Existence of Diffusion Orbits in a priori Unstable Hamiltonian Systems

Chong-Qing CHENG ${ }^{1} \& ~ J u n$ YAN 2

Abstract

Under open and dense conditions we show that Arnold diffusion orbits exist in a priori unstable and time-periodic Hamiltonian systems with two degrees of freedom.

1, Introduction and Results

By the KAM (Kolmogorov, Arnold and Moser) theory we know that there are many invariant tori in nearly integrable Hamiltonian systems with arbitrary n degrees of freedom. These tori are of n dimension and occupy a nearly full Lebesgue measure set in the phase space. As an important consequence, all orbits are stable in autonomous system with two degrees of freedom, or time-periodic system with one degree of freedom, in the sense that the actions do not change much along the orbits. However, the KAM theory does not guarantee such stability when the system has three or more degrees of freedom for the autonomous case or when it has two or more degrees of freedom for the time-periodic case, simply because the KAM torus can not separate the phase space (or integral manifold) into two disconnected parts.

In his celebrated paper [Ar], Arnold constructed an example of nearly integrable Hamiltonian system, where some orbits are unstable. His example is a time periodic system with two degrees of freedom. In Arnold's example the perturbations are chosen so specifically that all hyperbolic invariant tori preserve in the perturbed system. Hence one can use so called Melnikov method to construct transition chain along which the action has substantial variation. However, in generic case the perturbed systems do not possess such a good property, some resonant gaps between invariant tori break up the transition chain, thus it seems unclear whether one can apply Arnold's method to find diffusion orbits. Despite of this technical difficulty, Arnold asked whether there is such a phenomenon for a "typical" small perturbation. After near four decades of study some remarkable generalizations of Arnold's result have been announced ([X1],[DLS1],[Ma5]). A few years ago, Xia [X1] announced that Arnol'd diffusion exists in generic a priori unstable systems, recently Mather announced ([Ma5]) that, under so-called cusp residual condition, Arnold diffusion exists in a priori stable systems with two degrees of freedom in time-periodic case, or with three degrees of freedom in autonomous case. They claim that diffusion orbits

[^0]can be constructed by variational method. Using geometrical method, some demonstration was provided in [DLS2] to show that diffusion orbits exist in some types of a priori unstable and time-periodic Hamiltonian systems with two degrees of freedom.

In this paper, we study generic perturbations of a priori unstable Hamiltonian systems which have two degrees of freedom and are time-periodic, and give a complete proof of the existence of diffusion orbits by using variational method. The approach of our proof is different from the approaches proposed by Mather and by Xia (cf. [Ma5] and [X2]). The starting point of our proof is based on the previous work of Mather ([Ma3], [Ma4]). With his profound insight, Mather opened a way to study Hamiltonian dynamics in higher dimensions. In [Ma3] Mather established the variational set-up of time-dependent positive definite Lagrangian systems and showed the existence of minimal measures. By exploiting the properties of barrier functions in [Ma4], he introduced the idea of C-equivalence and pointed out a possible way to construct connecting orbits. The difficulty to apply this method to interesting problem in higher dimensions is that we do not know the structures of related c-minimal orbit sets. In this paper we have succeeded in getting sufficient information about the topological structure of the relevant Mañé sets and in providing the proof of a theorem of connecting C-equivalent Mañé sets formulated by Mather in [Ma4]. Consequently, we are able to construct the diffusion orbits crossing the gaps. However, it appears unclear whether such C-equivalence can be established at the place where uncountably many whiskered tori cluster together. Fortunately, this is the place where there is no big gap. Arnold's mechanism can be used here because a transition chain of whisker tori clearly exists in this case. Crucially relying on such geometric structure, we are able to establish local variational principle (cf. [Bs], [BCV]), the local minimum corresponds to some diffusion orbits crossing these whisker tori. It is the variational version of Arnold's mechanism. Another step in our proof is to show that we can join the orbits constructed by C-equivalence smoothly with the orbits which realize the minimum of the local variational principle. In this way we do find some diffusion orbits in generic systems.

Given a Hamiltonian function $H(p, q, t)$ the Hamiltonian equation has the form:

$$
\begin{equation*}
\dot{q}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q} . \tag{1.1}
\end{equation*}
$$

The Hamiltonian function studied here has the following form:

$$
\begin{equation*}
H(p, q, t)=f\left(p_{1}\right)+g\left(p_{2}, q_{2}\right)+P(p, q, t) \tag{1.2}
\end{equation*}
$$

where $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}, q=\left(q_{1}, q_{2}\right) \in \mathbb{T}^{2}, H \in C^{r}(r \geq 3), P$ is a time-1-periodic small perturbation. We assume it satisfies following conditions:
$1, f+g$ is a convex function in p i.e. the Hessian matrix $\partial_{p p}(f+g)$ is positive definite, finite everywhere and has superlinear growth in $p,(f+g) /\|p\| \rightarrow \infty$ as $\|p\| \rightarrow \infty$;

2, it is a priori unstable in the sense that g has non-degenerate saddle critical point, i.e. $\partial_{p_{2} q_{2}} g^{2}-\partial_{p_{2} p_{2}} g \partial_{q_{2} q_{2}} g>0$ at $\left(p_{2}^{*}, q_{2}^{*}\right)$. The function $g\left(p_{2}^{*}, q_{2}\right): \mathbb{T} \rightarrow \mathbb{R}$ attains its maximum at $q_{2}^{*}: g\left(p_{2}^{*}, q_{2}^{*}\right)=\max _{q_{2}} g\left(p_{2}^{*}, q_{2}\right)$. Without loss of generality, we assume $\left(p_{2}^{*}, q_{2}^{*}\right)=0$.

Let $\mathcal{B}_{\epsilon, K}$ denote a ball in the function space $C^{r}\left(\left\{(p, q) \in \mathbb{T}^{2} \times \mathbb{R}^{2}:\|p\| \leq K\right\} \rightarrow \mathbb{R}\right)$, centered at the origin with radius of ϵ. Now we can state the theorem which was formulated by Arnold in [Ar]:

Theorem 1.1. Let $A<B$ be two arbitrarily given numbers and assume H satisfies the above two conditions. There exist a small number $\epsilon>0$, a large number $K>0$ and an open and dense set $\mathcal{S}_{\epsilon, K} \subset \mathcal{B}_{\epsilon, K}$ such that for each $P \in \mathcal{S}_{\epsilon, K}$ there exists an orbit of the Hamiltonian flow which connects the region with $p_{1}<A$ to the region with $p_{1}>B$.

We shall use variational argument to complete the proof. In the section 2, by using Legender transformation we follow Mather's work [Ma4] and put this problem into the Lagrangian formalism. The diffusion orbits are found by searching for the minimal action of the Lagrangian. Some properties such as upper semi-continuity of some set-valued functions are also proved in this section. In the section 3, we investigate the topological structure of some relevant Mañé sets. The section 4 is devoted to the study of the barrier function when the Aubry set contains a codimension one torus. In the section 5, by making use of the semi-continuity property shown in the section 2 we obtain the proof of a theorem of connecting C-equivalent Mañé sets, formulated by Mather in [Ma4]. Based on the understanding of the topological structure of the relevant Mañé sets shown in the section 3, we establish the C equivalence among those relevant Mañé sets and use this C-equivalence to construct the diffusion orbits crossing resonant gaps. In virtue of the techniques developed in [BCV] and the analytic expression of the barrier function obtained in the section 4 we join the orbits constructed by C-equivalence smoothly with the orbits constructed via transition chain. Thus we obtain the diffusion orbits. In the section 6 we show the open and dense property.

Acknowledgement We would like to thank Professor John Mather for listening to our oral presentation of the proof and careful reading of the manuscript. We also thank Jian Cheng and Wei Cheng for helpful discussions. The first author thanks the mathematics department of Harvard University, where the partial work was done, for its hospitality. The second author thanks Professor Ta-Tsien Li for his encouragement. This work is under the support of the state basic research project of China "Nonlinear Sciences" (G2000077303).

2, Variational set-up

Roughly speaking, the diffusion orbits are constructed by connecting different c minimal orbit sets, along which the Lagrange action takes its minimum. Therefore,
we shall study the Lagrangian equation equivalent to the Hamiltonian equation (1.1):

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \tag{2.1}
\end{equation*}
$$

where the Lagrangian function $L(\dot{q}, q, t)$ is obtained from the Hamiltonian function (1.1) by using Legendre transformation $\mathcal{L}:(p, q, t) \rightarrow(\dot{q}, q, t)$ such that

$$
\begin{equation*}
L(\dot{q}, q, t)=\max _{p}\{\langle p, \dot{q}\rangle-H(p, q, t)\} . \tag{2.2}
\end{equation*}
$$

Here $\dot{q}=\dot{q}(p, q, t)$ is implicitly determined by $\dot{q}=\frac{\partial H}{\partial p}$. Since we study a nearly integrable system, the Lagrangian has the form of

$$
L=L_{0}\left(q_{2}, \dot{q}\right)+L_{1}(q, \dot{q}, t)
$$

where L_{0} corresponds to $f+g$ through the Legendre transformation.
Throughout this paper, we use ϕ^{t} to denote the Euler-Lagrange flow determined by L, use Φ^{t} to denote the Hamiltonian flow determined by H. To specify the EulerLagrange (Hamiltonian) flow determined by other functions we add the subscript, e.g. $\phi_{L_{0}}^{t}, \Phi_{f+g}^{t}$, etc.

Clearly, the equation (2.1) corresponds to the critical point of the functional

$$
A(\gamma)=\int L(\gamma, \dot{\gamma}, t) d t
$$

We can think that L is a function defined on $T M \times \mathbb{T}$ where $M=\mathbb{T}^{2}$. As $f+g$ is an integrable system and H is its small perturbation, every solution of H is well defined for $t \in \mathbb{R}$. By the assumptions on H, we see that L satisfies the following conditions introduced by Mather [Ma3]:

Positive definiteness. For every $(q, t) \in M \times \mathbb{T}$, the Lagrangian function is strictly convex in velocity: the Hessian $L_{\dot{q} \dot{q}}$ is positive definite.

Superlinear growth. We suppose that L has fiber-wise superlinear growth: for every $(q, t) \in M \times \mathbb{T}$, we have $L /\|\dot{q}\| \rightarrow \infty$ as $\|\dot{q}\| \rightarrow \infty$.

Completeness. All solutions of the Lagrange equations are well defined for all $t \in \mathbb{R}$.
Under these conditions Mather established the theory of c-minimal measure and c minimal orbits [Ma3, Ma4]. To introduce some basic results of Mather, let us observe the fact that the functional $\int L d t$ has the same critical point as $\int\left(L-\eta_{c}\right) d t$ does if η_{c} is a closed 1 -form on $M \times \mathbb{T}$, whose first de Rham co-homology class is c, i.e. $\left[\eta_{c}\right]=c$, in other words, their Lagrange equations are the same.

Let $I=[a, b]$ be a compact interval of time. A curve $\gamma \in C^{1}(I, M)$ is called a c-minimizer or a c-minimal curve if it minimizes the action among all curves $\xi \in$ $C^{1}(I, M)$ which satisfy the same boundary conditions:

$$
\begin{equation*}
A_{c}(\gamma)=\min _{\substack{\xi(a)=\gamma(a) \\ \xi(b)=\gamma(b)}} \int_{a}^{b}\left(L-\eta_{c}\right)(d \xi(t), t) d t \tag{2.3}
\end{equation*}
$$

As we have the condition of completeness the minimizer must be a C^{1}-curve by Tonelli's theorem. Without the completeness the minimizer can fail to be ($[\mathrm{BM}]$). If J is a non compact interval, the curve $\gamma \in C^{1}(J, M)$ is said a c-minimizer if $\left.\gamma\right|_{I}$ is c minimal for any compact interval $I \subset J$. An orbit $X(t)$ of ϕ^{t} is called c-minimizing if the curve $\pi \circ X$ is c-minimizing, where the operator π is the standard projection from tangent bundle to the underlying manifold along the fibers; a point $(z, s) \in T M \times \mathbb{R}$ is c-minimizing if its orbit $\phi^{t}(z, s)$ is c-minimizing. We use $\tilde{\mathcal{G}}_{L}(c) \subset T M \times \mathbb{R}$ to denote the set of minimal orbits of $L-\eta_{c}$ (the c-minimal orbits of L). We shall drop the subscript L when it is clear which Lagrangian is under consideration. It is not necessary to assume the periodicity of L in t for the definition of $\tilde{\mathcal{G}}$. When it is periodic in $t, \tilde{\mathcal{G}}(c) \subset T M \times \mathbb{R}$ is a nonempty compact subset of $T M \times \mathbb{T}$, invariant for the Euler-Lagrange flow ϕ^{t}.

We can extend the definition of action along a C^{1}-curve to the action on a probability measure. Let \mathfrak{M} be the set of Borel probability measures on $T M \times \mathbb{T}$. For each $\nu \in \mathfrak{M}$, the action $A_{c}(\nu)$ is defined as the following:

$$
\begin{equation*}
A_{c}(\nu)=\int\left(L-\eta_{c}\right) d \nu \tag{2.4}
\end{equation*}
$$

Mather has proved [Ma3] that for each first de Rham cohomology class c there is a probability measure μ which minimizes the actions over \mathfrak{M}

$$
A_{c}(\mu)=\inf _{\nu \in \mathfrak{M}} \int\left(L-\eta_{c}\right) d \nu
$$

This μ is invariant to the Euler-Lagrange flow. We use $\tilde{\mathcal{M}}(c)$ to denote the closure of the union of the support of all such measures, use $-\alpha(c)=A_{c}(\mu)$ to denote the minimum c-action. It defines a function $\alpha: H^{1}(M, \mathbb{R}) \rightarrow \mathbb{R}$, usually called α function. Its Legendre transformation $\beta: H_{1}(M, \mathbb{R}) \rightarrow \mathbb{R}$ is usually called β-function. Both functions are convex, finite everywhere and have super-linear growth [Ma3]. As $\tilde{\mathcal{M}}(c)$ is defined as the limit measure of c-minimal orbits, the following lemma is a straightforward result of topological dynamics:
Lemma 2.1. For each co-homological class c and each positive number ϵ, there exists a positive number $T_{0}=T_{0}(c, \epsilon)$, such that if $T \geq T_{0}$ and $\gamma:[0, T] \rightarrow M \times \mathbb{T}$ is a curve minimizing the action of $L-\eta_{c},\left[\eta_{c}\right]=c$, then there is $t \in[0, T]$ such that

$$
d(d \gamma(t), \tilde{\mathcal{M}}(c)) \leq \epsilon
$$

Before starting the existence proof of diffusion orbits we need to introduce some more concepts and investigate some relevant properties, which shall be made use of below for our purpose.

We have defined the sets $\tilde{\mathcal{M}}(c)$ and $\tilde{\mathcal{G}}(c)$. It is easy to see that $\tilde{\mathcal{M}}(c)$ is contained in the set $\tilde{\mathcal{G}}(c)$. Between the set $\tilde{\mathcal{G}}$ and set $\tilde{\mathcal{M}}$ we can also define so-called Aubry set $\tilde{\mathcal{A}}(c)$ and Mañé set $\tilde{\mathcal{N}}(c)$ as well as the limit point set $\tilde{\mathcal{L}}(c)$.

As all orbits are well defined on the whole \mathbb{R}, they have ω-limit sets and α-limit sets. Let $\tilde{\omega}(c)$ be the union of ω-limit points of c-minimal orbits $X(t):[0, \infty) \rightarrow T M \times \mathbb{T}$, let $\tilde{\alpha}(c)$ be the union of α-limit points of c-minimal orbits $X(t):(-\infty, 0] \rightarrow T M \times \mathbb{T}$. We call $\tilde{L}(c)=\tilde{\omega}(c) \cup \tilde{\alpha}(c)$ the limit set.

To define the Aubry set and the Mañé set let us define

$$
\begin{gather*}
h_{c}\left(x, x^{\prime}, t, t^{\prime}\right)=\min _{\substack{\gamma \in C^{1}\left(\left[t, t^{\prime}, M\right), M\right) \\
\gamma(t)=x, \gamma\left(t^{\prime}\right)=x^{\prime}}} \int_{t}^{t^{\prime}}\left(L-\eta_{c}\right)(d \gamma(s), s) d s+\left(t^{\prime}-t\right) \alpha(c), \tag{2.5}\\
F_{c}\left(x, x^{\prime}, s, s^{\prime}\right)=\inf _{\substack{s=t \text { mod } 1 \\
s^{\prime}=t^{\prime} \bmod 1 \\
t^{\prime} \geq t+1}} h_{c}\left(x, x^{\prime}, t, t^{\prime}\right) . \\
h_{c}\left(x, x^{\prime}\right)=h_{c}\left(x, x^{\prime}, 0,1\right), \quad F_{c}\left(x, x^{\prime}\right)=F_{c}\left(x, x^{\prime}, 0,0\right) . \tag{2.6}
\end{gather*}
$$

Let

$$
\begin{gathered}
h_{c}^{n}\left(x, x^{\prime}\right)=\min \left\{\sum_{i=0}^{n-1} h_{c}\left(m_{i}, m_{i+1}\right): m_{0}=x, m_{n}=x^{\prime}\right. \\
\text { and } \left.m_{i} \in M \text { for } 0 \leq i \leq n\right\},
\end{gathered}
$$

and let

$$
\begin{align*}
h_{c}^{\infty}\left(x, x^{\prime}\right) & =\liminf _{n \rightarrow \infty} h_{c}^{n}\left(x, x^{\prime}\right) \tag{2.7}\\
d_{c}\left(x, x^{\prime}\right) & =h_{c}^{\infty}\left(x, x^{\prime}\right)+h_{c}^{\infty}\left(x^{\prime}, x\right) \tag{2.8}
\end{align*}
$$

Mather showed in [Ma4] that d_{c} is a pseudo-metric on the set $\left\{x \in M: h_{c}^{\infty}(x, x)=0\right\}$. A curve $\gamma \in C^{1}(\mathbb{R}, M)$ is called c-semi-static if

$$
A_{c}\left(\left.\gamma\right|_{[a, b]}\right)+\alpha(c)(b-a)=F_{c}(\gamma(a), \gamma(b), a \bmod 1, b \bmod 1)
$$

for each $[a, b] \subset \mathbb{R}$. A curve $\gamma \in C^{1}(\mathbb{R}, M)$ is called c-static if, in addition

$$
A_{c}\left(\left.\gamma\right|_{[a, b]}\right)+\alpha(c)(b-a)=-F_{c}(\gamma(b), \gamma(a), b \bmod 1, a \bmod 1)
$$

for each $[a, b] \subset \mathbb{R}$. An orbit $X(t)=(d \gamma(t), t \bmod 1)$ is called static (semi-static) if γ is static (semi-static). We call the Mañé set $\tilde{\mathcal{N}}(c)$ the union of global c-semi-static orbits, the set $\tilde{\mathcal{A}}(c)$ is defined as the union of global c-static orbits, we call it Aubry set.

We use $\mathcal{M}(c), \mathcal{L}(c), \mathcal{A}(c), \mathcal{N}(c)$ and $\mathcal{G}(c)$ to denote the standard projection of $\tilde{\mathcal{M}}(c), \tilde{\mathcal{L}}(c), \tilde{\mathcal{A}}(c), \tilde{\mathcal{N}}(c)$ and $\tilde{\mathcal{G}}(c)$ from $T M \times \mathbb{T}$ to $M \times \mathbb{T}$ respectively. We have the following inclusions ([Be])

$$
\begin{equation*}
\tilde{\mathcal{M}}(c) \subseteq \tilde{\mathcal{L}}(c) \subseteq \tilde{\mathcal{A}}(c) \subseteq \tilde{\mathcal{N}}(c) \subseteq \tilde{\mathcal{G}}(c) . \tag{2.9}
\end{equation*}
$$

The set $\tilde{\mathcal{G}}(c)$ and $\tilde{\mathcal{N}}(c)$ have the good property of upper semi-continuity in c. Restricted on $\mathcal{A}(c)$, the map $\pi^{-1}: \mathcal{A}(c) \rightarrow \tilde{\mathcal{A}}(c)$ is Lipschitz. We use $\tilde{\mathcal{N}}_{s}(c)=\left.\tilde{\mathcal{N}}(c)\right|_{t=s}$ to denote the time section, and so on.

When necessary, we use the symbols $\tilde{\mathcal{G}}_{L}(c), \tilde{\mathcal{N}}_{L}(c), \tilde{\mathcal{A}}_{L}(c)$ and $\tilde{\mathcal{M}}_{L}(c)$ to denote the minimal orbit set, Mañé sets, Aubry set and Mather set determined by some Lagrangian L respectively, omitting the subscript L when the Lagrangian is clearly defined.

To describe these minimal orbit sets, Mather introduced two kinds of barrier functions B_{c} and B_{c}^{*}, it is defined as follows

$$
\begin{gather*}
B_{c}(q)=h_{c}^{\infty}(q, q) \\
B_{c}^{*}(q)=\min \left\{h_{c}^{\infty}(\xi, q)+h_{c}^{\infty}(q, \eta)-h_{c}^{\infty}(\xi, \eta): \forall \xi, \eta \in \mathcal{M}_{0}(c)\right\} . \tag{2.10}
\end{gather*}
$$

Clearly, we have $0 \leq B_{c}^{*} \leq B_{c}$. When $d_{c}(\xi, \eta)=0$ for all $\xi, \eta \in \mathcal{M}_{0}(c)$, then $B_{c}=B_{c}^{*}$ ([Ma4]). It is not hard to see that $\mathcal{A}_{0}(c)=\left\{x \in M: B_{c}(x)=0\right\}$. The following lemma is a modified version of the proposition 2.1 in [Be].
Lemma 2.2. Let M be a compact, connected Riemanian manifold. Assume $L \in$ $C^{r}(T M \times \mathbb{R}, \mathbb{R})(r \geq 2)$ satisfies the positive definite, superlinear-growth and completeness conditions. Considered as the function of $t, L_{\tilde{\sim}}$ is assumed periodic for $t \in(-\infty, 0]$ and for $t \in[1, \infty)$. Then the map $L \rightarrow \tilde{\mathcal{G}}_{L} \subset T M \times \mathbb{R}$ is upper semi-continuous. As an immediate consequence, $\tilde{\mathcal{G}}(c)$ is a non-empty compact set in $T M \times \mathbb{T}$ and the map $c \rightarrow \tilde{\mathcal{G}}(c)$ is upper semi-continuous if L is periodic in t.

We can consider t is defined on $(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim$, where \sim is defined by identifying $\{0\} \in[0,1]$ with some point on one circle, and identifying $\{1\} \in[0,1]$ with some point on another circle. Let $U_{k}=\{(\zeta, q, t):(q, t) \in M \times(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim,\|\zeta\| \leq k$,$\} ,$ $\cup_{k=1}^{\infty} U_{k}=T M \times \mathbb{R}$. Let $L_{i} \in C^{r}(T M \times \mathbb{T}, \mathbb{R})$. We say L_{i} converges to L if for each $\epsilon>0$ and each U_{k} there exists i_{0} such that $\left\|L-L_{i}\right\|_{U_{k}} \leq \epsilon$ if $i \geq i_{0}$.
Proof: Since M is connected and compact, any two point $x_{1} x_{2} \in M$ can be connected by a geodesic. Let $\ell\left(x_{1}, x_{2}\right)$ be the length of the shortest geodesic connecting these two points, there is an upper bound $K_{1}>0$ of $\ell\left(x_{1}, x_{2}\right)$ uniformly for all x_{1}, $x_{2} \in M$. Let

$$
K=\max _{\substack{(q, t) \in \mathbb{T}^{2} \times(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim \\\|\zeta\| \leq K_{1}}} L(q, \zeta, t) .
$$

Given time interval $[a, b]$ with $b-a \geq 1$, if we reparemetrize the shortest geodesic $\gamma(s)$ by $\bar{\gamma}(t)=\gamma\left(\ell\left(x_{1}, x_{2}\right)(t-a) /(b-a)\right)$, then $\bar{\gamma}(t)$ is a C^{1}-curve such that $\bar{\gamma}(a)=x_{1}$, $\bar{\gamma}(b)=x_{2}$. Clearly, the action of L along this curve is not bigger than $K(b-a)$. Obviously, there is an upper bound uniformly for all minimizing action of L^{\prime} if they close to L on $\left\{\|\zeta\| \leq K_{1}\right\}$, still denoted by $K(b-a)$.

Since the super-linear growth is assumed, there are two constant C and D such that $L^{\prime}(q, \dot{q}, t) \geq C\|\dot{q}\|-D$ for all $(q, \dot{q}, t) \in T M \times[a, b]$ and for all L^{\prime} close to L. It follows that

$$
\begin{equation*}
\frac{\operatorname{dist}(\gamma(a), \gamma(b))}{b-a} \leq \frac{1}{b-a} \int_{a}^{b}\|d \gamma\| \leq \frac{(K+D)}{C} \tag{2.11}
\end{equation*}
$$

if γ is a minimizer. As (2.11) holds for any $b-a \geq 1$, it implies that there must be some $\tau_{i} \in[a+i, a+i+1](i \in \mathbb{Z})$ such that $\left\|\dot{\gamma}\left(\tau_{i}\right)\right\| \leq C^{-1}(K+D)$. By the compactness of $M \times(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim$ we see that there exists $K_{2}>0$ such that $\cup_{s \in[0,1]} \phi^{s}\left(\left\{q, \xi, t:(q, t) \in M \times(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim,\|\xi\| \leq C^{-1}(K+D)\right\}\right) \subset\{q, \xi, t:$ $\left.(q, t) \in M \times(\mathbb{T} \vee[0,1] \vee \mathbb{T}) / \sim,\|\xi\| \leq K_{2}\right\}$.

Let $L_{i} \in C^{r}(T M \times \mathbb{R}, \mathbb{R})$ be a sequence converging to L, let $\gamma_{i}:[a, b] \rightarrow M$ be the minimizer of L_{i} with $b-a \geq 1$. By the argument above, we see there exists some $U_{k} \supset\left\{\xi, q, t:(q, t) \in M \times \mathbb{R},\|\xi\| \leq K_{2}\right\}$, so that $\|\left(L(z, t)-L_{i}(z, t) \|_{U_{k}} \leq \epsilon_{i}\right.$. Here $\epsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$. Thus

$$
\begin{equation*}
\int_{a}^{b} L\left(d \gamma_{i}(t), t\right) d t \leq\left(K+\epsilon_{i}\right)(b-a) \tag{2.12}
\end{equation*}
$$

As all γ_{i} is a C^{1}-curve and the actions of L on each γ_{i} are bounded by [2.12], the set $\left\{\gamma_{i}\right\}_{i \in \mathbb{Z}_{+}}$is compact in the C^{0}-topology (cf [Ma3]). Moreover this set is compact in the $C^{1}([a, b], M)$-topology as we have $\left\|\dot{\gamma}_{i}\right\| \leq K_{2}$ and as $\partial^{2} L / \partial \dot{q}^{2}$ is positive definite so we can write the Lagrange equations in the form of $\ddot{q}=f(q, \dot{q}, t)$, which implies γ_{i} is bounded in C^{2}-topology.

Let $\gamma:[a, b] \rightarrow M$ be one of the accumulation points of this set. Clearly, γ : $[a, b] \rightarrow M$ is the minimizer of L and we have

$$
A_{c}(\gamma)=\lim _{i \rightarrow \infty} \int_{a}^{b} L_{i}\left(d \gamma_{i}(t), t\right) d t
$$

We let $I_{i}=\left[-T_{i}, T_{i}\right]$ and let $T_{i} \rightarrow \infty$, there is a sequence of minimizers of L_{i}, γ_{i} : $I_{i} \rightarrow M$. By diagonal extraction argument we can find a subsequence of γ_{i} which converges C^{1} uniformly on each compact set to a C^{1}-curve $\gamma: \mathbb{R} \rightarrow M$ which is the minimizer of L on any compact interval of \mathbb{R}. This proves the upper semi-continuity of $L \rightarrow \tilde{\mathcal{G}}_{L}$.

Given L periodic in t, we let $L_{c}=L-\eta_{c}$ where η_{c} is a closed one form such that $\left[\eta_{c}\right]=c . \eta_{c}$ is a linear function in \dot{q}. If $c_{i} \rightarrow c$, we can choose a sequence of closed 1 -form $\eta_{c_{i}}$ such that $\left[\eta_{c_{i}}\right]=c_{i}$ and $\left|\eta_{c_{i}}-\eta_{c}\right|_{\|\dot{q}\| \leq K_{1}} \rightarrow 0$. In this case $L_{c_{i}} \rightarrow L_{c}$ implies $c_{i} \rightarrow c$. Since the c-minimal orbits are independent of the choice of η_{i}, applying the argument above we obtain the upper semi-continuity $c \rightarrow \tilde{\mathcal{G}}(c)$.

In the application, the set $\tilde{\mathcal{G}}(c)$ seems too big to be used for the construction of connecting orbits in interesting problems. Mañé sets seem good candidates. In the time-periodic case, Mañé set can be a proper subset of $\tilde{\mathcal{G}}(c), \tilde{\mathcal{N}}(c) \subsetneq \tilde{\mathcal{G}}(c)$. It is
closely related to the problem whether the Lax-Oleinik semi-group converges or not, some example can be found in [FM]. To establish the connection between two Mañé sets we consider a modified Lagrangian

$$
L_{\eta, \mu}=L-\eta-\mu
$$

where η is a closed 1 -form on M such that $[\eta]=c, \mu$ is a 1 -form depending on t in the way that the restriction of μ on $\{t \leq 0\}$ is 0 , the restriction on $\{t \geq 1\}$ is a closed 1 -form $\bar{\mu}$ on M with $[\bar{\mu}]=c^{\prime}-c$. Let $m_{0}, m_{1} \in M$, we define

$$
\begin{align*}
h_{\eta, \mu}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)= & \inf _{\substack{\gamma\left(-T_{0}\right)=m_{0} \\
\gamma\left(T_{1}\right)=m_{1}}} \int_{-T_{0}}^{T_{1}}(L-\eta-\mu)(d \gamma(t), t) d t \\
& +T_{0} \alpha(c)+T_{1} \alpha\left(c^{\prime}\right) . \tag{2.13}
\end{align*}
$$

Clearly $\exists m^{*} \in M$ and some constants $C_{\mu}, C_{\eta, \mu}$, independent of T_{0}, T_{1}, such that

$$
\begin{aligned}
h_{\eta, \mu}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right) & \leq h_{c}^{T_{0}}\left(m_{0}, m^{*}\right)+h_{c^{\prime}}^{T_{2}}\left(m^{*}, m_{2}\right)+C_{\mu} \\
& \leq C_{\eta, \mu} .
\end{aligned}
$$

Thus its limit infimum is bounded

$$
\begin{align*}
h_{\eta, \mu}^{\infty}\left(m_{0}, m_{1}\right) & =\liminf _{T_{0}, T_{1} \rightarrow \infty} h_{\eta, \mu}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right) \\
& \leq C_{\eta, \mu} \tag{2.14}
\end{align*}
$$

Let $\left\{T_{0}^{i}\right\}_{i \in \mathbb{Z}_{+}}$and $\left\{T_{1}^{i}\right\}_{i \in \mathbb{Z}_{+}}$be the sequence of positive integers such that $T_{j}^{i} \rightarrow \infty$ $(j=0,1)$ as $i \rightarrow \infty$ and the following limit exists

$$
\lim _{i \rightarrow \infty} h_{\eta, \mu}^{T_{0}^{i}, T_{1}^{i}}\left(m_{0}, m_{1}\right)=h_{\eta, \mu}^{\infty}\left(m_{0}, m_{1}\right)
$$

Let $\gamma_{i}\left(t, m_{0}, m_{1}\right):\left[-T_{0}^{i}, T_{1}^{i}\right] \rightarrow M$ be a minimizer connecting m_{0} and m_{1}

$$
h_{\eta, \mu}^{T_{0}^{i}, T_{1}^{i}}\left(m_{0}, m_{1}\right)=\int_{-T_{0}^{i}}^{T_{1}^{i}}(L-\eta-\mu)\left(d \gamma_{i}(t), t\right) d t+T_{0}^{i} \alpha(c)+T_{1}^{i} \alpha\left(c^{\prime}\right) .
$$

From the proof of the lemma 2.2 we can see that for any compact interval $[a, b]$ there is some $I \in \mathbb{Z}_{+}$such that the set $\left\{\gamma_{i}\right\}_{i \geq I}$ is pre-compact in $C^{1}([a, b], M)$.
Lemma 2.3. Let $\gamma: \mathbb{R} \rightarrow M$ be an accumulation point of $\left\{\gamma_{i}\right\}$. If $s \geq 1$ then

$$
\begin{align*}
A_{L_{\eta, \mu}}(\gamma \mid[s, \tau])= & \inf _{\substack{\tau_{1}-\tau \in \mathbb{Z}, \tau_{1}>s \\
\gamma^{*}(s) \gamma(s) \\
\gamma^{*}\left(s \tau_{1}\right)=\gamma(\tau)}} \int_{s}^{\tau_{1}}(L-\eta-\mu)\left(d \gamma^{*}(t), t\right) d t \tag{2.15a}\\
& +\left(\tau_{1}-\tau\right) \alpha\left(c^{\prime}\right) ;
\end{align*}
$$

if $\tau \leq 0$ then

$$
\begin{align*}
A_{L_{\eta, \mu}}(\gamma \mid[s, \tau])= & \inf _{\substack{s_{1}-s \in \mathbb{Z}, s_{1}<\tau \\
\gamma^{*}\left(s_{1}\right)=\gamma(s) \\
\gamma^{*}(\tau)=\gamma(\tau)}} \int_{s_{1}}^{\tau}(L-\eta-\mu)\left(d \gamma^{*}(t), t\right) d t \tag{2.15b}\\
& -\left(s_{1}-s\right) \alpha(c) ;
\end{align*}
$$

if $s \leq 0$ and $\tau \geq 1$ then

$$
\begin{align*}
A_{L_{\eta, \mu}}(\gamma \mid[s, \tau])= & \inf _{\substack{\left.s_{1}-s \in \mathbb{Z}, \tau_{1}-\tau \in \mathbb{Z} \\
s_{1} \leq 0, \tau_{1} \geq 1 \\
\gamma^{*} * s_{1}\right)=\gamma(s) \\
\gamma^{*}\left(\tau_{1}\right)=\gamma(\tau)}} \int_{s_{1}}^{\tau_{1}}(L-\eta-\mu)\left(d \gamma^{*}(t), t\right) d t \\
& -\left(s_{1}-s\right) \alpha(c)-\left(\tau_{1}-\tau\right) \alpha\left(c^{\prime}\right) . \tag{2.15c}
\end{align*}
$$

Proof: To show that let us suppose the contrary, for instance, (2.15b) does not hold. Thus there would exist $\Delta>0, s<\tau \leq 0, s_{1}<\tau \leq 0, s_{1}-s \in \mathbb{Z}$ and a curve γ^{*} : $\left[s_{1}, \tau\right] \rightarrow M$ with $\gamma^{*}\left(s_{1}\right)=\gamma(s), \gamma^{*}(\tau)=\gamma(\tau)$ such that

$$
A_{L_{\eta, \mu}}(\gamma \mid[s, \tau]) \geq \int_{s_{1}}^{\tau}(L-\eta-\mu)\left(d \gamma^{*}(t), t\right) d t-\left(s_{1}-s\right) \alpha(c)+\Delta
$$

Let $\epsilon=\frac{1}{4} \Delta$. By the definition of limit infimum there exist $T_{0}^{i_{0}}>0$ and $T_{1}^{i_{0}}>0$ such that

$$
\begin{equation*}
h_{\eta, \mu}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right) \geq h_{\eta, \mu}^{\infty}\left(m_{0}, m_{1}\right)-\epsilon, \quad \forall T_{0} \geq T_{0}^{i_{0}}, T_{1} \geq T_{1}^{i_{0}}, \tag{2.16}
\end{equation*}
$$

there exist subsequences $T_{j}^{i_{k}}(j=0,1, k=0,1,2, \cdots)$ such that for all $k>0$

$$
\begin{gather*}
T_{0}^{i_{k}}-T_{0}^{i_{0}} \geq s-s_{1}, \tag{2,17}\\
\left|h_{\eta, \mu}^{T_{0}^{i_{k}}, T_{1}^{i_{k}}}\left(m_{0}, m_{1}\right)-h_{\eta, \mu}^{\infty}\left(m_{0}, m_{1}\right)\right|<\epsilon . \tag{2.18}
\end{gather*}
$$

By taking a further subsequence we can assume $\gamma_{i_{k}} \rightarrow \gamma$. In this case, we can choose sufficiently large k such that $\gamma_{i_{k}}(s)$ and $\gamma_{i_{k}}(\tau)$ are so close to $\gamma(s)$ and $\gamma(\tau)$ respectively that we can construct a curve $\gamma_{i_{k}}^{*}:\left[s_{1}, \tau\right] \rightarrow M$ which has the same endpoints as $\gamma_{i_{k}}: \gamma_{i}^{*}\left(s_{1}\right)=\gamma_{i}(s), \gamma_{i}^{*}(\tau)=\gamma_{i}(\tau)$ and satisfies the following

$$
\begin{equation*}
A_{L_{\eta, \mu}}\left(\gamma_{i_{k}} \mid[s, \tau]\right) \geq \int_{s_{1}}^{\tau}(L-\eta-\mu)\left(d \gamma_{i_{k}}^{*}(t), t\right) d t-\left(s_{1}-s\right) \alpha(c)+\frac{3}{4} \Delta . \tag{2.19}
\end{equation*}
$$

Let $T_{0}^{\prime}=T_{0}^{i_{k}}+\left(s-s_{1}\right)$, if we extend $\gamma_{i_{k}}^{*}$ to $\mathbb{R} \rightarrow M$ such that

$$
\gamma_{i_{k}}^{*}= \begin{cases}\gamma_{i_{k}}\left(t-s_{1}+s\right), & t \leq s_{1} \\ \gamma_{i_{k}}^{*}(t), & s_{1} \leq t \leq \tau \\ \gamma_{i_{k}}(t), & t \geq \tau\end{cases}
$$

then we obtain from (2.18) and (2.19) that

$$
\begin{aligned}
h_{\eta, \mu}^{T_{0}^{\prime}, T_{1}^{i_{k}}}\left(m_{0}, m_{1}\right) & \leq A_{L_{\eta, \mu}}\left(\gamma_{i_{k}}^{*} \mid\left[-T_{0}^{\prime}, T_{1}^{i_{k}}\right]\right)-T_{1}^{i_{k}} \alpha\left(c^{\prime}\right)-T_{0}^{\prime} \alpha(c) \\
& \leq A_{L_{\eta, \mu}}\left(\gamma_{i_{k}} \mid\left[-T_{0}^{i_{k}}, T_{1}^{i_{k}}\right]\right)-T_{1}^{i_{k}} \alpha\left(c^{\prime}\right)-T_{0}^{i_{k}} \alpha(c)-\frac{3}{4} \Delta \\
& \leq h_{\eta, \mu}^{\infty}\left(m_{0}, m_{1}\right)-2 \epsilon .
\end{aligned}
$$

but this contradicts (2.16) since $T_{0}^{\prime} \geq T_{0}^{i_{0}}$ and $T_{1}^{i_{k}} \geq T_{1}^{i_{0}}$, guaranteed by (2.17). (2.15a) and (2.15c) can be proved in the same way.

We define

$$
\tilde{\mathcal{N}}_{\eta, \mu}=\left\{d \gamma \in \tilde{\mathcal{G}}_{L_{\eta, \mu}}:(2.15 a)(2.15 b) \text { and }(2.15 c) \text { hold }\right\} .
$$

This definition is similar to the definition of a Mañé set, but L is replaced by $L_{\eta, \mu}$.
Lemma 2.4. The map $(\eta, \mu) \rightarrow \tilde{\mathcal{N}}_{\eta, \mu}$ is upper semi-continuous. $\tilde{\mathcal{N}}_{\eta, 0}=\tilde{\mathcal{N}}(c)$ if $[\eta]=c$. Consequently, the map $c \rightarrow \mathcal{N}(c)$ is upper semi-continuous.
Proof: Let $\eta_{i} \rightarrow \eta$ and $\mu_{i} \rightarrow \mu$, let $\gamma_{i} \in \tilde{\mathcal{N}}_{\eta_{i}, \mu_{i}}$ and let γ be an accumulation point of the set $\left\{\gamma_{i} \in \tilde{\mathcal{N}}_{\eta_{i}, \mu_{i}}\right\}_{i \in \mathbb{Z}^{+}}$. Clearly, $\gamma \in \tilde{\mathcal{N}}_{\eta, \mu}$. If $\gamma \notin \tilde{\mathcal{N}}_{\eta, \mu}$ there would be two point $\gamma(s), \gamma(\tau) \in M$ such that one of the following three possible cases takes place. Either $\gamma(s)$ and $\gamma(\tau) \in M$ can be connected by another curve $\gamma^{*}:[s+n, \tau] \rightarrow M$ with smaller action

$$
A_{\eta, \mu}(\gamma \mid[s, \tau])<A_{\eta, \mu}\left(\gamma^{*} \mid[s+n, \tau]\right)-n \alpha(c)
$$

in the case $\tau<0$; or there would a curve $\gamma^{*}:[s, \tau+n] \rightarrow M$ such that

$$
A_{\eta, \mu}(\gamma \mid[s, \tau])<A_{\eta, \mu}\left(\gamma^{*} \mid[s, \tau+n]\right)-n \alpha\left(c^{\prime}\right)
$$

in the case $s \geq 1$, or when $s \leq 0$ and $\tau \geq 1$ there would be a curve $\gamma^{*}:\left[s+n_{1}, \tau+n_{2}\right] \rightarrow$ M such that

$$
A_{\eta, \mu}(\gamma \mid[s, \tau])<A_{\eta, \mu}\left(\gamma^{*} \mid\left[s+n_{1}, \tau+n_{2}\right]\right)-n_{1} \alpha(c)-n_{2} \alpha\left(c^{\prime}\right)
$$

where $s+n_{1} \leq 0, \tau+n_{2} \geq 1$. Since γ is an accumulation point of γ_{i}, for any small $\epsilon>0$, there would be sufficiently large i such that $\left\|\gamma-\gamma_{i}\right\|_{C^{1}[s, t]}<\epsilon$, it follows that $\gamma_{i} \notin \tilde{\mathcal{N}}_{\eta_{i}, \mu_{i}}$ but that is absurd.

Let us consider the case that $\mu=0$. In this case, $L-\eta$ is periodic in t. If some orbit $\gamma \in \tilde{\mathcal{N}}_{\eta, 0}: \mathbb{R} \rightarrow M$ is not semi-static, then there exist $s<\tau \in \mathbb{R}, n \in \mathbb{Z}, \Delta>0$ and a curve $\gamma^{*}:[s, \tau+n] \rightarrow M$ such that $\gamma^{*}(s)=\gamma(s), \gamma^{*}(\tau+n)=\gamma(\tau)$ and

$$
A_{\eta, 0}(\gamma \mid[s, \tau]) \geq A_{\eta, 0}\left(\gamma^{*} \mid[s, \tau+n]\right)-n \alpha(c)+\Delta .
$$

We can extend γ^{*} to $\left[s_{1}, \tau_{1}+n\right] \rightarrow M$ such that $s_{1} \leq \min \{s, 0\}, \min \left\{\tau_{1}, \tau_{1}+n\right\} \geq 1$, $\tau_{1} \geq \tau$ and

$$
\gamma^{*}= \begin{cases}\gamma(t), & s_{1} \leq t \leq s \\ \gamma^{*}(t), & s \leq t \leq \tau+n \\ \gamma(t-n), & \tau+n \leq t \leq \tau_{1}+n\end{cases}
$$

Since $L-\eta$ is periodic in t, we would have

$$
A_{\eta, 0}\left(\gamma \mid\left[s_{1}, \tau_{1}\right]\right) \geq A_{\eta, 0}\left(\tau^{*} \gamma \mid\left[s_{1}, \tau_{1}+n\right]\right)-n \alpha(c)+\Delta .
$$

but this contradicts to (2.15c).
The upper semi-continuity of $c \rightarrow \tilde{\mathcal{N}}(c)$ will be fully exploited to build the C equivalence among some $\tilde{\mathcal{N}}(c)$, the construction of diffusion orbits in this paper depends crucially on this property. Towards that, we shall also make use of the Lipschitz property of the Aubry sets. Let $\pi: T M \times \mathbb{T} \rightarrow M \times \mathbb{T}$ be the projection along the fibers. Mather discovered the following (cf. [Ma3,4]):

Lemma 2.5. $\pi: \tilde{\mathcal{A}}(c) \rightarrow M \times \mathbb{T}$ is injective. Its inverse (considered as a map from $\mathcal{A}(c)=\pi \tilde{\mathcal{A}}(c)$ to $\tilde{\mathcal{A}}(c))$ is Lipschitz, i.e. \exists a constant C_{L} such that for any $x, y \in \mathcal{A}(c)$ we have

$$
\operatorname{dist}\left(\pi^{-1}(x), \pi^{-1}(y)\right) \leq C_{L} \operatorname{dist}(x, y)
$$

The concept of of regular Lagrangian is useful for us in this paper. L is said to be c-regular if the following limit exists for all $\left(x, x^{\prime}, s, s^{\prime}\right)$

$$
\begin{equation*}
h_{c}^{\infty}\left(x, x^{\prime}, s, s^{\prime}\right)=\lim _{k \rightarrow \infty} h_{c}^{k}\left(x, x^{\prime}, s, s^{\prime}\right) . \tag{2.20}
\end{equation*}
$$

Lemma 2.6. (Bernard 2002) If $\tilde{\mathcal{M}}(c)$ is minimal in the sense of topological dynamics and if there exists a sequence γ_{n} of n-periodic curves such $A_{c}\left(\gamma_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then L_{c} is regular, hence $\tilde{\mathcal{A}}(c)=\tilde{\mathcal{N}}(c)=\tilde{\mathcal{G}}(c)$.

For the completeness sake, we shall present his proof in the appendix. Applying this lemma to the area-preserving twist map we have the following:

Corollary 2.7. Let $\omega \in \mathbb{R} \backslash \mathbb{Q}$ be the rotation number and $c=\beta^{\prime}(\omega)$, then L_{c} is regular and $\tilde{\mathcal{G}}(c)=\tilde{\mathcal{A}}(c)$.

3, Structure of some c-minimal orbit sets

Our construction of connecting orbits between different c-minimal orbit sets exploit fully the upper-semi continuity of the set-valued function $c \rightarrow \tilde{\mathcal{N}}(c)$, and the structure of the relevant Mañé sets.

Let us consider the Hamiltonian flow Φ^{t} which is a small perturbation of Φ_{f+g}^{t}. Let Φ and Φ_{f+g} be their time-1-maps. As the cylinder $\mathbb{T} \times \mathbb{R} \times\left\{\left(q_{2}, p_{2}\right)=(0,0)\right\}=\Sigma_{0}$ is the normally hyperbolic invariant manifold for Φ_{f+g} and the a priori unstable condition is assumed, it follows from the fundamental theorem of normally hyperbolic invariant manifold (cf. [HPS]) that there is $\epsilon=\epsilon(A, B)>0$ such that if $\|P\|_{C^{r}} \leq \epsilon$ on the region $\{|p| \leq \max (|A|,|B|)+1\}$ the $\operatorname{map} \Phi^{s+k}(k \in \mathbb{Z})$ also has a C^{r-1} invariant manifold $\Sigma(s) \subset \mathbb{R}^{2} \times \mathbb{T}^{2}$, provided that $r \geq 2$. This manifold is a small deformation of the manifold $\left.\Sigma_{0}\right|_{\left\{\left|p_{1}\right| \leq \max (|A|,|B|)+1\right\}}$, and is also normally hyperbolic and time-1-periodic. Let $\Sigma=\Sigma(0)$, it can be considered as the image of a map ψ : $\Sigma_{0} \rightarrow \mathbb{R}^{2} \times \mathbb{T}^{2}, \Sigma=\left\{p_{1}, q_{1}, p_{2}\left(p_{1}, q_{1}\right), q_{2}\left(p_{1}, q_{1}\right)\right\}$. This map induces a 2-form $\psi^{*} \omega$ on Σ_{0}

$$
\psi^{*} \omega=\left(1+\frac{\partial\left(p_{2}, q_{2}\right)}{\partial\left(p_{1}, q_{1}\right)}\right) d p_{1} \wedge d q_{1}
$$

Since the second de Rham co-homology group of Σ_{0} is trivial, by using Moser's argument on the isotopy of symplectic forms [Mo], we find that there exists a diffeomorphism ψ_{1} on $\left.\Sigma_{0}\right|_{\left\{\left|p_{1}\right| \leq \max (|A|,|B|)+1\right\}}$ such that

$$
\begin{equation*}
\left(\psi \circ \psi_{1}\right)^{*} \omega=d p_{1} \wedge d q_{1} \tag{3.1}
\end{equation*}
$$

Since Σ is invariant for Φ and $\Phi^{*} \omega=\omega$, we have

$$
\left(\left(\psi \circ \psi_{1}\right)^{-1} \circ \Phi \circ\left(\psi \circ \psi_{1}\right)\right)^{*} d p_{1} \wedge d q_{1}=d p_{1} \wedge d q_{1}
$$

i.e. $\left(\psi \circ \psi_{1}\right)^{-1} \circ \Phi \circ\left(\psi \circ \psi_{1}\right)$ preserves the standard area. Clearly, it is exact and twist since it is a small perturbation of Φ_{f}. In this sense, we say that the restriction of Φ on Σ is obviously area-preserving and twist. If $r>4$ there are many invariant homotopically non-trivial curves, including many KAM curves. As it still remains open whether the invariant curves of irrational rotation number must be differentiable, we can only assume all these curves are Lipschitz. Given $\rho \in \mathbb{R}$ there is an Aubry-Mather set with rotation number ρ, which is either an invariant circle, or a Denjoy set if $\rho \in \mathbb{R} \backslash \mathbb{Q}$, or periodic orbits if $\rho \in \mathbb{Q}$. Under the generic condition we can assume there is no homotopically non-trivial invariant curves with rational rotation number for $\left.\Phi\right|_{\Sigma}$, and there is only one minimal periodic orbit on Σ for each rational rotation number.

Let us consider the Legendre transformation \mathcal{L}. By abuse of terminology we continue to denote $\Sigma(s)$ and its image under the Legendre transformation by the same symbol. Let

$$
\tilde{\Sigma}=\bigcup_{s \in \mathbb{T}}(\Sigma(s), s),
$$

which has the normal hyperbolicity as well. Under the Legendre transformation those Aubry-Mather sets (invariant curves, Denjoy sets or minimal periodic orbits) on Σ correspond to the support of some c-minimal measures. Recall $H^{1}(M, \mathbb{R})=\mathbb{R}^{2}$. We claim that each of these sets corresponds to an interval or a rectangle in $H^{1}(M, \mathbb{R})$, in other words, for all c in this interval (rectangle), the time-1-section of the support of the c-minimal measure is exactly this Aubry-Mather set.

Towards that goal, we introduce the coordinate transformation $\left(p_{1}, q_{2}, p_{2}, q_{2}\right) \rightarrow$ ($p_{1}, q_{2}, p_{2}+\zeta\left(q_{2}\right), q_{2}$) where ζ is defined in the way such that

$$
\begin{equation*}
\frac{\partial g}{\partial p_{2}}\left(\zeta\left(q_{2}\right), q_{2}\right)=0 \tag{3.2}
\end{equation*}
$$

and let $g^{\prime}\left(p_{2}, q_{2}\right)=g\left(p_{2}+\zeta\left(q_{2}\right), q_{2}\right)$. By the assumption on g we now have

$$
\frac{\partial^{2} g^{\prime}}{\partial q_{2}^{2}}(0,0)<0, \quad \frac{\partial^{2} g^{\prime}}{\partial p_{2} \partial q_{2}}\left(0, q_{2}\right)=0
$$

To simplify the notation we still use g to denote the function g^{\prime}. Let L_{0} be the Lagrangian obtained from $f+g$ by Legendre transformation, it has the form

$$
L_{0}\left(q_{2}, \dot{q}\right)=\ell_{1}\left(\dot{q}_{1}\right)+\ell_{2}\left(q_{2}, \dot{q}_{2}\right)
$$

where ℓ_{1} and ℓ_{2} are the Legendre transformation of f and g respectively. As g is a convex function in $p_{2}, \dot{q}_{2}=\dot{q}_{2}\left(p_{2}, q_{2}\right)=\partial_{p_{2}} g\left(p_{2}, q_{2}\right)$, we find from (3.2) and the convexity of g that $\dot{q}_{2}\left(0, q_{2}\right)=0$ and $\partial \dot{q}_{2} / \partial p_{2}>0$, thus ℓ_{2} can be written in the form

$$
\ell_{2}\left(q_{2}, \dot{q}_{2}\right)=V\left(q_{2}\right)+U\left(q_{2}, \dot{q}_{2}\right)
$$

where $V\left(q_{2}\right)=-g\left(0, q_{2}\right), U \geq 0$ is a convex function in \dot{q}_{2} with super-linear growth, attains its minimum at $\dot{q}_{2}=0\left(\forall q_{2} \in \mathbb{T}\right)$. By the assumption, V has a global minimum at $q_{2}=0$ which is non-degenerate.

Now let us consider the β function of L_{0}. Under the flow $\phi_{L_{0}}^{t}$ an invariant circle on Σ with irrational rotation number ρ is the support of a unique minimal measure $\mu_{(\rho, 0)}$ whose rotation vector is $(\rho, 0)$. There exist $c_{1} \in \mathbb{R}$ and $-\infty<c_{2}^{-}<0<c_{2}^{+}<\infty$ such that $\mu_{(\rho, 0)}$ is c-minimal for $c \in\left\{c_{1}\right\} \times\left[c_{2}^{-}, c_{2}^{+}\right]$. We have $c_{2}^{-}<c_{2}^{+}$since the β function of the twist map has corner at rational numbers. β is differentiable at some rational number p / q if and only if there exists a homotopically non-trivial invariant curve of rotation number p / q, consists entirely of periodic orbits of period q ([Ba],[Ma2]). From the property that both α and β functions are finite everywhere and has superlinear growth we find that $-\infty<c_{2}^{-}$and $c_{2}^{+}<\infty$.

Next, let us consider the α function of L. We use $c=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$ to denote a first de Rham cohomology class of M. For each $c \in \mathbb{R} \times\left(c_{2}^{-}, c_{2}^{+}\right)$the action variable on each c-minimal orbit of L_{0} takes value ($p_{1}, 0$) which is independent of t. Let A^{*}, B^{*} be such numbers that for each $c \in\left[A^{*}, B^{*}\right] \times\left(c_{2}^{-}, c_{2}^{+}\right)$the corresponding p_{1} satisfies the condition

$$
A-1 \leq p_{1} \leq B+1
$$

Lemma 3.1. There exists $\epsilon_{0}>0$, if $\|P\|_{C^{2}} \leq \epsilon_{0}$ on the region $\{|p| \leq \max (|A|,|B|)+$ $1\}$, there is a strip $C=\left[A^{*}, B^{*}\right] \times\left[-c_{2}^{*}, c_{2}^{*}\right] \subset H^{1}(M, \mathbb{R})\left(c_{2}^{*}>0\right)$, such that for each $c \in C$, the c-minimal orbit set $\tilde{\mathcal{G}}(c) \subset \tilde{\Sigma}$.
Proof: Note the Lagrange flow of L_{0} is integrable and is decoupled between two phase sub-space $\left(q_{1}, \dot{q}_{1}\right)$ and $\left(q_{2}, \dot{q}_{2}\right)$. The second component of the flow $\phi_{L_{0}}^{t}, \phi_{\ell_{2}}^{t}$ has two homoclinic loops Γ^{+}and Γ^{-}, which can be thought as the graph of the functions $G^{ \pm}\left(q_{2}\right)$, i.e. $\Gamma^{ \pm}=\left\{q_{2}, G^{ \pm}\left(q_{2}\right)\right\}$. The orbit $d q_{2}^{+}$on Γ^{+}encircles the cylinder $\mathbb{T} \times \mathbb{R}$ in counter clockwise direction ($\dot{q}_{2}>0$), the orbit $d q_{2}^{-}$on Γ^{-}encircles the cylinder in clockwise direction ($\dot{q}_{2}<0$). Clearly we have some positive numbers $C_{A}^{ \pm}>0$ such that

$$
\int_{-\infty}^{\infty} \ell_{2}\left(q_{2}^{ \pm}(t), \dot{q}_{2}^{ \pm}(t)\right) d t=C_{A}^{ \pm}
$$

Let

$$
c_{2}^{+}=\frac{1}{2 \pi} C_{A}^{+}, \quad c_{2}^{-}=\frac{1}{2 \pi} C_{A}^{-} .
$$

It is obvious that for each $c \in \mathbb{R} \times\left(-c_{2}^{-}, c_{2}^{+}\right), \tilde{\mathcal{G}}_{L_{0}}$ is contained in $\tilde{\Sigma}$. By the upper semi-continuity of the set function $(c, L) \rightarrow \tilde{\mathcal{G}}_{L}(c)$, there exist $\epsilon=\epsilon(A, B)>0$ and $c_{2}^{*}>0$ such that if $c \in\left[A^{*}, B^{*}\right] \times\left[-c_{2}^{*}, c_{2}^{*}\right]$ and if $\left\|L_{1}\right\|_{C^{2}} \leq \epsilon$ then $\tilde{\mathcal{G}}(c)$ is contained in a small neighborhood of $\tilde{\mathcal{G}}_{L_{0}}(c)$. Here, $\|\cdot\|_{C^{2}}$ is the norm in the function space $C^{2}\left(\left\{(\dot{q}, q) \in \mathbb{R}^{2} \times \mathbb{T}^{2}:\|\dot{q}\| \leq K\right\} \rightarrow \mathbb{R}\right), K>0$ is a sufficiently large number. Since $\tilde{\mathcal{G}}(c)$ is invariant, by the normal hyperbolicity of the invariant cylinder, $\tilde{\mathcal{L}} \subset \tilde{\Sigma}$.

Although the structure of minimal measures is unclear in general case, we know very well the structures of those $\tilde{\mathcal{M}}(c) \subset \tilde{\Sigma}$ since the time-1-map Φ is an areapreserving twist map when it is restricted to Σ. Under the projection from $T M \times \mathbb{T}$ to $T M \times\{t=0\}$, the support of those c-minimal measures are the image of those Anbry-Mather sets under the Legendre transformation \mathcal{L}, they are homotopically non-trivial invariant curves, Denjoy sets or minimal periodic orbits on Σ. We use Γ to denote those Aubry-Mather sets on Σ in the Hamitonian formalism, let $\Gamma(t)=$ $\Phi_{H}^{t}(\Gamma) \subset \Sigma(t), \tilde{\Gamma}=\cup_{t \in \mathbb{T}}(\mathcal{L}(\Gamma(t)), t)$.

Before going onto the study of some c-minimal measures, let us note a fact as follows:
Proposition 3.2. Let $c^{\prime}, c^{*} \in H^{1}(M, \mathbb{R}), \mu^{\prime}$ and μ^{*} be the corresponding minimal measures respectively. If $\left\langle c^{\prime}-c^{*}, \rho\left(\mu^{\prime}\right)\right\rangle=\left\langle c^{\prime}-c^{*}, \rho\left(\mu^{*}\right)\right\rangle=0$, then $\alpha\left(c^{\prime}\right)=\alpha\left(c^{*}\right)$.
Proof. By the definition of the α function we find that

$$
\begin{aligned}
-\alpha\left(c^{\prime}\right) & =\inf _{\nu \in \mathfrak{M}} \int\left(L-\eta_{c^{\prime}}\right) d \nu=\int\left(L-\eta_{c^{\prime}}\right) d \mu^{\prime} \\
& =\int\left(L-\eta_{c^{*}}\right) d \mu^{\prime}+\left\langle c^{*}-c^{\prime}, \rho\left(\mu^{\prime}\right)\right\rangle \\
& \geq-\alpha\left(c^{*}\right)
\end{aligned}
$$

In the same way we find that $\alpha\left(c^{*}\right) \leq \alpha\left(c^{\prime}\right)$.

Lemma 3.3. Assume $\tilde{\Gamma} \in \tilde{\mathcal{M}}(\bar{c})$ for some $\bar{c}=\left(\bar{c}_{1}, \bar{c}_{2}\right) \in\left[A^{*}, B^{*}\right] \times\left[-c_{2}^{*}, c_{2}^{*}\right]$. There is an interval $I=I\left(\bar{c}_{1}\right)=\left\{\left(c_{1}, c_{2}\right) \in H^{1}(M, \mathbb{R}): c_{1}=\bar{c}_{1}, a\left(c_{1}\right) \leq c_{2} \leq b\left(c_{1}\right)\right\}$ with $-\infty<a\left(c_{1}\right)<0<b\left(c_{1}\right)<\infty$, such that $\tilde{\mathcal{M}}(c)=\tilde{\Gamma}$ for all $c \in \operatorname{Int} I, \tilde{\mathcal{M}}(c) \supseteq \tilde{\Gamma}$ for $c \in \partial I$. If there is an invariant curve containing Γ we have further $\tilde{\mathcal{M}}(c)=\tilde{\Gamma}$ for all $c \in I$.

Proof: Let $\bar{\mu}$ be a \bar{c}-minimal measure. We have shown in the lemma 3.1 that the support of $\bar{\mu}$ must be contained in $\tilde{\Sigma}$. Note the time-1-map is an area-preserving twist map when it is restricted on the cylinder, $\left.\operatorname{supp}(\bar{\mu})\right|_{t=0}$ is exactly an Aubry-Mather set. When the rotation number is irrational, it follows from the theory for twist map that $\bar{\mu}$ is uniquely ergodic; if the rotation number is rational, we have assumed that there is only one minimal periodic orbit. Thus, the minimal measure of consideration here is always uniquely ergodic, i.e. $\operatorname{supp}(\bar{\mu})=\tilde{\Gamma}$. Let $\phi^{t}(z, \theta) \in T M \times \mathbb{T}$ be the Lagrangian flow, z_{t} be the $T M$ component, $\hat{\eta}=d q_{2}$. For any invariant measure μ, if $\operatorname{supp}(\mu) \subset \tilde{\Sigma}$, we have

$$
\begin{align*}
\int \hat{\eta} d \mu & =\frac{1}{T} \int_{0}^{T} d s \int\left(\hat{\eta} \circ \phi^{s}\right) d \mu \\
& =\frac{1}{T} \int_{0}^{T} d s \int\left\langle\hat{\eta}, z_{s}\right\rangle d \mu(z) \\
& \leq \frac{1}{T} \int\left|\int_{0}^{T}\left\langle\hat{\eta}, z_{s}\right\rangle d s\right| d \mu(z) \\
& \leq \frac{2 \pi}{T} \rightarrow 0 \tag{3.3}
\end{align*}
$$

as $T \rightarrow \infty$. Since $\int \hat{\eta} d \mu$ is independent of $T, \int \hat{\eta} d \mu=0$. Therefore, it follows from the proposition 3.2 that $\alpha(\bar{c})=\alpha(\hat{c})$ if both \bar{c} - and \hat{c}-minimal measures are on $\tilde{\Sigma}$ with $\bar{c}-\hat{c}=\left(0, c_{2}\right)$. As the β function for a twist map is strictly convex, $\tilde{\mathcal{M}}(\bar{c})=\tilde{\mathcal{M}}(\hat{c})$. Let $I\left(\bar{c}_{1}\right)=\left\{c \in H^{1}(M, \mathbb{R}): c_{1}=\bar{c}_{1}, \tilde{\mathcal{M}}(c) \supseteq \tilde{\Gamma}\right\}$. As the α function is convex and has super-linear growth, I is connected and $-\infty<a<0<b<\infty$. What remains to show is that I is closed. If not, there was a sequence $c_{k} \rightarrow c$ such that $\tilde{\Gamma} \subset \tilde{\mathcal{M}}\left(c_{k}\right)$ and $\tilde{\Gamma} \nsubseteq \tilde{\mathcal{M}}(c)$, consequently, there would exist μ such that $A_{c}\left(\mu_{\tilde{\Gamma}}\right)>A_{c}(\mu)$, where $\mu_{\tilde{\Gamma}}$ is the invariant measure on $\tilde{\Gamma}$. Let k be sufficiently large so that c_{k} is sufficiently close to c, then

$$
A_{c_{k}}(\mu)=\int L d \mu-\left\langle\rho(\mu), c_{k}\right\rangle=A_{c}(\mu)-\left\langle\rho(\mu), c_{k}-c\right\rangle<A_{c}\left(\mu_{\tilde{\Gamma}}\right)
$$

On the other hand, it follows from $\left\langle c-c_{k}, \rho\left(\mu_{\tilde{\Gamma}}\right)\right\rangle=0$ that $A_{c}\left(\mu_{\tilde{\Gamma}}\right)=A_{c_{k}}\left(\mu_{\tilde{\Gamma}}\right)$, thus we have $A_{c_{k}}\left(\mu_{\tilde{\Gamma}}\right)>A_{c_{k}}(\mu)$, but it contradicts to the fact that $\mu_{\tilde{\Gamma}}$ is c_{k}-minimal measure.

If there is another measure μ which can also minimize the c-action of L when $a\left(c_{1}\right)<c_{2}<b\left(c_{1}\right)$, then $\left\langle d q_{2}, \mu\right\rangle=0$. Indeed, for all $a\left(c_{1}\right)<c_{2}^{\prime}<b\left(c_{1}\right)$ we have

$$
\begin{aligned}
\int\left(L-c_{1} \dot{q}_{1}-c_{2}^{\prime} \dot{q}_{2}\right) d \mu_{\Gamma} & =\int\left(L-c_{1} \dot{q}_{1}-c_{2} \dot{q}_{2}\right) d \mu_{\Gamma} \\
& =\int\left(L-c_{1} \dot{q}_{1}-c_{2} \dot{q}_{2}\right) d \mu \quad \text { (by assumption) } \\
& =\int\left(L-c_{1} \dot{q}_{1}-c_{2}^{\prime} \dot{q}_{2}\right) d \mu+\left(c_{2}^{\prime}-c_{2}\right)\left\langle d q_{2}, \mu\right\rangle
\end{aligned}
$$

thus we can choose c_{2}^{\prime} in the way that $\left(c_{2}^{\prime}-c_{2}\right)\left\langle d q_{2}, \mu\right\rangle>0$ if $\left\langle d q_{2}, \mu\right\rangle \neq 0$. But this contradicts to the minimality of μ_{Γ}. Consequently, we always have

$$
\int\left(L-c_{1} \dot{q}_{1}\right) d \mu=\int\left(L-c_{1} \dot{q}_{1}\right) d \mu_{\tilde{\Gamma}}
$$

which is independent of the value c_{2} takes between $a\left(c_{1}\right)$ and $b\left(c_{1}\right)$, it implies that $\mu=\mu_{\tilde{\Gamma}}$ since $\mu_{\tilde{\Gamma}}$ is the only c-minimal measure when $\left|c_{2}\right| \leq c_{2}^{*}$.

Let us consider the case when Γ is contained in an invariant curve and $c_{2} \in \partial I$. Recall that there exists an invariant curve if and only if the Peier's barrier function is identically equal to zero, the Aubry set $\tilde{\mathcal{A}}(c)$ contains a co-dimensional one torus in this case. Let π be the projection $T M \times \mathbb{T} \rightarrow M \times \mathbb{T}$. Because the inverse map π^{-1} defined the Aubry sets is Lipschitz and $\pi \tilde{\Gamma}$ contains a codimension 1 torus, any c-minimal curve $\gamma \subset \mathcal{A}(c)$ can not cross the 2-torus $\pi \tilde{\Gamma} \subset T^{2} \times \mathbb{T}$. Thus there exist $\delta>0$ such that for any $T>0$

$$
-\delta \leq\left|\int_{-T}^{T} \dot{\bar{\gamma}}_{2}(t) d t\right| \leq 2 \pi+\delta
$$

So, if μ is also a c-minimal measure and $c^{\prime}=\left(c_{1}, 0\right)$, then

$$
\begin{aligned}
A_{c^{\prime}}\left(\mu_{\tilde{\Gamma}}\right) & =\int\left(L-c_{1} \dot{q}_{1}\right) d \mu_{\tilde{\Gamma}} \\
& =\int\left(L-c_{1} \dot{q}_{1}-c_{2} \dot{q}_{2}\right) d \mu \quad(\text { by condition }) \\
& =\int\left(L-c_{1} \dot{q}_{1}\right) d \mu \quad(\text { by }(3.3)) \\
& =A_{c^{\prime}}(\mu)
\end{aligned}
$$

it implies that the only minimal measure is $\mu_{\tilde{\Gamma}}$.
It follows from the lemma 3.3 that there is a strip $\mathcal{S}=\left\{\left(c_{1}, c_{2}\right) \in H^{1}(M, \mathbb{R})\right.$: $\left.c_{1} \in \mathbb{R}, a\left(c_{1}\right) \leq c_{2} \leq b\left(c_{1}\right), A^{*}<c_{1}<B^{*},-\infty<a\left(c_{1}\right)<0<b\left(c_{1}\right)<\infty\right\}$, such that if $c \in \operatorname{int} \mathcal{S}$, the c-minimal measure is on $\tilde{\Sigma}$ and is uniquely ergodic. If $c \in \partial \mathcal{S} \cap\left\{A^{*}<c_{1}<B^{*}\right\}$ and $\Gamma \subset \tilde{\mathcal{M}}(c)$ is contained in an invariant curve, the c-minimal measure is also uniquely ergodic. In these cases, we have $\tilde{\mathcal{A}}(c)=\tilde{\mathcal{N}}(c)$.

In the following, we use $I\left(c_{1}\right)=\left\{c=\left(c_{1}, c_{2}\right): a\left(c_{1}\right) \leq c_{2} \leq b\left(c_{1}\right)\right\}$ to denote the maximal interval in the following sense: for each $c^{\prime}=\left(c_{1}, c_{2}^{\prime}\right)$ with $a\left(c_{1}\right)<c_{2}^{\prime}<b\left(c_{1}\right)$, the c^{\prime}-minimal measure has some $\tilde{\Gamma} \subset \tilde{\Sigma}$ as its support, this $\tilde{\Gamma}$ is not contained in the support of any c^{*}-minimal measure where $c^{*}=\left(c_{1}, c_{2}^{*}\right)$ with either $c_{c}^{*}<a\left(c_{1}\right)$ or $c_{2}^{*}>b\left(c_{1}\right)$.

Lemma 3.4. Let $\tilde{\Gamma} \subset \tilde{\Sigma}$ be the support of some minimal measure for $\bar{c} \in I\left(c_{1}\right)$, we assume that it has dense orbit. Then $\tilde{\mathcal{N}}(c) \subset \tilde{\Sigma}$ for each $c \in \operatorname{intI}\left(c_{1}\right)=\left\{\left(c_{1}, c_{2}\right)\right.$: $\left.a\left(c_{1}\right)<c_{2}<b\left(c_{1}\right)\right\}$. If Γ is an invariant curve or a Denjoy set contained in an invariant curve, and if $c \in \partial I=\left\{\left(c_{1}, c_{2}\right): c_{2}=a\left(c_{1}\right)\right.$ or $\left.c_{2}=b\left(c_{1}\right)\right\}$ we have further that $\tilde{\mathcal{N}}(c)$ consists of $\tilde{\Gamma}$ and the c-minimal orbits homoclinic to $\tilde{\Gamma}$.

Proof. Let us consider a c-minimal orbit $d \gamma$ with $c \in \operatorname{int} I\left(c_{1}\right)\left(c \in I\left(c_{1}\right)\right.$ if Γ is an invariant curve). If this orbit is not contained in $\tilde{\mathcal{M}}(c)=\tilde{\Gamma}$, then $d \gamma$ is semiasymptotic to $\tilde{\Gamma}$ as $t \rightarrow \pm \infty$. We say an orbit is semi-asymptotic to an invariant set Γ as $t \rightarrow \infty$ if every invariant subset of its ω-limit set that is minimal in Birkhoff sense is contained in Γ. We use the argument in $[\mathrm{Bo}]$ to show it. Let N is a minimal (in Birkhoff sense) invariant subset of the ω-limit set of $d \gamma$, there exists a sequence $t_{k} \rightarrow \infty$ such that $\operatorname{dist}\left(d \gamma\left(t_{k}\right), N\right) \rightarrow 0$. We claim that there is a sequence $T_{k} \rightarrow \infty$ such that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\{\operatorname{dist}(d \gamma(t), N): t_{k} \leq t \leq t_{k}+T_{k}\right\} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

If not, there exist $d>0, T>0$ and a subsequence t_{j} of the sequence t_{k} such that $\operatorname{dist}(d \gamma(t), N) \geq d$ for every j and some $s_{j} \in\left[t_{j}, t_{j}+T\right]$. As $\gamma(t)$ is a c-minimal curve, $d \gamma$ lies in a bounded region of $T M \times \mathbb{T}$, the closure of the orbit is compact. Thus, for some subsequence t_{i} of the sequence t_{j}, the sequence $d \gamma\left(t_{i}\right)$ and $d \gamma\left(s_{i}\right)$ are convergent to some points $x \in N$ and $y \in T M \times \mathbb{T}$ respectively, where $\operatorname{dist}(y, N) \geq d$. Consequently, $\phi^{t_{0}}(x)=y$ for some $0<t_{0} \leq T$. This contradicts to the invariance of N to the Euler-Lagrange flow.

Let μ_{n} be the probability measure evenly distributed along $d \gamma\left[t_{k}, t_{k}+T_{k}\right], \mu$ be an accumulation point of $\left\{\mu_{n}\right\}$. As $d \gamma$ is a c-minimal orbit of the Lagrange system μ is a c-minimal measure, i.e. $\mu=\mu_{\tilde{\Gamma}}$. From (3.4) we see $\operatorname{dist}(N, \tilde{\Gamma})=0$. As $\tilde{\Gamma}$ has dense orbit, $N=\tilde{\Gamma}$, i.e. the ω-limit set of $d \gamma$ has only one minimal invariant subset $\tilde{\Gamma}$ (in Birkhoff sense). In the same way we can show that the α-limit set of $d \gamma$ has only one minimal invariant subset $\tilde{\Gamma}$ also.

Let $c \in \operatorname{int} I$ and $d \gamma \in \tilde{\mathcal{N}}(c)$. Note $\tilde{\mathcal{N}}(c)=\tilde{\mathcal{A}}(c)$ in this case. For each $\xi \in \pi(\Gamma)$, if $k_{i j} \rightarrow \infty(i=1,2)$ as $j \rightarrow \infty$ are the two sequences such that $d \gamma\left(-k_{1 j}\right), d \gamma\left(k_{2 j}\right) \rightarrow$ $\pi^{-1}(\xi)$, then we claim that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{-k_{1 j}}^{k_{2 j}} \dot{\gamma}_{2}(t) d t=0 \tag{3.5}
\end{equation*}
$$

In fact, for any $\xi \in \pi(\Gamma)$ there exist two sequences $k_{i j} \rightarrow \infty$ as $j \rightarrow \infty(i=1,2)$ such that $d \gamma\left(-k_{i j}\right) \rightarrow \pi^{-1}(\xi)$ and $d \gamma\left(k_{2 j}\right) \rightarrow \pi^{-1}(\xi)$ as $j \rightarrow \infty$. It follows from the fact
that γ is c-static that

$$
h_{c}^{k_{1 j}}\left(\gamma\left(-k_{1 j}\right), \gamma(0)\right)+h_{c}^{k_{2 j}}\left(\gamma(0), \gamma\left(k_{2 j}\right)\right) \rightarrow 0
$$

If (3.5) does not hold, by choosing a subsequence again (we use the same symbol) we would have

$$
\left|\lim _{j \rightarrow \infty} \int_{-k_{1} j}^{k_{2} j} \dot{\gamma}_{2}(t) d t\right| \geq 2 \pi>0
$$

In this case, let us consider the barrier function $B_{c^{\prime}}^{*}$ where $c^{\prime}=\left(c_{1}, c_{2}^{\prime}\right)$. Since $c-c^{\prime}=\left(0, c_{2}-c_{2}^{\prime}\right)$, we obtain from the proposition 3.2 that $\alpha\left(c^{\prime}\right)=\alpha(c)$, so

$$
\begin{aligned}
B_{c^{\prime}}(\gamma(0)) \leq & \liminf _{j \rightarrow \infty} \int_{-k_{1 j}}^{k_{2 j}}\left(L(d \gamma(t), t)-c_{1} \dot{\gamma}_{1}(t)-c_{2}^{\prime} \dot{\gamma}_{2}(t)-\alpha\left(c^{\prime}\right)\right) d t \\
\leq & \liminf _{j \rightarrow \infty}^{k_{2 j}} \int_{-k_{1 j}}^{k_{1 j}}\left(L(d \gamma(t), t)-c_{1} \dot{\gamma}_{1}(t)-c_{2} \dot{\gamma}_{2}(t)-\alpha(c)\right) d t \\
& +\left(c_{2}-c_{2}^{\prime}\right) \lim _{j \rightarrow \infty} \int_{-k_{1 j}}^{k_{2 j}} \dot{\gamma}_{2}(t) d t \\
\leq & -2\left|c_{2}-c_{2}^{\prime}\right| \pi<0
\end{aligned}
$$

as we can choose $c_{2}^{\prime}>c_{2}$ or $c_{2}^{\prime}<c_{2}$ accordingly. But this is absurd since barrier function is non-negative.

Now let us derive from (3.5) that there is no c-semi-static orbit that is not contained in $\tilde{\Sigma}$. In fact, we find that $d \gamma \in \tilde{\mathcal{N}}\left(\left(c_{1}, 0\right)\right)$. To see that, we obtain from (3.5) that the term $c_{2} \dot{\gamma}_{2}$ has no contribution to the action along the curve $\left.\gamma\right|_{\left[-k_{1 j}, k_{2}\right]}$:

$$
\begin{equation*}
\int_{-k_{1 j}}^{k_{2 j}}\left(L-c_{1} \dot{\gamma}_{1}-c_{2} \dot{\gamma}_{2}\right) d t \rightarrow \int_{-k_{1 j}}^{k_{2 j}}\left(L-c_{1} \dot{\gamma}_{1}\right) d t, \quad \text { as } j \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Note $k_{i j} \rightarrow \infty$ as $j \rightarrow \infty(i=1,2)$. If $d \gamma \notin \tilde{\mathcal{N}}\left(\left(c_{1}, 0\right)\right)$, there would exist $j^{\prime} \in \mathbb{Z}^{+}$, $k^{\prime} \in \mathbb{Z}, E>0$ and a curve $\zeta:\left[-k_{1 j}, k_{2 j}+k^{\prime}\right] \rightarrow M$ such that $\zeta\left(-k_{1 j^{\prime}}\right)=\gamma\left(-k_{1 j^{\prime}}\right)$, $\zeta\left(k_{2 j}+k^{\prime}\right)=\gamma\left(k_{2 j^{\prime}}\right)$

$$
\begin{align*}
& \int_{-k_{1 j^{\prime}}}^{k_{2 j^{\prime}}}\left(L(d \gamma(t), t)-c_{1} \dot{\gamma}_{1}+\alpha\left(\left(c_{1}, 0\right)\right)\right) d t \\
\geq & \left.\int_{-k_{1 j^{\prime}}}^{k_{2 j^{\prime}}+k^{\prime}}\left(L(d \zeta(t), t)-c_{1} \dot{\zeta}_{1}+\alpha\left(\left(c_{1}, 0\right)\right)\right)\right) d t+E \\
& \geq F_{\left(c_{1}, 0\right)}\left(\gamma\left(-k_{1 j^{\prime}}\right), \gamma\left(k_{2 j}\right)\right)+E \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\int_{-k_{1 j^{\prime}}}^{k_{2 j^{\prime}}+k^{\prime}} \dot{\zeta}_{2} d t\right| \rightarrow 0 \tag{3.8}
\end{equation*}
$$

The second condition (3.10) follows from the facts that $\tilde{\mathcal{N}}\left(\left(c_{1}, 0\right)\right) \subset \tilde{\Sigma}$ and that $\gamma\left(-k_{i j}\right) \rightarrow \xi \in \mathcal{M}_{0}\left(\left(c_{1}, 0\right)\right)=\mathcal{M}_{0}(c)$. Let $j-j^{\prime}$ be sufficiently large, we construct a curve $\zeta^{\prime}:\left[-k_{1 j}, k_{2 j}+k^{\prime}\right] \rightarrow M$ such that

$$
\zeta^{\prime}(t)= \begin{cases}\gamma(t), & t \in\left[-k_{1 j},-k_{1 j^{\prime}}\right] ; \\ \zeta(t), & t \in\left[-k_{1 j^{\prime}}, k_{2 j^{\prime}}+k^{\prime}\right] ; \\ \gamma\left(t-k^{\prime}\right), & t \in\left[k_{2 j^{\prime}}+k^{\prime}, k_{2 j}+k^{\prime}\right] .\end{cases}
$$

It follows from (3.5~8) that

$$
\begin{aligned}
\int_{-k_{1 j}}^{k_{2 j}+k^{\prime}}\left(L\left(d \zeta^{\prime}(t), t\right)-\left\langle c, \dot{\zeta}^{\prime}\right\rangle\right) d t & <\int_{-k_{1 j}}^{k_{2 j}}\left(L\left(d \gamma(t)-c_{1} \dot{\gamma}_{1}\right) d t-E\right. \\
& \leq \int_{-k_{1 j}}^{k_{2 j}}(L(d \gamma(t), t)-\langle c, \dot{\gamma}\rangle) d t-\frac{E}{2}
\end{aligned}
$$

but this contradicts to the property that $d \gamma \in \tilde{\mathcal{N}}(c)$.
Finally, let us consider the case when $c \in \partial I$ and there is an invariant circle containing Γ. In this case, we obtain from the lemma 3.3 that $\mu_{\tilde{\Gamma}}$ is the only minimal measure still. According to the upper semi-continuity of the set-valued function $c \rightarrow \tilde{\mathcal{N}}(c)$ that $\tilde{\mathcal{N}}\left(c^{\prime}\right)$ should be in a small neighborhood of $\tilde{\mathcal{N}}(c)$ if c^{\prime} is close to c. It implies that $\tilde{\mathcal{N}}(c)$ should contain some orbits outside of $\tilde{\Sigma}$. If this is not true, $\tilde{\mathcal{N}}\left(c^{\prime}\right)$ would be in a small neighborhood of $\tilde{\Sigma}$ for some $c^{\prime}=\left(c_{1}, c_{2}^{\prime}\right)$ with $c_{2}<a\left(c_{1}\right)$ or $c_{2}>b\left(c_{1}\right)$. As we have normally hyperbolic structure in the neighborhood of $\tilde{\Sigma}$, any invariant set should be on $\tilde{\Sigma}$, consequently, we would have $\tilde{\mathcal{M}}\left(c^{\prime}\right)=\tilde{\Gamma}$ as the map induced by the Euler-Lagrange flow on this manifold corresponds to a twist area-preserving map on Σ. But this contradicts to the definition of $I\left(c_{1}\right)$.

At the beginning of the proof we have shown that any c-minimal orbits must be semi-asymptotic to the support of the minimal measure if it is uniquely ergodic. What remain to show is such orbit is homoclinic to the invariant circle in this case. As Γ is contained in an invariant circle, denoted by Γ^{*}, the Aubry set contains a codimension 1 torus $\tilde{\Gamma}^{*}=\cup_{t \in[0,1]}\left(\phi^{t}\left(\mathcal{L}\left(\Gamma^{*}\right)\right), t\right)$, because $P_{\omega}(q)=B_{c}(q)$ for all $q \in \pi\left(\Gamma^{*}\right)$ when $\omega=\partial_{1} \alpha(c)$ is irrational, and because the necessary and sufficient condition for the existence of invariant circle is the Peierl's barrier function is identically equal to zero. Due to the Lipschitz property of the Aubry set, any c-minimal curve can not cross $\pi\left(\tilde{\Gamma}^{*}\right)$, so

$$
\int_{-k}^{k} \dot{\gamma}_{2}(t) d t \leq 2 \pi+\mathcal{O}(\|P\|), \quad \forall k \in \mathbb{Z}^{+}
$$

As $d \gamma$ is semi-asymptotic to $\tilde{\Gamma}, d \gamma$ enters the small neighborhood of $\tilde{\Sigma}$. If $d \gamma$ does not fall either on the stable manifold or on the unstable manifold, then it will go outside of the neighborhood again. It implies that $d \gamma$ is a multi-bump solution of the Lagrange equation. As we did in the proof of the lemma 3.1, we can construct a curve ζ by cutting off all other bumps and leave only one bump. In this case the c-action of ζ is smaller than that of γ, but this is absurd. Thus, $d \gamma(t) \in W_{l o c}^{s}\left(\tilde{\Gamma}^{*}\right) \cup W_{l o c}^{u}\left(\tilde{\Gamma}^{*}\right) \backslash\left\{\tilde{\Gamma}^{*}\right\}$ when $d \gamma(t)$ is in a small neighborhood of $\tilde{\Sigma}$.

To each orbit $d \gamma$ homoclinic to $\tilde{\Gamma}$ we can associate an element $[\gamma] \in H_{1}(M \times$ $\mathbb{T}, \tilde{U}, \mathbb{Z})=\mathbb{Z}$ where \tilde{U} is a small neighborhood of $\pi\left(\tilde{\Gamma}^{*}\right) \subset M \times T$ when Γ is contained in an invariant circle Γ^{*}. We can see from this lemma that the necessary condition for a homoclinic orbit $\{d \gamma\} \subset \tilde{\mathcal{N}}(c)$ is $[\gamma]= \pm 1$. In general, the time-1-section $\mathcal{N}_{0}(c) \backslash \pi(\mathcal{L}(\Gamma))$ is homotopically trivial. By definition we mean that there exists an open neighborhood $U=\cup_{i=1}^{m} U_{i}$ of $\mathcal{N}_{0}(c)$ such that $U_{i} \cap U_{j}=\varnothing$ if $i \neq j, U_{0}$ is an open neighborhood of $\mathcal{L}(\Gamma)$ and each $U_{i}(i \neq 0)$ is contractible to one point. In this case we have

$$
i_{*} H_{1}(U, \mathbb{R}) \subset \operatorname{span}([\zeta])
$$

where i is the standard inclusion map, $\zeta=\left(\zeta_{1}, 0\right):[0,1] \rightarrow M$ with $\zeta_{1}(0)=\zeta_{1}(1)$. By the Lipschitz property of $\tilde{\mathcal{A}}(c)=\tilde{\mathcal{N}}(c)$ in this case, we may choose bounded, mutually disjoint open sets \tilde{U}_{i} in $T M$ such that $\pi \tilde{U}_{i}=U_{i}$ and $\cup \tilde{U}_{i} \supset \tilde{\mathcal{N}}_{0}(c)$. Under this assumption we have
Lemma 3.5. Assume $c=\left(c_{1}, b\left(c_{1}\right)\right)$, $\tilde{\mathcal{M}}(c)=\tilde{\Gamma}$ and $\mathcal{N}_{0}(c) \backslash \pi(\tilde{\Gamma})$ is homotopically trivial. Let $c^{\prime}=\left(c_{1}, c_{2}^{\prime}\right)$ with $c_{2}^{\prime}-b\left(c_{1}\right)>0$ being sufficiently small. If $\tilde{\mathcal{M}}\left(c^{\prime}\right)$ is uniquely ergodic, then there exists a neighborhood $N_{c^{\prime}}$ of $\mathcal{N}_{0}\left(c^{\prime}\right)$ such that $i_{*} H\left(N_{c^{\prime}}, \mathbb{R}\right)=0$.
Proof. By assumption, we can choose $\tilde{U}=\cup_{i=0}^{m} \tilde{U}_{i}$, a neighborhood of $\tilde{\mathcal{N}}(c)$ such that $\pi\left(\tilde{U}_{i}\right) \cap \pi\left(\tilde{U}_{j}\right)=\varnothing$ if $i \neq j, \tilde{U}_{0}$ is an open neighborhood of $\mathcal{L}(\Gamma)$ and each U_{i} $(i \neq 0)$ is contractible to one point. By the upper-semi continuity of $c \rightarrow \tilde{\mathcal{N}}(c)$, $\tilde{\mathcal{N}}\left(c^{\prime}\right) \subset \tilde{U}$ if $c_{2}^{\prime}-b\left(c_{1}\right)$ sufficiently small. We claim that for each $z \in \tilde{U}_{0} \cap \tilde{\mathcal{N}}\left(c^{\prime}\right), \exists$ an integer $k(z) \in \mathbb{Z}_{+}$such that $\phi^{k(z)}(z) \notin \tilde{U}_{0}$ and there is a uniform upper bound $K \in \mathbb{Z}_{+}$for all these $k(z)$. If this is not true, for any $k>0, k \in \mathbb{Z}$ there is $z_{k} \in \tilde{U}_{0}$ such that $\phi^{l}\left(z_{k}\right) \in \tilde{U}_{0}, \forall 0 \leq l \leq k$. Let ν_{k} be a probability measure distributed evenly on $\phi^{t}(z)(0 \leq t \leq k)$ and let $k \rightarrow \infty$, we find there is an accumulation point $\nu, \operatorname{supp}(\nu) \subset \tilde{U}_{0}$. Obviously, $\nu \in \tilde{\mathcal{M}}(c)$. As there is normally hyperbolic structure on $\tilde{\Sigma}$, the invariant set in \tilde{U}_{0} must be on $\tilde{\Sigma}$, it follows that $\tilde{\mathcal{M}}(c) \subset \tilde{\Sigma}$, but it contradicts the definition of $I\left(c_{1}\right)$.

By the upper semi-continuity of $c \rightarrow \tilde{\mathcal{N}}(c)$ and the assumption on the intersection of the stable and unstable manifolds we see that $\tilde{\mathcal{N}}_{0}\left(c^{\prime}\right) \backslash \tilde{U}_{0}$ can be covered by finite mutually disjoint open sets, each of them is homotopic to a point. As each point in \tilde{U}_{0} shall go outside under the time-1-map ϕ^{1}, the whole $\tilde{\mathcal{N}}_{0}\left(c^{\prime}\right)$ can be covered by finite mutually disjoint, homotopically trivial open sets. Because $\tilde{\mathcal{M}}\left(c^{\prime}\right)$ is assumed uniquely ergodic we obtain from the lemma 2.5 that $\tilde{\mathcal{N}}\left(c^{\prime}\right)=\tilde{\mathcal{A}}\left(c^{\prime}\right)$. The Lipschitz property of $\mathcal{A}\left(c^{\prime}\right)$ guarantees that $\mathcal{N}_{0}\left(c^{\prime}\right)=\mathcal{A}_{0}\left(c^{\prime}\right)$ is also homotopically trivial.

4, Some Barrier functions

In this section we consider a co-homology class $c=\left(c_{1}, b\left(c_{1}\right)\right)$ such that $\mathcal{A}(c)$ contains a 2 -torus in $\mathbb{T}^{2} \times \mathbb{T}$, i.e. its time-1-sections has an invariant circle on the cylinder, and study the relevant barrier functions introduced in [Ma4]. The study for $c=\left(c_{1}, a\left(c_{1}\right)\right)$ is the same. According to our assumptions, the rotation number
of this circle is irrational. To go further with our proof, let us turn back to the Hamiltonian formalism temporarily to look at something.

Let $\Phi_{H}=\Phi_{H}^{1}$ be the time-1-map of the Hamiltonian flow Φ_{H}^{t}. It has an invariant cylinder Σ. Restricted to the cylinder Σ this map is clearly twist and area-preserving, thus the invariant circle Γ is Lipschitz. When $P=0$, we have the cylinder $\mathbb{T} \times$ $\mathbb{R} \times\left\{q_{2}=p_{2}=0\right\}$ as the normally hyperbolic manifold for Φ_{f+g}. Each orbit on this manifold lies in an invariant circle and has zero Lyapunov exponent only. Both the stable and unstable manifolds have two branches. Each of them has an invariant fibration $\left\{q_{1}=p_{1}=\right.$ constant, $\left.p_{2}=\tilde{G}^{ \pm}\left(q_{2}\right)\right\}$ if we use $\left\{q_{2}, \tilde{G}^{ \pm}\left(q_{2}\right)\right\}$ to denote the homoclinic loops of Φ_{g} in the space of $\left(q_{2}, p_{2}\right)$. Under a small perturbation, the invariant circle on Σ is the graph of a small function, i.e. $\Gamma=\left\{q_{1} \in \mathbb{T}, p=\right.$ $\left.p_{\Gamma}\left(q_{1}\right), q_{2}=q_{2 \Gamma}\left(q_{1}\right)\right\}$. From the theory of normally hyperbolic manifolds we know that the fibration has C^{r-2}-smoothness on the base points. As Γ is an invariant circle, all stable (unstable) fibers with base points on Γ constitute the local stable (unstable) manifold $W_{H}^{s, u}(\Gamma)$ of Γ. Both the stable and the unstable manifold have two branches corresponding to $\left(c_{1}, b\left(c_{1}\right)\right)$ and ($\left.c_{1}, a\left(c_{1}\right)\right)$ respectively. Let us consider the branch corresponding to $\left(c_{1}, b\left(c_{1}\right)\right)$. In the covering space $T(\mathbb{T} \times \mathbb{R})$, one lift of a unstable manifold originates from $\left\{p=p_{\Gamma}\left(q_{1}\right), q_{2}=q_{2 \Gamma}\left(q_{1}\right)\right\}$ and extends to right, one lift of stable manifold originates from $\left\{p=p_{\Gamma}\left(q_{1}\right), q_{2}=q_{2 \Gamma}\left(q_{1}\right)+2 \pi\right\}$ and extends to left. When $P=0$, these two manifolds coincide with each other and are graphs above $0 \leq q_{2} \leq 2 \pi$. Thus, for suitably small $a>0$, there exists $\epsilon>0$ such that if $\|P\| \leq \epsilon$ the unstable manifold is a graph above the region $\left\{q_{2 \Gamma}\left(q_{1}\right) \leq q_{2} \leq 2 \pi-a\right\}$ and the stable manifold keeps horizontal in the region $\left\{a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}\right)+2 \pi\right\}$, i.e. they are the graphs of some functions in the relevant regions,

$$
\begin{align*}
W^{u}(\Gamma) & =\left\{q, p^{u}(q): q_{1} \in \mathbb{T}, q_{2 \Gamma}\left(q_{1}\right) \leq q_{2} \leq 2 \pi-a\right\}, \\
W^{s}(\Gamma) & =\left\{q, p^{s}(q): q_{1} \in \mathbb{T}, a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}\right)+2 \pi\right\} . \tag{4.1}
\end{align*}
$$

Although each stable (unstable) fiber has C^{r-2}-smoothness, the base points of these fibers fall on a circle for which we can only assume Lipschitz smoothness, these manifolds are at least Lipschitz, i.e. $p^{s, u}(q)$ in (4.1) are at least Lipschitz. We choose suitably small $a>0$ such that the time for any $d \gamma_{2}$ to cross the strip $\left\{a \leq q_{2} \leq 2 \pi-a\right\}$ is longer than 1. Such assumption is feasible as Φ_{H}^{t} is a small perturbation of Φ_{f+g}^{t} for which this assumption is clearly true.

If there is another invariant circle Γ_{1} very close to Γ, by the smoothness of the invariant fibration we see that $W_{H}^{s, u}\left(\Gamma_{1}\right)$ are also graphs above the relevant region. Let $\Gamma(A)$ be the highest circle on Σ where $p_{1} \leq A$, let $\Gamma(B)$ be the lowest circle where $p_{1} \geq B$. As all invariant circles on Σ make up a closed set, it is reasonable to assert that we have some $\epsilon>0$ such that if $\|P\| \leq \epsilon$, the stable and unstable manifolds of all Γ between $\Gamma(A)$ and $\Gamma(B)$ can keep horizontal in the region $\left\{a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}\right)+2 \pi\right\}$ and $\left\{q_{2 \Gamma}\left(q_{1}\right) \leq q_{2} \leq 2 \pi-a\right\}$ respectively.

As the Hamiltonian system under study has standard symplectic structure, each horizontal Lagrangian sub-manifold is a graph of some closed 1-form defined on M.

We know that the stable (unstable) manifold of some smooth isotropic manifold is a Lagrangian manifold, therefore, if we use $(q, p(q))\left(p(q) \in C^{1}\right)$ to denote such a smooth manifold, then

$$
\begin{equation*}
\frac{\partial p_{1}}{\partial q_{2}}=\frac{\partial p_{2}}{\partial q_{1}} \tag{4.2}
\end{equation*}
$$

it follows that there exists a C^{2}-function $S(q)$ and constant vector $c \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\frac{\partial S}{\partial q_{1}}+c_{1}=p_{1}, \quad \frac{\partial S}{\partial q_{2}}+c_{2}=p_{2} \tag{4.3}
\end{equation*}
$$

If we consider the manifold as the graph of some closed 1-form, $c \in H^{1}(M, \mathbb{R})$ is the cohomology class of this closed 1 -form. Since a Lipschitz function is differentiable almost everywhere, we claim that there exists a $C^{1,1}$-function S so that (4.3) holds, here we use $C^{k, \alpha}$ to denote those functions whose k-th derivative is α-Hölder.

Lemma 4.1. Let Γ be an invariant circle on the cylinder Σ, let $W^{s, u}(\Gamma)$ be its stable (unstable) manifold, which is a graph over a connected open set $U \subset M$ with $\pi(\Gamma) \in U$, then there exists $C^{1,1}$ functions $S^{s, u}: U \rightarrow \mathbb{R}$ and a constant vector $c \in \mathbb{R}^{2}$ such that $\left\{W_{H}^{s, u}: q \in U\right\}=\left\{\left(q, d S^{s, u}(q)\right)+c: q \in U\right\}$.
Proof: Let us consider the case of a stable manifold. By the condition that $W^{s}(\Gamma)$ is a graph there is a Lipschitz function $p=\left(p_{1}, p_{2}\right): U \rightarrow R^{2}$ such that $W^{s}(\Gamma)=$ $\left\{\left(q, p^{s}(q)\right): q \in U\right\}$. Let γ be a closed curve which is the boundary of some topological disk σ on W^{s}. Since γ is on the stable manifold, $\Phi_{H}^{k}(\gamma)$ approaches uniformly to Γ, it implies that $\Phi_{H}^{k}(\gamma)$ is such a closed curve going from a point to another point and returning back along almost the same path when k is sufficiently large. As Φ_{H} is a symplectic diffeomorphism, k can be arbitrary large, we have

$$
\begin{equation*}
\iint_{\sigma} d p \wedge d q=\oint_{\gamma} p d q=\oint_{\Phi_{H}^{k}(\gamma)} p d q=0 . \tag{4.4}
\end{equation*}
$$

Note p is Lipschitz, by the theorem of Rademacher ([R]), p is differentiable almost everywhere in U. As γ is arbitrarily chosen, (4.2) holds for almost all $q \in U$. Consequently, there exists a $C^{1,1}$-function S^{s} and $c \in \mathbb{R}^{2}$ such that $p^{s}=d S^{s}+c$. In the same way, we obtain a $C^{1,1}$-function S^{u} and $c^{\prime} \in \mathbb{R}^{2}$ such that $p^{u}=d S^{u}+c^{\prime}$. As W_{H}^{s} intersects W_{H}^{u} at the whole $\Gamma, c^{\prime}=c$.

In fact, for almost all initial points $\left(q, p^{s}(q)\right), p$ is differentiable at all $\Phi_{H}^{k}\left(q, p^{s}(q)\right)$ $\left(\forall k \in \mathbb{Z}^{+}\right)$. To see that, let O be an open set in U, for each $k \in \mathbb{Z}^{+}$, there is a full Lebesgue measure set $O_{k} \subset \pi\left(\Phi_{H}^{k}\{O, p(O)\}\right)$ where p is differentiable, since Φ is a diffeomorphism, the set

$$
O^{*}=\bigcap_{k=0}^{\infty} \pi\left(\Phi_{H}^{-k}\left\{O_{k}, p^{s}\left(O_{k}\right)\right\}\right)
$$

is a full Lebesgue measure subset of O. For any point $q \in O^{*}, p$ is differentiable at the points $\pi\left(\Phi_{H}^{k}\left(q, p^{s}(q)\right)\right)$ for all $k \in \mathbb{Z}^{+}$.

Let us consider the Hamiltonian flow. If the locally horizontal stable (unstable) manifold has the form

$$
W_{H}^{s, u}=\left\{\left(q, p^{s, u}(q, t), t\right):(q, t) \in U \times \mathbb{T}\right\}
$$

and if we call the 2 -form $\Omega=\sum d p_{i} \wedge d q_{i}-d H \wedge d t$, then $\left(p^{s, u}, t\right)^{*} \Omega=0$. In the covering space $\mathbb{R}^{2} \times \mathbb{R}$ we find that there exists $\bar{S}^{s, u}(q, t)$ such that $d \bar{S}^{s, u}=$ $p^{s, u}(q, t) d q-H\left(p^{s, u}(q, t), q, t\right) d t$. By applying the standard argument (see for instance the appendix 2 in [Ma3]), we find that

$$
\begin{equation*}
L^{s, u}=L-\left\langle\partial_{q} \bar{S}^{s, u}, \dot{q}\right\rangle-\partial_{t} \bar{S}^{s, u} \tag{4.5}
\end{equation*}
$$

attains its minimum at $\partial_{q} \bar{S}^{s, u}$ as the function \dot{q}. Note $L_{\dot{q}}^{s, u}=L_{\dot{q}}-\partial_{q} \bar{S}^{s, u}$ is Lipschitz, $d L_{\dot{q}}^{s, u} / d t$ and $L_{q}^{s, u}$ exist almost everywhere. Since $W^{s, u}$ is a manifold consisting of the trajectories of the Euler-Lagrange flow, it follows from the Euler-Lagrange equation $d L_{\dot{q}} / d t=L_{q}$ and (4.2) that $L_{q}^{s, u}=0$ almost everywhere. The absolute continuity of L implies that $L^{s, u}$ is a function of t alone. Therefore, by adding some function of t to $\bar{S}^{s, u}$, we can make $L^{s, u}=0$. Note the local stable (unstable) manifold can be thought as the graph of some function defined on $\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}, t\right)+2 \pi\right\}$ $\left(\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: q_{2 \Gamma}\left(q_{1}, t\right) \leq q_{2} \leq 2 \pi-a\right\}\right)$, where $q_{2 \Gamma}\left(q_{1}, t\right)$ is such a function that $\pi(\tilde{\Gamma})=\left\{(q, t): q_{2}=q_{2 \Gamma}\left(q_{1}, t\right)\right\}, q_{2 \Gamma}\left(q_{1}\right)=q_{2 \Gamma}\left(q_{1}, 0\right)$. The first co-homology group is $\mathbb{R} \times\{0\} \times \mathbb{R}$. Thus, there exists a function $S^{u}(q, t):\left\{\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: q_{2 \Gamma}\left(q_{1}, t\right) \leq\right.\right.$ $\left.q_{2} \leq 2 \pi-a\right\} \rightarrow \mathbb{R}, S^{s}(q, t):\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}, t\right)+2 \pi\right\} \rightarrow \mathbb{R}$ and $\left(c_{1}^{*}, 0, \alpha^{*}\right)$ such that $\bar{S}^{s, u}(q, t)=S^{s, u}(q, t)+c_{1}^{*} q_{1}+\alpha^{*} t$, where we have used the fact that both the stable and the unstable manifolds coincide with each other at $\tilde{\Gamma}$. In this case we obtain from (4.5) that

$$
L^{s, u}=L-\left\langle\left(c_{1}^{*}, 0\right), \dot{q}\right\rangle-\left\langle\partial_{q} S^{s, u}, \dot{q}\right\rangle-\partial_{t} S^{s, u}
$$

attains its minimum at $W^{s, u}$ as the function of \dot{q} with $\left.L^{s, u}\right|_{W^{s, u}}=\alpha^{*}$. Thus, for all $d \gamma$ on $\tilde{\Gamma}$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(L(d \gamma(t), t)-\left\langle\left(c_{1}^{*}, 0\right), \dot{\gamma}\right\rangle-\left\langle\partial_{q} S^{s, u}(\gamma(t), t), \dot{\gamma}\right\rangle-\partial_{t} S^{s, u}(\gamma(t), t)-\alpha^{*}\right) d t=0 \tag{4.6}
\end{equation*}
$$

We have mentioned before that the Euler-Lagrange equation for $L-\eta_{c}$ is the same as that for L if η_{c} is a closed 1-form. In local coordinates we can write $\eta_{c}=\langle c(q), \dot{q}\rangle$. If we use $H_{\eta_{c}}(p, q, t)$ to denote the Legendre transformation

$$
H_{\eta_{c}}(p, q, t)=\max _{p}\{\langle p, \dot{q}\rangle-(L-\langle c(q), \dot{q}\rangle)\}
$$

then we obtain

$$
p+c(q)=\frac{\partial L}{\partial \dot{q}}
$$

It implies that $H_{\eta_{c}}(p, q, t)=H(p+c(q), q, t)$. As η_{c} is closed, the coordinate translation $(p, q) \rightarrow(p+c(q), q)$ is symplectic. Under such a coordinate translation the horizontal stable (unstable) manifold is the graph of the function $p^{s, u}(q)-c(q)$.

We know that $\tilde{\Gamma}$ is contained in some Aubry set $\mathcal{A}(c)=\left\{B_{c}=0\right\}$ where $c=\left(c_{1}, c_{2}^{\prime}\right)$ with $a\left(c_{1}\right) \leq c_{2}^{\prime} \leq b\left(c_{1}\right)$. From above arguments and the proposition 3.2 we can see that $c_{1}=c_{1}^{*}$ and $\alpha^{*}=\alpha(c)$.

To study the barrier function B_{c}^{*}, we consider the covering of \mathbb{T}^{2} given by $\mathbb{T} \times \mathbb{R}$, let $\tilde{\Gamma}_{k}$ be the lift of $\tilde{\Gamma}$ which is close to $\mathbb{T} \times\{2 k \pi\} \times\left\{p_{1}=\right.$ const., $\left.p_{2}=0\right\} \times \mathbb{T}$. Without lose of generality we single out one lift of the unstable manifold W^{u} that extends from $\tilde{\Gamma}_{0}$ and keep horizontal over $\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: q_{2 \Gamma}\left(q_{1}, t\right) \leq q_{2} \leq 2 \pi-a\right\}$ and single out one lift of the stable manifold W^{s} that extends from $\tilde{\Gamma}_{1}$ and keep horizontal over $\left\{(q, t) \in \mathbb{T}^{2} \times \mathbb{T}: a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}, t\right)+2 \pi\right\}$.

Recall $c=\left(c_{1}, b\left(c_{1}\right)\right)$. Since $L^{s, u}$ attains its minimum on the local horizontal stable (unstable) manifold, for $q \in \mathbb{T} \times(a, 2 \pi-a)$ we claim that there exists only one c-minimal orbit $d \gamma_{c}^{s}: \mathbb{R}^{+} \rightarrow T M$ as well as only one c-minimal orbit $d \gamma_{c}^{u}: \mathbb{R}^{-} \rightarrow T M$ such that $\gamma^{s, u}(0)=q$. In fact, such an orbit $d \gamma_{c}^{s, u}$ lies on the local stable (unstable) manifold.

There are two steps to verify our claim. The first step is to show that $\gamma^{s, u}$ does not cross the codimension one torus $\tilde{\Gamma} \subset \mathbb{T}^{2} \times \mathbb{T}$. It follows immediately from the lemma 4.2 below. To state this lemma, we define the set of forward and backward semi-static curves:

$$
\begin{aligned}
& \tilde{\mathcal{N}}^{+}(c)=\left\{(z, s) \in T M \times \mathbb{T}:\left.\pi \circ \phi_{L}^{t}(z, s)\right|_{[0,+\infty)} \text { is } c \text {-semi-static }\right\} \\
& \tilde{\mathcal{N}}^{-}(c)=\left\{(z, s) \in T M \times \mathbb{T}:\left.\pi \circ \phi_{L}^{t}(z, s)\right|_{(-\infty, 0]} \text { is } c \text {-semi-static }\right\}
\end{aligned}
$$

Lemma 4.2. If $\mathcal{M}(c)$ is uniquely ergodic, $u \in \mathcal{A}_{0}(c)$, then there exists a unique $v \in T_{u} M$ such that $(u, v) \in \tilde{\mathcal{N}}_{0}^{+}(c)$ (or $\left.\tilde{\mathcal{N}}_{0}^{-}(c)\right)$. Moreover, $(u, v) \in \tilde{\mathcal{A}}_{0}(c)$.
Proof: Let us suppose the contrary. Then there would exist $(u, v) \in \tilde{\mathcal{A}}_{0}(c)$ and a forward c-semi-static curve $\gamma_{+}(t)$ with $\gamma_{+}(0)=u$ and $\dot{\gamma}_{+}(0) \neq v$. In this case, for any $u_{1} \in \mathcal{M}_{0}(c)$ there exist two sequences $k_{i}, k_{i}^{\prime} \rightarrow \infty$ such that

$$
\pi \circ \phi_{L}^{k_{i}}(u, v) \rightarrow u_{1}, \quad \gamma_{+}\left(k_{i}^{\prime}\right) \rightarrow u_{1}
$$

and

$$
\begin{aligned}
& \lim _{k_{i} \rightarrow \infty} \int_{0}^{k_{i}}\left(L-\eta_{c}\right)\left(\phi_{L}^{t}(u, v), t\right) d t+k_{i} \alpha(c) \\
& =\lim _{k_{i}^{\prime} \rightarrow \infty} \int_{0}^{k_{i}^{\prime}}\left(L-\eta_{c}\right)\left(d \gamma_{+}(t), t\right) d t+k_{i} \alpha(c) \\
& =h_{c}^{\infty}\left(u, u_{1}\right) .
\end{aligned}
$$

Thus, we obtain that

$$
\begin{aligned}
& h_{c}^{\infty}\left(\pi \circ \phi_{L}^{-1}(u, v), u_{1}\right) \\
= & F_{c}\left(\pi \circ \phi_{L}^{-1}(u, v), u\right)+h_{c}^{\infty}\left(u, u_{1}\right) \\
= & F_{c}\left(\pi \circ \phi_{L}^{-1}(u, v), u\right)+\lim _{k_{i}^{\prime} \rightarrow \infty} \int_{0}^{k_{i}^{\prime}}\left(L-\eta_{c}\right)\left(d \gamma_{+}(t), t\right) d t \\
> & h_{c}^{\infty}\left(\pi \circ \phi_{L}^{-1}(u, v), u_{1}\right)
\end{aligned}
$$

where the last inequality follows from the facts that $\dot{\gamma}_{+}(0) \neq v$ and the minimizer must be a C^{1}-curve. But this is absurd.

For the second step of the proof, we consider the problem in the covering space $\mathbb{T} \times \mathbb{R}$ and single out a lift of the stable (unstable) manifold of the invariant circle. The stable (unstable) manifold has two branches: $W_{l, r}^{s, u}$

$$
\begin{aligned}
W_{r}^{s, u} & =W^{s, u} \cap\left\{q_{2 \Gamma}\left(q_{1}, t\right) \leq q_{2} \leq 2 \pi-a\right\} \\
W_{l}^{s, u} & =W^{s, u} \cap\left\{-2 \pi+a \leq q_{2} \leq q_{2 \Gamma}\left(q_{1}, t\right)\right\} .
\end{aligned}
$$

These two branches of the manifold joined together smoothly at the invariant torus. Let us consider the unstable manifold. There is a smooth function $S^{u}:\{-2 \pi+a \leq$ $\left.q_{2} \leq 2 \pi-a\right\} \rightarrow \mathbb{R}$ such that $\operatorname{graph}\left(d S^{u}\right)=W_{l}^{u} \cup W_{r}^{u}$. Note $\left.W_{l}^{u}\right|_{\left(q_{1}, t\right)=\text { constant }}$ is below the zero section of the cotangent bundle while $\left.W_{r}^{u}\right|_{\left(q_{1}, t\right)=\text { constant }}$ is above the zero section if we restrict them in the sub-cotangent bundle $T^{*} \mathbb{T}$. If L_{1} is sufficiently small, then there exist some $c_{2}^{\prime}>0$ and a periodic function $q_{2}=q_{2}\left(q_{1}, t\right)$ such that $q_{2}\left(q_{1}, t\right) \leq a,\left|q_{2}\left(q_{1}, t\right)-a\right|$ very small and

$$
S^{u}\left(q_{1}, 2 \pi-q_{2}\left(q_{1}, t\right), t\right)-S^{u}\left(q_{1},-q_{2}\left(q_{1}, t\right), t\right)-2 \pi c_{2}^{\prime}=0 .
$$

Thus we can extend $S^{u}-c_{2}^{\prime} q_{2}$ periodically so that $S^{u}-c_{2}^{\prime} q_{2}$ is a continuous function defined on $\mathbb{T}^{2} \times \mathbb{T}$. Note, this function is not differentiable at the 2-dimensional torus $\left\{(q, t) \in \mathbb{T}^{3}: q_{2}=q_{2}\left(q_{1}, t\right)\right\}$. Since $\left.L^{u}+\alpha(c)=0\right\}$ when it is restricted on $W^{u} \cap\left\{-q_{2}\left(q_{1}\right) \leq q_{2} \leq 2 \pi-q_{2}\left(q_{1}\right)\right\}$ and strictly positive elsewhere, the backward c-semi static orbits must lies on W_{r}^{u} if it approaches $\tilde{\Gamma}$ from the right hand side.

There might be another possibility that the backward c-semi static orbits approaches $\tilde{\Gamma}$ from the left hand side. Similarly, There exist $\tilde{c}_{2}<0$ and a periodic function $\tilde{q}_{2}=\tilde{q}_{2}\left(q_{1}, t\right)$ with $\left|\tilde{q}_{2}\left(q_{1}, t\right)-a\right|$ very small such that

$$
S^{u}\left(q_{1}, \tilde{q}_{2}\left(q_{1}, t\right), t\right)-S^{u}\left(q_{1},-2 \pi+\tilde{q}_{2}\left(q_{1}, t\right), t\right)-2 \pi \tilde{c}_{2}=0
$$

In this case, we can also extend $S^{u}-\tilde{c}_{2} q_{2}$ periodically so that $S^{u}-\tilde{c}_{2} q_{2}$ is a continuous function defined on $\mathbb{T}^{2} \times \mathbb{T}$. Because $\gamma^{u}(0) \in\left\{a<q_{2}<2 \pi-a\right\}$, and $c=\left(c_{1}, b\left(c_{1}\right)\right)$, it is clear that the c-action along the orbit lying on W_{l}^{u} is bigger than the c-action along the orbit lying on W_{r}^{u}. This asserts our claim.

Since $L^{s, u}+\alpha(c)=0$ on $W^{s, u}$, for arbitrary $T>0$ we have

$$
\begin{align*}
\int_{-T}^{0}\left(L\left(d \gamma_{c}^{u}(t), t\right)-\left\langle c, \dot{\gamma}_{c}^{u}(t)\right\rangle-\alpha(c)\right) d t= & S^{u}\left(\gamma_{c}^{u}(0), 0\right)-S^{u}\left(\gamma_{c}^{u}(-T),-T\right) \\
& -b\left(c_{1}\right)\left(\bar{\gamma}_{c 2}^{u}(0)-\bar{\gamma}_{c 2}^{u}(-T)\right) \\
\int_{0}^{T}\left(L\left(d \gamma_{c}^{s}(t), t\right)-\left\langle c, \dot{\gamma}_{c}^{s}(t)\right\rangle-\alpha(c)\right) d t= & S^{s}\left(\gamma_{c}^{s}(T), T\right)-S^{s}\left(\gamma_{c}^{s}(0), 0\right) \\
& -b\left(c_{1}\right)\left(\bar{\gamma}_{c 2}^{s}(T)-\bar{\gamma}_{c 2}^{s}(0)\right) \tag{4.7}
\end{align*}
$$

Since Φ is an area-preserving twist map when it is restricted on the cylinder, from the lemma 2.6 and the corollary 2.7 we see that L_{c} is regular. Therefore, for any $\varepsilon>0,0 \leq s<1,0 \leq t<1$ and $q^{\prime}, q^{*} \in M$, there exists $K_{0} \in \mathbb{Z}^{+}$such that

$$
\left|h_{c}^{\infty}\left(q^{\prime}, q^{*}, s, t\right)-h_{c}^{K}\left(q^{\prime}, q^{*}, s, t\right)\right| \leq \varepsilon, \quad \forall K_{0} \leq K \in \mathbb{Z}
$$

Since $\mathcal{M}(c)$ is uniquely ergodic in this case, for any $\delta>0,0 \leq t<1, \gamma^{s}: \mathbb{R}^{+} \rightarrow M$ with $\gamma^{s}(0)=q \in \mathbb{T} \times(a, 2 \pi-a)$ and $q^{*} \in \mathcal{M}_{t}(c)$ there exists a sequence of $\left\{K_{i}\right\}_{i=1}^{\infty}$ ($K_{i} \in \mathbb{Z}^{+}$) such that

$$
d\left(\gamma^{s}\left(t+K_{i}\right), q^{*}\right) \leq \delta
$$

It is easy to construct an absolutely continuous curve $\zeta:\left[s, K_{i}+t\right] \rightarrow M$ such that $\zeta(t)=\gamma^{s}(t)$ as $s \leq t \leq K_{i}+t-2, d\left(d \zeta(t), d \gamma^{s}(t)\right) \leq \delta$ as $K_{i}+t-2 \leq t \leq K_{i}+t$ and $\zeta\left(K_{i}+t\right)=q^{*}$. As \bar{L}^{s} attains its minimum at W^{s} for each $(q, t) \in U$, it follows from the convexity of L in \dot{q} and (4.7) that

$$
\begin{aligned}
& 0 \leq\left.\int_{s}^{K_{i}+t}\left(L_{c}(d \zeta(t), t)\right)-\alpha(c)\right) d t \\
&-S^{s}\left(q^{*}+(0,2 \pi), t\right)+S^{s}\left(q^{\prime}, s\right)-b\left(c_{1}\right)\left(q_{2}^{*}-q_{2}\right) \\
& \leq o(\delta)
\end{aligned}
$$

where $L_{c}=L-\langle c, \dot{q}\rangle$. If $\gamma_{K_{i}}^{s}:\left[s, K_{i}+t\right] \rightarrow M$ is the minimizer of $h_{c}^{K_{i}}\left(q, q^{*}, s, t\right)$, then

$$
\begin{aligned}
0 \leq & \left.\int_{s}^{K_{i}+t}\left(L_{c}\left(d \gamma_{K_{i}}^{s}(t), t\right)\right)-\alpha(c)\right) d t \\
& -S^{s}\left(q^{*}+(0,2 \pi), t\right)+S^{s}(q, s)+b\left(c_{1}\right) \int_{s}^{K_{i}+t} \dot{\gamma}_{K_{i} 2}^{s}(t) d t \\
\leq & \left.\int_{s}^{K_{i}+t}\left(L_{c}(d \zeta(t), t)\right)-\alpha(c)\right) d t \\
& -S^{s}\left(q^{*}+(0,2 \pi), t\right)+S^{s}(q, s)+b\left(c_{1}\right)\left(q_{2}^{*}-q_{2}\right) \\
\leq & o(\delta)
\end{aligned}
$$

It is easy to see that $d \gamma_{K_{i}}^{s}(t)$ keeps close to the branch of the stable manifold which corresponds to the cohomology class $c=\left(c_{1}, b\left(c_{1}\right)\right)$ if K_{i} is sufficiently large. Thus, we have

$$
\int_{s}^{K_{i}+t} \dot{\gamma}_{K_{i} 2}^{s}(t) d t=q_{2}^{*}+2 \pi-q_{2}
$$

Therefore, we assert that for all $q \in \mathbb{T} \times(a, 2 \pi-a), q^{*} \in \pi\left(\tilde{\Gamma}_{t}(c)\right)$ and $s, t \in \mathbb{T}$

$$
\begin{align*}
& h_{c}^{\infty}\left(q, q^{*}, s, t\right)=S^{s}\left(q^{*}+(0,2 \pi), t\right)-S^{s}(q, s)-b\left(c_{1}\right)\left(q_{2}^{*}+2 \pi-q_{2}\right), \\
& h_{c}^{\infty}\left(q^{*}, q, s, t\right)=S^{u}(q, s)-S^{u}\left(q^{*}, t\right)-b\left(c_{1}\right)\left(q_{2}-q_{2}^{*}\right) \tag{4.8}
\end{align*}
$$

In fact, we have seen that (4.8) holds for $q^{*} \in \mathcal{M}_{t}(c), q \in \mathbb{T} \times(a, 2 \pi-a)$ or $q \in \pi\left(\left.\tilde{\Gamma}\right|_{s}\right)$. As there exists an invariant circle on which the rotation number is irrational, we see that $B_{c}(q)=P_{\omega}(q) \equiv 0$ for all $q \in \pi(\Gamma)$, thus $d_{c}\left(\hat{q}, q^{*}\right)=0$ for all $q^{*} \in \mathcal{M}(c)$ and $\hat{q} \in$ $\pi(\Gamma)$, where $\omega=\partial_{1} \alpha(c), P_{\omega}$ is the Peierl's barrier function. Consequently, we have $h_{c}^{\infty}(q, \hat{q})=h_{c}^{\infty}\left(q, q^{*}\right)+h_{c}^{\infty}\left(q^{*}, \hat{q}\right)$. Therefore we obtain (4.8) for any $q \in \mathbb{T} \times(a, 2 \pi-a)$ and any $q^{*} \in \pi\left(\tilde{\Gamma}_{t}\right)$. As $\left.d S^{s}\right|_{\pi(\Gamma)}=\left.d S^{u}\right|_{\pi(\Gamma)}$, by adding a constant we can assume that $S^{s}(q+(0,2 \pi), t)=S^{u}(q, t)$ if $(q, t) \in \pi(\tilde{\Gamma})$. Since the c-minimal measure is uniquely ergodic, we have the following

Lemma 4.3. Let $q \in \mathbb{T} \times(a, 2 \pi-a)$, then

$$
\begin{equation*}
B_{c}^{*}(q)=S^{u}(q, 0)-S^{s}(q, 0)-2 \pi b\left(c_{1}\right) . \tag{4.9}
\end{equation*}
$$

Proof: Since $\tilde{\mathcal{M}}(c)$ is uniquely ergodic, by definition of B_{c}^{*}, the property $S^{s}(q+$ $(0,2 \pi), t)=S^{u}(q, t)$ if $(q, t) \in \pi(\tilde{\Gamma})$ and (4.8) we have

$$
\begin{aligned}
B_{c}^{*}(q) & =\min _{\xi, \eta}\left\{h_{c}^{\infty}(\xi, q)+h_{c}^{\infty}(q, \eta)-h_{c}^{\infty}(\xi, \eta): \xi, \eta \in \mathcal{M}(c)\right\} \\
& =\min _{\xi}\left\{h_{c}^{\infty}(\xi, q)+h_{c}^{\infty}(q, \xi): \xi \in \mathcal{M}(c)\right\} \\
& =S^{u}(q, 0)-S^{s}(q, 0)-2 \pi b\left(c_{1}\right) .
\end{aligned}
$$

Next, we consider the stable (unstable) manifold of all invariant circles. Different invariant circle determines different stable and unstable manifold, so we have a family of these manifolds. We claim that this family of stable (unstable) manifolds can be parameterized by some parameter σ so that both $p_{1}^{s, u}$ and $p_{2}^{s, u}$ have $\frac{1}{2}$-Hölder continuity in σ. Indeed we arbitrarily choose one circle Γ_{0} and parameterize another circle Γ_{σ} by the algebraic area between Γ_{σ} and Γ_{0},

$$
\begin{equation*}
\sigma=\int_{0}^{1}\left(\Gamma_{\sigma}\left(q_{1}\right)-\Gamma_{0}\left(q_{1}\right)\right) d q_{1} \tag{4.10}
\end{equation*}
$$

This integration is in the sense that we pull it back to the standard cylinder by $\psi \circ \psi_{1} \in \operatorname{diff}\left(\Sigma_{0}, \Sigma\right)$ (cf. (3.1)). In this way we obtain an one-parameter family curves $\Gamma: \mathbb{T} \times \mathbb{S} \rightarrow \Sigma$ in which $\mathbb{S} \subset\left[A^{\prime}, B^{\prime}\right]$ is a closed set. Usually, \mathbb{S} is a Cantor with positive Lebesgue measure, A^{\prime} and B^{\prime} correspond to the curves where the action $p_{1} \leq A$ and $p_{1} \geq B$ respectively. Clearly, for each $\sigma \in \mathbb{S}$, there is only one $c_{1}=c_{1}(\sigma)$ such that $\Gamma_{\sigma}=\tilde{\mathcal{M}}_{0}(c)$ for all $c \in I\left(c_{1}(\sigma)\right)$ as the rotation number is irrational. We can think Γ_{σ} as a map to function space C^{0} equipped with supremum norm $\Gamma: \mathbb{S} \rightarrow C^{0}(\mathbb{T}, \mathbb{R})$,

$$
\left\|\Gamma_{\sigma_{1}}-\Gamma_{\sigma_{2}}\right\|=\max _{q_{1} \in \mathbb{T}}\left|\Gamma\left(q_{1}, \sigma_{1}\right)-\Gamma\left(q_{1}, \sigma_{2}\right)\right| .
$$

Direct calculation shows

$$
\left|\sigma_{1}-\sigma_{2}\right| \geq \frac{1}{2 C_{h}}\left(\max _{q_{1} \in \mathbb{T}}\left|\Gamma\left(q_{1}, \sigma_{1}\right)-\Gamma\left(q_{1}, \sigma_{2}\right)\right|\right)^{2}
$$

where C_{h} is the Lipschitz constant for the twist map, it follows that

$$
\begin{equation*}
\left\|\Gamma_{\sigma_{1}}-\Gamma_{\sigma_{2}}\right\| \leq C_{s}\left|\sigma_{1}-\sigma_{2}\right|^{\frac{1}{2}} \tag{4.11}
\end{equation*}
$$

where $C_{s}=\sqrt{2 C_{h}}$. Since the stable (unstable) fibers have $C^{r-2}{ }^{\text {-smoothness on their }}$ base points on $\Sigma, p_{\sigma}^{s, u}$ is also $\frac{1}{2}$-Hölder continuous in σ. Thus, there exist two families of $C^{1,1}$ functions $S_{\sigma}^{u}(q, t):\left\{(q, t): q_{2 \Gamma_{\sigma}}\left(q_{1}, t\right) \leq q_{2} \leq 2 \pi-a\right\} \rightarrow M$ and $S_{\sigma}^{s}(q, t)$: $\left\{(q, t): a \leq q_{2} \leq q_{2 \Gamma_{\sigma}}\left(q_{1}, t\right)+2 \pi\right\} \rightarrow M$, which are also $\frac{1}{2}$-Hölder continuous in σ. Remember for each $\sigma \in \mathbb{S}, B_{c(\sigma)}^{*}(q)$ can always take the value zero as its minimum in the region $\left\{a \leq q_{2} \leq 2 \pi-a\right\}$, it follows from the $\frac{1}{2}$-Hölder continuity of $S_{c(\sigma)}^{s, u}$ and the expression of $B_{c(\sigma)}^{*}$ given by (4.9) that $b\left(c_{1}(\sigma)\right)$ also has $\frac{1}{2}$-Hölder continuity in σ. For $z \in \mathbb{T}$, there is unique $z_{\sigma}(t) \in \pi\left(\tilde{\Gamma}_{\sigma t}\right)$ such that $z_{\sigma}(t)=\left(z, q_{2 \Gamma_{\sigma}}(z, t)\right)$. Let $c(\sigma)=\left(c_{1}(\sigma), b\left(c_{1}(\sigma)\right)\right)$, we have:

Lemma 4.4. For all $q \in \mathbb{T} \times(a, 2 \pi-a), z \in \mathbb{T}$ and $s, t \in \mathbb{T}$ the functions $S_{\sigma}^{s, u}(q)$, $h_{c(\sigma)}^{\infty}\left(q, z_{\sigma}(t), s, t\right), h_{c(\sigma)}^{\infty}\left(z_{\sigma}(t), q, s, t\right)$ and $B_{c(\sigma)}^{*}(q)$ are $\frac{1}{2}$-Hölder continuous in $\sigma \in \mathbb{S}$.

Different from $B_{c}^{*}, h_{c}^{\infty}$ depends on the choice of the closed 1-form η_{c} (cf. [Ma4]). To guarantee the Hölder continuity we choose $\eta_{c}=\langle c(\sigma), \dot{q}\rangle$ in above lemma.

5, Construction of connecting orbits

Throughout this section we shall make the following hypotheses, their verification shall be postponed to the section 6 .
(H1): For each $\sigma \in \mathbb{S} \subset\left[A^{\prime}, B^{\prime}\right]$, the set $\left\{B_{c(\sigma)}^{*}=0\right\} \cap\left\{a \leq q_{2} \leq 2 \pi-a\right\}$ is totally disconnected.

Remark: By the choice of a, the set $\left\{B_{c(\sigma)}^{*}=0\right\} \cap\left\{a \leq q_{2} \leq 2 \pi-a\right\}$ is not empty since $d \gamma_{2}$ can not cross the strip $\left\{a \leq q_{2} \leq 2 \pi-a\right\}$ under one step of the map ϕ, there must be some points on time-1-section of the minimal orbits whose projection fall into the strip. By the definition of \mathbb{S}, for each $\sigma \in \mathbb{S}, \tilde{\mathcal{A}}_{0}(c(\sigma))$ contains an invariant circle on the cylinder. In this case we have an explicit expression of $B_{c}^{*}(q)$ in the strip. The hypothesis (H1) implies the minimal critical point set of $S_{c(\sigma)}^{s}-S_{c(\sigma)}^{u}$ consists of discrete points, and there must be some minimal points in the interior of this strip.
(H2): If the rotation number of Γ is rational, then the associated c-minimal measure has its support only at a periodic orbit. The set of minimal homoclinic orbits in Σ to this periodic orbit is topologically trivial.

Before making the third hypothesis let us note that the union of all invariant circles on the cylinder forms a closed set. These circles do not intersect each other, so the complementary set consists of countably many invariant annulus.
(H3): Let Γ be an invariant circle on Σ, associated with co-homology class c. If this circle is on the boundary of a gap, then for small $\delta>0$ there exists $c^{\prime}=\left(c_{1}, c_{2}^{\prime}\right)$ with either $0<c_{2}^{\prime}-b\left(c_{1}\right)<\delta$ or $-\delta<c_{2}^{\prime}-a\left(c_{1}\right)<0$ such that $\mathcal{M}\left(c^{\prime}\right)$ is uniquely ergodic.

According to the study in the last section we know that $\tilde{\mathcal{N}}_{0}\left(c^{\prime}\right)$ is homotopically trivial, but this does not guarantee that $\mathcal{N}_{0}\left(c^{\prime}\right)$ is also homotopically trivial on M, since the projection from $\tilde{\mathcal{N}}\left(c^{\prime}\right) \rightarrow \mathcal{N}\left(c^{\prime}\right)$ is not necessarily injective. If $\tilde{\mathcal{M}}\left(c^{\prime}\right)$ is uniquely ergodic, then $\tilde{\mathcal{N}}\left(c^{\prime}\right)=\tilde{\mathcal{A}}\left(c^{\prime}\right)$. The Lipschitz property of $\mathcal{A}\left(c^{\prime}\right)$ implies that $\mathcal{N}_{0}\left(c^{\prime}\right)$ is homotopically trivial in this case. Given arbitrary small $d>0$, there are only finitely many invariant circles which are the boundary of some annulus with width not smaller than d. Actually, we require the third hypothesis only for these tori.

The first task in this section is to build a C-equivalent sequence $\left\{c^{(i)}\right\}_{i=1}^{m}$ where $c_{1}^{(1)}=c_{1}\left(\sigma^{\prime}\right), a\left(c_{1}^{(1)}\right) \leq c_{2}^{(1)} \leq b\left(c_{1}^{(1)}\right), c_{1}^{(m)}=c_{1}\left(\sigma^{*}\right), a\left(c_{1}^{(m)}\right) \leq c_{2}^{(m)} \leq b\left(c_{1}^{(m)}\right)$ and $\sigma^{\prime}<\sigma^{*}$ correspond to two invariant circles which make up the whole boundary of a gap. Thus a theorem of connecting C-equivalent Mañé sets is used to construct the diffusion orbits crossing this gap. This kind of theorem was discovered by Mather in [Ma4] where the proof was sketched. To make use of this theorem, we shall give a complete proof first. A theorem of connecting different $\mathcal{G}(c)$ was proved by Bernard recently ([Be]).

To any subset A of M we associate a subspace of $H_{1}(M, \mathbb{R})$

$$
\begin{equation*}
V(A)=\bigcap\left\{i_{U *} H_{1}(U, \mathbb{R}): U \text { is an open neighborhood of } A\right\} \tag{5.1}
\end{equation*}
$$

where $i_{U *}: H_{1}(U, \mathbb{R}) \rightarrow H_{1}(M, \mathbb{R})$ is the map induced by the inclusion. Clearly, there exists an open neighborhood U of A such that $V(A)=i_{U *} H_{1}(U)$. Let $V^{\perp}(A)$ be the annihilator of $V(A)$. In other words, if $c \in H^{1}(M, \mathbb{R})$, then $c \in V^{\perp}$ if and only if $\langle c, h\rangle=0$ for all $h \in V(A)$. Given $c \in H^{1}(M, \mathbb{R})$ we define

$$
\begin{equation*}
R(c)=\sum_{t \in \mathbb{T}}\left(V\left(\mathcal{N}_{t}(c)\right)\right)^{\perp} \tag{5.2}
\end{equation*}
$$

In [Be] $R(c)$ is defined by using $\mathcal{G}(c)$ instead of using $\mathcal{N}(c)$.
We say a continuous curve $\Gamma: \mathbb{R} \rightarrow H^{1}(M, \mathbb{R})$ is admissible if for each $t \in \mathbb{R}$ there exists $\delta>0$ such that $\Gamma(t)-\Gamma\left(t_{0}\right) \in R\left(\Gamma\left(t_{0}\right)\right)$ for all $t \in\left[t_{0}-\delta, t_{0}+\delta\right]$. We say c, $c^{\prime} \in H^{1}(M, \mathbb{R})$ are C-equivalent if there is an admissible curve $\Gamma:[0,1] \rightarrow M$ such that $\Gamma(0)=c$ and $\Gamma(1)=c^{\prime}$.

Let U be an open subset of $M \times \mathbb{T}$, we can think it as the open subset in $M \times \mathbb{R}$ of points (q, t) such that $(q, t \bmod 1) \in U$. The 1 -form μ on $M \times \mathbb{R}$ is called a U-step form if there is a closed form $\bar{\mu}$ on $M \times \mathbb{T}$, also considered as a periodic 1-form on $M \times \mathbb{R}$, such that the restriction of μ to $t \leq 0$ is 0 , the restriction of μ to $t \geq 1$ is $\bar{\mu}$, and such that the restriction of μ to the set $U \cup\{t \leq 0\} \cup\{t \geq 1\}$ is closed. In the application in this paper, $\bar{\mu}$ is chosen as a closed form on M.

If the first de Rham cohomology class $d \in R(c)$, then there exists an open neighborhood U of $\mathcal{N}(c)$ and a U-step form μ such that $[\bar{\mu}]=d$. Such a neighborhood U
will be called an adapted neighborhood. Indeed, similar to the arguments in [Be], let us fix a time $t \in[0,1]$ and a cohomology class $d \in V\left(\mathcal{N}_{t}(c)\right)^{\perp}$. There exist an open neighborhood Ω of $\mathcal{N}_{t}(c)$ and a $\delta>0$ such that $V(\Omega)=V\left(\mathcal{N}_{t}(c)\right)$ and such that $\mathcal{N}_{s}(c) \subset \Omega$ for all $s \in[t-\delta, t+\delta]$. As $d \in R(c)$, we can take a closed form $\bar{\mu}$ on M whose support is disjoint from Ω and such that $[\bar{\mu}]=d$. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function such that $\rho=0$ on $(-\infty, t-\delta], \rho=1$ on $[t+\delta, \infty)$ and $0 \leq \rho \leq 1$ for all $t \in \mathbb{R}$ and let $U=M \times((0, t-\delta) \cup(t+\delta, 1)) \cup \Omega \times[t-\delta, t+\delta]$. Obviously, the form

$$
\mu=\rho(t) \bar{\mu}
$$

is an U-step form satisfies the required conditions.
Let $\Gamma:[0,1] \rightarrow H^{1}(M, \mathbb{R})$ be an admissible curve such that $\Gamma(0)=c$ and $\Gamma(1)=c^{\prime}$. For each $t \in[0,1]$ and an adapted neighborhood $U(t)$, let $\eta(t)$ be a closed 1-form on M such that $[\eta(t)]=\Gamma(t)$. There exists $\delta(t)>0$ such that $\Gamma(s)-\Gamma(t) \in R(\Gamma(t))$ and a U-step form $\mu(s)$ with $[\bar{\mu}(s)]=\Gamma(s)-\Gamma(t)$ if $s \in(t-\delta, t+\delta)$. According to the upper semi-continuity $(\eta, \mu) \rightarrow \tilde{\mathcal{N}}_{\eta, \mu}$ proved in the lemma 2.4, we can assume that

$$
\begin{equation*}
\pi\left(\tilde{\mathcal{N}}_{\eta(t), \mu(s)}\right)+\epsilon(t) \subset U(t) \tag{5.3}
\end{equation*}
$$

if we take suitably small $\delta(t)$. In this paper we use $U+a$ to denote the set $\{x \in M$: $\operatorname{dist}(x, U) \leq a\}$. Clearly, there is a finite increasing sequence $\left\{t_{i}\right\}_{0 \leq i \leq N}$ such that

$$
\begin{array}{r}
\bigcup_{i=0}^{N}\left(t_{i}-\delta\left(t_{i}\right), t_{i}+\delta\left(t_{i}\right)\right) \supset[0,1], \\
t_{i-1}>t_{i}-\delta\left(t_{i}\right), \quad t_{i+1}<t_{i}+\delta\left(t_{i}\right), \tag{5.4}
\end{array}
$$

and (5.3) holds for each t_{i}, and each $s \in\left(t_{i}-\delta\left(t_{i}\right), t_{i}+\delta\left(t_{i}\right)\right)$. In the following we shall use $\epsilon_{i}, \delta_{i}, U_{i}, \eta_{i}$ and μ_{i} to denote $\epsilon\left(t_{i}\right), \delta\left(t_{i}\right), U\left(t_{i}\right), \eta\left(t_{i}\right)$ and $\mu\left(t_{i}\right)$ respectively. Thus we have

$$
\begin{equation*}
\eta_{i}=\eta_{0}+\sum_{j=0}^{i-1} \bar{\mu}_{j} . \tag{5.5}
\end{equation*}
$$

Let us fix some $0 \leq i \leq N$ and consider the function $h_{\eta_{i}, \mu_{i}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)$ defined in (2.13). For each small $\epsilon_{i}^{*}>0$ and $\left(m_{0}, m_{1}\right) \in M \times M$ there exists $\left(\breve{T}_{0}^{i}, \breve{T}_{1}^{i}\right)=$ $\left(\breve{T}_{0}^{i}, \breve{T}_{1}^{i}\right)\left(\epsilon_{i}^{*}, m_{0}, m_{1}\right) \in \mathbb{Z}^{+}$such that

$$
\begin{equation*}
h_{\eta_{i}, \mu_{i}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right) \geq h_{\eta_{i}, \mu_{i}}^{\infty}\left(m_{0}, m_{1}\right)-\epsilon_{i}^{*}, \quad \forall T_{j} \geq \breve{T}_{j}^{i}, j=0,1 . \tag{5.6}
\end{equation*}
$$

Obviously, there are infinitely many $T_{j} \geq \breve{T}_{j}^{i}(j=0,1)$ such that

$$
\begin{equation*}
\left|h_{\eta_{i}, \mu_{i}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)-h_{\eta_{i}, \mu_{i}}^{\infty}\left(m_{0}, m_{1}\right)\right| \leq \epsilon_{i}^{*} . \tag{5.7}
\end{equation*}
$$

Let $\gamma_{i}\left(t, m_{0}, m_{1}, T_{0}, T_{1}\right):\left[-T_{0}, T_{1}\right] \rightarrow M$ be the minimizer of $h_{\eta_{i}, \mu_{i}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)$, it follows from the lemma 2.3 that if $\epsilon_{i}^{*}>0$ is sufficiently small, $\breve{T}_{j}^{i}(j=0,1)$ are sufficiently large, and T_{0}, T_{1} are chosen so that (5.7) holds, then

$$
\begin{equation*}
d \gamma_{i}\left(t, m_{0}, m_{1}, T_{0}, T_{1}\right) \in \tilde{\mathcal{N}}_{\eta_{i}, \mu_{i}}(t)+\epsilon_{i}, \quad \forall 0 \leq t \leq 1 \tag{5.8}
\end{equation*}
$$

From the Lipschitz property of $h_{\eta_{i}, \mu_{i}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)$ in $\left(m_{0}, m_{1}\right)$ and the compactness of M, we see that there are $\breve{T}_{j}^{i}=\breve{T}_{j}^{i}\left(\epsilon_{i}\right)(j=0,1)$, independent of (m_{0}, m_{1}), so that (5.6) holds for all $T_{j} \geq \breve{T}_{j}^{i}$. We can see also that there exist $\hat{T}_{j}^{i}\left(\epsilon_{i}\right)>\breve{T}_{j}^{i}\left(\epsilon_{i}\right)(j=0,1)$ so that for any $\left(m_{0}, m_{1}\right) \in M \times M$, there are $T_{j}=T_{j}\left(m_{0}, m_{1}\right)$ with $\breve{T}_{j}^{i} \leq T_{j} \leq \hat{T}_{j}^{i}(j=0,1)$ such that (5.7) and consequently (5.8) hold. Note that for different (m_{0}, m_{1}), we may need different $T_{j} \geq \breve{T}_{j}^{i}$.

We are now ready to construct a connecting orbit joining $\mathcal{N}\left(c_{0}\right)$ and $\mathcal{N}\left(c_{N}\right)$. We consider τ_{i} as the time translation $(q, t) \rightarrow\left(q, t+\tau_{i}\right)$ on $M \times \mathbb{R}$, and define the modified Lagrangian

$$
\begin{equation*}
\tilde{L}=L-\eta_{0}-\sum_{i=0}^{N-1}\left(-\tau_{i}\right)^{*} \mu_{i} . \tag{5.9}
\end{equation*}
$$

For each $\vec{\tau}=\left(\tau_{0}, \tau_{1}, \cdots, \tau_{N-1}\right)$ the following variational problem

$$
\begin{aligned}
h_{\tilde{L}}^{T_{0}, T_{N}}\left(m, m^{\prime}, \vec{\tau}\right)= & \inf _{\substack{\gamma\left(-T_{0}\right)=m \\
\gamma\left(T_{N}+\tau_{N-1}\right)=m^{\prime}}} \int_{-T_{0}}^{T_{N}+\tau_{N-1}}\left(L-\eta_{0}-\sum_{i=0}^{N-1}\left(-\tau_{i}\right)^{*} \mu_{i}\right)(d \gamma(t), t) d t \\
& -\sum_{i=1}^{N-1}\left(\tau_{i}-\tau_{i-1}\right) \alpha\left(c_{i}\right)-T_{0} \alpha\left(c_{0}\right)-T_{N} \alpha\left(c_{N}\right)
\end{aligned}
$$

has a C^{1}-minimizer $\gamma\left(t, m, m^{\prime}, \vec{\tau}, T_{0}, T_{N}\right)$ which is clearly the solution of the EulerLagrangian equation determined by \tilde{L}. We need to show it can be the extremal of L if we suitably choose $\vec{\tau}, T_{0}$ and T_{N}. We define

$$
\begin{gathered}
\Lambda=\left\{\vec{\tau} \in \mathbb{Z}^{N}: \max \left\{\breve{T}_{0}^{i}, \breve{T}_{1}^{i-1}+1\right\} \leq \tau_{i}-\tau_{i-1} \leq \max \left\{\hat{T}_{0}^{i}, \hat{T}_{1}^{i-1}+1\right\},\right. \\
\left.\forall 1 \leq i \leq N-1, \tau_{0}=0\right\}
\end{gathered}
$$

and take the minimum of $h_{\tilde{L}}^{T_{0}, T_{N}}\left(m, m^{\prime}, \vec{\tau}\right)$ over Λ

$$
\begin{equation*}
F_{\tilde{L}}\left(m, m^{\prime}, T_{0}, T_{N}\right)=\min _{\vec{\tau} \in \Lambda} h_{\tilde{L}}^{T_{0}, T_{N}}\left(m, m^{\prime}, \vec{\tau}\right) \tag{5.10}
\end{equation*}
$$

Let $\vec{\tau}^{*}\left(T_{0}, T_{N}\right)$ be the minimal point about $\vec{\tau}$. If $\gamma\left(t, m, m^{\prime}, T_{0}, T_{N}\right)$ is the minimizer of $F_{\tilde{L}}\left(m, m^{\prime}, T_{0}, T_{N}\right)$, we claim that for $t \in\left[\tau_{i}, \tau_{i}+1\right]$ and $0<i<N-1$

$$
\begin{equation*}
d \gamma\left(t, m, m^{\prime}, T_{0}, T_{N}\right) \in\left(-\tau_{i}\right)^{*}\left(\left.\tilde{\mathcal{N}}_{\eta_{i-1}, \mu_{i}}\right|_{t}\right)+\epsilon_{i} \tag{5.11}
\end{equation*}
$$

In fact, let us to choose $m_{i}=\gamma\left(\tau_{i-1}+1\right)$, $m_{i}^{\prime}=\gamma\left(\tau_{i+1}\right)$ for $0<i<N-1$. Since $\gamma\left(t, m, m^{\prime}, T_{0}, T_{N}\right)$ is the minimizer of $F_{\tilde{L}}\left(m, m^{\prime}, T_{0}, T_{N}\right)$, thus

$$
\begin{align*}
A_{\eta_{i-1}, \mu_{i}}\left(\left.\left(-\tau_{i}\right)^{*} \gamma\right|_{\tau_{i-1}+1} ^{\tau_{i+1}}\right)= & \inf _{\substack{\gamma^{*}\left(-T_{0}\right)=m_{i} \\
\gamma^{*}\left(T_{1}\right)=m_{i}^{\prime} \\
T_{0}^{i} \leq T_{0} \leq T_{T}^{i} \\
T_{1}^{i} \leq T_{1} \leq T_{1}^{i}}} \int_{-T_{0}}^{T_{1}}\left(L-\eta_{i}-\mu_{i}\right)\left(d \gamma^{*}(t), t\right) d t \tag{5.12}\\
& -T_{0} \alpha\left(c_{i}\right)-T_{1} \alpha\left(c_{i+1}\right) .
\end{align*}
$$

So, we obtain (5.11) from (5.6~8), (5.12) and the choice of \breve{T}_{j}^{i} as well as $\hat{T}_{j}^{i}(j=0,1)$. We define the infimum limit of $F_{\tilde{L}}\left(m, m^{\prime}, T_{0}, T_{N}\right)$

$$
\begin{equation*}
h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)=\liminf _{T_{0}, T_{1} \rightarrow \infty} F_{\tilde{L}}\left(m, m^{\prime}, T_{0}, T_{N}\right) \tag{5.13}
\end{equation*}
$$

Let $T_{j}^{k}(j=0, N)$ be the subsequences such that $T_{j}^{k} \rightarrow \infty$ as $k \rightarrow \infty$

$$
\left|F_{\tilde{L}}\left(m, m^{\prime}, T_{0}^{k}, T_{N}^{k}\right)-h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)\right| \leq \min \left\{\epsilon_{0}^{*}, \epsilon_{N}^{*}\right\}, \quad \forall k,
$$

as well as

$$
\lim _{k \rightarrow \infty} F_{\tilde{L}}\left(m, m^{\prime}, T_{0}^{k}, T_{N}^{k}\right)=h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)
$$

and let $\gamma_{k}\left(t, m, m^{\prime}\right)=\gamma\left(t, m, m^{\prime}, T_{0}^{k}, T_{N}^{k}\right)$ be the minimizer of $F_{\tilde{L}}\left(m, m^{\prime}, T_{0}^{k}, T_{N}^{k}\right)$. It is easy to see that (5.11) holds also for $i=0, N$. From (5.3), (5.12) and the definition of U_{i} we obtain that $d \gamma_{k}(t)$ is the extremal of L with the boundary condition $\gamma_{k}\left(-T_{0}^{k}\right)=m, \gamma_{k}\left(T_{N}^{k}+\tau_{N-1}^{*}\right)=m^{\prime}$. Clearly, for any compact interval $[a, b]$ the set $\left\{\gamma_{k}\right\}_{k \geq \bar{k}}$ is pre-compact in the $C^{1}([a, b], M)$ topology if \bar{k} is suitably large. Let γ : $\mathbb{R} \rightarrow \bar{M}$ be the accumulation point of $\left\{\gamma_{k}\right\}$, then $d \gamma$ is the solution of the EulerLagrange equation determined by L and

$$
\alpha(d \gamma) \subseteq \tilde{\mathcal{A}}\left(c_{0}\right), \quad \omega(d \gamma) \subseteq \tilde{\mathcal{A}}\left(c_{N}\right)
$$

Consider a bi-infinite sequence $\left(\cdots, c_{i}, \cdots\right)$ of C-equivalent cohomology classes and a sequence $\left(\cdots, \varepsilon_{i}, \cdots\right)$ of small positive numbers. Let $\left\{\tau_{i}\right\}_{-\infty}^{\infty}$ be a monotone sequence of integers such $\tau_{0}=0, \tau_{i} \rightarrow \pm \infty$ as $i \rightarrow \pm \infty$. Let

$$
\nu_{N}=\sum_{i=-N}^{N}\left(-\tau_{i}\right)^{*} \mu_{i}
$$

For each $\vec{\tau}_{N}=\left(\tau_{-N}, \cdots, \tau_{N-1}\right)$ we consider the following variational problem

$$
\begin{aligned}
h_{\tilde{L}}^{T-N, T_{N}}\left(m, m^{\prime}, \vec{\tau}_{N}\right)= & \inf _{\substack{\gamma\left(-T_{-N}-\tau_{-N}\right)=m \\
\gamma\left(T_{N}+\tau_{N-1}\right)=m^{\prime}}} \int_{-T_{-N}-\tau_{-N}}^{T_{N}+\tau_{N-1}}\left(L-\eta_{0}-\nu_{N}\right)(d \gamma(t), t) d t \\
& -\sum_{i=-N+1}^{N-1}\left(\tau_{i}-\tau_{i-1}\right) \alpha\left(c_{i}\right)-T_{-N} \alpha\left(c_{-N}\right)-T_{N} \alpha\left(c_{N}\right)
\end{aligned}
$$

Let Λ_{N} be the set of $2 N$ dimensional integer vectors defined in the same way as for Λ with the subscripts ranging over $(-N, \cdots, N-1)$ instead of $(0, \cdots, N-1)$. Let $\gamma_{N}\left(t, m, m^{\prime}, T_{-N}, T_{N}\right)$ be the minimizer of

$$
F_{\tilde{L}}\left(m, m^{\prime}, T_{-N}, T_{N}\right)=\min _{\vec{\tau} \in \Lambda_{N}} h_{\tilde{L}}^{T-N, T_{N}}\left(m, m^{\prime}, \vec{\tau}_{N}\right)
$$

With the same arguments above, we can make $\gamma_{N}\left(t, m, m^{\prime}, T_{-N}, T_{N}\right)$ be the extremal of L by choosing suitably large T_{-N}, and T_{N}. From (5.3) and (5.11) we can see that $d \gamma_{N}$ passes within a distance of ε_{i} of each $\tilde{\mathcal{L}}\left(c_{i}\right)$ for $-N \leq i \leq N$ if we set \hat{T}_{j}^{i} suitably large for each $j=0,1$ and each $-N \leq i \leq N$. Let $\gamma: \mathbb{R} \rightarrow M$ be an accumulation point of the set $\left\{\Gamma_{N}\right\}_{N \geq N_{0}}^{\infty}$, d clearly determines a trajectory of the Euler-Lagrange flow of L which passes within a distance of ε_{i} of each $\tilde{\mathcal{A}}\left(c_{i}\right)$ for all $i \in \mathbb{Z}$. Therefore we have proved the theorem
Theorem 5.1. (Mather 1993) Suppose c_{0} and c_{N} are C-equivalent classes. There there is a trajectory of the Euler-Lagrange flow of L whose α-limit set lies in $\tilde{\mathcal{A}}\left(c_{0}\right)$ and whose ω-limit set lies in $\tilde{\mathcal{A}}\left(c_{N}\right)$.

Consider a bi-infinite sequence $\left(\cdots, c_{i}, \cdots\right)$ of C-equivalent cohomology classes and a sequence $\left(\cdots, \varepsilon_{i}, \cdots\right)$ of small positive numbers. Then there is a trajectory of the Euler-Lagrange flow of L which passes within a distances of ε_{i} of each $\tilde{\mathcal{A}}\left(c_{i}\right)$ in turn.

The next step is to establish C-equivalence among some Mañé sets of the special L given by (2.2). Let us consider the first de Rham cohomology class $c \in H^{1}(M, \mathbb{R})$ such that the support of c-minimal measure uniquely sits on $\tilde{\Gamma} \subset \tilde{\Sigma}$. First, we consider the case that Γ is a Denjoy set and there is no invariant circle containing Γ. The rotation number of Γ is irrational. By the well-known knowledge we see that the β-function for the twist map is differentiable at the point of irrational number, it implies that there is only one c_{1} such that $\tilde{\Gamma}$ is the support of c-minimal measure if $c \in \operatorname{int} I\left(c_{1}\right)$. We see from the lemma 3.4 that $\tilde{\mathcal{N}}(c)=\tilde{\mathcal{M}}(c)$ when $a\left(c_{1}\right)<c_{2}<$ $b\left(c_{1}\right)$. By the upper semi-continuity of $c \rightarrow \tilde{\mathcal{N}}(c)$ we find that there exists $\delta>0$, if $c^{\prime} \in J=\left(\left(c_{1}-\delta, c_{1}+\delta\right) \times\left(a\left(c_{1}\right)+\delta, b\left(c_{1}\right)-\delta\right)\right.$ then $\mathcal{N}\left(c^{\prime}\right)$ is in a small neighborhood of $\pi(\tilde{\Gamma})$, thus each of such $\mathcal{N}_{0}(c)$ is homotopically trivial. Therefore, all $c^{\prime} \in J$ are C-equivalent.

Next, let us consider the case when Γ consists of single periodic orbit. Since the β-function of the twist map has a corner at the rational rotation number, there is a flat piece of the α-function of the twist map, over the interval $\left[c_{1}^{-}, c_{1}^{+}\right]$. Consequently, there is a rectangle $\left(c_{1}^{-}, c_{1}^{+}\right) \times\left(a\left(c_{1}\right), b\left(c_{1}\right)\right) \in H^{1}(M, \mathbb{R})$ such that all c-minimal measures have their support on $\tilde{\Gamma}$ if c is in this rectangle. When $c_{1}^{-}<c_{1}<c_{1}^{+}$, $a\left(c_{1}\right)<c_{2}<b\left(c_{1}\right), \tilde{\mathcal{N}}(c)=\tilde{\mathcal{M}}(c)$. When $a\left(c_{1}\right)<c_{2}<b\left(c_{1}\right)$ and $c_{1}=c_{1}^{-}$or $c_{1}=c_{1}^{+}, \tilde{\mathcal{N}}(c)=\tilde{\mathcal{M}}(c) \cup\{$ minimal homoclinic orbit in $\tilde{\Sigma}\}$. Due to the upper semicontinuity of $c \rightarrow \tilde{\mathcal{N}}(c)$ and the hypothesis of (H2), we find that there exists $\delta>0$, if $c^{\prime} \in J=\left(\left(c_{1}^{-}-\delta, c_{1}^{+}+\delta\right) \times\left(a\left(c_{1}\right)+\delta, b\left(c_{1}\right)-\delta\right)\right.$ then $\mathcal{N}_{0}(c)$ is homotopically trivial, thus all $c^{\prime} \in J$ are C-equivalent.

Finally we consider the case when Γ is contained in an invariant circle on the boundary of a gap. In this case $\tilde{\Gamma}$ is the support of that c-minimal measure with $c \in I\left(\bar{c}_{1}\right)=\left\{\left(\bar{c}_{1}, c_{2}\right): a\left(\bar{c}_{1}\right) \leq c_{2} \leq b\left(\bar{c}_{1}\right)\right\}$. Because of the hypotheses (H1), (H3) and in virtue of the lemma $3.4 \sim 6$, we have $\mathcal{N}_{0}(c) \subset U=\cup_{i=0}^{m} U_{i}$, where $U_{i} \cap U_{j}=\varnothing$ if $i \neq j, U_{0}$ is an open neighborhood of Γ, all other $U_{i}(i \neq 0)$ are open set contractible to one point. Let $J=\left(\bar{c}_{1}-\delta, \bar{c}_{1}+\delta\right) \times\left(a\left(\bar{c}_{1}\right)-\delta, b\left(\bar{c}_{1}\right)+\delta\right)$. Due to the upper semi-continuity of $c \rightarrow \tilde{\mathcal{N}}(c)$, we can see that $\mathcal{N}_{0}(c) \subset U$ for all $c \in J$ if $\delta>0$ is sufficiently small. To establish the C-equivalent relationship between any two $c, c^{\prime} \in J$, let us consider first the special case when $c, c^{\prime} \in J$ and $c-c^{\prime}=\left(0, c_{2}-c_{2}^{\prime}\right)$. Let $\Gamma(s)=\left(c_{1}, s c_{2}+(1-s)\right) c_{2}^{\prime}$ for $0 \leq s \leq 1$, obviously, [$\left.d q_{2}\right]$ is the annihilator of $V_{\Gamma(s)}(t) \forall s \in[0,1], t \in \mathbb{T}$. Thus $\Gamma(s)$ is an admissible curve. Second, let us consider the case when $c=\left(c_{1}, c_{2}\right) \in J$ but $c_{2}>b\left(\bar{c}_{1}\right)$ or $c_{2}<a\left(\bar{c}_{1}\right)$. Under the hypotheses (H1) and (H3), for any $\delta>0$, there exists $c=\left(\bar{c}_{1}, c_{2}\right)$ with $b\left(\bar{c}_{1}\right)<c_{2}<b\left(\bar{c}_{1}\right)+\delta$ or $a\left(\bar{c}_{1}\right)-\delta<c_{2}<a\left(\bar{c}_{1}\right)$ such that $\mathcal{N}_{t}(c)$ is homopotically trivial for any $t \in \mathbb{T}$. Therefore, $\exists \delta^{\prime}>0$ such that for all $c^{\prime} \in B_{\delta^{\prime}}(c), \mathcal{N}_{0}\left(c^{\prime}\right)$ is homotopically trivial. Replacing δ with δ^{\prime} in the definition of J, we find that all $c \in J$ are C-equivalent. In fact, given any two $c, c^{\prime} \in J$, we can construct the admissible curve as follows. Let $\Gamma:[0,3] \rightarrow H^{1}(M, \mathbb{R})$,

$$
\Gamma(s)= \begin{cases}s c+(1-s) \tilde{c}, & 0 \leq s \leq 1 \\ (s-1) \tilde{c}+(2-s) \tilde{c}^{\prime}, & 1 \leq s \leq 2 \\ (s-2) \tilde{c}^{\prime}+(3-s) c^{\prime}, & 2 \leq s \leq 3\end{cases}
$$

in which \tilde{c} and $\tilde{c}^{\prime} \in J$ are defined in the way $\tilde{c}_{2}=\tilde{c}_{2}^{\prime}>b\left(\bar{c}_{1}\right)$ or $\tilde{c}_{2}=\tilde{c}_{2}^{\prime}<a\left(\bar{c}_{1}\right)$, $\tilde{c}_{1}=c_{1}$ and $\tilde{c}_{1}^{\prime}=c_{1}^{\prime}$, both $\mathcal{N}_{t}(\tilde{c})$ and $\mathcal{N}_{t}\left(\tilde{c}^{\prime}\right)$ are homotopically trivial.

Lemma 5.2. We assume the hypotheses (H1~3). Let $\hat{c}=\left(c_{1}\left(\sigma^{\prime}\right), 0\right)$ and $\bar{c}=$ $\left(c_{1}\left(\sigma^{*}\right), 0\right)$ be two co-homology classes such that $\tilde{\mathcal{N}}_{0}(\hat{c})$ and $\tilde{\mathcal{N}}_{0}(\bar{c})$ make up the whole boundary of some given gap with $\sigma^{\prime}<\sigma^{*}$. Then \hat{c} and \bar{c} are C-equivalent.

Proof: By assumption, there is no other invariant circle between $\mathcal{N}_{0}(\hat{c})$ and $\mathcal{N}_{0}(\bar{c})$. In this case, we have shown that for any $c_{1}\left(\sigma^{\prime}\right) \leq c_{1} \leq c_{1}\left(\sigma^{*}\right)$ there is an open rectangle $J\left(c_{1}\right) \subset H^{1}(M, \mathbb{R})$ containing $\left(c_{1}, 0\right)$ such that all $c \in J\left(c_{1}\right)$ are C-equivalent. By the compactness of the interval $\left[c_{1}\left(\sigma^{\prime}\right), c_{1}\left(\sigma^{*}\right)\right]$ there is a sequence $\left\{c_{1}^{(i)}\right\}_{i=0}^{m}$ such that $\cup_{i=0}^{m} J\left(c_{1}^{(i)}\right) \supset\left[c_{1}\left(\sigma^{\prime}\right), c_{1}\left(\sigma^{*}\right)\right] \times\{0\}$. Obviously, the C-equivalence has transitivity.

This C-equivalence establishes the existence of the diffusion orbits crossing gaps as we have the theorem 5.1.

To go further, we need to know more details of U-step forms. Let η_{j} be any given closed 1-form such that $\left[\eta_{j}\right]=c^{(j)}$ for $j=1, k$. A natural question is whether there exists such kind of $\mu(t)$ so that $\mu(t)=\eta_{1}$ for $t \leq 0$ and $\mu(t)=\eta_{k}$ for $t \geq \tau_{k}+1$ even though $c^{(1)}$ is equivalent to $c^{(k)}$? In general, we do not know whether it is true or not, but in our case, the answer is yes.

Lemma 5.3. Let $c^{(1)}=\left(c_{1}^{(1)}, c_{2}^{(1)}\right), c^{(k)}=\left(c_{1}^{(k)}, c_{2}^{(k)}\right)$ be two cohomology classes connected by an admissible curve Γ, where $a\left(c_{1}^{(1)}\right) \leq c_{2}^{(1)} \leq b\left(c_{1}^{(1)}\right)$, $a\left(c_{1}^{(k)}\right) \leq c_{2}^{(k)} \leq$ $b\left(c_{1}^{(k)}\right)$, and $\tilde{\mathcal{M}}\left(c^{(1)}\right), \tilde{\mathcal{M}}\left(c^{(k)}\right) \subset \tilde{\Sigma}$. Let η_{1}, η_{k} be two closed one forms such that $\left[\eta_{1}\right]=c^{(1)},\left[\eta_{k}\right]=c^{(k)}$. Then there exists a composition of finite U-step forms $\mu(t)$ such that $\mu(t)=\eta_{1}$ for $t \leq 0$ and $\mu(t)=\eta_{k}$ for $t \geq \tau_{k}+1$.

Proof. Since Φ is an area-preserving twist map when it is restricted on the cylinder, by the hypothesis (H2), there is some c with $c_{1}^{(1)}<c_{1}<c_{1}^{(k)}, c_{2}=0$ such that its semi-static minimal orbit set consists of single m-periodic orbit with $m>1$. Thus, for each $s \in \mathbb{T}, \mathcal{N}_{s}$ consists of several points, $\mathcal{N}_{s}(c)=\cup\left\{q_{i}(s)\right\}$. Consequently, there exist $\delta>0$, and $0<s_{1}<s_{2}<1$ such that

$$
\left(\cup\left\{q_{i}\left(s_{1}\right)\right\}+3 \delta\right) \cap\left(\cup\left\{q_{i}\left(s_{2}\right)\right\}+3 \delta\right)=\varnothing
$$

There also exists $\epsilon>0$ such that $0<s_{1}-\epsilon<s_{1}+\epsilon<s_{2}-\epsilon<s_{2}+\epsilon<1$ and $\cup\left\{q_{i}(s)\right\} \subset \cup\left\{q_{i}\left(s_{j}\right)\right\}+\frac{1}{2} \delta$ when $\left|s-s_{j}\right|<\epsilon$ for $j=1,2$.

Let η be an any exact 1 -form, we claim there exists a U-step form ν such that $\nu(t)=0$ for $t \leq 0$ and $\nu(t)=\eta$ for $t \geq 1$, where U is a neighborhood of $\mathcal{N}(c)=$ $\cup_{s \in \mathbb{T}} \cup_{i}\left\{q_{i}(s)\right\}$. Let $F: M \rightarrow \mathbb{R}$ be the function such that $\eta=d F$. Let $\lambda_{\delta}(q): M \rightarrow \mathbb{R}$ be a smooth function $\lambda_{\delta}=1$ when $\|q\| \leq \delta, 0<\lambda_{\delta}<1$ when $\delta<\|q\|<2 \delta$ and $\lambda_{\delta}=0$ when $\|q\| \geq 2 \delta$. Let

$$
F^{*}=\left(1-\sum_{i=1}^{k} \lambda_{\delta}\left(q-q_{i}\left(s_{1}\right)\right)\right) F, \quad \tilde{F}=\left(\sum_{i=1}^{k} \lambda_{\delta}\left(q-q_{i}\left(s_{1}\right)\right)\right) F,
$$

obviously, $\operatorname{supp}\left(d F^{*}\right) \cap\left(\cup\left\{q_{i}\left(s_{1}\right)\right\}+2 \delta\right)=\varnothing, \operatorname{supp}(d \tilde{F}) \cap\left(\cup\left\{q_{i}\left(s_{2}\right)\right\}+2 \delta\right)=\varnothing$. If we choose

$$
\nu=\rho\left(t-s_{1}+\epsilon\right) d F^{*}+\rho\left(t-s_{2}+\epsilon\right) d \tilde{F}
$$

where $\rho=0$ for $t \leq 0,0<\rho<1$ for $0<t<2 \epsilon$ and $\rho=1$ for all $t \geq 2 \epsilon$, then $\nu(t)=0$ for $t \leq s_{1}-\epsilon$ and $\nu(t)=d F$ for $t \geq s_{2}+\epsilon$. Let $U=\cup_{j=1,2}\left(\left(\cup\left\{q_{i}\left(s_{j}\right)\right\}+\delta\right) \times\left[s_{j}-\right.\right.$ $\left.\left.\epsilon, s_{j}+\epsilon\right]\right) \cup M \times\left(\left[0, s_{1}-\epsilon\right] \cup\left[s_{1}+\epsilon, s_{2}-\epsilon\right] \cup\left[s_{2}+\epsilon, 1\right]\right)$, then $\left.d \nu\right|_{U}=0$.

Since both $\left[\eta_{1}\right]$ and $\left[\eta_{2}\right]$ are C-equivalent to c, there are two composition of U-step forms ν_{1}, ν_{2} such that

$$
\begin{array}{ll}
\eta_{1}+\nu_{1}(t)=\langle c, d q\rangle+d F_{1}, & t \geq \tau_{1} \\
\nu_{2}(t)=0, & t \leq \tau_{1}+1 \\
\langle c, d q\rangle+\nu_{2}(t)=\eta_{2}+d F_{2}, & t \geq \tau_{2}
\end{array}
$$

By the demonstration above, there is a U-step form ν such that $\nu(t)=-d\left(F_{1}+F_{2}\right)$ when $t \geq 1$. Clearly, the 1 -form $\mu=\left(-\tau_{1}\right)^{*} \nu+\nu_{1}+\nu_{2}$ is what we are looking for.

The remaining work in this section is to join the orbit crossing the gaps smoothly with the orbit constructed via Arnold's mechanism. We shall make use of some ideas developed in [Bs] and in [BCV], it is showed that the diffusion orbits in several examples, constructed by transition chains, are actually the orbits which locally minimize the Lagrange action.

Let us consider the barrier function of those cohomology classes corresponding to an invariant circle Γ_{c} on the cylinder. In this case, $\mathcal{M}_{0}(c) \subseteq \Gamma_{c}$ and $d_{c}\left(\xi, \xi^{\prime}\right)=0$ for all $\xi, \xi^{\prime} \in \pi\left(\Gamma_{c}\right)$. Thus

$$
\begin{align*}
B_{c}^{*}(q) & =\min _{\xi, \eta \in \mathcal{M}(c)}\left\{h_{c}^{\infty}(\xi, q)+h_{c}^{\infty}(q, \eta)-h_{c}^{\infty}(\xi, \eta)\right\} \\
& =h_{c}^{\infty}(\xi, q)+h_{c}^{\infty}(q, \xi), \quad \forall \xi \in \pi\left(\Gamma_{c}\right) . \tag{5.14}
\end{align*}
$$

Under the hypothesis (H1), the set $\left\{B_{c(\sigma)}^{*}=0\right\} \cap \mathbb{T} \times(a, 2 \pi-a)$ is totally disconnected for all $\sigma \in \mathbb{S}$. Thus, for any given $\sigma \in \mathbb{S}$ and any $\epsilon>0$, there are finite and mutual disjoint balls $\mathcal{B}_{\epsilon}\left(q_{i}\right)$ and $\delta=\delta(\sigma, \epsilon)>0$ such that $\cup \mathcal{B}_{\epsilon}\left(q_{i}\right) \supset\left\{B_{c(\sigma)}^{*}=\right.$ $0\} \cap \mathbb{T} \times(a, 2 \pi-a)$ and

$$
\min \left\{B_{c(\sigma)}^{*}(q): q \in \partial \mathcal{B}_{\epsilon}\left(q_{i}\right), \forall i\right\} \geq 2 \delta, \quad B_{c(\sigma)}^{*}\left(q_{i}\right)=0
$$

In other words, as a function of $q . B_{c(\sigma)}^{*}$ reaches its minimum in $\left\{a \leq q_{2} \leq 2 \pi-a\right\}$ away from the boundary

$$
\begin{equation*}
\min _{q \in \partial \mathcal{B}_{\epsilon}\left(q_{i}\right)} B_{c(\sigma)}^{*}(q)-\min _{q \in \mathcal{B}_{\epsilon}\left(q_{i}\right)} B_{c(\sigma)}^{*}(q) \geq 2 \delta . \tag{5.15}
\end{equation*}
$$

Recall for each $z \in \mathbb{T}$, there is unique $z_{\sigma} \in \pi\left(\Gamma_{\sigma}\right)$ such that $z_{\sigma}=\left(z, q_{2 \Gamma_{\sigma}}(z)\right)$. From (5.14), (5.15) and the Hölder continuity guaranteed by Lemma 4.4 we find that for each $z \in \mathbb{T}$

$$
\begin{align*}
& \min _{q \in \mathcal{\mathcal { B }} \in\left(q_{i}\right)} h_{c(\sigma)}^{\infty}\left(z_{\sigma}, q\right)+h_{c\left(\sigma^{\prime}\right)}^{\infty}\left(q, z_{\sigma^{\prime}}\right)- \\
& \min _{q \in \mathcal{B}_{\epsilon}\left(q_{i}\right)} h_{c(\sigma)}^{\infty}\left(z_{\sigma}, q\right)+h_{c\left(\sigma^{\prime}\right)}^{\infty}\left(q, z_{\sigma^{\prime}}\right) \geq \frac{3}{2} \delta, \tag{5.16}
\end{align*}
$$

provided that σ^{\prime} is sufficiently close to σ. As these functions depend on the choice of closed 1-form η_{c}, to obtain (5.16) we choose $\eta_{c}=\langle c(\sigma), \dot{q}\rangle$. In general, $h_{c(\sigma)}^{\infty}\left(z_{\sigma}, q\right)+$ $h_{c\left(\sigma^{\prime}\right)}^{\infty}\left(q, z_{\sigma^{\prime}}\right)$ is also the function of z, but its variation over $z \in \mathbb{T}$ is very small if σ^{\prime} is sufficiently close to σ, becasue $q_{2 \Gamma_{\sigma}}(z)$ has $\frac{1}{2}$-Hölder continuity in σ. Since \mathbb{S} is compact, there exist $\delta=\delta(\epsilon)$ and $\epsilon_{1}=\epsilon_{1}(\epsilon, \delta)$, independent of σ, such that (5.15) and (5.16) hold if $\left|\sigma-\sigma^{\prime}\right| \leq \epsilon_{1}$.

We say σ_{j} is linked with σ_{j+1} by transition torus with some persistency if $\sigma_{j+1} \in \mathbb{S}$ is so close to σ_{j} such that

$$
\begin{equation*}
\left|c_{1}\left(\sigma_{j}\right)-c_{1}\left(\sigma_{j+1}\right)\right| \leq \frac{1}{4} \delta \tag{5.17}
\end{equation*}
$$

and (5.16) hold where we replace σ and σ^{\prime} by σ_{j} and σ_{j+1} respectively. We say σ_{j} is linked with σ_{k} by transition chain with some persistency if there there is a sequence $\sigma_{j}, \sigma_{j+1}, \cdots, \sigma_{k-1}, \sigma_{k}$ in \mathbb{S} such that for each $j \leq i<k \sigma_{i}$ is linked with σ_{i+1} by transition torus with some persistency. To be brief, we shall say in the following that they are linked by transition torus (chain). Note that $\mathbb{S} \subset\left[A^{\prime}, B^{\prime}\right]$ is compact, we can find finitely many $\sigma_{k} \in \mathbb{S}(0 \leq k \leq K)$ such that we have one of the following alternatives for each $k<K$: either σ_{k} is linked with σ_{k+1} by transition chain, or $\Gamma_{\sigma_{k}}$ and $\Gamma_{\sigma_{k+1}}$ make up the boundary of an annulus of Birkhoff instability, i.e. there is no other invariant circle between $\Gamma_{\sigma_{k}}$ and $\Gamma_{\sigma_{k+1}}$. In the following we shall use Γ_{i} to denote $\Gamma_{\sigma_{i}}$ and use z_{i} to denote $z_{\sigma_{i}}$.

Let us consider a sequence of invariant circles $\Gamma_{i}(i=0,1, \cdots, \ell, \ell+1)$ on the cylinder Σ such that Γ_{1} is linked with Γ_{ℓ} through the transition chain $\Gamma_{2}, \cdots, \Gamma_{\ell-1}$, and there are two annuli of Birkhoff instability, one has Γ_{0} and Γ_{1} as its boundary, another one has Γ_{ℓ} and $\Gamma_{\ell+1}$ as its boundary. By the construction of this transition chain we know that for each $1 \leq i<\ell$ there is $x_{i} \in\left\{B_{c\left(\sigma_{i}\right)}^{*}=0\right\} \cap(a, 2 \pi-a)$ such that for any $z \in \mathbb{T}$

$$
\begin{align*}
& \min _{q \in \partial \mathcal{B}_{\epsilon}\left(x_{i}\right)} h_{c\left(\sigma_{i}\right)}^{\infty}\left(z_{i}, q\right)+h_{c\left(\sigma_{i+1}\right)}^{\infty}\left(q, z_{i+1}\right)- \\
& \min _{q \in \mathcal{B}_{\epsilon}\left(x_{i}\right)} h_{c\left(\sigma_{i}\right)}^{\infty}\left(z_{i}, q\right)+h_{c\left(\sigma_{i+1}\right)}^{\infty}\left(q, z_{i+1}\right) \geq \frac{3}{2} \delta . \tag{5.16i}
\end{align*}
$$

As in [BCV], let us consider the covering of \mathbb{T}^{2} given by $\bar{M}=\mathbb{T} \times \mathbb{R}$. For each x_{i} we identify it with its lift in the region $\mathbb{T} \times(0,2 \pi)$ and single out a point on its lift, $\bar{x}_{i}=x_{i}+(0,2 i \pi)$, we also identify each z_{i} with its lift $z_{i}+(0,2 i \pi)$. For $i \in(1,2, \ldots, \ell-1)$ we introduce a smooth function $\Psi_{i}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ which vanishes outside $\left\{q:\left|q-\bar{x}_{i}\right| \leq 2 \epsilon\right\}$ and such that

$$
\begin{equation*}
\nabla \Psi_{i}(q)=c\left(\sigma_{i+1}\right)-c\left(\sigma_{i}\right) \quad \forall q:\left|q-\bar{x}_{i}\right| \leq \epsilon \tag{5.18}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\bar{c}_{i}(q)=c\left(\sigma_{i}\right)+\nabla \Psi_{i}(q), \tag{5.19}
\end{equation*}
$$

then

$$
h_{\bar{c}_{i}}^{\infty}(z, q)+h_{\bar{c}_{i+1}}^{\infty}(q, z)=h_{c\left(\sigma_{i}\right)}^{\infty}(z, q)+h_{c\left(\sigma_{i+1}\right)}^{\infty}(q, z)+\Psi_{i+1}(q)-\Psi_{i}(q) .
$$

Note $\Psi_{i+1}(q)=0$ as $q \in \mathcal{B}_{\epsilon}\left(q_{i}\right)$. If we require further that σ_{i+1} is so close to σ_{i} that (5.17) holds, we obtain from (5.16i) and (5.18) that

$$
\begin{align*}
& \min _{q \in \partial \mathcal{B}_{\epsilon}\left(x_{i}\right)} h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q, z_{i+1}\right)- \\
& \min _{q \in \mathcal{B}_{\epsilon}\left(x_{i}\right)} h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q, z_{i+1}\right) \geq \delta . \tag{5.20}
\end{align*}
$$

Let $\mathbb{B}=\mathcal{B}_{\epsilon}\left(x_{1}\right) \times \mathcal{B}_{\epsilon}\left(x_{2}\right) \times \cdots \times \mathcal{B}_{\epsilon}\left(x_{\ell-1}\right), Q=\left(q_{1}, \ldots, q_{\ell-1}\right), \vec{n}=\left(n_{0}, n_{1}, \cdots, n_{\ell}\right) \in$ $\mathbb{Z}^{\ell+1}$ and define

$$
\begin{align*}
\mathfrak{h}\left(Q, z_{1}, z_{\ell}, \vec{n}\right)= & \sum_{i=1}^{\ell-2} h_{\bar{c}_{i+1}}^{n_{i+1}-n_{i}}\left(q_{i}, q_{i+1}\right) \\
& +h_{\bar{c}_{1}}^{n_{1}-n_{0}}\left(z_{1}, q_{1}\right)+h_{\bar{c}_{\ell}}^{n_{\ell}-n_{\ell-1}}\left(q_{\ell-1}, z_{\ell}\right), \tag{5.21}
\end{align*}
$$

We see that \mathfrak{h}, as the function of Q, takes its local minimum in the interior of \mathbb{B} if $n_{i+1}-n_{i}$ is sufficiently large for all $1 \leq i \leq \ell-1$. In fact, let x_{i}^{*} be the point where the function of $q h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q, z_{i+1}\right)$ attains its local minimum in $\mathcal{B}_{\epsilon}\left(x_{i}\right)$, we find that the function of Q

$$
\sum_{i=1}^{\ell-1} h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q_{i}\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q_{i}, z_{i+1}\right)
$$

takes its local minimum at the point $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{\ell-1}^{*}\right)$ which is obviously in the interior of \mathbb{B}. Thus, the local minimum of \mathfrak{h} is in the interior of \mathbb{B} if the following holds

$$
\begin{equation*}
\lim _{n_{i+1}-n_{i} \rightarrow \infty} h_{\bar{c}_{i+1}}^{n_{i+1}-n_{i}}\left(q_{i}, q_{i+1}\right)=h_{\bar{c}_{i+1}}^{\infty}\left(q_{i}, z_{i+1}\right)+h_{\bar{c}_{i+1}}^{\infty}\left(z_{i+1}, q_{i+1}\right) . \tag{5.22}
\end{equation*}
$$

To show this let us state a lemma:
Lemma 5.4. Assume $\tilde{\mathcal{M}}(c)$ has a dense orbit. For any $m_{0}, m_{1} \in M$, let $\gamma:[0, K] \rightarrow$ M be c-minimal curve connecting m_{0} and $m_{1}, \gamma(0)=m_{0}, \gamma(K)=m_{1}$. For any $\delta>0$, any $K_{1} \in \mathbb{Z}^{+}$and any $z \in \mathcal{M}_{0}(c), \exists K_{0} \in \mathbb{Z}^{+}$, if $K \geq K_{0}$ then there exists $T \in \mathbb{Z}^{+}$such that $\gamma(T) \in B_{\delta}(z), T \geq K_{1}$ and $K_{0}-T \geq K_{1}$.
Proof: For any $\delta^{*}>0$ there is $K_{0} \in \mathbb{Z}_{+}$and $k \in \mathbb{Z}^{+}$such that $d \gamma(k) \in \tilde{\mathcal{M}}_{0}(c)+\delta^{*}$ if $K \geq K_{0}$, otherwise there would be another c-minimal measure. For any $z \in \mathcal{M}_{0}(c)$, by choosing sufficiently small δ^{*} and sufficiently large K_{0} there is some $T \in \mathbb{Z}^{+}$so that $\gamma(T)$ is in δ-neighborhood of z. Clearly, for any $K_{1} \in \mathbb{Z}^{+}$there exists such T so that $T \geq K_{1}$ and $K_{0}-T \geq K_{1}$, otherewise there would be another c-minimal measure also.

Applying the lemma to this problem we find that for each $m \in \mathcal{M}\left(c_{i}\right)$, each small $\delta>0$ and each large $K>0$ there exist $n^{*} \in \mathbb{Z}^{+}$such that if $n \geq n^{*}$ then there exists $z_{n} \in \mathcal{B}_{\delta}(m)$ such that

$$
h_{c_{i}}^{n}\left(q, q^{\prime}\right)=h_{c_{i}}^{n_{1}}\left(q, z_{n}\right)+h_{c_{i}}^{n_{2}}\left(z_{n}, q^{\prime}\right)
$$

where $n=n_{1}+n_{2}$ with $n_{1}, n_{2} \geq K$. Using the Lipschitz property of $h_{c_{i}}^{n}\left(m, m^{\prime}\right)$ in (m, m^{\prime}) we find that for each small $\epsilon>0$ the following holds

$$
\left|h_{c_{i}}^{n}\left(q, q^{\prime}\right)-h_{c_{i}}^{n_{1}}(q, m)-h_{c_{i}}^{n_{2}}\left(m, q^{\prime}\right)\right|<\epsilon
$$

if δ is sufficiently small and n^{*} is sufficiently large. Since we consider the $\mathcal{M}\left(c_{i}\right)$ which is on the cylinder with irrational number, thanks to the corollary 2.7 , we know that $L-\left\langle\bar{c}_{i}(q), \dot{q}\right\rangle$ is regular for each $0 \leq i \leq \ell+1$, (5.22) follows from the property that $d_{c_{i}}\left(m, m^{\prime}\right)=0$ for all $m, m^{\prime} \in \pi\left(\Gamma_{i}\right)$. Denote the corresponding minimizer by $\gamma:\left[n_{0}, n_{\ell}\right] \rightarrow M$, we use $\gamma_{i}(t)$ to denote its restriction on the time interval $\left[n_{i}, n_{i+1}\right]$. Once $\gamma(t)$ reaches its local minimum in the interior of \mathbb{B}, standard argument shows that

$$
\frac{\partial L_{\bar{c}_{i}}}{\partial \dot{q}}\left(d \gamma_{i}(t), t\right)=\frac{\partial L_{\bar{c}_{i+1}}}{\partial \dot{q}}\left(d \gamma_{i+1}(t), t\right)
$$

holds at $t=n_{i+1}$. Note that $L_{\bar{c}_{i}}=L_{\bar{c}_{i+1}}$ in the neighborhood of $\mathcal{B}_{\epsilon}\left(\bar{x}_{i}\right)$ by the definition of $\Psi_{i}(q)$, we get

$$
\dot{\gamma}_{i}\left(n_{i+1}\right)=\dot{\gamma}_{i+1}\left(n_{i+1}\right),
$$

thus $\gamma(t)$ is a solution of the Euler-Lagrange equation over the time interval $\left[n_{0}, n_{\ell}\right]$.
In fact, we can remove the restriction on z_{1} and z_{ℓ} that there is $z \in \mathbb{T}$ so that $z_{j}=\left(z, q_{2 \Gamma_{j}}(z)\right)$ for $j=1, \ell$. We can replace z_{j} by any point $z_{j}^{*} \in \mathcal{M}\left(c_{j}\right)$ simply because $d_{c_{j}}\left(m, m^{\prime}\right)=0$ for all $m, m^{\prime} \in \pi\left(\Gamma_{j}\right)$ thus the function of $Q=\left(q_{1}, \ldots, q_{\ell-1}\right)$

$$
\begin{aligned}
& \sum_{i=2}^{\ell-2} h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q_{i}\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q_{i}, z_{i+1}\right)+h_{\bar{c}_{1}}^{\infty}\left(z_{1}^{*}, q_{1}\right)+h_{\bar{c}_{\ell}}^{\infty}\left(q_{\ell}, z_{\ell}^{*}\right) \\
= & \sum_{i=1}^{\ell-1} h_{\bar{c}_{i}}^{\infty}\left(z_{i}, q_{i}\right)+h_{\bar{c}_{i+1}}^{\infty}\left(q_{i}, z_{i+1}\right)+h_{\bar{c}_{1}}^{\infty}\left(z_{1}^{*}, z_{1}\right)+h_{\bar{c}_{\ell}}^{\infty}\left(z_{\ell}, z_{\ell}^{*}\right)
\end{aligned}
$$

also reaches its local minimum at the point $\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{\ell-1}^{*}\right)$. So, the Lipschitz property of h_{c}^{n} enable us to assert that there exist large ($\Delta n_{1}, \Delta n_{2}, \cdots, \Delta n_{\ell}$) and small $\delta^{*}>0$, if $n_{i}-n_{i-1} \geq \Delta n_{i}, z_{j} \in \mathcal{B}_{\delta^{*}}\left(z_{j}^{*}\right)$ for $j=1, \ell$, then as the function of Q, $\mathfrak{h}\left(Q, z_{1}, z_{\ell}, \vec{n}\right)$ reaches its local minimum in the interior of \mathbb{B}.

Now we are ready to construct an orbit $\gamma: \mathbb{R} \rightarrow M$ such that $\alpha(d \gamma) \supset \Gamma_{0}$ and $\omega(d \gamma) \supset \Gamma_{\ell+1}$.

By the condition, Γ_{i} and Γ_{i+1} make up the boundary of the resonant zone Z_{i} for $i=0, \ell$. For $i=0, \ell+1$ we let $c^{(i)}$ be a co-homology class such that $\left\{B_{c^{(i)}}^{*}=0\right\}=\Gamma_{i}$. For $i=1, \ell$ we let $c^{(i)}$ be a co-homology class such that $c^{(i)}=\left(c_{1}^{(i)}, b\left(c_{1}^{(i)}\right)\right)$, in this case, $\left\{B_{c^{(i)}}^{*}=0\right\}=\Gamma_{i} \cup\left\{\right.$ its $c^{(i)}$-minimal homoclinic orbits $\}$. Since the C-equivalence between $c^{(i)}$ and $c^{(i+1)}$ has been established for $i=0, \ell$, in analogy to the proof of Theorem 5.1 we can find the composition of finite U-step forms ν_{j}

$$
\nu_{j}=\sum_{i=0}^{N_{j}}\left(-\tau_{i}^{j}\right)^{*} \mu_{i}^{j}, \quad(j=1,2)
$$

such that their cohomology classes are $\left[\left.\nu_{1}(t)\right|_{t \leq 0}\right]=0,\left[\left.\nu_{1}(t)\right|_{t \geq \tau_{N_{1}}^{1}+1}\right]=c^{(1)}-c^{(0)}$, $\left[\left.\nu_{2}(t)\right|_{t \leq 0}\right]=0$ and $\left[\left.\nu_{2}(t)\right|_{t \geq \tau_{N_{2}}^{2}+1}\right]=c^{(\ell+1)}-c^{(\ell)}$, where τ_{i}^{j} is the time translation
$(q, t) \rightarrow\left(q, t+\tau_{i}^{j}\right)$. Moreover, by the lemma 5.3, we can choose those ν_{j} such that $\left.\nu_{1}(t)\right|_{t \leq 0}=0,\left.\nu_{1}(t)\right|_{t \geq \tau_{N_{1}}^{1}+1}=\left\langle\bar{c}_{1}(q)-c\left(\sigma_{0}\right), d q\right\rangle,\left.\nu_{2}(t)\right|_{t \leq 0}=0$ (see (5.18) for the definition of $\left.\bar{c}_{i}(q)\right)$ and $\left.\nu_{2}(t)\right|_{t \geq \tau_{N_{2}}^{2}+1}=\left\langle c\left(\sigma_{\ell+1}\right)-c\left(\sigma_{\ell}\right), d q\right\rangle$. Let $\eta_{0}^{1}=\left\langle c\left(\sigma_{0}\right), d q\right\rangle$, $\eta_{0}^{2}=\left\langle\bar{c}_{\ell}(q), d q\right\rangle, \eta_{i}^{j}=\eta_{0}^{j}+\sum_{k=0}^{i-1} \bar{\mu}_{k}^{j}$ and $c_{i}^{j}=\left[\eta_{i}^{j}\right]$, then $\eta_{N_{1}+1}^{1}=\left\langle\bar{c}_{1}(q), d q\right\rangle, \eta_{N_{2}+1}^{2}=$ $\left\langle c\left(\sigma_{\ell+1}\right), d q\right\rangle$. Based on the proof of Theorem 5.1 we can choose each μ_{i}^{j}, the adapted neighborhood U_{i}^{j} and $\epsilon_{i}^{j}>0$ so that

$$
\begin{equation*}
\pi\left(\tilde{\mathcal{N}}_{\eta_{i}^{j}, \mu_{i}^{j}}\right)+\epsilon_{i}^{j} \subset U_{i}^{j}, \quad \forall j=1,2,0 \leq i \leq N_{j} . \tag{5.6ij}
\end{equation*}
$$

For each $\epsilon_{i}^{j *}>0$, there exist $\hat{T}_{k i}^{j}, \breve{T}_{k i}^{j} \in \mathbb{Z}_{+}$with $\hat{T}_{k i}^{j}>\breve{T}_{k i}^{j},(k=0,1)$ such that

$$
\begin{aligned}
h_{\eta_{i}^{j}, \mu_{i}^{j}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right) \geq h_{\eta_{i}^{j}, \mu_{i}^{j}}^{\infty}\left(m_{0}, m_{1}\right)-\epsilon_{i}^{j *}, \quad & \forall T_{k} \geq \breve{T}_{k i}^{j},(k=0,1), \\
& \forall\left(m_{0}, m_{1}\right) \in M \times M ;
\end{aligned}
$$

for any given $\left(m_{0}, m_{1}\right) \in M \times M$ there exists $T_{k}=T_{k}\left(m_{0}, m_{1}\right)$ with $\breve{T}_{k i}^{j} \leq T_{k} \leq \hat{T}_{k i}^{j}$ such that

$$
\begin{equation*}
\left|h_{\eta_{i}^{j}, \mu_{i}^{j}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)-h_{\eta_{i}^{j}, \mu_{i}^{j}}^{\infty}\left(m_{0}, m_{1}\right)\right| \leq \epsilon_{i}^{j *} . \tag{5.7ij}
\end{equation*}
$$

Let $\gamma_{i}^{j}\left(t, m_{0}, m_{1}, T_{0}, T_{1}\right):\left[-T_{0}, T_{1}\right] \rightarrow M$ be the minimizer of $h_{\eta_{i}^{j}, \mu_{i}^{j}}^{T_{0}, T_{1}}\left(m_{0}, m_{1}\right)$. Let $\breve{T}_{k i}^{j}$ be set so large and $\epsilon_{i}^{j *}>0$ be set so small such that if (5.7ij) holds, then

$$
\begin{equation*}
d \gamma_{i}^{j}\left(t, m_{0}, m_{1}, T_{0}, T_{1}\right) \in \tilde{\mathcal{N}}_{\eta_{i}^{j}, \mu_{i}^{j}}+\epsilon_{i}^{j}, \quad \forall 0 \leq t \leq 1 . \tag{5.8ij}
\end{equation*}
$$

We define the index set for $\vec{\tau}^{j}=\left(\tau_{0}^{j}, \tau_{1}^{j}, \cdots, \tau_{N_{j}}^{j}\right)$

$$
\begin{aligned}
\Lambda^{j}=\left\{\vec{\tau}^{j} \in \mathbb{Z}^{N_{j}}:\right. & \max \left\{\breve{T}_{0(i-1)}^{j}, \breve{T}_{1 i}^{j}+1\right\} \leq \tau_{i}^{j}-\tau_{i-1}^{j} \leq \max \left\{\hat{T}_{0(i-1)}^{j}, \hat{T}_{1 i}^{j}+1\right\}, \\
& \left.\forall 1 \leq i \leq N_{j}, \tau_{0}^{j}=0\right\}
\end{aligned}
$$

and introduce a modified Lagrangian depending on the parameters $\vec{\tau}^{j}(j=1,2)$ and \vec{n}

$$
\tilde{L}= \begin{cases}L-\left\langle c\left(\sigma_{0}\right), \dot{q}\right\rangle-\left(\tau_{N_{1}}^{1}+1\right)^{*} \nu_{1}, & t \leq n_{1}, \\ L-\left\langle c\left(\sigma_{j}\right)+\varrho_{j}(t) \nabla \Psi_{j}(q), \dot{q}\right\rangle, & n_{j-1} \leq t \leq n_{j}, 2 \leq j \leq \ell-1, \\ L-\left\langle c\left(\sigma_{\ell}\right), \dot{q}\right\rangle+\left(n_{\ell}+\tau_{N_{2}}^{2}+1\right)^{*} \nu_{2}, & t \geq n_{\ell-1},\end{cases}
$$

where ϱ_{j} is a smooth function such that $\varrho_{j}(t)=0$ for $t \leq \frac{1}{2}\left(n_{j+1}+n_{j}\right), 0<\varrho_{j}<1$ when $\frac{1}{2}\left(n_{j+1}+n_{j}\right)<t<\frac{1}{2}\left(n_{j+1}+n_{j}\right)+1$ and $\varrho_{j}=1$ when $t \geq \frac{1}{2}\left(n_{j+1}+n_{j}\right)+1$, this function is well defined if $n_{j}-n_{j-1} \geq 4$. Clearly, \tilde{L} is smooth in

$$
(\dot{q}, q, t) \in T M \times\left\{\mathbb{R} \backslash \bigcup_{i=1}^{\ell-1}\left\{n_{i}\right\}\right\} \cup \bigcup_{i=1}^{\ell-1} T \mathcal{B}_{\epsilon}\left(x_{i}\right) \times\left(n_{i}-1, n_{i}+1\right)
$$

For each $\left(m, m^{\prime}\right) \in M \times M, Q=\left(q_{1}, \cdots, q_{\ell-1}\right) \in \mathbb{B}$ let

$$
\begin{aligned}
& h_{\tilde{L}}^{T_{0}}, T_{\ell+1} \\
&\left(m, m^{\prime}, Q, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)= \inf _{\substack{\gamma\left(-T_{0}^{*}\right)=m \\
\gamma\left(T_{\ell+1}^{*}\right)=m^{\prime} \\
\gamma\left(n_{j}\right)=q_{j} \\
j=1, \cdots, \ell-1}} \int_{-T_{0}^{*}}^{T_{\ell+1}^{*}} \tilde{L}(d \gamma(t), t) d t \\
&+\sum_{\substack{1 \leq i \leq N_{j} \\
j=1,2}}\left(\tau_{i}^{j}-\tau_{i-1}^{j}\right) \alpha\left(c_{i}^{j}\right)+n_{0} \alpha\left(c_{1}\right) \\
&+\left(n_{\ell}-n_{\ell-1}\right) \alpha\left(c_{\ell}\right)+T_{0} \alpha\left(c_{0}\right)+T_{\ell+1} \alpha\left(c_{\ell+1}\right)
\end{aligned}
$$

where $T_{0}^{*}=T_{0}+\tau_{N_{1}}^{1}+1, T_{\ell+1}^{*}=T_{\ell+1}+n_{\ell}+\tau_{N_{2}}^{2}+1$ and $T_{0}, T_{\ell+1}>0$. In virtue of the lemma 5.4, we can take sufficiently large n_{1}^{\prime} so that any $c\left(\sigma_{1}\right)$-minimal curve $\gamma_{1}:\left[0, n_{1}\right] \rightarrow M$ with $n_{1} \geq n_{1}^{\prime}$ has a point $\gamma_{1}\left(n_{0}\right) \in B_{\delta^{*}}\left(z_{1}^{*}\right)$ with $n_{1}-n_{0} \geq \Delta n_{1}$. Similarly, we can take sufficiently large Δn_{ℓ}^{\prime} so that any $c\left(\sigma_{\ell}\right)$-minimal curve γ_{ℓ} : $\left[n_{\ell-1}, n_{\ell}^{\prime}\right] \rightarrow M$ with $n_{\ell}^{\prime}-n_{\ell-1} \geq \Delta n_{\ell}^{\prime}$ has a point $\gamma_{\ell}\left(n_{\ell}\right) \in B_{\delta^{*}}\left(z_{\ell+1}\right)$ with $n_{\ell}^{\prime}-n_{\ell-1}>$ $n_{\ell}-n_{\ell-1} \geq \Delta n_{\ell}$. We can also take suitable large $n_{i}(i=2,3, \cdots, \ell-1)$ so that $n_{i+1}-n_{i} \geq \Delta n_{i}$ for each $1 \leq i \leq \ell-1$. Under these conditions we take the minimum of $h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, Q, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)$ over \mathbb{B}

$$
h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)=\min _{Q \in \mathbb{B}} h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, Q, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right) .
$$

Let $\gamma(t)=\gamma\left(t, m, m^{\prime}, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)$ be the minimizer of $h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)$. Recall the support of Ψ_{i} is a small ball. For each cohomology class under our consideration here, the support of the minimal measure is on the cylinder, the hyperbolicity of the cylinder let us see that $\gamma(t)$ is outside of the support of $\nabla \Psi_{i}$ if both $t-n_{i}$ and $n_{i+1}-t$ are suitably large, in other words, for $t \in\left[\frac{1}{2}\left(n_{i+1}+n_{i}\right), \frac{1}{2}\left(n_{i+1}+n_{i}\right)+1\right], \gamma(t)$ falls into the area where $\left\langle\varrho_{i}(t) \nabla \Psi_{i}(q), d q\right\rangle$ is exact. Thus, $d \gamma$ solves the Euler-Lagrange equation of L for $t \in\left[n_{0}, n_{\ell}\right]$ if we repeat the argument for the function $\mathfrak{h}\left(Q, z_{1}, z_{\ell}, \vec{n}\right)$.

Next, by choosing sufficiently large value for $\breve{T}_{1 N_{1}}^{1}, \hat{T}_{1 N_{1}}^{1}, \breve{T}_{00}^{2}$ and \hat{T}_{00}^{2} we can assume $\breve{T}_{1 N_{1}}^{1} \geq n_{1}^{\prime}$ and $\breve{T}_{00}^{2} \geq n_{\ell-1}+\Delta n_{\ell}^{\prime}$. In this case, let us consider the minimum of $h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right)$ over $\Lambda^{1} \times \Lambda^{2} \times\left\{\breve{T}_{1 N_{1}}^{1} \leq n_{1} \leq \hat{T}_{1 N_{1}}^{1}\right\} \times\left\{\breve{T}_{00}^{2}+n_{\ell-1} \leq n_{\ell} \leq\right.$ $\left.\hat{T}_{00}^{2}+n_{\ell-1}\right\}$

$$
h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}\right)=\min _{\substack{\vec{\tau}^{1} \in \Lambda^{1}, \tilde{\tau}^{2} \in \Lambda^{2} \\ \breve{T}_{1 N_{1}}^{1} \leq n_{1} \leq \hat{T}_{1 N_{1}}^{1} \\ \breve{T}_{00}^{2}+n_{\ell-1} \leq n_{\ell} \leq \hat{T}_{00}^{2}+n_{\ell-1}}} h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}, \vec{\tau}^{1}, \vec{\tau}^{2}, \vec{n}\right) .
$$

Denote by $\vec{\tau}^{j *}, n_{1}^{*}$ and n_{ℓ}^{*} where the the minimum is reached. Let $\gamma(t)=\gamma\left(t, m, m^{\prime}\right.$, $\left.T_{0}, T_{\ell+1}\right)$ be the minimizer of $h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}\right)$. Let $\tau_{1 j}=\tau_{j}^{1}-\tau_{N_{1}}^{1}-1, \tau_{2 j}=\tau_{j}^{2}+$ $\tau_{N_{2}}^{2}+1+n_{\ell}$. From the proof of Theorem 5.1 we can see that (5.6ij), (5.7ij) and (5.8ij) hold for $\left(-\tau_{i j}\right)^{*} \gamma$ at $j=1,2,0 \leq i \leq N_{j}$ except for $(i, j)=(0,1),\left(N_{2}, 2\right)$.

As the third step we consider the limit infimum

$$
h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)=\liminf _{\substack{T_{0} \rightarrow \infty \\ T_{\ell+1} \rightarrow \infty}} h_{\tilde{L}}^{T_{0}, T_{\ell+1}}\left(m, m^{\prime}\right) .
$$

Let $T_{0}^{k}, T_{\ell+1}^{k}$ be the subsequence so that $T_{0}^{k} \rightarrow \infty, T_{\ell+1}^{k} \rightarrow \infty$ as $k \rightarrow \infty$,

$$
\left|h_{\tilde{L}}^{T_{0}^{k}, T_{\ell+1}^{k}}\left(m, m^{\prime}\right)-h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)\right| \leq \min \left\{\epsilon_{0}^{1 *}, \epsilon_{N_{2}}^{2 *}\right\}, \quad \forall k,
$$

and

$$
\lim _{k \rightarrow \infty} h_{\tilde{L}}^{T_{0}^{k}, T_{\ell+1}^{k}}\left(m, m^{\prime}\right)=h_{\tilde{L}}^{\infty}\left(m, m^{\prime}\right)
$$

and let $\gamma_{k}:\left[-T_{0}^{k *}, T_{\ell+1}^{k *}\right] \rightarrow M$ be the minimizer of $h_{\tilde{L}}^{T_{0}^{k}, T_{\ell+1}^{k}}\left(m, m^{\prime}\right)$, where $T_{0}^{k *}=$ $T_{0}^{k}+\tau_{N 1}^{1 *}+1, T_{\ell+1}^{k *}=T_{\ell+1}^{k}+n_{\ell}^{*}+\tau_{N_{2}}^{2 *}+1$. By the similar argument to prove Theorem 5.1 we can see (5.6 ij), (5.7 ij) and (5.8 ij) hold for $\left(-\tau_{i j}\right)^{*} \gamma_{k}$ at $(i, j)=(0,1),\left(N_{2}, 2\right)$ also. In this case, $d \gamma_{k}$ is a solution of the Euler-Lagrange equation induced by L. For each small $\delta, d \gamma_{k}$ connects $\tilde{\Gamma}_{0}+\delta$ with $\tilde{\Gamma}_{\ell+1}+\delta$ if k is sufficiently large. Let γ : $\mathbb{R} \rightarrow M$ be the accumulation point of $\left\{\gamma_{k}\right\}_{k \in \mathbb{Z}^{+}}$, then $\alpha(d \gamma)=\Gamma_{0}$ and $\omega(d \gamma)=\Gamma_{\ell+1}$ since $\tilde{\mathcal{A}}\left(c_{i}\right)=\Gamma_{i}$ for $i=0, \ell+1$.

The construction of diffusion orbits can be done in the same way when there are finitely many resonant gaps.

6, Generic property

The construction of diffusion orbits is under the hypotheses (H1), (H2) and (H3). The task here is to show these hypotheses are dense properties in C^{r}-topology for $r \geq 3$. Since we are interested in the diffusion from $\left\{p_{1}<A\right\}$ to $\left\{p_{1}>B\right\}$, a compact domain for $\{\|p\| \leq K\} \times \mathbb{T}^{2}$ satisfies such an requirement if $K>0$ is sufficiently large. The C^{r}-topology is endowed in the usual sense for functions $\{\|p\| \leq K\} \times \mathbb{T}^{2} \rightarrow \mathbb{R}$.

The hypothesis (H1) is made only for those co-homology classes $c=\left(c_{1}, b\left(c_{1}\right)\right)$, such that $\tilde{\mathcal{M}}_{0}(c)$ is contained in an invariant circle on the cylinder. Its Mañé set $\tilde{\mathcal{N}}(c)$ consists of the invariant circle and its minimal homoclinic orbits, i.e., $\left\{B_{c}^{*}=0\right\}$. Let us look at this issue from the Hamiltonian dynamics point of view.

Since the system is positive definite in p, it has a generating function $G\left(q, q^{\prime}\right)$

$$
\begin{equation*}
G\left(q, q^{\prime}\right)=\inf _{\substack{\gamma \in C^{1}([0,1], \bar{M}) \\ \gamma(0)=q, \gamma(1)=q^{\prime}}} \int_{0}^{1} L(\gamma(s), \dot{\gamma}(s), s) d s \tag{6.1}
\end{equation*}
$$

where $\left(q, q^{\prime}\right)$ is in the covering space $\bar{M}=\mathbb{R}^{2} \times \mathbb{R}^{2}$. Clearly, $G\left(q+2 m \pi, q^{\prime}+2 m \pi\right)=$ $G\left(q, q^{\prime}\right)$ for all $m \in \mathbb{Z}^{2}$. The map $\Phi_{H}:(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ is given by

$$
\begin{equation*}
p^{\prime}=\partial_{q^{\prime}} G\left(q, q^{\prime}\right), \quad p=-\partial_{q} G\left(q, q^{\prime}\right) \tag{6.2}
\end{equation*}
$$

Let π_{1} be the standard projection from \mathbb{R}^{2} to \mathbb{T}^{2}, let $c \in \mathbb{R}^{2}$ and

$$
G_{c}\left(q, q^{\prime}\right)=G\left(q, q^{\prime}\right)-\left\langle c, q^{\prime}-q\right\rangle
$$

then

$$
\begin{equation*}
h_{c}\left(x, x^{\prime}\right)=\min _{\substack{\pi_{1}(q)=x \\ \pi_{1}\left(q^{\prime}\right)=x^{\prime}}} G_{c}\left(q, q^{\prime}\right)-\alpha(c) . \quad(\text { see }(2.6)) \tag{6.3}
\end{equation*}
$$

As the system is nearly integrable, the matrix $\partial_{q^{\prime} q}^{2} G$ is non-degenerate everywhere. Thus we can solve the second equation in (6.2) and obtain somehow more explicit form of the map (6.2)

$$
\begin{equation*}
p^{\prime}=\frac{\partial G}{\partial q^{\prime}}\left(q, q^{\prime}(p, q)\right), \quad q^{\prime}=q^{\prime}(p, q) \tag{6.4}
\end{equation*}
$$

Let us consider a small perturbation $G\left(q, q^{\prime}\right)+\kappa\left(q-q^{\prime}\right) G_{1}\left(q^{\prime}\right)$ of the generating function in which $0 \leq \kappa\left(q-q^{\prime}\right) \leq 1, \kappa\left(q-q^{\prime}\right)=1$ if $\left|q-q^{\prime}\right| \leq K$ and $\kappa\left(q-q^{\prime}\right)=0$ if $\left|q-q^{\prime}\right| \geq K+1$. We choose sufficiently large K so that $\{\|p\| \leq \max (|A|,|B|)+1\}$ is contained in the set where $\left|q-q^{\prime}\right| \leq K$. In this set the map will have the form

$$
\begin{equation*}
p^{\prime}=\frac{\partial G}{\partial q^{\prime}}\left(q, q^{\prime}(p, q)\right)+\frac{\partial G_{1}}{\partial q^{\prime}}\left(q^{\prime}(p, q)\right), \quad q^{\prime}=q^{\prime}(p, q) . \tag{6.5}
\end{equation*}
$$

Note that both stable and unstable manifolds of Γ keep horizontal over the strip $U=\left\{a \leq q_{2} \leq 2 \pi-a\right\}$, restricting Φ to W^{s} and to W^{u} where they keep horizontal, and projecting it to the underline manifold M along the fibers we obtain two maps f^{s} and f^{u} on M such that $\pi \circ \Phi=f^{s, u} \circ \pi$. We choose $G_{1} \in C^{r}$ satisfying its support $\operatorname{supp}\left(G_{1}\right)=\mathcal{B}_{b}\left(q^{*}\right) \bmod 2 \pi m \subset U \bmod 2 \pi m$ where $m \in \mathbb{Z}^{2}$. We see that $\left(f^{u}\right)^{-1}\left(\mathcal{B}_{b}\left(q^{*}\right)\right) \cap \mathcal{B}_{b}\left(q^{*}\right)=\varnothing$ and $f^{s}\left(\mathcal{B}_{b}\left(q^{*}\right)\right) \cap \mathcal{B}_{b}\left(q^{*}\right)=\varnothing$ if $b>0$ is chosen suitably small. Let us consider the problem in the covering space $\mathbb{T} \times \mathbb{R}$ and assume one lift of the unstable manifold starting from $q_{2}=0$ to the right, one lift of the stable manifold starting from $q_{2}=2 \pi$ to the left. From (6.5) we can see that the local stable manifold is not deformed $W^{s} \mid\left[q_{2}^{*}-b \leq q_{2} \leq 2 \pi+q_{2 \Gamma}\left(q_{1}\right)\right]=\left\{q, d S^{s}+c(\sigma)\right.$: $\left.q_{2}^{*}-b \leq q_{2} \leq 2 \pi+q_{2 \Gamma}\left(q_{1}\right)\right\}$, but the unstable manifold undergoes slight deformation, $W^{u} \mid\left[q_{2 \Gamma}\left(q_{1}\right) \leq q_{2} \leq q_{2}^{*}+b\right]=\left\{q, d S^{u}+d G_{1}+c(\sigma): q_{2 \Gamma}\left(q_{1}\right) \leq q_{2} \leq q_{2}^{*}+b\right\}$. It is easy to see that the barrier function has the form:

$$
\begin{equation*}
B_{c(\sigma)}^{*}(q)=S_{c(\sigma)}^{u}(q)-S_{c(\sigma)}^{s}(q)-G_{1}(q)+2 \pi b\left(c_{1}(\sigma)\right), \quad \text { if } q \in \mathcal{B}_{b}\left(q^{*}\right) \tag{6.6}
\end{equation*}
$$

We should note the total action of the minimal orbit may be changed because of the perturbation, in other words, the associated cohomology class may be subjected to a small perturbation $\left(c_{1}, b\left(c_{1}\right)\right) \rightarrow\left(c_{1}, b\left(c_{1}\right) \pm \varepsilon\right)$.

Let $R_{d}=\left\{q \in M:\left|q_{1}-q_{1}^{*}\right| \leq d,\left|q_{2}-q_{2}^{*}\right| \leq d\right\} \subset \mathcal{B}_{b}\left(q^{*}\right)$, let $S_{\sigma}=S_{c(\sigma)}^{u}-S_{c(\sigma)}^{s}-G_{1}$ we define

$$
Z(\sigma)=\left\{q \in R_{d}: S_{\sigma}(q)=\min _{q \in R_{d}} S_{\sigma}\right\}
$$

We say a connected set V is non-trivial for R_{d} if either $\Pi_{1}\left(V \cap R_{d}\right)=\left\{q_{1}^{*}-d \leq q_{1} \leq\right.$ $\left.q_{1}^{*}+d\right\}$ or $\Pi_{2}\left(V \cap R_{d}\right)=\left\{q_{2}^{*}-d \leq q_{2} \leq q_{2}^{*}+d\right\}$, where Π_{i} is the standard projection from \mathbb{T}^{2} to its i-th component $(\mathrm{i}=1,2)$. Let $M_{d, q^{*}}(S)=\left\{q: S(q)=\min _{q \in R_{d}\left(q^{*}\right)} S\right\}$, we define a set in the function space $\mathfrak{F}\left(d, q^{*}\right)=C^{0}\left(R_{d}\left(q^{*}\right), \mathbb{R}\right)$,

$$
\boldsymbol{Z}\left(d, q^{*}\right)=\left\{S \in \mathfrak{F}\left(d, q^{*}\right): M_{d, q^{*}}(S) \text { contains a set non-trivial for } R_{d}\left(q^{*}\right)\right\} .
$$

Let

$$
\begin{aligned}
& \mathbf{z}_{1}=\left\{S \in \boldsymbol{\mathcal { Z }}\left(d, q^{*}\right): \Pi_{1}\left(M_{d, q^{*}}(S)\right)=\left\{q_{1}^{*}-d \leq q_{1} \leq q_{1}^{*}+d\right\}\right\}, \\
& \mathbf{z}_{2}=\left\{S \in \boldsymbol{\mathcal { J }}\left(d, q^{*}\right): \Pi_{2}\left(M_{d, q^{*}}(S)\right)=\left\{q_{2}^{*}-d \leq q_{2} \leq q_{2}^{*}+d\right\}\right\},
\end{aligned}
$$

then

$$
\boldsymbol{\mathcal { Z }}\left(d, q^{*}\right)=\mathbf{Z}_{1} \cup \mathbf{Z}_{2} .
$$

Our first task is to show for each generating function $G \in C^{r}(M \times M, \mathbb{R})$ and each $\epsilon>0$, there is an open and dense set $\mathfrak{H}\left(d, q^{*}\right)$ of $\mathcal{B}_{\epsilon}(0) \subset C^{r}\left(R_{d}\left(q^{*}\right), \mathbb{R}\right)$, for each $G_{1} \in \mathfrak{H}\left(d, q^{*}\right)$, the image of S_{σ} from $\left[A^{\prime}, B^{\prime}\right]$ to \mathfrak{F} has no intersection with the set $\boldsymbol{\mathcal { Z }}_{i}$.

Obviously, the set \boldsymbol{Z}_{1} is a closed set and has infinite co-dimensions in the following sense, there exists \mathfrak{N}, an infinite dimension subspace of \mathfrak{F}, such that $(S+F) \notin \mathcal{Z}$ for all $S \in \boldsymbol{\mathcal { Z }}_{1}$ and $F \in \mathfrak{N} \backslash\{0\}$. In fact, for each non constant function $F\left(q_{1}\right) \in$ $C^{0}\left(\left[q_{1}^{*}-d, q_{1}^{*}+d\right], \mathbb{R}\right)$ with $F\left(q_{1}^{*}\right)=0$ and each $S \in \mathbf{Z}_{1}$, we have $S+F \notin \mathbf{Z}_{1}$. Thus, we can choose $\mathfrak{N}=C^{0}\left(\left[q_{1}^{*}-d, q_{1}^{*}+d\right], \mathbb{R}\right) / \mathbb{R}$, which we think as the subspace of $C^{0}\left(R_{d}\left(q^{*}\right), \mathbb{R}\right)$ consisting of those continuous functions independent of q_{2}.

On the other hand, as $S_{\sigma}:\left[A^{\prime}, B^{\prime}\right] \rightarrow \mathfrak{F}$ has $\frac{1}{2}$-Hölder continuity, the image is compact and its box dimension is not bigger than 2

$$
\begin{equation*}
D_{B}\left(\mathfrak{F}_{\sigma}\right) \leq 2 . \tag{6.7}
\end{equation*}
$$

where $\mathfrak{F}_{\sigma}=\left\{S_{\sigma}: \sigma \in\left[A^{\prime}, B^{\prime}\right]\right\}$. Clearly, this set is determined by the generating function G.

Lemma 6.1. There is an open and dense set $\mathfrak{N}^{*} \subset \mathfrak{N}$ such that for all $F \in \mathfrak{N}^{*}$

$$
\begin{equation*}
\left(\mathfrak{F}_{\sigma}+F\right) \cap \boldsymbol{Z}=\varnothing . \tag{6.8}
\end{equation*}
$$

Proof: The open property is obvious. If there were no density property, there would be n-dimensional ε-ball $\mathcal{B}_{\varepsilon} \subset \mathfrak{N}$ for some $\varepsilon>0$, such that for each $F \in \mathcal{B}_{\varepsilon}$, there exists $S \in \mathfrak{F}_{\sigma}$ such that $F+S \in \boldsymbol{\mathcal { Z }}_{1}$ or $F+S \in \boldsymbol{\mathcal { Z }}_{2}$. For each $S \in \mathfrak{F}_{\sigma}$ there is at most one $F \in \mathcal{B}_{\varepsilon}$ so that $S+F \in \mathcal{Z}_{1}$, for, otherwise, there would be $F^{\prime} \neq F$ such that $F^{\prime}+S \in \mathfrak{Z}_{1}$, but we can write $F^{\prime}+S=F^{\prime}-F+F+S$ where $F+S \in \mathbf{Z}_{1}$ and $F^{\prime}-F \in \mathfrak{N} \backslash\{0\}$, it contradicts to the definition of \mathfrak{N}. Given $F \in \mathcal{B}_{\varepsilon}$, there might
be more than one element in $\mathfrak{S}_{F}=\mathfrak{S}_{F}=\left\{S \in \mathfrak{F}_{\sigma}: S+F \in \mathbf{3}_{1}\right\}$. Given any two $F_{1}, F_{2} \in \mathcal{B}_{\varepsilon}$, for any $S_{1} \in \mathfrak{S}_{F_{1}}$ and any $S_{2} \in \mathfrak{S}_{F_{2}}$, we have

$$
\begin{align*}
d\left(S_{1}, S_{2}\right) & =\max _{q \in R_{d}\left(q^{*}\right)}\left|S_{1}(q)-S_{2}(q)\right| \\
& \geq \max _{\left|q_{1}-q_{1}^{*}\right| \leq d}\left|\min _{\left|q_{2}-q_{2}^{*}\right| \leq d} S_{1}\left(q_{1}, q_{2}\right)-\min _{\left|q_{2}-q_{2}^{*}\right| \leq d} S_{2}\left(q_{1}, q_{2}\right)\right| \\
& \geq \frac{1}{2} \operatorname{var}_{\left|q_{1}-q_{1}^{*}\right| \leq d}\left|F_{1}\left(q_{1}\right)-F_{2}\left(q_{1}\right)\right| \\
& \geq \frac{1}{2} d\left(F_{1}, F_{2}\right) \tag{6.9}
\end{align*}
$$

where $d(\cdot, \cdot)$ is the C^{0}-metric. It follows from (6.9) and the definition of box dimension that

$$
D_{B}\left(\mathfrak{F}_{\sigma}\right) \geq D_{B}\left(\mathcal{B}_{\varepsilon}\right)=n,
$$

but this is absurd if we choose $n>2$. The same argument can be applied to the set $\boldsymbol{3}_{2}$.

As C^{r} is dense in C^{0}, an open and dense set $\mathfrak{H}\left(d, q^{*}\right)$ of $\mathcal{B}_{\epsilon} \subset C^{r}\left(R_{d}\left(q^{*}\right), \mathbb{R}\right)$ clearly exists such that for each perturbation of generating function $G_{1} \in \mathfrak{H}\left(d, q^{*}\right)$, we have

$$
\mathfrak{F}_{\sigma} \cap \boldsymbol{Z}\left(d, q^{*}\right)=\varnothing, \quad \forall \sigma \in \mathbb{S}
$$

where by abuse of terminology we continue to denote S_{σ} and its restriction $R_{d}\left(q^{*}\right)$ by the same symbol.

Recall we have defined the set $U=\mathbb{T} \times[a, 2 \pi-a]$ before. Let $M_{U}(S)=\{q$: $\left.S(q)=\min _{q \in U} S\right\}$ and

$$
\mathfrak{Z}=\left\{S \in C^{0}(U, \mathbb{R}): M_{U}(S) \text { is totally disconnected }\right\}
$$

Given $d_{i}>0$, there are finite $q_{i j}$ such that $\cup_{j} R_{d_{i}}\left(q_{i j}\right) \supset U$. Thus, there exists a sequence $d_{i} \rightarrow 0$ and a countable set $\left\{q_{i j}\right\}$ such that

$$
\left(\bigcap_{i=1, j=1}^{\infty} \mathfrak{H}\left(d_{i}, q_{i j}\right)\right) \bigcap \mathfrak{z}=\varnothing .
$$

Therefore there is generic set in $\mathcal{B}_{\epsilon} \subset C^{r}(U, \mathbb{R})$, the hypothesis (H1) holds for each G_{1} in this generic set. Note U is an annulus, we can write $G_{1}=G_{1}^{\prime}+G_{1}^{*}$ so that both G_{1}^{\prime} and G_{1}^{*} have simply connected support.

The perturbation to the generating function G can be achieved by perturbing the Hamiltonian function $H \rightarrow H^{\prime}=H+\delta H$. Let Φ^{\prime} be the map determined by the generating function $G+\kappa G_{1}^{\prime}$, the symplectic diffeomorphism $\Psi=\Phi^{\prime} \circ \Phi^{-1}$ is close to identity. We choose a smooth function $\rho(s)$ with $\rho(0)=0$ and $\rho(1)=1$, let Φ_{s}^{\prime}
be the symplectic map determined by $G+\rho(s) \kappa G_{1}^{\prime}$ and let $\Psi_{s}=\Phi_{s}^{\prime} \circ \Phi^{-1}$. Clearly, Ψ_{s} defines a symplectic isotopy between identity map and Ψ. Thus there is a unique family of symplectic vector field $X_{s}: T^{*} M \rightarrow T T^{*} M$ such that

$$
\frac{d}{d s} \Psi_{s}=X_{s} \circ \Psi_{s}
$$

By the choice of perturbation, there is a simply connected and compact domain D_{K} such that $\left.\Psi_{s}\right|_{T^{*} M \backslash D_{K}}=i d$. It follows that there is a Hamiltonian $H_{1}(p, q, s)$ such that $d H_{1}(Y)=d p \wedge d q\left(X_{s}, Y\right)$ holds for any vector field Y. Re-parametrizing s by t we can make H_{1} smoothly and periodically depend on t. To see that $d H_{1}$ is also small, let us make use of a theorem of Weistain [W]. A neighborhood of the identity in the symplectic diffeomorphism group of a compact symplectic manifold \mathbf{M} can be identified with a neighborhood of the zero in the vector space of closed 1-forms on M. Since Hamiltomorphism is a subgroup of symplectic diffeomorphism, there is a function H^{\prime}, sufficiently close to H, such that $\Phi_{H_{1}} \circ \Phi_{H}=\left.\Phi_{H^{\prime}}^{t}\right|_{t=1}$.

Thus the density of (H1) is proved.
For the hypothesis (H2) let us consider the twist map on the cylinder. In this case, each co-homology class corresponds to a unique rotation number. Given any rational number $p / q \in \mathbb{Q}$, it is obvious that there is a open dense set in the space of area-preserving twist map such that there is only one minimal (p, q)-periodic orbit without homoclinic loop. Take the intersection of countably open dense set we obtain that (H2) is a generic property.

To verify the (H3), let us consider an invariant circle Γ_{σ} on Σ. There is an interval $I\left(c_{1}\right)=\left\{c=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}: a\left(c_{1}\right) \leq c_{2} \leq b\left(c_{1}\right)\right\}$ such that $\operatorname{supp}\left(\mathcal{M}_{0}(c)\right) \subseteq \Gamma_{\sigma}$ iff $c \in I\left(c_{1}\right)$. Let U be a small neighborhood of $\pi\left(\Gamma_{\sigma}\right)$. Under the hypothesis (H1), the set $\left\{B_{c}^{*}=0\right\} \backslash U$ is homotopically trivial for $c=\left(c_{1}, a_{1}\left(c_{1}\right)\right)$ and for $c=\left(c_{1}, b_{1}\left(c_{1}\right)\right)$. By the upper semi-continuity of Mañé sets $c \rightarrow \tilde{\mathcal{N}}(c)$, the set $\mathcal{N}_{0}\left(c^{\prime}\right)$ is in a small neighborhood of $\left\{B_{c}^{*}=0\right\}$ if $c^{\prime}=\left(c_{1}, b\left(c_{1}\right)+\delta\right)$ with $\delta>0$ sufficiently small. Let us consider such a minimal measure $\tilde{\mathcal{M}}\left(c^{\prime}\right)$. Let μ be an ergodic component of $\tilde{\mathcal{M}}\left(c^{\prime}\right)$, there exists $\epsilon^{*}>0$ such that $\operatorname{dist}\left(\operatorname{supp} \mu, \tilde{\Gamma}_{\sigma}\right) \geq 3 \epsilon^{*}$ for all $\sigma \in \mathbb{S}$. For any $\epsilon>0$ with $\epsilon \leq \epsilon^{*}$ we can define a C^{r}-smooth function $L_{k, \epsilon}^{\sigma}: T M \times \mathbb{T} \rightarrow \mathbb{R}$ so that $L_{k, \epsilon}^{\sigma}(z, t)=0$ if $(z, t) \in \operatorname{supp} \mu+2^{-k-1} \epsilon, L_{k, \epsilon}^{\sigma}=2^{-k} \epsilon^{r+1}$ if $(z, t) \notin \operatorname{supp} \mu+2^{-k} \epsilon$ and $L_{k, \epsilon}^{\sigma}$ takes the value between $2^{-k} \epsilon^{r+1}$ and 0 elsewhere. Obviously, μ is the unique ergodic component of c^{\prime}-minimal measure of the Lagrangian

$$
L_{\epsilon}^{\sigma}=L+\frac{1}{r!} \sum_{k=1}^{\infty} L_{k, \epsilon}^{\sigma}
$$

and $\left\|L_{\epsilon}^{\sigma}-L\right\|_{C^{r}} \leq \epsilon$. Since (H3) is required only for countable $\sigma \in \mathbb{S}$, we can choose even smaller ϵ_{σ} so that the supports of these $L_{\epsilon_{\sigma}}^{\sigma}-L$ have no intersection.

Note the perturbation we introduced for (H1) has compact support which has no intersection with the cylinder, the perturbation we introduced for (H3) does not touch the set $\left\{B_{c(\sigma)}^{*}=0\right\}$ for all $\sigma \in \mathbb{S}$, there is a dense set for P such that (H1), (H2) and (H3) hold. Thus we obtain the density of the perturbation. Since the time for each orbit drifts from $p_{1}<A$ to $p_{1}>B$ is finite, the smooth dependence of solutions of ODE's on parameter guarantees the openness.

Therefore, the proof of the theorem 1.1 is completed.

Appendix

In this appendix we present the proof of the lemma 2.6, given by Bernard in $[\mathrm{Be}]$, for the completeness sake.

Lemma 2.6. If $\tilde{\mathcal{M}}(c)$ is minimal in the sense of topological dynamics and if there exists a sequence γ_{n} of n-periodic curves such $A_{c}\left(\gamma_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then L_{c} is regular, hence $\tilde{\mathcal{A}}(c)=\tilde{\mathcal{N}}(c)=\tilde{\mathcal{G}}(c)$.

Proof: As the first step we show that the following limit exists for all $(x, t) \in \mathcal{M} \times \mathbb{T}$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{c}(x, x, t, t+n)=0 \tag{A.1}
\end{equation*}
$$

By the condition, we can suppose these n-periodic curves γ_{n} are minimizers, their n periodic orbits $X_{n}(t)=\left(d \gamma_{n}(t), t\right)$ is a compact subset of $T M \times \mathbb{T}$. Each subsequence of X_{n} has a convergent subsequence in the sense of Hausdorff topology. The limit set of such a sequence is obviously an invariant subset of $\tilde{\mathcal{M}}(c)$. Since $\tilde{\mathcal{M}}(c)$ is minimal, this limit set has to be $\tilde{\mathcal{M}}(c)$ itself. Therefore, the sequence of subsets X_{n} converges to $\tilde{\mathcal{M}}(c)$ in the Hausdorff topology. It follows that each point $(x, s) \in \tilde{\mathcal{M}}(c)$ is the limit of a sequence $\left(\gamma\left(t_{n}\right), s\right)$ with $t_{n}=s \bmod 1$ for each n. As F_{c} is of Lipschitz we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} F_{c}(x, x, t, t+n) & =\limsup _{n \rightarrow \infty} F_{c}\left(\gamma_{n}\left(t_{n}\right), \gamma_{n}\left(t_{n}\right), t, t+n\right) \\
& =\limsup _{n \rightarrow \infty} A_{c}\left(\gamma_{n}\right) \\
& =0,
\end{aligned}
$$

which implies (A.1).
Next, we claim that (A.1) implies that $L-\eta_{c}$ is regular, i.e. for any $(x, s),\left(x^{\prime}, s^{\prime}\right) \in$ $M \times \mathbb{T}, \epsilon>0$, there exists T such that

$$
F_{c}\left(x, x^{\prime}, t, t^{\prime}\right) \leq h_{c}\left(x, x^{\prime}, t, t^{\prime}\right)+\epsilon
$$

if t and t^{\prime} satisfy $t=s \bmod 1, t^{\prime}=s^{\prime} \bmod 1$ and $t^{\prime} \geq t+T$. Indeed, let K be the common Lipschitz constant of all functions $F_{c}\left(\cdot, \cdot, t, t^{\prime}\right)$ with $t^{\prime} \geq t+1$, let $t_{0}=s \bmod$ $1, t_{0}^{\prime}=s^{\prime} \bmod 1$, let $\gamma:\left[t_{0}, t_{0}^{\prime}\right] \rightarrow M$ be a minimizer with $\gamma\left(t_{0}\right)=x$ and $\gamma\left(t_{0}^{\prime}\right)=x^{\prime}$, i.e. $A_{c}(\gamma)=F_{c}\left(x, x^{\prime}, t_{0}, t_{0}^{\prime}\right)$. We can make $t_{0}^{\prime}-t_{0}$ is sufficiently large so that $\exists t_{1} \in$
$\left[t_{0}, t_{0}^{\prime}\right]$ such that $\operatorname{dist}\left(\gamma\left(t_{1}\right), y\right) \leq \epsilon / 4 K$ for some $\left.y \in \mathcal{M}(c)\right|_{t=t_{1}}$, in virtue of standard argument of topological dynamics. Since $h_{c}\left(x, x^{\prime}, s, s^{\prime}\right)=\liminf F_{c}\left(x, x^{\prime}, t, t^{\prime}\right)$, we can suppose in addition that

$$
F_{c}\left(x, x^{\prime}, t_{0}, t_{0}^{\prime}\right) \leq h_{c}\left(x, x^{\prime}, s, s^{\prime}\right)+\frac{\epsilon}{2}
$$

Let $x_{1}=\gamma\left(t_{1}\right)$ we have

$$
F_{c}\left(x, x^{\prime}, t_{0}, t_{0}^{\prime}\right)=F_{c}\left(x, x_{1}, t_{0}, t_{1}\right)+F_{c}\left(x_{1}, x^{\prime}, t_{1}, t_{0}^{\prime}\right),
$$

It follows that

$$
\left|F_{c}\left(x, x^{\prime}, t_{0}, t_{0}^{\prime}\right)-F_{c}\left(x, y, t_{0}, t_{1}\right)-F_{c}\left(y, x^{\prime}, t_{1}, t_{0}^{\prime}\right)\right| \leq \frac{\epsilon}{2}
$$

thus

$$
F_{c}\left(x, y, t_{0}, t_{1}\right)+F_{c}\left(y, x^{\prime}, t_{1}, t_{0}^{\prime}\right) \leq h_{c}\left(x, x^{\prime}, s, s^{\prime}\right)+\epsilon .
$$

By the choice of t and t^{\prime} we know that $\exists n \in \mathbb{N}$ such that $t^{\prime}-t=t_{0}^{\prime}-t_{0}+n$, so we have

$$
\begin{aligned}
F_{c}\left(x, x^{\prime}, t, t^{\prime}\right)= & F_{c}\left(x, x^{\prime}, t_{0}, t_{0}+n\right) \\
\leq & F_{c}\left(x, y, t_{0}, t_{1}\right)+F_{c}\left(y, y, t_{1}, t_{1}+n\right) \\
& +F_{c}\left(y, x^{\prime}, t_{1}+n, t_{0}^{\prime}+n\right) .
\end{aligned}
$$

Let $n \rightarrow \infty$, thanks to (A.1), we obtain

$$
\lim \sup F_{c}\left(x, x^{\prime}, t, t^{\prime}\right) \leq h_{c}\left(x, x^{\prime}, s, s^{\prime}\right)+\epsilon
$$

As this holds for arbitrary $\epsilon>0$, we see that L is regular.
As the third step, we claim that L is regular implies that $\tilde{\mathcal{G}}=\tilde{\mathcal{N}}$. Let $\gamma \in C^{1}(\mathbb{R}, M)$ be a minimizing curve, let $t_{k} \rightarrow-\infty$ be a sequence such that $s=t_{k} \bmod 1$ for all $k \in \mathbb{Z}$ and such that $\alpha=\lim \gamma\left(t_{k}\right)$, let $t_{k}^{\prime} \rightarrow \infty$ be a sequence such that $s^{\prime}=t_{k}^{\prime} \bmod$ 1 and such that $\omega=\lim \gamma\left(t_{k}^{\prime}\right)$. In this case

$$
A\left(\left.\gamma\right|_{\left[t_{k}, t_{k}^{\prime}\right]}\right)=F\left(\gamma\left(t_{k}\right), \gamma\left(t_{k}^{\prime}\right), t_{k}, t_{k}^{\prime}\right) \rightarrow h\left(\alpha, \omega, s, s^{\prime}\right) .
$$

Let us consider a compact interval of times $[a, b]$, where $s^{\prime}=a \bmod 1$ and $s=b \bmod$ 1. For k sufficiently large we have

$$
A_{c}\left(\left.\gamma\right|_{[a, b]}\right)=A_{c}\left(\left.\gamma\right|_{\left[t_{k}, t_{k}^{\prime}\right]}\right)-A_{c}\left(\left.\gamma\right|_{\left[t_{k}, a\right]}\right)-A_{c}\left(\left.\gamma\right|_{\left[b, t_{k}^{\prime}\right]}\right),
$$

taking the limit we obtain

$$
A_{c}\left(\left.\gamma\right|_{[a, b]}\right)=h_{c}\left(\alpha, \omega, s, s^{\prime}\right)-h_{c}(\alpha, \gamma(a), s, s)-h_{c}\left(\gamma(b), \omega, s^{\prime}, s^{\prime}\right)
$$

On the other hand, we observe that if L is regular then

$$
h_{c}\left(\alpha, \omega, s, s^{\prime}\right) \leq h_{c}(\alpha, \gamma(a), s, s)+\Phi_{c}\left(\gamma(a), \gamma(b), s, s^{\prime}\right)+h_{c}\left(\gamma(b), \omega, s^{\prime}, s^{\prime}\right)
$$

it follows that

$$
A\left(\left.\gamma\right|_{[a, b]}\right) \leq \Phi_{c}\left(\gamma(a), \gamma(b), s, s^{\prime}\right)
$$

hence γ is semi-static. It has been shown in [Ma4] that $\tilde{\mathcal{N}}(c)=\tilde{\mathcal{A}}(c)$.

References

[Ar]. Arnold V.I., Instabilityof dynamical systems with several degrees of freedom, Soviet Math. Dokl. 5 (1964), 581-585.
[BM]. Ball J. and Mizel V., One dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal. 90 (1985), 325-388.
[Ba]. Bangert V., Geodesic rays, Busemann functions and monotone twist maps, Calc. Var. 2 (1994), 49-63.
[Be]. Bernard P., Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier 52 (2002), 1533-1568.
[Bs]. Bessi U., An approach to Arnold diffusion through calculus of variations, Nonlinear Analysis . 26 (1996), 1115-1135.
[BCV]. Bessi U., Chierchia L. and Valdinoci E., Upper bounds on Arnold diffusion time via Mather theory, J. Math. Pure. Appl. 80 (2001), 105-129.
[Bo]. Bolotin S., Homoclonic orbits to invariant tori for Hamiltonian systems, Amer. Math. Soc. Transl.(2) 168 (1995), 21-90.
[DLS1]. Delshama A., de la Llave R. and Seara T.M., Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results, Elec. Res. Announcement AMS 9 (2003), 125-134.
[DLS2]. Delshama A., de la Llave R. and Seara T.M., Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification of a model, preprint (2003).
[FM]. Fathi A. \& Mather J., Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case, Bull. Soc. Math. France 128 (2000), 473-483.
[HPS]. Hirsch M.W., Pugh C.C. \& Shub M., Invariant Manifolds, Lect. Notes Math. 583 (1977).
[Ma1]. Mather J., Existence of quasiperiodic orbits for twist homeomorphisms of annulus, Topology 21 (1982), 457-467.
[Ma2]. Mather J., Differentiablity of the minimal average action as a function of the rotation number, Bol. Soc. Bras. Mat. 21 (1990), 59-70.
[Ma3]. Mather J., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), 169-207.
[Ma4]. Mather J., Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386.
[Ma5]. Mather J., Arnold diffusion, I: Announcement of results, preprint (2002).
[Mo]. Moser J.K., On the volume elements on manifold, Trans. AMS 120 (1966), 280-296.
[R]. Rademacher H., Über partielle und totale Differentierbarkeit I., Math. Ann. 79 (1919), 340-359.
[W]. Weistein A., Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329-346.
[X1]. Xia Z., Arnold diffusion: a variational construction., Doc Math. J. DMV Extra Volume ICM II (1998), 867-877.
[X2]. Xia Z., Arnold diffusion and instabilities in Hamiltonian dynamics, preprint (2002).

[^0]: ${ }^{1}$ Department of Mathematics, Nanjing University, Nanjing 210093, China
 ${ }^{2}$ Institute of Mathematics, Fudan University, Shanghai 200433, China

