, s, t) = Ss(q∗ + (0, 2π), t)− Ss(q, s)− b(c1)(q∗2 + 2π − q2),

h∞c (q∗, q, s, t) = Su(q, s)− Su(q∗, t)− b(c1)(q2 − q∗2). (4.8)
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In fact, we have seen that (4.8) holds for q∗ ∈Mt(c), q ∈ T×(a, 2π−a) or q ∈ π(Γ̃|s).
As there exists an invariant circle on which the rotation number is irrational, we see
that Bc(q) = Pω(q) ≡ 0 for all q ∈ π(Γ), thus dc(q̂, q∗) = 0 for all q∗ ∈M(c) and q̂ ∈
π(Γ), where ω = ∂1α(c), Pω is the Peierl’s barrier function. Consequently, we have
h∞c (q, q̂) = h∞c (q, q∗)+h∞c (q∗, q̂). Therefore we obtain (4.8) for any q ∈ T×(a, 2π−a)
and any q∗ ∈ π(Γ̃t). As dSs|π(Γ) = dSu|π(Γ), by adding a constant we can assume
that Ss(q + (0, 2π), t) = Su(q, t) if (q, t) ∈ π(Γ̃). Since the c-minimal measure is
uniquely ergodic, we have the following

Lemma 4.3. Let q ∈ T× (a, 2π − a), then

B∗
c (q) = Su(q, 0)− Ss(q, 0)− 2πb(c1). (4.9)

Proof: Since M̃(c) is uniquely ergodic, by definition of B∗
c , the property Ss(q +

(0, 2π), t) = Su(q, t) if (q, t) ∈ π(Γ̃) and (4.8) we have

B∗
c (q) = min

ξ,η

{
h∞c (ξ, q) + h∞c (q, η)− h∞c (ξ, η) : ξ, η ∈M(c)

}

=min
ξ

{
h∞c (ξ, q) + h∞c (q, ξ) : ξ ∈M(c)

}

=Su(q, 0)− Ss(q, 0)− 2πb(c1). ¤

Next, we consider the stable (unstable) manifold of all invariant circles. Different
invariant circle determines different stable and unstable manifold, so we have a family
of these manifolds. We claim that this family of stable (unstable) manifolds can
be parameterized by some parameter σ so that both ps,u

1 and ps,u
2 have 1

2 -Hölder
continuity in σ. Indeed we arbitrarily choose one circle Γ0 and parameterize another
circle Γσ by the algebraic area between Γσ and Γ0,

σ =
∫ 1

0

(Γσ(q1)− Γ0(q1))dq1. (4.10)

This integration is in the sense that we pull it back to the standard cylinder by
ψ ◦ψ1 ∈ diff(Σ0,Σ) (cf. (3.1)). In this way we obtain an one-parameter family curves
Γ: T×S→ Σ in which S ⊂ [A′, B′] is a closed set. Usually, S is a Cantor with positive
Lebesgue measure, A′ and B′ correspond to the curves where the action p1 ≤ A and
p1 ≥ B respectively. Clearly, for each σ ∈ S, there is only one c1 = c1(σ) such that
Γσ = M̃0(c) for all c ∈ I(c1(σ)) as the rotation number is irrational. We can think
Γσ as a map to function space C0 equipped with supremum norm Γ: S→ C0(T,R),

‖Γσ1 − Γσ2‖ = max
q1∈T

|Γ(q1, σ1)− Γ(q1, σ2)|.

Direct calculation shows

|σ1 − σ2| ≥ 1
2Ch

(
max
q1∈T

|Γ(q1, σ1)− Γ(q1, σ2)|
)2

,
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where Ch is the Lipschitz constant for the twist map, it follows that

‖Γσ1 − Γσ2‖ ≤ Cs|σ1 − σ2| 12 (4.11)

where Cs =
√

2Ch. Since the stable (unstable) fibers have Cr−2-smoothness on their
base points on Σ, ps,u

σ is also 1
2 -Hölder continuous in σ. Thus, there exist two families

of C1,1 functions Su
σ (q, t): {(q, t) : q2Γσ

(q1, t) ≤ q2 ≤ 2π − a} → M and Ss
σ(q, t):

{(q, t) : a ≤ q2 ≤ q2Γσ
(q1, t) + 2π} → M , which are also 1

2 -Hölder continuous in σ.
Remember for each σ ∈ S, B∗

c(σ)(q) can always take the value zero as its minimum
in the region {a ≤ q2 ≤ 2π− a}, it follows from the 1

2 -Hölder continuity of Ss,u
c(σ) and

the expression of B∗
c(σ) given by (4.9) that b(c1(σ)) also has 1

2 -Hölder continuity in
σ. For z ∈ T, there is unique zσ(t) ∈ π(Γ̃σt) such that zσ(t) = (z, q2Γσ

(z, t)). Let
c(σ) = (c1(σ), b(c1(σ))), we have:

Lemma 4.4. For all q ∈ T × (a, 2π − a), z ∈ T and s, t ∈ T the functions Ss,u
σ (q),

h∞c(σ)(q, zσ(t), s, t), h∞c(σ)(zσ(t), q, s, t) and B∗
c(σ)(q) are 1

2 -Hölder continuous in σ ∈ S.
Different from B∗

c , h∞c depends on the choice of the closed 1-form ηc (cf. [Ma4]).
To guarantee the Hölder continuity we choose ηc = 〈c(σ), q̇〉 in above lemma.

5, Construction of connecting orbits

Throughout this section we shall make the following hypotheses, their verification
shall be postponed to the section 6.

(H1): For each σ ∈ S ⊂ [A′, B′], the set {B∗
c(σ) = 0}∩{a ≤ q2 ≤ 2π−a} is totally

disconnected.

Remark: By the choice of a, the set {B∗
c(σ) = 0} ∩ {a ≤ q2 ≤ 2π − a} is not empty

since dγ2 can not cross the strip {a ≤ q2 ≤ 2π−a} under one step of the map φ, there
must be some points on time-1-section of the minimal orbits whose projection fall
into the strip. By the definition of S, for each σ ∈ S, Ã0(c(σ)) contains an invariant
circle on the cylinder. In this case we have an explicit expression of B∗

c (q) in the
strip. The hypothesis (H1) implies the minimal critical point set of Ss

c(σ) − Su
c(σ)

consists of discrete points, and there must be some minimal points in the interior of
this strip.

(H2): If the rotation number of Γ is rational, then the associated c-minimal
measure has its support only at a periodic orbit. The set of minimal homoclinic
orbits in Σ to this periodic orbit is topologically trivial.

Before making the third hypothesis let us note that the union of all invariant
circles on the cylinder forms a closed set. These circles do not intersect each other,
so the complementary set consists of countably many invariant annulus.

(H3): Let Γ be an invariant circle on Σ, associated with co-homology class c. If
this circle is on the boundary of a gap, then for small δ > 0 there exists c′ = (c1, c

′
2)

with either 0 < c′2 − b(c1) < δ or −δ < c′2 − a(c1) < 0 such that M(c′) is uniquely
ergodic.
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According to the study in the last section we know that Ñ0(c′) is homotopically
trivial, but this does not guarantee that N0(c′) is also homotopically trivial on M ,
since the projection from Ñ (c′) → N (c′) is not necessarily injective. If M̃(c′) is
uniquely ergodic, then Ñ (c′) = Ã(c′). The Lipschitz property of A(c′) implies that
N0(c′) is homotopically trivial in this case. Given arbitrary small d > 0, there are
only finitely many invariant circles which are the boundary of some annulus with
width not smaller than d. Actually, we require the third hypothesis only for these
tori.

The first task in this section is to build a C-equivalent sequence {c(i)}m
i=1 where

c
(1)
1 = c1(σ′), a(c(1)

1 ) ≤ c
(1)
2 ≤ b(c(1)

1 ), c
(m)
1 = c1(σ∗), a(c(m)

1 ) ≤ c
(m)
2 ≤ b(c(m)

1 ) and
σ′ < σ∗ correspond to two invariant circles which make up the whole boundary of a
gap. Thus a theorem of connecting C-equivalent Mañé sets is used to construct the
diffusion orbits crossing this gap. This kind of theorem was discovered by Mather in
[Ma4] where the proof was sketched. To make use of this theorem, we shall give a
complete proof first. A theorem of connecting different G(c) was proved by Bernard
recently ([Be]).

To any subset A of M we associate a subspace of H1(M,R)

V (A) =
⋂ {

iU∗H1(U,R) : U is an open neighborhood of A
}

(5.1)

where iU∗: H1(U,R) → H1(M,R) is the map induced by the inclusion. Clearly, there
exists an open neighborhood U of A such that V (A) = iU∗H1(U). Let V ⊥(A) be the
annihilator of V (A). In other words, if c ∈ H1(M,R), then c ∈ V ⊥ if and only if
〈c, h〉 = 0 for all h ∈ V (A). Given c ∈ H1(M,R) we define

R(c) =
∑

t∈T
(V (Nt(c)))⊥. (5.2)

In [Be] R(c) is defined by using G(c) instead of using N (c).

We say a continuous curve Γ: R→ H1(M,R) is admissible if for each t ∈ R there
exists δ > 0 such that Γ(t) − Γ(t0) ∈ R(Γ(t0)) for all t ∈ [t0 − δ, t0 + δ]. We say c,
c′ ∈ H1(M,R) are C-equivalent if there is an admissible curve Γ: [0, 1] → M such
that Γ(0) = c and Γ(1) = c′.

Let U be an open subset of M × T, we can think it as the open subset in M × R
of points (q, t) such that (q, t mod 1) ∈ U . The 1-form µ on M ×R is called a U -step
form if there is a closed form µ̄ on M × T, also considered as a periodic 1-form on
M × R, such that the restriction of µ to t ≤ 0 is 0, the restriction of µ to t ≥ 1 is µ̄,
and such that the restriction of µ to the set U ∪ {t ≤ 0} ∪ {t ≥ 1} is closed. In the
application in this paper, µ̄ is chosen as a closed form on M .

If the first de Rham cohomology class d ∈ R(c), then there exists an open neigh-
borhood U of N (c) and a U -step form µ such that [µ̄] = d. Such a neighborhood U
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will be called an adapted neighborhood. Indeed, similar to the arguments in [Be],
let us fix a time t ∈ [0, 1] and a cohomology class d ∈ V (Nt(c))⊥. There exist an
open neighborhood Ω of Nt(c) and a δ > 0 such that V (Ω) = V (Nt(c)) and such that
Ns(c) ⊂ Ω for all s ∈ [t − δ, t + δ]. As d ∈ R(c), we can take a closed form µ̄ on M
whose support is disjoint from Ω and such that [µ̄] = d. Let ρ: R→ R be a smooth
function such that ρ = 0 on (−∞, t − δ], ρ = 1 on [t + δ,∞) and 0 ≤ ρ ≤ 1 for all
t ∈ R and let U = M × ((0, t− δ)∪ (t + δ, 1))∪Ω× [t− δ, t + δ]. Obviously, the form

µ = ρ(t)µ̄

is an U -step form satisfies the required conditions.

Let Γ: [0, 1] → H1(M,R) be an admissible curve such that Γ(0) = c and Γ(1) = c′.
For each t ∈ [0, 1] and an adapted neighborhood U(t), let η(t) be a closed 1-form on
M such that [η(t)] = Γ(t). There exists δ(t) > 0 such that Γ(s)−Γ(t) ∈ R(Γ(t)) and
a U -step form µ(s) with [µ̄(s)] = Γ(s) − Γ(t) if s ∈ (t − δ, t + δ). According to the
upper semi-continuity (η, µ) → Ñη,µ proved in the lemma 2.4, we can assume that

π(Ñη(t),µ(s)) + ε(t) ⊂ U(t) (5.3)

if we take suitably small δ(t). In this paper we use U + a to denote the set {x ∈ M :
dist(x,U) ≤ a}. Clearly, there is a finite increasing sequence {ti}0≤i≤N such that

N⋃

i=0

(ti − δ(ti), ti + δ(ti)) ⊃ [0, 1],

ti−1 > ti − δ(ti), ti+1 < ti + δ(ti), (5.4)

and (5.3) holds for each ti, and each s ∈ (ti − δ(ti), ti + δ(ti)). In the following we
shall use εi, δi, Ui, ηi and µi to denote ε(ti), δ(ti), U(ti), η(ti) and µ(ti) respectively.
Thus we have

ηi = η0 +
i−1∑

j=0

µ̄j . (5.5)

Let us fix some 0 ≤ i ≤ N and consider the function hT0,T1
ηi,µi

(m0,m1) defined
in (2.13). For each small ε∗i > 0 and (m0,m1) ∈ M × M there exists (T̆ i

0, T̆
i
1) =

(T̆ i
0, T̆

i
1)(ε

∗
i ,m0,m1) ∈ Z+ such that

hT0,T1
ηi,µi

(m0,m1) ≥ h∞ηi,µi
(m0,m1)− ε∗i , ∀Tj ≥ T̆ i

j , j = 0, 1. (5.6)

Obviously, there are infinitely many Tj ≥ T̆ i
j (j = 0, 1) such that

|hT0,T1
ηi,µi

(m0,m1)− h∞ηi,µi
(m0,m1)| ≤ ε∗i . (5.7)
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Let γi(t,m0,m1, T0, T1): [−T0, T1] → M be the minimizer of hT0,T1
ηi,µi

(m0,m1), it fol-
lows from the lemma 2.3 that if ε∗i > 0 is sufficiently small, T̆ i

j (j = 0, 1) are sufficiently
large, and T0, T1 are chosen so that (5.7) holds, then

dγi(t,m0,m1, T0, T1) ∈ Ñηi,µi
(t) + εi, ∀0 ≤ t ≤ 1. (5.8)

From the Lipschitz property of hT0,T1
ηi,µi

(m0,m1) in (m0,m1) and the compactness of
M , we see that there are T̆ i

j = T̆ i
j (εi) (j = 0, 1), independent of (m0,m1), so that (5.6)

holds for all Tj ≥ T̆ i
j . We can see also that there exist T̂ i

j (εi) > T̆ i
j (εi) (j = 0, 1) so that

for any (m0,m1) ∈ M ×M , there are Tj = Tj(m0,m1) with T̆ i
j ≤ Tj ≤ T̂ i

j (j = 0, 1)
such that (5.7) and consequently (5.8) hold. Note that for different (m0,m1), we may
need different Tj ≥ T̆ i

j .

We are now ready to construct a connecting orbit joining N (c0) and N (cN ). We
consider τi as the time translation (q, t) → (q, t + τi) on M × R, and define the
modified Lagrangian

L̃ = L− η0 −
N−1∑

i=0

(−τi)∗µi. (5.9)

For each ~τ = (τ0, τ1, · · · , τN−1) the following variational problem

hT0,TN

L̃
(m,m′, ~τ) = inf

γ(−T0)=m
γ(TN+τN−1)=m′

∫ TN+τN−1

−T0

(
L− η0 −

N−1∑

i=0

(−τi)∗µi

)
(dγ(t), t)dt

−
N−1∑

i=1

(τi − τi−1)α(ci)− T0α(c0)− TNα(cN )

has a C1-minimizer γ(t,m, m′, ~τ , T0, TN ) which is clearly the solution of the Euler-
Lagrangian equation determined by L̃. We need to show it can be the extremal of L
if we suitably choose ~τ , T0 and TN . We define

Λ =
{
~τ ∈ ZN :max{T̆ i

0, T̆
i−1
1 + 1} ≤ τi − τi−1 ≤ max{T̂ i

0, T̂
i−1
1 + 1},

∀1 ≤ i ≤ N − 1, τ0 = 0
}

,

and take the minimum of hT0,TN

L̃
(m,m′, ~τ) over Λ

FL̃(m,m′, T0, TN ) = min
~τ∈Λ

hT0,TN

L̃
(m,m′, ~τ). (5.10)

Let ~τ∗(T0, TN ) be the minimal point about ~τ . If γ(t,m, m′, T0, TN ) is the minimizer
of FL̃(m,m′, T0, TN ), we claim that for t ∈ [τi, τi + 1] and 0 < i < N − 1

dγ(t,m, m′, T0, TN ) ∈ (−τi)∗
(
Ñηi−1,µi

|t
)

+ εi. (5.11)
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In fact, let us to choose mi = γ(τi−1 + 1), m′
i = γ(τi+1) for 0 < i < N − 1. Since

γ(t,m, m′, T0, TN ) is the minimizer of FL̃(m,m′, T0, TN ), thus

Aηi−1,µi((−τi)∗γ|τi+1
τi−1+1) = inf

γ∗(−T0)=mi

γ∗(T1)=m′
i

T̆ i
0≤T0≤T̂ i

0

T̆ i
1≤T1≤T̂ i

1

∫ T1

−T0

(L− ηi − µi)(dγ∗(t), t)dt

− T0α(ci)− T1α(ci+1). (5.12)

So, we obtain (5.11) from (5.6∼8), (5.12) and the choice of T̆ i
j as well as T̂ i

j (j = 0, 1).
We define the infimum limit of FL̃(m,m′, T0, TN )

h∞
L̃

(m,m′) = lim inf
T0,T1→∞

FL̃(m,m′, T0, TN ). (5.13)

Let T k
j (j = 0, N) be the subsequences such that T k

j →∞ as k →∞

|FL̃(m,m′, T k
0 , T k

N )− h∞
L̃

(m,m′)| ≤ min{ε∗0, ε∗N}, ∀ k,

as well as
lim

k→∞
FL̃(m,m′, T k

0 , T k
N ) = h∞

L̃
(m,m′),

and let γk(t,m, m′) = γ(t,m, m′, T k
0 , T k

N ) be the minimizer of FL̃(m,m′, T k
0 , T k

N ).
It is easy to see that (5.11) holds also for i = 0, N . From (5.3), (5.12) and the
definition of Ui we obtain that dγk(t) is the extremal of L with the boundary condition
γk(−T k

0 ) = m, γk(T k
N + τ∗N−1) = m′. Clearly, for any compact interval [a, b] the set

{γk}k≥k̄ is pre-compact in the C1([a, b],M) topology if k̄ is suitably large. Let γ:
R → M be the accumulation point of {γk}, then dγ is the solution of the Euler-
Lagrange equation determined by L and

α(dγ) ⊆ Ã(c0), ω(dγ) ⊆ Ã(cN ).

Consider a bi-infinite sequence (· · · , ci, · · · ) of C-equivalent cohomology classes
and a sequence (· · · , εi, · · · ) of small positive numbers. Let {τi}∞−∞ be a monotone
sequence of integers such τ0 = 0, τi → ±∞ as i → ±∞. Let

νN =
N∑

i=−N

(−τi)∗µi.

For each ~τN = (τ−N , · · · , τN−1) we consider the following variational problem

h
T−N ,TN

L̃
(m,m′, ~τN ) = inf

γ(−T−N−τ−N )=m
γ(TN+τN−1)=m′

∫ TN+τN−1

−T−N−τ−N

(
L− η0 − νN

)
(dγ(t), t)dt

−
N−1∑

i=−N+1

(τi − τi−1)α(ci)− T−Nα(c−N )− TNα(cN )
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Let ΛN be the set of 2N dimensional integer vectors defined in the same way as for
Λ with the subscripts ranging over (−N, · · · , N − 1) instead of (0, · · · , N − 1). Let
γN (t,m, m′, T−N , TN ) be the minimizer of

FL̃(m,m′, T−N , TN ) = min
~τ∈ΛN

h
T−N ,TN

L̃
(m,m′, ~τN ).

With the same arguments above, we can make γN (t,m, m′, T−N , TN ) be the extremal
of L by choosing suitably large T−N , and TN . From (5.3) and (5.11) we can see that
dγN passes within a distance of εi of each L̃(ci) for −N ≤ i ≤ N if we set T̂ i

j suitably
large for each j = 0, 1 and each −N ≤ i ≤ N . Let γ: R → M be an accumulation
point of the set {ΓN}∞N≥N0

, dγ clearly determines a trajectory of the Euler-Lagrange
flow of L which passes within a distance of εi of each Ã(ci) for all i ∈ Z. Therefore
we have proved the theorem

Theorem 5.1. (Mather 1993) Suppose c0 and cN are C-equivalent classes. There
there is a trajectory of the Euler-Lagrange flow of L whose α-limit set lies in Ã(c0)
and whose ω-limit set lies in Ã(cN ).

Consider a bi-infinite sequence (· · · , ci, · · · ) of C-equivalent cohomology classes
and a sequence (· · · , εi, · · · ) of small positive numbers. Then there is a trajectory of
the Euler-Lagrange flow of L which passes within a distances of εi of each Ã(ci) in
turn.

The next step is to establish C-equivalence among some Mañé sets of the special L
given by (2.2). Let us consider the first de Rham cohomology class c ∈ H1(M,R) such
that the support of c-minimal measure uniquely sits on Γ̃ ⊂ Σ̃. First, we consider
the case that Γ is a Denjoy set and there is no invariant circle containing Γ. The
rotation number of Γ is irrational. By the well-known knowledge we see that the
β-function for the twist map is differentiable at the point of irrational number, it
implies that there is only one c1 such that Γ̃ is the support of c-minimal measure
if c ∈ intI(c1). We see from the lemma 3.4 that Ñ (c) = M̃(c) when a(c1) < c2 <

b(c1). By the upper semi-continuity of c → Ñ (c) we find that there exists δ > 0, if
c′ ∈ J = ((c1− δ, c1 + δ)× (a(c1)+ δ, b(c1)− δ) then N (c′) is in a small neighborhood
of π(Γ̃), thus each of such N0(c) is homotopically trivial. Therefore, all c′ ∈ J are
C-equivalent.

Next, let us consider the case when Γ consists of single periodic orbit. Since the
β-function of the twist map has a corner at the rational rotation number, there is a
flat piece of the α-function of the twist map, over the interval [c−1 , c+

1 ]. Consequently,
there is a rectangle (c−1 , c+

1 ) × (a(c1), b(c1)) ∈ H1(M,R) such that all c-minimal
measures have their support on Γ̃ if c is in this rectangle. When c−1 < c1 < c+

1 ,
a(c1) < c2 < b(c1), Ñ (c) = M̃(c). When a(c1) < c2 < b(c1) and c1 = c−1 or
c1 = c+

1 , Ñ (c) = M̃(c) ∪ {minimal homoclinic orbit in Σ̃}. Due to the upper semi-
continuity of c → Ñ (c) and the hypothesis of (H2), we find that there exists δ > 0, if
c′ ∈ J = ((c−1 − δ, c+

1 + δ)× (a(c1) + δ, b(c1)− δ) then N0(c) is homotopically trivial,
thus all c′ ∈ J are C-equivalent.
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Finally we consider the case when Γ is contained in an invariant circle on the
boundary of a gap. In this case Γ̃ is the support of that c-minimal measure with
c ∈ I(c̄1) = {(c̄1, c2) : a(c̄1) ≤ c2 ≤ b(c̄1)}. Because of the hypotheses (H1), (H3) and
in virtue of the lemma 3.4∼6, we have N0(c) ⊂ U = ∪m

i=0Ui, where Ui ∩ Uj = ∅ if
i 6= j, U0 is an open neighborhood of Γ, all other Ui (i 6= 0) are open set contractible
to one point. Let J = (c̄1 − δ, c̄1 + δ) × (a(c̄1) − δ, b(c̄1) + δ). Due to the upper
semi-continuity of c → Ñ (c), we can see that N0(c) ⊂ U for all c ∈ J if δ > 0
is sufficiently small. To establish the C-equivalent relationship between any two
c, c′ ∈ J , let us consider first the special case when c, c′ ∈ J and c− c′ = (0, c2 − c′2).
Let Γ(s) = (c1, sc2 + (1 − s))c′2 for 0 ≤ s ≤ 1, obviously, [dq2] is the annihilator of
VΓ(s)(t) ∀s ∈ [0, 1], t ∈ T. Thus Γ(s) is an admissible curve. Second, let us consider
the case when c = (c1, c2) ∈ J but c2 > b(c̄1) or c2 < a(c̄1). Under the hypotheses
(H1) and (H3), for any δ > 0, there exists c = (c̄1, c2) with b(c̄1) < c2 < b(c̄1) + δ
or a(c̄1) − δ < c2 < a(c̄1) such that Nt(c) is homopotically trivial for any t ∈ T.
Therefore, ∃ δ′ > 0 such that for all c′ ∈ Bδ′(c), N0(c′) is homotopically trivial.
Replacing δ with δ′ in the definition of J , we find that all c ∈ J are C-equivalent. In
fact, given any two c, c′ ∈ J , we can construct the admissible curve as follows. Let
Γ: [0, 3] → H1(M,R),

Γ(s) =





sc + (1− s)c̃, 0 ≤ s ≤ 1
(s− 1)c̃ + (2− s)c̃′, 1 ≤ s ≤ 2
(s− 2)c̃′ + (3− s)c′, 2 ≤ s ≤ 3

in which c̃ and c̃′ ∈ J are defined in the way c̃2 = c̃′2 > b(c̄1) or c̃2 = c̃′2 < a(c̄1),
c̃1 = c1 and c̃′1 = c′1, both Nt(c̃) and Nt(c̃′) are homotopically trivial.

Lemma 5.2. We assume the hypotheses (H1∼3). Let ĉ = (c1(σ′), 0) and c̄ =
(c1(σ∗), 0) be two co-homology classes such that Ñ0(ĉ) and Ñ0(c̄) make up the whole
boundary of some given gap with σ′ < σ∗. Then ĉ and c̄ are C-equivalent.

Proof: By assumption, there is no other invariant circle betweenN0(ĉ) andN0(c̄). In
this case, we have shown that for any c1(σ′) ≤ c1 ≤ c1(σ∗) there is an open rectangle
J(c1) ⊂ H1(M,R) containing (c1, 0) such that all c ∈ J(c1) are C-equivalent. By
the compactness of the interval [c1(σ′), c1(σ∗)] there is a sequence {c(i)

1 }m
i=0 such that

∪m
i=0J(c(i)

1 ) ⊃ [c1(σ′), c1(σ∗)] × {0}. Obviously, the C-equivalence has transitivity.
¤

This C-equivalence establishes the existence of the diffusion orbits crossing gaps
as we have the theorem 5.1.

To go further, we need to know more details of U -step forms. Let ηj be any given
closed 1-form such that [ηj ] = c(j) for j = 1, k. A natural question is whether there
exists such kind of µ(t) so that µ(t) = η1 for t ≤ 0 and µ(t) = ηk for t ≥ τk + 1 even
though c(1) is equivalent to c(k)? In general, we do not know whether it is true or
not, but in our case, the answer is yes.
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Lemma 5.3. Let c(1) = (c(1)
1 , c

(1)
2 ), c(k) = (c(k)

1 , c
(k)
2 ) be two cohomology classes

connected by an admissible curve Γ, where a(c(1)
1 ) ≤ c

(1)
2 ≤ b(c(1)

1 ), a(c(k)
1 ) ≤ c

(k)
2 ≤

b(c(k)
1 ), and M̃(c(1)), M̃(c(k)) ⊂ Σ̃. Let η1, ηk be two closed one forms such that

[η1] = c(1), [ηk] = c(k). Then there exists a composition of finite U -step forms µ(t)
such that µ(t) = η1 for t ≤ 0 and µ(t) = ηk for t ≥ τk + 1.

Proof. Since Φ is an area-preserving twist map when it is restricted on the cylinder,
by the hypothesis (H2), there is some c with c

(1)
1 < c1 < c

(k)
1 , c2 = 0 such that its

semi-static minimal orbit set consists of single m-periodic orbit with m > 1. Thus,
for each s ∈ T, Ns consists of several points, Ns(c) = ∪{qi(s)}. Consequently, there
exist δ > 0, and 0 < s1 < s2 < 1 such that

(
∪ {qi(s1)}+ 3δ

)
∩

(
∪ {qi(s2)}+ 3δ

)
= ∅.

There also exists ε > 0 such that 0 < s1 − ε < s1 + ε < s2 − ε < s2 + ε < 1 and
∪{qi(s)} ⊂ ∪{qi(sj)}+ 1

2δ when |s− sj | < ε for j = 1, 2.

Let η be an any exact 1-form, we claim there exists a U -step form ν such that
ν(t) = 0 for t ≤ 0 and ν(t) = η for t ≥ 1, where U is a neighborhood of N (c) =
∪s∈T∪i{qi(s)}. Let F : M → R be the function such that η = dF . Let λδ(q): M → R
be a smooth function λδ = 1 when ‖q‖ ≤ δ, 0 < λδ < 1 when δ < ‖q‖ < 2δ and
λδ = 0 when ‖q‖ ≥ 2δ. Let

F ∗ =
(
1−

k∑

i=1

λδ(q − qi(s1))
)
F, F̃ =

( k∑

i=1

λδ(q − qi(s1))
)
F,

obviously, supp(dF ∗) ∩ (∪{qi(s1)} + 2δ) = ∅, supp(dF̃ ) ∩ (∪{qi(s2)} + 2δ) = ∅. If
we choose

ν = ρ(t− s1 + ε)dF ∗ + ρ(t− s2 + ε)dF̃ ,

where ρ = 0 for t ≤ 0, 0 < ρ < 1 for 0 < t < 2ε and ρ = 1 for all t ≥ 2ε, then ν(t) = 0
for t ≤ s1 − ε and ν(t) = dF for t ≥ s2 + ε. Let U = ∪j=1,2((∪{qi(sj)} + δ) × [sj −
ε, sj + ε]) ∪M × ([0, s1 − ε] ∪ [s1 + ε, s2 − ε] ∪ [s2 + ε, 1]), then dν|U = 0.

Since both [η1] and [η2] are C-equivalent to c, there are two composition of U -step
forms ν1, ν2 such that

η1 + ν1(t) = 〈c, dq〉+ dF1, t ≥ τ1;

ν2(t) = 0, t ≤ τ1 + 1,

〈c, dq〉+ ν2(t) = η2 + dF2, t ≥ τ2.

By the demonstration above, there is a U -step form ν such that ν(t) = −d(F1 + F2)
when t ≥ 1. Clearly, the 1-form µ = (−τ1)∗ν + ν1 + ν2 is what we are looking for. ¤
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The remaining work in this section is to join the orbit crossing the gaps smoothly
with the orbit constructed via Arnold’s mechanism. We shall make use of some ideas
developed in [Bs] and in [BCV], it is showed that the diffusion orbits in several exam-
ples, constructed by transition chains, are actually the orbits which locally minimize
the Lagrange action.

Let us consider the barrier function of those cohomology classes corresponding to
an invariant circle Γc on the cylinder. In this case, M0(c) ⊆ Γc and dc(ξ, ξ′) = 0 for
all ξ, ξ′ ∈ π(Γc). Thus

B∗
c (q) = min

ξ,η∈M(c)
{h∞c (ξ, q) + h∞c (q, η)− h∞c (ξ, η)}

=h∞c (ξ, q) + h∞c (q, ξ), ∀ ξ ∈ π(Γc). (5.14)

Under the hypothesis (H1), the set {B∗
c(σ) = 0} ∩ T × (a, 2π − a) is totally dis-

connected for all σ ∈ S. Thus, for any given σ ∈ S and any ε > 0, there are finite
and mutual disjoint balls Bε(qi) and δ = δ(σ, ε) > 0 such that ∪Bε(qi) ⊃ {B∗

c(σ) =
0} ∩ T× (a, 2π − a) and

min{B∗
c(σ)(q) : q ∈ ∂Bε(qi),∀i} ≥ 2δ, B∗

c(σ)(qi) = 0.

In other words, as a function of q. B∗
c(σ) reaches its minimum in {a ≤ q2 ≤ 2π − a}

away from the boundary

min
q∈∂Bε(qi)

B∗
c(σ)(q)− min

q∈Bε(qi)
B∗

c(σ)(q) ≥ 2δ. (5.15)

Recall for each z ∈ T, there is unique zσ ∈ π(Γσ) such that zσ = (z, q2Γσ
(z)). From

(5.14), (5.15) and the Hölder continuity guaranteed by Lemma 4.4 we find that for
each z ∈ T

min
q∈∂Bε(qi)

h∞c(σ)(zσ, q) + h∞c(σ′)(q, zσ′)−

min
q∈Bε(qi)

h∞c(σ)(zσ, q) + h∞c(σ′)(q, zσ′) ≥ 3
2
δ, (5.16)

provided that σ′ is sufficiently close to σ. As these functions depend on the choice of
closed 1-form ηc, to obtain (5.16) we choose ηc = 〈c(σ), q̇〉. In general, h∞c(σ)(zσ, q) +
h∞c(σ′)(q, zσ′) is also the function of z, but its variation over z ∈ T is very small if
σ′ is sufficiently close to σ, becasue q2Γσ (z) has 1

2 -Hölder continuity in σ. Since S is
compact, there exist δ = δ(ε) and ε1 = ε1(ε, δ), independent of σ, such that (5.15)
and (5.16) hold if |σ − σ′| ≤ ε1.

We say σj is linked with σj+1 by transition torus with some persistency if σj+1 ∈ S
is so close to σj such that

|c1(σj)− c1(σj+1)| ≤ 1
4
δ, (5.17)
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and (5.16) hold where we replace σ and σ′ by σj and σj+1 respectively. We say σj is
linked with σk by transition chain with some persistency if there there is a sequence
σj , σj+1, · · · , σk−1, σk in S such that for each j ≤ i < k σi is linked with σi+1 by
transition torus with some persistency. To be brief, we shall say in the following that
they are linked by transition torus (chain). Note that S ⊂ [A′, B′] is compact, we
can find finitely many σk ∈ S (0 ≤ k ≤ K) such that we have one of the following
alternatives for each k < K: either σk is linked with σk+1 by transition chain, or Γσk

and Γσk+1 make up the boundary of an annulus of Birkhoff instability, i.e. there is
no other invariant circle between Γσk

and Γσk+1 . In the following we shall use Γi to
denote Γσi

and use zi to denote zσi
.

Let us consider a sequence of invariant circles Γi (i = 0, 1, · · · , `, ` + 1) on the
cylinder Σ such that Γ1 is linked with Γ` through the transition chain Γ2, · · · ,Γ`−1,
and there are two annuli of Birkhoff instability, one has Γ0 and Γ1 as its boundary,
another one has Γ` and Γ`+1 as its boundary. By the construction of this transition
chain we know that for each 1 ≤ i < ` there is xi ∈ {B∗

c(σi)
= 0} ∩ (a, 2π − a) such

that for any z ∈ T

min
q∈∂Bε(xi)

h∞c(σi)
(zi, q) + h∞c(σi+1)

(q, zi+1)−

min
q∈Bε(xi)

h∞c(σi)
(zi, q) + h∞c(σi+1)

(q, zi+1) ≥ 3
2
δ. (5.16i)

As in [BCV], let us consider the covering of T2 given by M̄ = T × R. For each
xi we identify it with its lift in the region T × (0, 2π) and single out a point on
its lift, x̄i = xi + (0, 2iπ), we also identify each zi with its lift zi + (0, 2iπ). For
i ∈ (1, 2, . . . , ` − 1) we introduce a smooth function Ψi: T × R → R which vanishes
outside {q : |q − x̄i| ≤ 2ε} and such that

∇Ψi(q) = c(σi+1)− c(σi) ∀q : |q − x̄i| ≤ ε. (5.18)

If we set
c̄i(q) = c(σi) +∇Ψi(q), (5.19)

then

h∞c̄i
(z, q) + h∞c̄i+1

(q, z) = h∞c(σi)
(z, q) + h∞c(σi+1)

(q, z) + Ψi+1(q)−Ψi(q).

Note Ψi+1(q) = 0 as q ∈ Bε(qi). If we require further that σi+1 is so close to σi that
(5.17) holds, we obtain from (5.16i) and (5.18) that

min
q∈∂Bε(xi)

h∞c̄i
(zi, q) + h∞c̄i+1

(q, zi+1)−
min

q∈Bε(xi)
h∞c̄i

(zi, q) + h∞c̄i+1
(q, zi+1) ≥ δ. (5.20)
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Let B = Bε(x1)× Bε(x2)× · · · × Bε(x`−1), Q = (q1, . . . , q`−1), ~n = (n0, n1, · · · , n`) ∈
Z`+1 and define

h(Q, z1, z`, ~n) =
`−2∑

i=1

h
ni+1−ni

c̄i+1
(qi, qi+1)

+ hn1−n0
c̄1

(z1, q1) + h
n`−n`−1
c̄`

(q`−1, z`), (5.21)

We see that h, as the function of Q, takes its local minimum in the interior of B if
ni+1 − ni is sufficiently large for all 1 ≤ i ≤ `− 1. In fact, let x∗i be the point where
the function of q h∞c̄i

(zi, q) + h∞c̄i+1
(q, zi+1) attains its local minimum in Bε(xi), we

find that the function of Q

`−1∑

i=1

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1)

takes its local minimum at the point (x∗1, x
∗
2, . . . , x

∗
`−1) which is obviously in the

interior of B. Thus, the local minimum of h is in the interior of B if the following
holds

lim
ni+1−ni→∞

h
ni+1−ni

c̄i+1
(qi, qi+1) = h∞c̄i+1

(qi, zi+1) + h∞c̄i+1
(zi+1, qi+1). (5.22)

To show this let us state a lemma:

Lemma 5.4. Assume M̃(c) has a dense orbit. For any m0,m1 ∈ M , let γ: [0,K] →
M be c-minimal curve connecting m0 and m1, γ(0) = m0, γ(K) = m1. For any
δ > 0, any K1 ∈ Z+ and any z ∈ M0(c), ∃ K0 ∈ Z+, if K ≥ K0 then there exists
T ∈ Z+ such that γ(T ) ∈ Bδ(z), T ≥ K1 and K0 − T ≥ K1.

Proof: For any δ∗ > 0 there is K0 ∈ Z+ and k ∈ Z+ such that dγ(k) ∈ M̃0(c)+δ∗ if
K ≥ K0, otherwise there would be another c-minimal measure. For any z ∈ M0(c),
by choosing sufficiently small δ∗ and sufficiently large K0 there is some T ∈ Z+ so
that γ(T ) is in δ-neighborhood of z. Clearly, for any K1 ∈ Z+ there exists such T
so that T ≥ K1 and K0 − T ≥ K1, otherewise there would be another c-minimal
measure also. ¤

Applying the lemma to this problem we find that for each m ∈M(ci), each small
δ > 0 and each large K > 0 there exist n∗ ∈ Z+ such that if n ≥ n∗ then there exists
zn ∈ Bδ(m) such that

hn
ci

(q, q′) = hn1
ci

(q, zn) + hn2
ci

(zn, q′)

where n = n1 + n2 with n1, n2 ≥ K. Using the Lipschitz property of hn
ci

(m,m′) in
(m,m′) we find that for each small ε > 0 the following holds

∣∣hn
ci

(q, q′)− hn1
ci

(q, m)− hn2
ci

(m, q′)
∣∣ < ε
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if δ is sufficiently small and n∗ is sufficiently large. Since we consider the M(ci)
which is on the cylinder with irrational number, thanks to the corollary 2.7, we know
that L− 〈c̄i(q), q̇〉 is regular for each 0 ≤ i ≤ ` + 1, (5.22) follows from the property
that dci

(m,m′) = 0 for all m,m′ ∈ π(Γi). Denote the corresponding minimizer by
γ: [n0, n`] → M , we use γi(t) to denote its restriction on the time interval [ni, ni+1].
Once γ(t) reaches its local minimum in the interior of B, standard argument shows
that

∂Lc̄i

∂q̇
(dγi(t), t) =

∂Lc̄i+1

∂q̇
(dγi+1(t), t)

holds at t = ni+1. Note that Lc̄i = Lc̄i+1 in the neighborhood of Bε(x̄i) by the
definition of Ψi(q), we get

γ̇i(ni+1) = γ̇i+1(ni+1),

thus γ(t) is a solution of the Euler-Lagrange equation over the time interval [n0, n`].

In fact, we can remove the restriction on z1 and z` that there is z ∈ T so that
zj = (z, q2Γj

(z)) for j = 1, `. We can replace zj by any point z∗j ∈ M(cj) simply
because dcj

(m,m′) = 0 for all m,m′ ∈ π(Γj) thus the function of Q = (q1, . . . , q`−1)

`−2∑

i=2

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1) + h∞c̄1
(z∗1 , q1) + h∞c̄`

(q`, z
∗
` )

=
`−1∑

i=1

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1) + h∞c̄1
(z∗1 , z1) + h∞c̄`

(z`, z
∗
` )

also reaches its local minimum at the point (x∗1, x
∗
2, · · · , x∗`−1). So, the Lipschitz

property of hn
c enable us to assert that there exist large (∆n1,∆n2, · · · ,∆n`) and

small δ∗ > 0, if ni−ni−1 ≥ ∆ni, zj ∈ Bδ∗(z∗j ) for j = 1, `, then as the function of Q,
h(Q, z1, z`, ~n) reaches its local minimum in the interior of B.

Now we are ready to construct an orbit γ: R → M such that α(dγ) ⊃ Γ0 and
ω(dγ) ⊃ Γ`+1.

By the condition, Γi and Γi+1 make up the boundary of the resonant zone Zi for
i = 0, `. For i = 0, `+1 we let c(i) be a co-homology class such that {B∗

c(i) = 0} = Γi.
For i = 1, ` we let c(i) be a co-homology class such that c(i) = (c(i)

1 , b(c(i)
1 )), in this

case, {B∗
c(i) = 0} = Γi∪{its c(i)-minimal homoclinic orbits}. Since the C-equivalence

between c(i) and c(i+1)has been established for i = 0, `, in analogy to the proof of
Theorem 5.1 we can find the composition of finite U -step forms νj

νj =
Nj∑

i=0

(−τ j
i )∗µj

i , (j = 1, 2)

such that their cohomology classes are [ν1(t)|t≤0] = 0, [ν1(t)|t≥τ1
N1

+1] = c(1) − c(0),

[ν2(t)|t≤0] = 0 and [ν2(t)|t≥τ2
N2

+1] = c(`+1) − c(`), where τ j
i is the time translation



41

(q, t) → (q, t + τ j
i ). Moreover, by the lemma 5.3, we can choose those νj such that

ν1(t)|t≤0 = 0, ν1(t)|t≥τ1
N1

+1 = 〈c̄1(q) − c(σ0), dq〉, ν2(t)|t≤0 = 0 (see (5.18) for the
definition of c̄i(q)) and ν2(t)|t≥τ2

N2
+1 = 〈c(σ`+1) − c(σ`), dq〉. Let η1

0 = 〈c(σ0), dq〉,
η2
0 = 〈c̄`(q), dq〉, ηj

i = ηj
0 +

∑i−1
k=0 µ̄j

k and cj
i = [ηj

i ], then η1
N1+1 = 〈c̄1(q), dq〉, η2

N2+1 =
〈c(σ`+1), dq〉. Based on the proof of Theorem 5.1 we can choose each µj

i , the adapted
neighborhood U j

i and εj
i > 0 so that

π(Ñηj
i ,µj

i
) + εj

i ⊂ U j
i , ∀ j = 1, 2, 0 ≤ i ≤ Nj . (5.6ij)

For each εj∗
i > 0, there exist T̂ j

ki, T̆
j
ki ∈ Z+ with T̂ j

ki > T̆ j
ki, (k = 0, 1) such that

hT0,T1

ηj
i ,µj

i

(m0,m1) ≥ h∞
ηj

i ,µj
i

(m0,m1)− εj∗
i , ∀ Tk ≥ T̆ j

ki, (k = 0, 1),

∀ (m0,m1) ∈ M ×M ;

for any given (m0,m1) ∈ M ×M there exists Tk = Tk(m0,m1) with T̆ j
ki ≤ Tk ≤ T̂ j

ki

such that ∣∣∣hT0,T1

ηj
i ,µj

i

(m0,m1)− h∞
ηj

i ,µj
i

(m0,m1)
∣∣∣ ≤ εj∗

i . (5.7ij)

Let γj
i (t,m0,m1, T0, T1): [−T0, T1] → M be the minimizer of hT0,T1

ηj
i ,µj

i

(m0,m1). Let T̆ j
ki

be set so large and εj∗
i > 0 be set so small such that if (5.7ij) holds, then

dγj
i (t,m0,m1, T0, T1) ∈ Ñηj

i ,µj
i
+ εj

i , ∀ 0 ≤ t ≤ 1. (5.8ij)

We define the index set for ~τ j = (τ j
0 , τ j

1 , · · · , τ j
Nj

)

Λj =
{
~τ j ∈ ZNj :max{T̆ j

0(i−1), T̆
j
1i + 1} ≤ τ j

i − τ j
i−1 ≤ max{T̂ j

0(i−1), T̂
j
1i + 1},

∀1 ≤ i ≤ Nj , τ
j
0 = 0

}
,

and introduce a modified Lagrangian depending on the parameters ~τ j (j = 1, 2) and
~n

L̃ =





L− 〈c(σ0), q̇〉 − (τ1
N1

+ 1)∗ν1, t ≤ n1,

L− 〈c(σj) + %j(t)∇Ψj(q), q̇〉, nj−1 ≤ t ≤ nj , 2 ≤ j ≤ `− 1,

L− 〈c(σ`), q̇〉+ (n` + τ2
N2

+ 1)∗ν2, t ≥ n`−1,

where %j is a smooth function such that %j(t) = 0 for t ≤ 1
2 (nj+1 + nj), 0 < %j < 1

when 1
2 (nj+1 + nj) < t < 1

2 (nj+1 + nj) + 1 and %j = 1 when t ≥ 1
2 (nj+1 + nj) + 1,

this function is well defined if nj − nj−1 ≥ 4. Clearly, L̃ is smooth in

(q̇, q, t) ∈ TM ×
{
R\

`−1⋃

i=1

{ni}
}
∪

`−1⋃

i=1

TBε(xi)×
(
ni − 1, ni + 1

)
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For each (m,m′) ∈ M ×M , Q = (q1, · · · , q`−1) ∈ B let

h
T0,T`+1

L̃
(m,m′, Q, ~τ1, ~τ2, ~n) = inf

γ(−T∗0 )=m

γ(T∗`+1)=m′

γ(nj)=qj

j=1,··· ,`−1

∫ T∗`+1

−T∗0

L̃(dγ(t), t)dt

+
∑

1≤i≤Nj

j=1,2

(τ j
i − τ j

i−1)α(cj
i ) + n0α(c1)

+ (n` − n`−1)α(c`) + T0α(c0) + T`+1α(c`+1)

where T ∗0 = T0 + τ1
N1

+ 1, T ∗`+1 = T`+1 + n` + τ2
N2

+ 1 and T0, T`+1 > 0. In virtue
of the lemma 5.4, we can take sufficiently large n′1 so that any c(σ1)-minimal curve
γ1: [0, n1] → M with n1 ≥ n′1 has a point γ1(n0) ∈ Bδ∗(z∗1) with n1 − n0 ≥ ∆n1.
Similarly, we can take sufficiently large ∆n′` so that any c(σ`)-minimal curve γ`:
[n`−1, n

′
`] → M with n′`−n`−1 ≥ ∆n′` has a point γ`(n`) ∈ Bδ∗(z`+1) with n′`−n`−1 >

n` − n`−1 ≥ ∆n`. We can also take suitable large ni (i = 2, 3, · · · , ` − 1) so that
ni+1−ni ≥ ∆ni for each 1 ≤ i ≤ `−1. Under these conditions we take the minimum
of h

T0,T`+1

L̃
(m,m′, Q, ~τ1, ~τ2, ~n) over B

h
T0,T`+1

L̃
(m,m′, ~τ1, ~τ2, ~n) = min

Q∈B
h

T0,T`+1

L̃
(m,m′, Q, ~τ1, ~τ2, ~n).

Let γ(t) = γ(t,m, m′, ~τ1, ~τ2, ~n) be the minimizer of h
T0,T`+1

L̃
(m,m′, ~τ1, ~τ2, ~n). Recall

the support of Ψi is a small ball. For each cohomology class under our consideration
here, the support of the minimal measure is on the cylinder, the hyperbolicity of the
cylinder let us see that γ(t) is outside of the support of ∇Ψi if both t−ni and ni+1−t
are suitably large, in other words, for t ∈ [ 12 (ni+1 + ni), 1

2 (ni+1 + ni) + 1], γ(t) falls
into the area where 〈%i(t)∇Ψi(q), dq〉 is exact. Thus, dγ solves the Euler-Lagrange
equation of L for t ∈ [n0, n`] if we repeat the argument for the function h(Q, z1, z`, ~n).

Next, by choosing sufficiently large value for T̆ 1
1N1

, T̂ 1
1N1

, T̆ 2
00 and T̂ 2

00 we can
assume T̆ 1

1N1
≥ n′1 and T̆ 2

00 ≥ n`−1 + ∆n′`. In this case, let us consider the minimum
of h

T0,T`+1

L̃
(m,m′, ~τ1, ~τ2, ~n) over Λ1×Λ2×{T̆ 1

1N1
≤ n1 ≤ T̂ 1

1N1
}×{T̆ 2

00 +n`−1 ≤ n` ≤
T̂ 2

00 + n`−1}

h
T0,T`+1

L̃
(m,m′) = min

~τ1∈Λ1,~τ2∈Λ2

T̆ 1
1N1

≤n1≤T̂ 1
1N1

T̆ 2
00+n`−1≤n`≤T̂ 2

00+n`−1

h
T0,T`+1

L̃
(m,m′, ~τ1, ~τ2, ~n).

Denote by ~τ j∗, n∗1 and n∗` where the the minimum is reached. Let γ(t) = γ(t,m, m′,
T0, T`+1) be the minimizer of h

T0,T`+1

L̃
(m,m′). Let τ1j = τ1

j − τ1
N1
− 1, τ2j = τ2

j +
τ2
N2

+1+n`. From the proof of Theorem 5.1 we can see that (5.6ij), (5.7ij) and (5.8ij)
hold for (−τij)∗γ at j = 1, 2, 0 ≤ i ≤ Nj except for (i, j) = (0, 1), (N2, 2).
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As the third step we consider the limit infimum

h∞
L̃

(m,m′) = lim inf
T0→∞

T`+1→∞
h

T0,T`+1

L̃
(m,m′).

Let T k
0 , T k

`+1 be the subsequence so that T k
0 →∞, T k

`+1 →∞ as k →∞,

|hT k
0 ,T k

`+1

L̃
(m,m′)− h∞

L̃
(m,m′)| ≤ min{ε1∗0 , ε2∗N2

}, ∀ k,

and
lim

k→∞
h

T k
0 ,T k

`+1

L̃
(m,m′) = h∞

L̃
(m,m′),

and let γk: [−T k∗
0 , T k∗

`+1] → M be the minimizer of h
T k

0 ,T k
`+1

L̃
(m,m′), where T k∗

0 =
T k

0 +τ1∗
N1 +1, T k∗

`+1 = T k
`+1 +n∗` +τ2∗

N2
+1. By the similar argument to prove Theorem

5.1 we can see (5.6ij), (5.7ij) and (5.8ij) hold for (−τij)∗γk at (i, j) = (0, 1), (N2, 2)
also. In this case, dγk is a solution of the Euler-Lagrange equation induced by L.
For each small δ, dγk connects Γ̃0 + δ with Γ̃`+1 + δ if k is sufficiently large. Let γ:
R→ M be the accumulation point of {γk}k∈Z+ , then α(dγ) = Γ0 and ω(dγ) = Γ`+1

since Ã(ci) = Γi for i = 0, ` + 1.

The construction of diffusion orbits can be done in the same way when there are
finitely many resonant gaps.

6, Generic property

The construction of diffusion orbits is under the hypotheses (H1), (H2) and (H3).
The task here is to show these hypotheses are dense properties in Cr-topology for
r ≥ 3. Since we are interested in the diffusion from {p1 < A} to {p1 > B}, a compact
domain for {‖p‖ ≤ K}×T2 satisfies such an requirement if K > 0 is sufficiently large.
The Cr-topology is endowed in the usual sense for functions {‖p‖ ≤ K} × T2 → R.

The hypothesis (H1) is made only for those co-homology classes c = (c1, b(c1)),
such that M̃0(c) is contained in an invariant circle on the cylinder. Its Mañé set Ñ (c)
consists of the invariant circle and its minimal homoclinic orbits, i.e., {B∗

c = 0}. Let
us look at this issue from the Hamiltonian dynamics point of view.

Since the system is positive definite in p, it has a generating function G(q, q′)

G(q, q′) = inf
γ∈C1([0,1],M̄)
γ(0)=q,γ(1)=q′

∫ 1

0

L(γ(s), γ̇(s), s)ds, (6.1)

where (q, q′) is in the covering space M̄ = R2×R2. Clearly, G(q + 2mπ, q′+ 2mπ) =
G(q, q′) for all m ∈ Z2. The map ΦH : (p, q) → (p′, q′) is given by

p′ = ∂q′G(q, q′), p = −∂qG(q, q′). (6.2)
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Let π1 be the standard projection from R2 to T2, let c ∈ R2 and

Gc(q, q′) = G(q, q′)− 〈c, q′ − q〉

then
hc(x, x′) = min

π1(q)=x
π1(q

′)=x′

Gc(q, q′)− α(c). (see (2.6)) (6.3)

As the system is nearly integrable, the matrix ∂2
q′qG is non-degenerate everywhere.

Thus we can solve the second equation in (6.2) and obtain somehow more explicit
form of the map (6.2)

p′ =
∂G

∂q′
(q, q′(p, q)), q′ = q′(p, q). (6.4)

Let us consider a small perturbation G(q, q′) + κ(q − q′)G1(q′) of the generating
function in which 0 ≤ κ(q− q′) ≤ 1, κ(q− q′) = 1 if |q− q′| ≤ K and κ(q− q′) = 0 if
|q− q′| ≥ K + 1. We choose sufficiently large K so that {‖p‖ ≤ max(|A|, |B|) + 1} is
contained in the set where |q − q′| ≤ K. In this set the map will have the form

p′ =
∂G

∂q′
(q, q′(p, q)) +

∂G1

∂q′
(q′(p, q)), q′ = q′(p, q). (6.5)

Note that both stable and unstable manifolds of Γ keep horizontal over the strip
U = {a ≤ q2 ≤ 2π − a}, restricting Φ to W s and to Wu where they keep horizontal,
and projecting it to the underline manifold M along the fibers we obtain two maps
fs and fu on M such that π ◦ Φ = fs,u ◦ π. We choose G1 ∈ Cr satisfying its
support supp(G1) = Bb(q∗) mod 2πm ⊂ U mod 2πm where m ∈ Z2. We see that
(fu)−1(Bb(q∗))∩ Bb(q∗) = ∅ and fs(Bb(q∗))∩ Bb(q∗) = ∅ if b > 0 is chosen suitably
small. Let us consider the problem in the covering space T × R and assume one
lift of the unstable manifold starting from q2 = 0 to the right, one lift of the stable
manifold starting from q2 = 2π to the left. From (6.5) we can see that the local
stable manifold is not deformed W s|[q∗2 − b ≤ q2 ≤ 2π + q2Γ(q1)] = {q, dSs + c(σ) :
q∗2 − b ≤ q2 ≤ 2π + q2Γ(q1)}, but the unstable manifold undergoes slight deformation,
Wu|[q2Γ(q1) ≤ q2 ≤ q∗2 + b] = {q, dSu + dG1 + c(σ) : q2Γ(q1) ≤ q2 ≤ q∗2 + b}. It is
easy to see that the barrier function has the form:

B∗
c(σ)(q) = Su

c(σ)(q)− Ss
c(σ)(q)−G1(q) + 2πb(c1(σ)), if q ∈ Bb(q∗) (6.6)

We should note the total action of the minimal orbit may be changed because of the
perturbation, in other words, the associated cohomology class may be subjected to a
small perturbation (c1, b(c1)) → (c1, b(c1)± ε).

Let Rd = {q ∈ M : |q1−q∗1 | ≤ d, |q2−q∗2 | ≤ d} ⊂ Bb(q∗), let Sσ = Su
c(σ)−Ss

c(σ)−G1

we define
Z(σ) = {q ∈ Rd : Sσ(q) = min

q∈Rd

Sσ}.
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We say a connected set V is non-trivial for Rd if either Π1(V ∩Rd) = {q∗1 − d ≤ q1 ≤
q∗1 + d} or Π2(V ∩Rd) = {q∗2 − d ≤ q2 ≤ q∗2 + d}, where Πi is the standard projection
from T2 to its i-th component (i=1,2). Let Md,q∗(S) = {q : S(q) = minq∈Rd(q∗) S},
we define a set in the function space F(d, q∗) = C0(Rd(q∗),R),

Z(d, q∗) =
{

S ∈ F(d, q∗) : Md,q∗(S) contains a set non-trivial for Rd(q∗)
}

.

Let

Z1 =
{

S ∈ Z(d, q∗) : Π1(Md,q∗(S)) = {q∗1 − d ≤ q1 ≤ q∗1 + d}
}

,

Z2 =
{

S ∈ Z(d, q∗) : Π2(Md,q∗(S)) = {q∗2 − d ≤ q2 ≤ q∗2 + d}
}

,

then
Z(d, q∗) = Z1 ∪ Z2.

Our first task is to show for each generating function G ∈ Cr(M ×M,R) and each
ε > 0, there is an open and dense set H(d, q∗) of Bε(0) ⊂ Cr(Rd(q∗),R), for each
G1 ∈ H(d, q∗), the image of Sσ from [A′, B′] to F has no intersection with the set Zi.

Obviously, the set Z1 is a closed set and has infinite co-dimensions in the following
sense, there exists N, an infinite dimension subspace of F, such that (S + F ) /∈ Z
for all S ∈ Z1 and F ∈ N\{0}. In fact, for each non constant function F (q1) ∈
C0([q∗1 − d, q∗1 + d],R) with F (q∗1) = 0 and each S ∈ Z1, we have S + F /∈ Z1. Thus,
we can choose N = C0([q∗1 − d, q∗1 + d],R)/R, which we think as the subspace of
C0(Rd(q∗),R) consisting of those continuous functions independent of q2.

On the other hand, as Sσ: [A′, B′] → F has 1
2 -Hölder continuity, the image is

compact and its box dimension is not bigger than 2

DB (Fσ) ≤ 2. (6.7)

where Fσ = {Sσ : σ ∈ [A′, B′]}. Clearly, this set is determined by the generating
function G.

Lemma 6.1. There is an open and dense set N∗ ⊂ N such that for all F ∈ N∗

(Fσ + F ) ∩ Z = ∅. (6.8)

Proof: The open property is obvious. If there were no density property, there would
be n-dimensional ε-ball Bε ⊂ N for some ε > 0, such that for each F ∈ Bε, there
exists S ∈ Fσ such that F + S ∈ Z1 or F + S ∈ Z2. For each S ∈ Fσ there is at
most one F ∈ Bε so that S + F ∈ Z1, for, otherwise, there would be F ′ 6= F such
that F ′ + S ∈ Z1, but we can write F ′ + S = F ′ −F + F + S where F + S ∈ Z1 and
F ′ − F ∈ N\{0}, it contradicts to the definition of N. Given F ∈ Bε, there might
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be more than one element in SF = SF = {S ∈ Fσ : S + F ∈ Z1}. Given any two
F1, F2 ∈ Bε, for any S1 ∈ SF1 and any S2 ∈ SF2 , we have

d(S1, S2) = max
q∈Rd(q∗)

|S1(q)− S2(q)|
≥ max
|q1−q∗1 |≤d

| min
|q2−q∗2 |≤d

S1(q1, q2)− min
|q2−q∗2 |≤d

S2(q1, q2)|

≥1
2
var|q1−q∗1 |≤d|F1(q1)− F2(q1)|

≥1
2
d(F1, F2) (6.9)

where d(·, ·) is the C0-metric. It follows from (6.9) and the definition of box dimension
that

DB(Fσ) ≥ DB(Bε) = n,

but this is absurd if we choose n > 2. The same argument can be applied to the set
Z2. ¤

As Cr is dense in C0, an open and dense set H(d, q∗) of Bε ⊂ Cr(Rd(q∗),R) clearly
exists such that for each perturbation of generating function G1 ∈ H(d, q∗), we have

Fσ ∩ Z(d, q∗) = ∅, ∀ σ ∈ S.

where by abuse of terminology we continue to denote Sσ and its restriction Rd(q∗)
by the same symbol.

Recall we have defined the set U = T × [a, 2π − a] before. Let MU (S) = {q :
S(q) = minq∈U S} and

Z =
{

S ∈ C0(U,R) : MU (S) is totally disconnected
}

.

Given di > 0, there are finite qij such that ∪jRdi
(qij) ⊃ U . Thus, there exists a

sequence di → 0 and a countable set {qij} such that




∞⋂

i=1,j=1

H(di, qij)


 ⋂

Z = ∅.

Therefore there is generic set in Bε ⊂ Cr(U,R), the hypothesis (H1) holds for each
G1 in this generic set. Note U is an annulus, we can write G1 = G′1 + G∗1 so that
both G′1 and G∗1 have simply connected support.

The perturbation to the generating function G can be achieved by perturbing the
Hamiltonian function H → H ′ = H + δH. Let Φ′ be the map determined by the
generating function G + κG′1, the symplectic diffeomorphism Ψ = Φ′ ◦ Φ−1 is close
to identity. We choose a smooth function ρ(s) with ρ(0) = 0 and ρ(1) = 1, let Φ′s
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be the symplectic map determined by G + ρ(s)κG′1 and let Ψs = Φ′s ◦ Φ−1. Clearly,
Ψs defines a symplectic isotopy between identity map and Ψ. Thus there is a unique
family of symplectic vector field Xs: T ∗M → TT ∗M such that

d

ds
Ψs = Xs ◦Ψs.

By the choice of perturbation, there is a simply connected and compact domain DK

such that Ψs|T∗M\DK
= id. It follows that there is a Hamiltonian H1(p, q, s) such

that dH1(Y ) = dp ∧ dq(Xs, Y ) holds for any vector field Y . Re-parametrizing s by
t we can make H1 smoothly and periodically depend on t. To see that dH1 is also
small, let us make use of a theorem of Weistain [W]. A neighborhood of the identity
in the symplectic diffeomorphism group of a compact symplectic manifold M can be
identified with a neighborhood of the zero in the vector space of closed 1-forms on
M. Since Hamiltomorphism is a subgroup of symplectic diffeomorphism, there is a
function H ′, sufficiently close to H, such that ΦH1 ◦ ΦH = Φt

H′ |t=1.

Thus the density of (H1) is proved.

For the hypothesis (H2) let us consider the twist map on the cylinder. In this
case, each co-homology class corresponds to a unique rotation number. Given any
rational number p/q ∈ Q, it is obvious that there is a open dense set in the space of
area-preserving twist map such that there is only one minimal (p, q)-periodic orbit
without homoclinic loop. Take the intersection of countably open dense set we obtain
that (H2) is a generic property.

To verify the (H3), let us consider an invariant circle Γσ on Σ. There is an interval
I(c1) = {c = (c1, c2) ∈ R2 : a(c1) ≤ c2 ≤ b(c1)} such that supp(M0(c)) ⊆ Γσ iff
c ∈ I(c1). Let U be a small neighborhood of π(Γσ). Under the hypothesis (H1), the
set {B∗

c = 0}\U is homotopically trivial for c = (c1, a1(c1)) and for c = (c1, b1(c1)).
By the upper semi-continuity of Mañé sets c → Ñ (c), the set N0(c′) is in a small
neighborhood of {B∗

c = 0} if c′ = (c1, b(c1) + δ) with δ > 0 sufficiently small. Let us
consider such a minimal measure M̃(c′). Let µ be an ergodic component of M̃(c′),
there exists ε∗ > 0 such that dist(suppµ, Γ̃σ) ≥ 3ε∗ for all σ ∈ S. For any ε > 0 with
ε ≤ ε∗ we can define a Cr-smooth function Lσ

k,ε: TM × T→ R so that Lσ
k,ε(z, t) = 0

if (z, t) ∈ suppµ + 2−k−1ε, Lσ
k,ε = 2−kεr+1 if (z, t) /∈ suppµ + 2−kε and Lσ

k,ε takes
the value between 2−kεr+1 and 0 elsewhere. Obviously, µ is the unique ergodic
component of c′-minimal measure of the Lagrangian

Lσ
ε = L +

1
r!

∞∑

k=1

Lσ
k,ε

and ‖Lσ
ε −L‖Cr ≤ ε. Since (H3) is required only for countable σ ∈ S, we can choose

even smaller εσ so that the supports of these Lσ
εσ
− L have no intersection.
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Note the perturbation we introduced for (H1) has compact support which has
no intersection with the cylinder, the perturbation we introduced for (H3) does not
touch the set {B∗

c(σ) = 0} for all σ ∈ S, there is a dense set for P such that (H1), (H2)
and (H3) hold. Thus we obtain the density of the perturbation. Since the time for
each orbit drifts from p1 < A to p1 > B is finite, the smooth dependence of solutions
of ODE’s on parameter guarantees the openness.

Therefore, the proof of the theorem 1.1 is completed.

Appendix

In this appendix we present the proof of the lemma 2.6, given by Bernard in [Be],
for the completeness sake.

Lemma 2.6. If M̃(c) is minimal in the sense of topological dynamics and if there
exists a sequence γn of n-periodic curves such Ac(γn) → 0 as n → ∞, then Lc is
regular, hence Ã(c) = Ñ (c) = G̃(c).

Proof: As the first step we show that the following limit exists for all (x, t) ∈M×T:

lim
n→∞

Fc(x, x, t, t + n) = 0. (A.1)

By the condition, we can suppose these n-periodic curves γn are minimizers, their n-
periodic orbits Xn(t) = (dγn(t), t) is a compact subset of TM×T. Each subsequence
of Xn has a convergent subsequence in the sense of Hausdorff topology. The limit set
of such a sequence is obviously an invariant subset of M̃(c). Since M̃(c) is minimal,
this limit set has to be M̃(c) itself. Therefore, the sequence of subsets Xn converges
to M̃(c) in the Hausdorff topology. It follows that each point (x, s) ∈ M̃(c) is the
limit of a sequence (γ(tn), s) with tn = s mod 1 for each n. As Fc is of Lipschitz we
have

lim sup
n→∞

Fc(x, x, t, t + n) = lim sup
n→∞

Fc(γn(tn), γn(tn), t, t + n)

= lim sup
n→∞

Ac(γn)

=0,

which implies (A.1).

Next, we claim that (A.1) implies that L−ηc is regular, i.e. for any (x, s), (x′, s′) ∈
M × T, ε > 0, there exists T such that

Fc(x, x′, t, t′) ≤ hc(x, x′, t, t′) + ε

if t and t′ satisfy t = s mod 1, t′ = s′ mod 1 and t′ ≥ t + T . Indeed, let K be the
common Lipschitz constant of all functions Fc(·, ·, t, t′) with t′ ≥ t+1, let t0 = s mod
1, t′0 = s′ mod 1, let γ: [t0, t′0] → M be a minimizer with γ(t0) = x and γ(t′0) = x′,
i.e. Ac(γ) = Fc(x, x′, t0, t′0). We can make t′0 − t0 is sufficiently large so that ∃ t1 ∈
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[t0, t′0] such that dist(γ(t1), y) ≤ ε/4K for some y ∈ M(c)|t=t1 , in virtue of standard
argument of topological dynamics. Since hc(x, x′, s, s′) = lim inf Fc(x, x′, t, t′), we
can suppose in addition that

Fc(x, x′, t0, t′0) ≤ hc(x, x′, s, s′) +
ε

2
.

Let x1 = γ(t1) we have

Fc(x, x′, t0, t′0) = Fc(x, x1, t0, t1) + Fc(x1, x
′, t1, t′0),

It follows that

|Fc(x, x′, t0, t′0)− Fc(x, y, t0, t1)− Fc(y, x′, t1, t′0)| ≤
ε

2
,

thus
Fc(x, y, t0, t1) + Fc(y, x′, t1, t′0) ≤ hc(x, x′, s, s′) + ε.

By the choice of t and t′ we know that ∃ n ∈ N such that t′ − t = t′0 − t0 + n, so we
have

Fc(x, x′, t, t′) =Fc(x, x′, t0, t0 + n)

≤Fc(x, y, t0, t1) + Fc(y, y, t1, t1 + n)

+ Fc(y, x′, t1 + n, t′0 + n).

Let n →∞, thanks to (A.1), we obtain

lim sup Fc(x, x′, t, t′) ≤ hc(x, x′, s, s′) + ε.

As this holds for arbitrary ε > 0, we see that L is regular.

As the third step, we claim that L is regular implies that G̃ = Ñ . Let γ ∈ C1(R,M)
be a minimizing curve, let tk → −∞ be a sequence such that s = tk mod 1 for all
k ∈ Z and such that α = lim γ(tk), let t′k →∞ be a sequence such that s′ = t′k mod
1 and such that ω = lim γ(t′k). In this case

A(γ|[tk,t′k]) = F (γ(tk), γ(t′k), tk, t′k) → h(α, ω, s, s′).

Let us consider a compact interval of times [a, b], where s′ = a mod 1 and s = b mod
1. For k sufficiently large we have

Ac(γ|[a,b]) = Ac(γ|[tk,t′k])−Ac(γ|[tk,a])−Ac(γ|[b,t′k]),

taking the limit we obtain

Ac(γ|[a,b]) = hc(α, ω, s, s′)− hc(α, γ(a), s, s)− hc(γ(b), ω, s′, s′).

On the other hand, we observe that if L is regular then

hc(α, ω, s, s′) ≤ hc(α, γ(a), s, s) + Φc(γ(a), γ(b), s, s′) + hc(γ(b), ω, s′, s′)

it follows that
A(γ|[a,b]) ≤ Φc(γ(a), γ(b), s, s′),

hence γ is semi-static. It has been shown in [Ma4] that Ñ (c) = Ã(c). ¤
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[R]. Rademacher H., Über partielle und totale Differentierbarkeit I., Math. Ann.

79 (1919), 340-359.
[W]. Weistein A., Symplectic manifolds and their Lagrangian submanifolds, Ad-

vances in Math. 6 (1971), 329-346.
[X1]. Xia Z., Arnold diffusion: a variational construction., Doc Math. J. DMV

Extra Volume ICM II (1998), 867-877.
[X2]. Xia Z., Arnold diffusion and instabilities in Hamiltonian dynamics, preprint

(2002).


