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Abstract. By using variational method and under generic conditions we show that

Arnold diffusion exists in a priori unstable and time-periodic Hamiltonian systems with

multiple degrees of freedom.

1, Introduction

In this paper we consider a priori unstable and time-periodic Hamiltonian systems
with arbitrary n + 1 degrees of freedom. The Hamiltonian has the form

H(u, v, t) = h1(p) + h2(x, y) + P (u, v, t) (1.1)

where u = (q, x), v = (p, y), (p, q) ∈ R× T, (x, y) ∈ Tn × Rn, P is a time-1-periodic
small perturbation. H ∈ Cr (r ≥ 3) is assumed to satisfy the following hypothesis:

H1, h1 + h2 is a convex function in v, i.e., Hessian matrix ∂2
vv(h1 + h2) is positive

definite. It is finite everywhere and has superlinear growth in v, i.e., (h1 +h2)/‖v‖ →
∞ as ‖v‖ → ∞.

H2, it is a priori unstable in the sense that the Hamiltonian flow Φt
h2

deter-
mined by h2 has a non-degenerate hyperbolic fixed point (x, y) = (0, 0), the function
h2(x, 0) : Tn → R attains its strict maximum at x = 0 mod 2π. We set h2(0, 0) = 0.

Here, we do not assume the condition that the hyperbolic fixed point (x, y) = (0, 0)
is connected to itself by its stable manifold and unstable manifold, i.e., W s(0, 0) ≡
Wu(0, 0). Such condition appears not natural when n > 1.

Let Bε,K denote a ball in the function space Cr({(u, v, t) ∈ Tn+1 × Rn+1 × T :
‖v‖ ≤ K} → R), centered at the origin with radius of ε. Now we can state the
our main result of this paper, which is a higher dimensional version of the theorem
formulated by Arnold in [Ar1] where it was assumed that n = 1.

Theorem 1.1. Let A < B be two arbitrarily given numbers and assume H satisfies
the above two conditions. There exist a small number ε > 0, a large number K > 0
and a residual set in Sε,K ⊂ Bε,K such that for each P ∈ Sε,K there exists an orbit of
the Hamiltonian flow which connects the region with p < A to the region with p > B.
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In his celebrated paper [Ar1], Arnold constructed an example of nearly integrable
Hamiltonian system with two and half degrees of freedom, in which there are some
unstable orbits in the sense that the action along these orbits undergoes substantial
variation. Such orbits are usually called diffusion orbits. Although this example does
not have generic property, Arnold still asked whether there is such a phenomenon for
a “typical” small perturbation (cf. [Ar2,Ar3]).

Variational method has its advantage in the study of Arnold diffusion problem,
it needs less geometrical structure information of the system. The pioneer work of
Mather in [Ma3,Ma4] provides a variational principle for time-periodically depen-
dent positive definite Lagrangian systems. In our previous paper [CY], by using the
variational method, we have shown that the diffusion orbits exist in generic a priori
unstable Hamiltonian systems with two and half degrees of freedom. Mather has
announced ([Ma5]) that, under so-called cusp residual condition, Arnold diffusion
exists in a priori stable systems with two degrees of freedom in time-periodic case,
or with three degrees of freedom in autonomous case. Some announcement was also
made in [Xi] earlier. Using geometrical method, some demonstration was provided
in [DLS] as well as in [Tr] to show that diffusion orbits exist in some types of a priori
unstable and time-periodic Hamiltonian systems with two degrees of freedom.

In this paper we still use variational arguments to construct diffusion orbits. In
order to use variational method, we put the problem of consideration into Lagrangian
formalism. Using Legendre transformation L∗ : H → L we obtain the Lagrangian

L(u, u̇, t) = max
v
{〈v, u̇〉 −H(u, v, t)}. (1.2)

Here u̇ = u̇(u, v, t) is implicitly determined by u̇ = ∂H
∂v . We denote by L : (u, v, t) →

(u, u̇, t) the coordinate transformation determined by the Hamiltonian H.

Roughly speaking, we construct diffusion orbits by connecting different Mañé sets,
along which the Lagrange action attains its local minimum. To construct local con-
necting orbits between different Mañé sets, we introduce so-called pseudo connecting
orbit sets. These sets contain the minimal configurations of some modified Lagrangian
which do not necessarily generate orbits determined by the Lagrangian L. Based on
the upper semi-continuity of the set functions, from Lagrangian to Mañé set and to
pseudo connecting orbit set, and on the understanding of these sets with respect to
the configuration manifold and its finite covering, we show that each configuration
in the pseudo connecting orbit set generates a real orbit of the Lagrangian L which
connects some Mañé set to another Mañé set nearby if this Mañé set has some kind of
topological triviality. Such construction does not need the manifold structure of the
Mather sets, and is applicable to systems with arbitrary degrees of freedom. Thus,
some global connecting orbits can be constructed if some so-called generalized tran-
sition chain is established. The definition of such a chain is introduced in this paper,
and it does exist in the system we study in this paper.

In the Lagrangian formalism, the Hamiltonian equation (1.1) is equivalent to the
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Lagrange equation
d

dt

(
∂L

∂u̇

)
− ∂L

∂u
= 0. (1.3)

This equation corresponds to the critical point of the functional

Ac(γ) =
∫

(L− ηc)(γ, γ̇, t)dt,

where ηc is a closed 1-form whose de-Rham cohomology [ηc] = c ∈ H1(M,R). L and
ηc can be thought as the function defined on TM × T.

To apply the Mather theory on positive definite Lagrangian systems we introduce
a modified Lagrangian

L̃ = L0(u̇)ρ(u̇) + (1− ρ(u̇))L(u, u̇, t),

in which L0(u̇) is strictly convex in u̇ and has super-linear growth in ‖u̇‖; ρ(u̇) = 1
when ‖u̇‖ ≥ 2K, ρ(u̇) = 0 when ‖u̇‖ ≤ K. We choose sufficiently large K so that the
diffusion orbits we search for remain in the region {‖u̇‖ ≤ K}. Clearly, we can choose
some ρ(u̇) so that L̃ is convex in u̇ also. This system is integrable near infinity, so
each solution is defined for all t ∈ R. Therefore we can assume that the Lagrangian
L satisfies the conditions suggested by Mather [Ma3]:

Positive definiteness. For each (u, t) ∈ M × T, the Lagrangian function is strictly
convex in velocity: the Hessian Lu̇u̇ is positive definite;

Super-linear growth. We suppose that L has fiber-wise super-linear growth: for
each (u, t) ∈ M × T, we have L/‖u̇‖ → ∞ as ‖u̇‖ → ∞.

Completeness. All solutions of the Lagrangian equations are well defined for all
t ∈ R.

Let I = [a, b] be a compact interval of time. A curve γ ∈ C1(I, M) is called a
c-minimizer or a c-minimal curve if it minimizes the action among all curves ξ ∈
C1(I, M) which satisfy the same boundary conditions:

Ac(γ) = min
ξ(a)=γ(a)
ξ(b)=γ(b)

∫ b

a

(L− ηc)(dξ(t), t)dt.

If J is a non compact interval, the curve γ ∈ C1(J,M) is said a c-minimizer if γ|I is c-
minimal for any compact interval I ⊂ J . An orbit x(t) of Φt is called c-minimizing if
the curve π◦X is c-minimizing, where the operator π is the standard projection from
tangent bundle to the underling manifold along the fibers, a point (z, s) ∈ TM × R
is c-minimizing if its orbit φt(z, s) is c-minimizing. We use G̃L(c) ⊂ TM × R to
denote the set of minimal orbits of L − ηc (the c-minimal orbits of L). We shall
drop the subscript L when it is clear which Lagrangian is under consideration. It is
not necessary to assume the periodicity of L in t for the definition of G̃. When it is
periodic in t, G̃(c) ⊂ TM × R is a nonempty compact subset of TM × T, invariant
for the Euler-Lagrange flow φt

L.
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The definition of action along a C1-curve can be extended to the action on a
probability measure. Let M be the set of Borel probability measures on TM × T.
For each ν ∈ M, the action Ac(ν) is defined as the following:

Ac(ν) =
∫

(L− ηc)dν.

Mather has proved [Ma3] that for each first de Rham cohomology class c there is a
probability measure µ which minimizes the actions over M

Ac(µ) = inf
ν∈M

∫
(L− ηc)dν.

This µ is invariant to the Euler-Lagrange flow. We use M̃(c) to denote the support
of the measure and call it Mather set. We use −α(c) = Ac(µ) to denote the min-
imum c-action, it defines a function α: H1(M,R) → R, usually called α-function.
Its Legendre transformation β: H1(M,R) → R is usually called β-function. Both
functions are convex, finite everywhere and have super-linear growth [Ma3].

To define Aubry set and Mañé set we let

hc((m, t), (m′, t′)) = min
γ∈C1([t,t′],M)

γ(t)=m,γ(t′)=m′

∫ t′

t

(L− ηc)(dγ(s), s)ds + (t′ − t)α(c),

Fc((m, s), (m′, s′)) = inf
t=s mod 1

t′=s′ mod 1
t′−t≥1

hc((m, t), (m′, t′))

h∞c ((m, s), (m′, s′)) = lim inf
s=t mod 2π
s′=t′ mod2π

t′−t→∞

hc((m, t), (m′, t′)),

hk
c (m,m′) = hc((m, 0), (m′, k)),

h∞c (m,m′) = h∞c ((m, 0), (m′, 0)),

Fc(m,m′) = Fc((m, s), (m′, s′))

dc(m,m′) = h∞c (m,m′) + h∞c (m′,m).

It was showed in [Ma4] that dc is a pseudo-metric on the set {x ∈ M : h∞c (x, x) = 0}.
A curve γ ∈ C1(R,M) is called c-semi-static if

Ac(γ|[a,b]) + α(c)(b− a) = Fc(γ(a), γ(b), a mod 1, b mod 1)

for each [a, b] ⊂ R. A curve γ ∈ C1(R,M) is called c-static if, in addition

Ac(γ|[a,b]) + α(c)(b− a) = −Fc(γ(b), γ(a), b mod 1, a mod 1)

for each [a, b] ⊂ R. An orbit X(t) = (dγ(t), t mod 1) is called c-static (semi-static) if
γ is c-static (semi-static). We call the Mañé set Ñ (c) the union of global c-semi-static
orbits, the set Ã(c) is defined as the union of global c-static orbits, we call it Aubry
set. We can also define corresponding Aubry sets and Mañé sets for some covering
manifold M̃ respectively. Obviously, the c-static (semi-static) orbits for M̃ is not
necessarily c-static (semi-static) for M .
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We use M(c), A(c), N (c) and G(c) to denote the standard projection of M̃(c),
Ã(c), Ñ (c) and G̃(c) from TM × T to M × T respectively. We have the following
inclusions ([Be])

M̃(c) ⊆ Ã(c) ⊆ Ñ (c) ⊆ G̃(c).

It was showed in [Ma4] that the inverse of the projection is Lipschitz when it is
restricted to A(c) and M(c).

In the following we use the symbol Ñs(c) = Ñ (c)|t=s to denote the time section
of a Mañé set, and so on. We use Φt

H , ΦH to denote the Hamiltonian flow generated
by H and its time-1-map, and φt

L, φL to denote the Lagrangian flow generated by L
and its time-1-map respectively.

This paper is organized as follows. In the section 2 we introduce so-called pseudo
connecting orbit set and establish the upper semi-continuity of these sets. Such
property shall be used to show the existence of local minimal orbits connecting some
Mañé set to another Mañé set nearby. In the section 3, we investigate the topological
structure of the Mañé sets and the pseudo connecting orbit sets, they correspond to
those cohomology classes through which the diffusion orbits shall be constructed. The
Mañé set becomes larger if we consider a finite covering of the manifold. In the section
4, by making use of the upper semi-continuity of Mañé sets, the existence of local
connecting orbits is established if the Mañé set has some kind of triviality. The section
5 is devoted to the construction of diffusion orbits if there is a so-called generalized
transition chain along the corresponding path in the first de-Rham cohomology space.
To show the generic condition we establish some Hölder continuity of the barrier
functions in the section 6, with which the generic property is proved in the last
section.

In this paper, the only assumption on h2 is the existence of a non-degenerate
minimal fixed point with respect to the Lagrangian flow L(Φt

h2
). Thus, the main

result and the method developed in this paper can be applied to study the diffusion
in a priori stable Hamiltonian systems with arbitrary n degrees of freedom. We shall
present it in our next paper.

2, Upper semi-continuity

The construction of diffusion orbits depends on the upper semi-continuity of some
set functions.

Lemma 2.1. We assume L ∈ Cr(TM ×R,R) (r ≥ 2) satisfies the positive definite,
superlinear-growth and completeness conditions, where M is a compact, connected
Riemanian manifold. Considered as the function of t, L is assumed periodic for
t ∈ (−∞, 0] and for t ∈ [1,∞). Then the map L → G̃L ⊂ TM × R is upper
semi-continuous. As an immediate consequence, the map c → G̃(c) is upper semi-
continuous if L is periodic in t.

The proof of this lemma was provided in [Be2,CY]. We can consider t is defined
on (T ∨ [0, 1] ∨ T)/ ∼, where ∼ is defined by identifying {0} ∈ [0, 1] with some point
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on one circle and identifying {1} ∈ [0, 1] with some point on another circle. Let
Uk = {(ζ, q, t) : (q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ζ‖ ≤ k, }, ∪∞k=1Uk = TM × R. Let
Li ∈ Cr(TM × T,R). We say Li converges to L if for each ε > 0 and each Uk there
exists i0 such that ‖L− Li‖Uk

≤ ε if i ≥ i0.

In the application, the set G̃(c) seems too big to be used for the construction of
connecting orbits in interesting problems. Mañé sets seem to be good candidates. In
the time-periodic case, Mañé set can be a proper subset of G̃(c), Ñ (c) ( G̃(c). It
is closely related to the problem whether the Lax-Oleinik semi-group converges or
not, some example can be found in [FM]. To establish some connection between two
Mañé sets we consider a modified Lagrangian

Lη,µ,ψ = L− η − µ− ψ

where η is a closed 1-form on M such that [η] = c, µ is a 1-form depending on t
in the way that the restriction of µ on {t ≤ 0} is 0, the restriction on {t ≥ 1} is a
closed 1-form µ̄ on M with [µ̄] = c′ − c. ψ is a function on M × R and ψ = 0 in
(−∞, 0] ∪ [1,∞). Let m,m′ ∈ M , we define

hT0,T1
η,µ,ψ(m,m′) = inf

γ(−T0)=m
γ(T1)=m′

∫ T1

−T0

Lη,µ,ψ(dγ(t), t)dt + T0α(c) + T1α(c′).

Clearly ∃ m∗ ∈ M and some constants Cη,µ, Cη,µ,ψ, independent of T0, T1, such that

hT0,T1
η,µ,ψ(m,m′) ≤ hT0

c (m,m∗) + hT2
c′ (m∗,m′) + Cη,µ

≤ Cη,µ,ψ.

Thus its limit infimum is bounded

h∞η,µ,ψ(m,m′) = lim inf
T0,T1→∞

hT0,T1
η,µ,ψ(m,m′) ≤ Cη,µ,ψ.

Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such that T i
j → ∞

(j = 0, 1) as i →∞ and the following limit exists

lim
i→∞

h
T i

0 ,T i
1

η,µ,ψ (m,m′) = h∞η,µ,ψ(m,m′).

Let γi(t,m, m′): [−T i
0, T

i
1] → M be a minimizer connecting m and m′

h
T i

0 ,T i
1

η,µ,ψ (m,m′) =
∫ T i

1

−T i
0

Lη,µ,ψ(dγi(t), t)dt + T i
0α(c) + T i

1α(c′).

It is not difficult to see that for any compact interval [a, b] there is some I ∈ Z+ such
that the set {γi}i≥I is pre-compact in C1([a, b],M).



7

Lemma 2.2. Let γ: R→ M be an accumulation point of {γi}. If s ≥ 1 then

ALη,µ,ψ
(γ|[s, τ ]) = inf

τ1−τ∈Z,τ1>s
γ∗(s)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s

Lη,µ,ψ(dγ∗(t), t)dt + (τ1 − τ)α(c′); (2.1a)

if τ ≤ 0 then

ALη,µ,ψ
(γ|[s, τ ]) = inf

s1−s∈Z,s1<τ
γ∗(s1)=γ(s)
γ∗(τ)=γ(τ)

∫ τ

s1

Lη,µ,ψ(dγ∗(t), t)dt− (s1 − s)α(c); (2.1b)

if s ≤ 0 and τ ≥ 1 then

ALη,µ,ψ
(γ|[s, τ ]) = inf

s1−s∈Z,τ1−τ∈Z
s1≤0,τ1≥1

γ∗(s1)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s1

Lη,µ,ψ(dγ∗(t), t)dt

− (s1 − s)α(c)− (τ1 − τ)α(c′). (2.1c)

Proof: To show that let us suppose the contrary, for instance, (2.15b) does not hold.
Thus there would exist ∆ > 0, s < τ ≤ 0, s1 < τ ≤ 0, s1 − s ∈ Z and a curve γ∗:
[s1, τ ] → M with γ∗(s1) = γ(s), γ∗(τ) = γ(τ) such that

ALη,µ,ψ
(γ|[s, τ ]) ≥

∫ τ

s1

Lη,µ,ψ(dγ∗(t), t)dt− (s1 − s)α(c) + ∆.

Let ε = 1
4∆. By the definition of limit infimum there exist T i0

0 > 0 and T i0
1 > 0 such

that
hT0,T1

η,µ,ψ(m0,m1) ≥ h∞η,µ,ψ(m0,m1)− ε, ∀ T0 ≥ T i0
0 , T1 ≥ T i0

1 , (2.2)

there exist subsequences T ik
j (j = 0, 1, k = 0, 1, 2, · · · ) such that for all k > 0

T ik
0 − T i0

0 ≥ s− s1, (2.3)

|hT
ik
0 ,T

ik
1

η,µ,ψ (m0,m1)−h∞η,µ,ψ(m0,m1)| < ε. (2.4)

By taking a further subsequence we can assume γik
→ γ. In this case, we can

choose sufficiently large k such that γik
(s) and γik

(τ) are so close to γ(s) and γ(τ)
respectively that we can construct a curve γ∗ik

: [s1, τ ] → M which has the same
endpoints as γik

: γ∗i (s1) = γi(s), γ∗i (τ) = γi(τ) and satisfies the following

ALη,µ,ψ
(γik

|[s, τ ]) ≥
∫ τ

s1

Lη,µ,ψ(dγ∗ik
(t), t)dt− (s1 − s)α(c) +

3
4
∆. (2.5)
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Let T ′0 = T ik
0 + (s− s1), if we extend γ∗ik

to R→ M such that

γ∗ik
=





γik
(t− s1 + s), t ≤ s1,

γ∗ik
(t), s1 ≤ t ≤ τ,

γik
(t), t ≥ τ,

then we obtain from (2.4) and (2.5) that

h
T ′0,T

ik
1

η,µ,ψ (m0,m1) ≤ALη,µ,ψ
(γ∗ik

|[−T ′0, T
ik
1 ])− T ik

1 α(c′)− T ′0α(c)

≤ALη,µ,ψ
(γik

|[−T ik
0 , T ik

1 ])− T ik
1 α(c′)− T ik

0 α(c)− 3
4
∆

≤h∞η,µ,ψ(m0,m1)− 2ε.

but this contradicts (2.2) since T ′0 ≥ T i0
0 and T ik

1 ≥ T i0
1 , guaranteed by (2.3). (2.1a)

and (2.1c) can be proved in the same way. ¤
With this lemma it is natural to define

C̃η,µ,ψ = {dγ ∈ G̃Lη,µ,ψ
: (2.1a) (2.1b) and (2.1c) hold }.

Although the elements in this set are not necessarily the orbits of the Lagrangian
flow determined by L, the α-limit set of each element in this set is contained in Ñ (c),
the ω-limit set is contained in Ñ (c′). Due to this reason, we call it pseudo connecting
orbit set. Obviously C̃η,0,0 = Ñ (c). For convenience we may drop the subscript ψ in
the symbol when it is equal to zero, i.e. C̃η,µ := C̃η,µ,0.

Lemma 2.3. The map (η, µ, ψ) → C̃η,µ,ψ is upper semi-continuous. C̃η,0,0 = Ñ (c)
if [η] = c. Consequently, the map c → Ñ (c) is upper semi-continuous.

Proof: Let ηi → η, µi → µ and ψi → ψ let γi ∈ C̃ηi,µi,ψi
and let γ be an accumulation

point of the set {γi ∈ C̃ηi,µi,,ψi
}i∈Z+ . Clearly, γ ∈ C̃η,µ,ψ. If γ /∈ C̃η,µ,ψ there would

be two point γ(s),γ(τ) ∈ M such that one of the following three possible cases
takes place. Either γ(s) and γ(τ) ∈ M can be connected by another curve γ∗:
[s + n, τ ] → M with smaller action

ALη,µ,ψ
(γ|[s, τ ]) < ALη,µ,ψ

(γ∗|[s + n, τ ])− nα(c)

in the case τ < 0; or there would a curve γ∗: [s, τ + n] → M such that

ALη,µ,ψ
(γ|[s, τ ]) < ALη,µ,ψ

(γ∗|[s, τ + n])− nα(c′)

in the case s ≥ 1, or when s ≤ 0 and τ ≥ 1 there would be a curve γ∗: [s+n1, τ+n2] →
M such that

ALη,µ,ψ
(γ|[s, τ ]) < ALη,µ,ψ

(γ∗|[s + n1, τ + n2])− n1α(c)− n2α(c′)

where s + n1 ≤ 0, τ + n2 ≥ 1. Since γ is an accumulation point of γi, for any small
ε > 0, there would be sufficiently large i such that ‖γ − γi‖C1[s,t] < ε, it follows that
γi /∈ C̃ηi,µi,ψi but that is absurd.
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Let us consider the case that µ = 0 and ψ = 0. In this case, L− η is periodic in t.
If some orbit γ ∈ C̃η,0,0: R→ M is not semi-static, then there exist s < τ ∈ R, n ∈ Z,
∆ > 0 and a curve γ∗: [s, τ + n] → M such that γ∗(s) = γ(s), γ∗(τ + n) = γ(τ) and

ALη,0,0(γ|[s, τ ]) ≥ ALη,0,0(γ
∗|[s, τ + n])− nα(c) + ∆.

We can extend γ∗ to [s1, τ1 + n] → M such that s1 ≤ min{s, 0}, min{τ1, τ1 + n} ≥ 1,
τ1 ≥ τ and

γ∗ =





γ(t), s1 ≤ t ≤ s,

γ∗(t), s ≤ t ≤ τ + n,

γ(t− n), τ + n ≤ t ≤ τ1 + n.

Since L− η is periodic in t, we would have

ALη,0,0(γ|[s1, τ1]) ≥ ALη,0,0(τ
∗γ|[s1, τ1 + n])− nα(c) + ∆.

but this contradicts to (2.1c). ¤
The upper semi-continuity of the map (η, µ, ψ) → C̃η,µ,ψ will be fully exploited

to construct connecting orbits between two different Mañé sets if they are closed to
each other.

3, Structure of some Ñ (c) and C̃η,µ,ψ

It is natural to study the topological structure of the relevant Mañé sets if we want
to construct the connecting orbits between them.

Let L be the Lagrangian obtained from H in (1.1) by the Legendre transformation,
it has the form as follows:

L(u, u̇, t) = `1(q̇) + `2(x, ẋ) + L1(u, u̇, t), (3.1)

here `i = L∗(hi) for i = 1, 2, L1 is a small perturbation. The perturbation term of
the Lagrangian L1 and the perturbation term of the Hamiltonian P is related by an
operator ∆L∗ induced by the Legendre transformation L1 = ∆L∗(P ) = L∗(h1 +h2 +
P )−L∗(h1+h2). We also denote by Bε,K the ball in Cr({(u, u̇, t) ∈ Tk+n×Rk+n×T :
‖u̇‖ ≤ K} → R), centered at the origin with radius of ε. Obviously, when ε ≤ 1,
there exists % > 0 such that

∆L∗(Bε,2K) ⊂ B%ε,K .

Let c = (cq, cx) denote a cohomology class in H1(Tk+n,R) where cq ∈ Rk and
cx ∈ Rn. To obtain the result of this paper we choose k = 1, but the demonstration
in the following 3, 4 and 5 sections applies for arbitrary k.

Lemma 3.1. Given some large number K > 0 and a small number δ > 0. There
exists a small number ε = ε(δ) > 0, if cq ∈ {max1≤i≤k |cqi | ≤ K} and if P ∈
Bε,2K , then there exists an n-dimensional convex set D(cq) which contains {cq =
constant, ‖cx‖ < Cx} with small Cx > 0 such that
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1, for each c ∈ {‖cx‖ < Cx}, the Mañé set Ñ (c) ⊂ {‖x‖ < δ};
2, for each c ∈ int(D(cq)), the Mather set M̃(c) ⊂ {‖x‖ < δ}, for each c ∈ {cq =

constant}\D(cq) and each c-minimal measure µ, ρx(µ) 6= 0;

3, if M(c) is uniquely ergodic for each c ∈ int(D(cq)), then N (c) ⊂ {‖x‖ < δ} for
each c ∈ int(D(cq)).

The interior of D(cq) is in the sense that we think D(cq) as a set in Rn. We denote
the rotation vector of µ by ρ(µ) = (ρq(µ), ρx(µ)).

Proof: Let γ: R → Tk+n be a c-minimal curve of the Lagrangian L. As the first
step, we claim the following: for suitably small δ > 0, there exist ε > 0, Cx > 0 and
λ ∈ (0, 1] such that if ‖cx‖ ≤ Cx and P ∈ Bε,2K , and if γ(t∗) /∈ {‖x‖ ≤ δ} for some
t∗ ∈ R, then there exist t0 < t∗ < t1 such that γ(ti) ∈ {‖x‖ ≤ λδ} (i = 0, 1). Let us
suppose the contrary. It means that for any large number T > 0, there are t1, t2 ∈ R
such that t2 ≥ t1+T and γ(t) /∈ {‖x‖ ≤ λδ} for all t ∈ [t1, t2]. To show the absurdity,
let us consider the Lagrangian `2 first.

To each absolutely continuous curve γx : [t0, t1] → Tn we associate a number
|[γx|[t0,t1]]| = 1

2π

∑n
i=1 |γ̄xi

(t1)−γ̄xi
(t0)| where γ̄x denotes the lift of γx to the universal

covering Rn. If γx(t) /∈ {‖x‖ < λδ} for all t ∈ (t0, t1) and if there is some t∗ ∈ (t0, t1)
such that γx(t∗) /∈ {‖x‖ < δ}, then there exist E1, E2 > 0 such that

∫ t2

t1

`2(dγx(t))dt ≥ E1λ
2δ2(t1 − t0) + E2(δ2 + |[γx|[t0,t1]]|). (3.2)

Here, we have made use of the super-linear growth in ẋ and the the hypothesis (H2).
Let ξx : [t0, t1] → Tn (t1 − t0 ≥ 1) be a minimal curve of `2 joining two points in
{‖x‖ ≤ λδ}. Since {x = ẋ = 0} is hyperbolic, we see that |ξ̄xi

(t1) − ξ̄xi
(t0)| ≤ 2λδ

for 1 ≤ i ≤ n, and there exists E3 > 0 such that
∫ t2

t1

`2(dξx(t))dt ≤ E3λ
2δ2. (3.3)

Choose any two points m1 and m2 on the boundary of {‖x‖ ≤ λδ} and let ξ0x:
[t0 − 1, t0] → Tn and ξ1x: [t1, t1 + 1] → Tn be the minimal curve of `2 such that
ξ0x(t0 − 1) = γx(t0 − 1), ξ0x(t0) = m0, ξ1x(t1) = m1 and ξ1x(t1 + 1) = γx(t1 + 1).
Clearly, the action of `2 along these two curves and along γx|[t0−1,t0]∪[t1,t1+1] are
bounded

∫ t0

t0−1

`2(dξ0x(t))dt ≤ E4,

∫ t1+1

t1

`2(dξ1x(t))dt ≤ E4,

∫ t0

t0−1

`2(dγx(t))dt ≤ E4,

∫ t1+1

t1

`2(dγx(t))dt ≤ E4.

There also exists Θ > 0 such that

|ξ̄0x(t0)− ξ̄0x(t0 − 1)| ≤ Θ, |ξ̄1x(t1 + 1)− ξ̄1x(t1)| ≤ Θ.
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We construct a curve ξ = (ξq, ξx) : R→ Tk × Tn such that ξq(t) = γq(t),

ξx(t) =





γx(t) t ≤ t0 − 1,

ξ0x(t) t0 − 1 ≤ t ≤ t0,

ξx(t) t0 ≤ t ≤ t1,

ξ1x(t) t1 ≤ t ≤ t1 + 1,

γx(t) t ≥ t1 + 1,

and compare the action of L along the curve γ with the action along ξ,
∫ t1+1

t0−1

(
L(dγ(t), t)− L(dξ(t), t)− 〈c, γ̇(t)− ξ̇(t)〉

)
dt

≥
∫ t1

t0

(
`2(dγx(t))− `2(dξx(t))

)
dt

− 2πCx|[γx|[t0−1,t1+1]]| − 2%ε(t1 − t0)− 4E4 − 2Θ

≥1
2
(E1λ

2δ2(t1 − t0) + E2)δ2 − 4E4 − 2Θ > 0,

if we set

λ ≤
√

E2

2E3
, Cx ≤ E2

2π
ε ≤ E1λ

2δ2

4%
, (3.4)

and let t1 − t0 be sufficiently large. This contradiction verifies our claim. Therefore,
each c-minimal orbit dγ must enter the region {‖x‖ ≤ λδ} for infinitely many times
if (3.4) is satisfied.

Now we assume γ = (γq, γx) : R → Tk × Tn is a c-semi static curve for L such
that γ(t0), γ(t1) ∈ {‖x‖ = λδ}, γ(t∗) /∈ {‖x‖ ≤ δ} for some t∗ ∈ (t0, t1). In this case,
we construct a curve ξ = (ξq, ξx) : R→ Tk × Tn such that ξq(t) = γq(t),

ξx(t) =





γx(t) t ≤ t0,

ξx(t) t0 ≤ t ≤ t1,

γx(t) t ≥ t1.

In this case we obtain from (3.2), (3.3) and (3.4) that
∫ t1

t0

(
L(dγ(t), t)− L(dξ(t), t)− 〈c, γ̇(t)− ξ̇(t)〉

)
dt

≥
∫ t1

t0

(
`2(dγx(t))− `2(dξx(t))

)
dt− 2πCx|[γx]| − 2ε(t1 − t0)

≥1
2
(E1λ

2δ2(t1 − t0) + E2δ
2) > 0,

but this contradicts again the fact that γ is c-semi static. This proves the first part
of the lemma.
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To continue the proof, we define

D(cq) =
{

c ∈ H1(Tk × Tn,R) : cq = constant,

∃ c-minimal measure µ such that ρx(µ) = 0
}

.

Obviously, it is an n-dimensional convex disk and contains {cq = constant, ‖cx‖ ≤
Cx}. In fact, if µ is a c-minimal measure for some c ∈ int(D(cq)) then it is also a
(cq, 0)-minimal measure. To see it, let us note a fact:

Proposition 3.2. Let c′, c∗ ∈ H1(M,R), µ′ and µ∗ be the corresponding minimal
measures respectively. If 〈c′ − c∗, ρ(µ′)〉 = 〈c′ − c∗, ρ(µ∗)〉 = 0, then α(c′) = α(c∗).

Proof: By the definition of the α-function we find that

−α(c′) =
∫

(L− ηc′)dµ′

=
∫

(L− ηc∗)dµ∗ + 〈c∗ − c′, ρ(µ)〉
≥ − α(c∗).

In the same way, we have −α(c∗) ≥ −α(c′). ¤
It follows from this proposition that α(c) = constant for all c ∈ D(cq). For each

c ∈ int(D(cq)) if there was a c-minimal measure µ1 such that ρx(µ1) 6= 0, then
∃ c′ = (cq, c

′
x) ∈ int(D(cq)) such that 〈cx − c′x, ρx(µ1)〉 < 0. Thus

−α(c∗) =Ac∗(µ1)

=Ac′(µ1) + 〈cx − c′x, ρ(µ1)〉
>− α(c′).

On the other hand, from the definition of D(cq) and from the proposition 3.2 we
obtain that α(c′) = α(c∗). The contradiction implies that ρx(µ) = 0 for each c-
minimal measure when c ∈ int(D(cq)). Consequently, for each c-minimal measure
µ ∫

(L− ηc)dµ =
∫

(L− ηcq
)dµ,

here, ηc = (ηcq
, ηcx

) is any closed 1-form such that [ηc] = (cq, cx) ∈ H1(Tk+n,R).
Therefore, supp(µ) ⊂ {‖x‖ ≤ δ}. This proves the second part of the lemma.

Finally, let us consider the case that the c-minimal measure µc is always uniquely
ergodic for each c ∈ int(D(cq)). It is easy to see that ∃ µ such that µ = µc for
all c ∈ int(D(cq)). Let dγ ∈ Ñ (c). Note Ñ (c) = Ã(c) in this case. For each
ξ ∈ M0(c), if kij → ∞ (i = 1, 2) as j → ∞ are the two sequences such that
dγ(−k1j), dγ(k2j) → π−1(ξ), then we claim that

lim
j→∞

∫ k2j

−k1j

γ̇xi
(t)dt = 0, ∀ 1 ≤ i ≤ n. (3.5)



13

In fact, for any ξ ∈ M0(c) there exist two sequences kij → ∞ as j → ∞ (i = 1, 2)
such that dγ(−k1j) → π−1(ξ) and dγ(k2j) → π−1(ξ) as j → ∞. Since γ is c-static,
it follows that

hk1j
c (γ(−k1j), γ(0)) + hk2j

c (γ(0), γ(k2j)) → 0.

If (3.5) does not hold, by choosing a subsequence again (we use the same symbol)
there would be some 1 ≤ i ≤ n such that

∣∣∣∣∣ lim
j→∞

∫ k2j

−k1j

γ̇xi
(t)dt

∣∣∣∣∣ ≥ 2π > 0.

In this case, let us consider the barrier function B∗
c′ where all other components of

c′ ∈ Rk+n are the same as those of c except for the component for xj . Since c− c′ =
(0, · · · , 0, cxi − c′xi

, 0, · · · , 0), we obtain from the proposition 3.2 that α(c′) = α(c), so

Bc′(γ(0)) ≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t)− 〈c′, γ̇(t)〉+ α(c′)) dt

≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t)− 〈c, γ̇(t)〉+ α(c)) dt

+ (cxi
− c′xi

) lim
j→∞

∫ k2j

−k1j

γ̇xi
(t)dt

≤− 2|cxi − c′xi
|π < 0

as we can choose cxi > c′xi
or cxi < c′xi

accordingly. But this is absurd since barrier
function is non-negative.

Let us derive from (3.5) that there is no c-semi-static orbit that is not contained
in {‖x‖ ≤ δ}. In fact, we find that dγ ∈ Ñ ((cq, 0)). To see that, we obtain from (3.5)
that the term 〈cx, γ̇x〉 has no contribution to the action along the curve γ|[−k1j ,k2j ]:

∫ k2j

−k1j

(L− 〈cq, γ̇q〉 − 〈cx, γ̇x〉)dt →
∫ k2j

−k1j

(L− 〈cq, γ̇q〉)dt, (3.6)

as j → ∞. Note kij → ∞ as j → ∞ (i = 1, 2). If dγ /∈ Ñ ((c1, 0)), there would
exist j′ ∈ Z+, k′ ∈ Z, E > 0 and a curve ζ: [−k1j , k2j + k′] → M such that
ζ(−k1j′) = γ(−k1j′), ζ(k2j′ + k′) = γ(k2j′)

∫ k2j′

−k1j′
(L(dγ(t), t)− 〈cq, γ̇q〉+ α(c))dt

≥
∫ k2j′+k′

−k1j′
(L(dζ(t), t)− 〈cq, ζ̇q〉+ α(c))dt + E

≥F(cq,0)(γ(−k1j′), γ(k2j′)) + E (3.7)
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and ∣∣∣∣∣
∫ k2j′+k′

−k1j′
ζ̇xi

dt

∣∣∣∣∣ → 0, ∀ 1 ≤ i ≤ n. (3.8)

The second condition (3.8) follows from the facts that Ñ ((cq, 0)) ⊂ Σ̃ and γ(−kij) →
ξ ∈ M0((cq, 0)) = M0(c). Let j − j′ be sufficiently large, we construct a curve ζ ′:
[−k1j , k2j + k′] → M such that

ζ ′(t) =





γ(t), t ∈ [−k1j ,−k1j′ ];
ζ(t), t ∈ [−k1j′ , k2j′ + k′];
γ(t− k′), t ∈ [k2j′ + k′, k2j + k′].

It follows from (3.5∼8) that

∫ k2j+k′

−k1j

(L(dζ ′(t), t)− 〈c, ζ̇ ′〉)dt <

∫ k2j

−k1j

(L(dγ(t)− 〈cq, γ̇q〉)dt− E

≤
∫ k2j

−k1j

(L(dγ(t), t)− 〈c, γ̇〉)dt− E

2
,

but this contradicts to the property that dγ ∈ Ñ (c). ¤
Remark: The first part of the lemma can be proved by using the upper-semi conti-
nuity of Mañé set on Lagrangian functions. But the dependence on ε is not so clear
as here (cf (3.4)) if we prove it in that way.

From the proof of the first part of the lemma 3.1 we can see

Lemma 3.3. Let c ∈ {‖cx‖ < Cx} and b − a ≥ 1. For small number d > 0 there
exits ε > 0 and δ > 0, such that if |L1| ≤ ε and if γ: [a, b] → Tk+n is a c-minimizer
connecting points γ(a), γ(b) ∈ {‖x‖ ≤ δ}, then ‖γx(t)‖ < d for all t ∈ [a, b].

The structure of Mañé set and pseudo connecting orbit set depends on what con-
figuration manifold we choose for our consideration. In the following, when necessary,
we use Ñ (c,M), C̃η,µ,ψ(M) to specify the manifold on which these sets are defined.
We shall omit M in that symbol when it is clearly defined. We do not intend to con-
sider the general case. Instead, let us consider some special case which is sufficient
for the purpose of this paper. According to the lemma 3.1, for a cohomology class
c = (cq, 0), the Mañé set Ñ (c) is contained in Nδ = {‖x‖ ≤ δ}, a δ-neighborhood of
the lower dimensional torus. To each curve γ: (a, b) → M such that γ(a) ∈ Nδ and
γ(b) ∈ Nδ we can associate an element [γ] = ([γ]1, [γ]2, · · · , [γ]n) ∈ H1(M, Nδ,Z).
Here, a can be a finite number or −∞, b can be a finite number or ∞. From the
proof in [Be1] we can see that there exists a homoclinic orbit dγ such that the first
component of its relative homology is not zero: [γ]1 6= 0. The term “homoclinic”
here means that both the α-limit set and the ω-limit set of the orbit are contained
in the Mañé set: α(dγ) ⊆ Ñ (c), ω(dγ) ⊆ Ñ (c).
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Lemma 3.4. Let c = (cq, 0), M̃ = Tk×(2T)×Tn−1. If dγ: R→ TM is a homoclinic
orbit such that

lim inf
T0→∞
T1→∞

{∫ T1

−T0

(L− ηc)(dγ(t), t)dt + (T0 + T1)α(c)
}

= lim inf
T0→∞
T1→∞

min
ξ(−T0)∈Nδ

ξ(T1)∈Nδ

[ξ]1 6=0

{∫ T1

−T0

(L− ηc)(dξ(t), t)dt + (T0 + T1)α(c)
}

,

then {dγ(t), t} ⊂ π1Ñ (c, M̃).

Here π1: M̃ → M denotes the standard projection.

Proof: If we think M̃ as the configuration manifold, Nδ has two lifts denoted by N ′
δ

and N∗
δ . In this case, the minimal measure has at least two ergodic components, the

support of one component is in N ′
δ, another one is in N∗

δ . The lift of the homoclinic
orbit founded in [Be1] is just an orbit joining the lift of the support of the minimal
measure in N ′

δ with another lift in N∗
δ . Recall the definition of the barrier function

introduced by Mather in [Ma4]

B∗
c (m) = min{h∞c (ξ, m) + h∞c (m, ζ)− h∞c (ξ, ζ) : ∀ ξ, ζ ∈M0(c)},

we obtain the result immediately. ¤
Mañé announced in [Me] that all c-static classes should be transitive, there should

be c-semi static orbits connecting different static classes, it has been partially proved
in [CP].

We can also define the Mañé set Ñ (c, M̃) from another point of view. Let c =
(cq, 0), ξ ∈ Nδ, ζ ∈ Nδ, we define

hk
c,e1

(ξ, ζ) = inf
γ(0)=ξ
γ(k)=ζ
[γ]1 6=0

∫ k

0

(L− ηc)(dγ(t), t)dt + kα(c),

hk1,k2
c,e1

(ξ,m, ζ) = inf
γ(−k1)=ξ
γ(0)=m
γ(k2)=ζ
[γ]1 6=0

∫ k2

−k1

(L− ηc)(dγ(t), t)dt + (k1 + k2)α(c),

h∞c,e1
(ξ, ζ) = lim inf

k→∞
hk

c,e1
(ξ, ζ),

h∞c,e1
(ξ, m, ζ) = lim inf

k→∞
hk

c,e1
(ξ, m, ζ),

B∗
c,e1

(m) = inf{h∞c,e1
(ξ, m, ζ)− h∞c,e1

(ξ, ζ) : ξ, ζ ∈M0(c)}.
Clearly, we have
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Lemma 3.5. Assume L has the form of (3.1), c = (cq, 0), then

π1N0(c, M̃) = {B∗
c,e1

= 0} ∪ {B∗
c = 0},

π1N0(c, M̃)\N0(c,M) 6= ∅.

Recall we have introduced a modified Lagrangian Lη,µ,ψ = L−η−µ−ψ. Let T0 ∈ Z+,
T1 ∈ Z+, we define

hT0,T1
η,µ,ψ,e1

(m0,m1) = inf
ξ(−T0)=m0
ξ(T1)=m1

[ξ]1 6=0

∫ T1

−T0

Lη,µ,ψ(dξ(t), t) + T0α(c) + T1α(c′).

Let us study C̃η,µ,ψ(M̃):

Lemma 3.6. Let c = (cq, 0), c′ = (c′q, 0), [η] = c and [µ̄] = c′ − c. If ψ is suitably
small, then

π1Cη,µ,ψ(M̃)\Cη,µ,ψ(M) 6= ∅.

Proof: For m0, m1 ∈ Nδ, positive integers T i
0, T i

1 ∈ Z+, we let γi(t,m0,m1, e1):
[−T i

0, T
i
1] → M be a minimal curve joining m0 and m1 such that [γi]1 6= 0 and

h
T i

0 ,T i
1

η,µ,ψ,e1
(m0,m1) =

∫ T i
1

−T i
0

Lη,µ,ψ(dγi(t), t)dt + T i
0α(c) + T i

1α(c′).

Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such that T i
j → ∞

(j = 0, 1) as i →∞ and the following limit exists

lim
i→∞

h
T i

0 ,T i
1

η,µ,ψ,e1
(m0,m1) = lim inf

T0,T1→∞
hT0,T1

η,µ,ψ,e1
(m0,m1) = h∞η,µ,ψ,e1

(m0,m1).

Let γ̃i be the lift of γi in the covering space M̃ , it is a M̃ -minimal curve. Clearly, the
set of accumulation points of the set {γi} contains a curve γ: R→ M with [γ]1 6= 0.

On the other hand, if |ψ| is suitably small and m0, m1 ∈ Nδ, the hyperbolic
structure of `2 guarantees that

h∞η,µ,ψ(m0,m1) < h∞η,µ,ψ,e1
(m0,m1).

In other words, these M̃ -minimal curves {γi} are not M -minimal curve. Conse-
quently, γ is not a M -minimal curve. This completes the proof. ¤

4, Existence of local connecting orbits
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To begin with, let us consider the construction of diffusion orbits in Arnold’s ex-
ample from the variational point of view. There, each Mañé set under consideration
properly contains the corresponding Mather set if we study the problem in a covering
manifold M̃ = T × 2T. Under the small perturbation the stable manifold of each
invariant circle transversally intersects the unstable manifold of the same invariant
circle. It implies that the set π1N0(c, M̃)\(M0(c,M) + δ) is non-empty but topolog-
ically trivial for each c under consideration. The main goal of this section is to show
that if a system has such a property for some c, then for all c′ sufficiently close to c,
Ñc′ can be connected with Ñc by some local minimal orbits.

Definition 4.1. Let c = (cq, 0), c′ = (c′q, 0), Nδ = {‖x‖ ≤ δ}. We assume that
Ñ (c) ⊂ int(Nδ) and Ñ (c′) ⊂ int(Nδ). Let γ: R → M be an absolutely continuous
curve such that γ(t) ∈ Nδ when |t| ≥ T , a sufficiently large number, and such that
[γ]1 6= 0. We say dγ is a local minimal orbit of L that connects Ñ (c) and Ñ (c′) if

1, dγ(t) is the solution of the Euler-Lagrange equation (1.3), the α- and ω-limit
sets of dγ are in Ñ (c) and Ñ (c′) respectively.

2, There exist two open and connected sets V0 and V1 such that V̄0 ⊂ Nδ\M0(c),
V̄1 ⊂ Nδ\M0(c′), γ(−T0) and γ(T1) are in the interior of V0 and V1 respectively,
where T0 ∈ Z+ and T1 ∈ Z+. For any (m0,m1) ∈ ∂(V0 × V1), we have

min
{

hT0,T1
η,µ,ψ,e1

(m0,m1) + h∞c (ξ,m0) + h∞c′ (m1, ζ) :

ξ ∈M0(c) ∩ π(α(dγ)|t=0), ζ ∈M0(c′) ∩ π(ω(dγ)|t=0)
}

− lim inf
T ′0→∞
T ′1→∞

∫ T ′1

−T ′0

(L− η − µ− ψ)(dγ(t), t)dt− T ′0α(c)− T ′1α(c′)

> 0, (4.1)

where ψ is a non-negative function M × R → R+ such that ψ = 0 when t ≤ 0 or
when t ≥ 1; µ is a 1-form on M × R such that µ = 0 when t ≤ 0, µ = µ̄ is closed
when t ≥ 1, [µ̄] = c′ − c, η is a closed 1-form on M with [η] = c.

Since π(ω(dγ)) ⊂ N (c′) ⊂ Nδ and π(α(dγ)) ⊂ N (c) ⊂ Nδ, [γ|T1≤t<∞] and
[γ|−∞<t≤−T0 ] are well defined. Indeed, recall the lemma 3.3, we can see [γ|T1≤t<∞] =
0 and [γ|−∞<t≤−T0 ] = 0. That is why we use h∞c (ξ,m0) and h∞c′ (m1, ζ) in this def-
inition. We do not intend to discuss local minimal curves in the most general case,
the above definition is introduced for the special purpose of this paper.

Obviously, (4.1) is equivalent to that

hT0,T1
η,µ,ψ,e1

(m0,m1) + h∞c (ξ, m0) + h∞c′ (m1, ζ)

−
∫ T1

−T0

(L− η − µ− ψ)(dγ(t), t)dt− T ′0α(c)− T ′1α(c′)

−h∞c (ξ, γ(−T0))− h∞c′ (γ(T1), ζ)

> 0, (4.1’)
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holds for each ξ ∈M0(c) ∩ π(α(dγ)|t=0) and each ζ ∈M0(c′) ∩ π(ω(dγ)|t=0).

Lemma 4.2. We assume that |L1| ≤ ε so that Lemma 3.3 holds and π1N0(c, M̃)\Nδ

is totally disconnected for some co-homology class c = (cq, 0). There exists ε1 > 0
such that if ‖c′q−cq‖ ≤ ε1 for another co-homology class c′ = (c′q, 0), then there exists
an orbit dγ of the Euler-Lagrange flow φL which connecting Ñc with Ñc′ . γ: R→ M
is a local minimal curve for L in the sense of the definition 4.1.

Proof: Since π1N0(c, M̃)\Nδ is totally disconnected, there is an open, connected
and homotopically trivial set O and a small positive number t0 > 0 such that

O ∩ π1N (c, M̃)|0≤t≤t0\Nδ 6= ∅,

O ∩Nδ = ∅, ∂O ∩ π1N (c, M̃)|0≤t≤t0 = ∅.

Clearly, we can find a small δ1 > 0 and define a non-negative function f ∈ Cr(M,R)
such that

f(q, x)





= 0 (q, x) ∈ Nδ ∪ (π1N (c, M̃)|0≤t≤t0\(O + δ1)),
= 1 (q, x) ∈ O,

< 1 elsewhere.

We choose a Cr-function ρ : R → [0, 1] such that ρ = 0 on t ∈ (−∞, 0] ∪ [t0,∞),
0 < ρ ≤ 1 on t ∈ (0, t0). Let λ ≥ 0 be a positive number,

ψ(q, x, t) = λρ(t)f(q, x),

By the upper semi-continuity of the set function (η, µ, ψ) → Cη,µ,ψ(M̃) we see that
Cη,0,ψ(M̃)|0≤t≤t0 ∩ ∂O = ∅ if λ > 0 is suitably small. By the choice of ψ, we have
C̃η,0,ψ(M) = Ñ (c,M). Consequently, we obtain from the lemma 3.6 that

∅ 6=
{

π1Cη,0,ψ(M̃)\Cη,0,0(M)
}

0≤t≤t0
⊂ O.

Since O is homotopically trivial, there exists a closed 1-form µ̄ such that [µ̄] = c′ − c
and supp(µ̄)∩O = ∅. Let ρ1 ∈ Cr(R, [0, 1]) such that ρ1 = 0 on (−∞, 0], 0 < ρ1 < 1
on (0, t0) and ρ1 = 1 on [t0,∞), let µ = λ1ρ1(t)µ̄ and set

Lη,µ,ψ = L− η − µ− ψ.

By using the upper semi-continuity and the lemma 3.6 again we find that

∅ 6=
{

π1Cη,µ,ψ(M̃)\Cη,µ,ψ(M)
}

0≤t≤t0
⊂ O

if λ1 > 0 is suitably small. Let γ ∈ π1Cη,µ,ψ(M̃)\Cη,µ,ψ(M). Note that f ≡ 1 in
O, supp(µ̄) ∩ O = ∅, dγ: TM → R is obviously a solution of the Euler-Lagrange
equation, α(dγ) ⊂ Ñ (c) and ω(dγ) ⊂ Ñ (c′).
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Since we have assumed that π1C0(c, M̃)\Nδ is totally disconnected, by the upper
semi-continuity, there obviously are two open and connected sets V0 and V1 such that
V̄0 ⊂ Nδ\M0(c), V̄1 ⊂ Nδ\M0(c′) and (4.1) holds. ¤

Let us compare π1Cη,0,ψ(M̃)\Cη,0,ψ(M) with π1N (c, M̃)\N (c,M). If γ(t) is a
minimal curve in π1N (c, M̃)\N (c,M), then its time k translation γ(t + k) is also a
minimal curve for each k ∈ Z. By the choice of the open set O and the function
ψ, we see that each orbit dγ in π1Ñ (c, M̃)\Ñ (c,M) might be an orbit of the Euler-
Lagrange equation determined by L − ψ still, but only those curves remain to be
minimal if they pass through O when t ∈ [0, t0].

5, Construction of global connecting orbits

The goal of this section is to construct some orbits which connect Ñ (c) with Ñ (c′)
if c and c′ are connected by a generalized transition chain in H1(Tk × Tn,R).

Definition 5.1. Let M̃ be a finite covering of a compact manifold M and let c,
c′ be two cohomolgy classes in H1(M,R). We say that c is joined with c′ by a
generalized transition chain if there is a continuous curve Γ: [0, 1] → H1(M,R) such
that Γ(0) = c, Γ(1) = c′ and for each τ ∈ [0, 1] at least one of the following cases
takes place:

(I), N0(Γ(τ),M) is topologically trivial; and

(II), π1N0(Γ(τ), M̃)\(N0(Γ(τ),M) + δ) is totally disconnected.

In this paper, we do not intend to establish a theorem of the existence of connecting
orbits between two cohomology classes in the most general case when they are joined
by a generalized transition chain. Instead, we restrict ourselves to the special case:

Theorem 5.2. Let M = Tk ×Tn, M̃ = Tk × 2T×Tn−1, the Lagrangian L be given
by (3.1). We assume that two first cohomology classes c = (cq, 0) and c′ = (c′q, 0) are
joined by a generalized transition chain Γ: [0, 1] → H1(M,R) ∩ {cx = 0}. Moreover,
we assume M(Γ(τ),M) is uniquely ergodic when N0(Γ(τ),M) is not topologically
trivial. Then there exists an orbit of the Euler-Lagrange equation (1.3) dγ: R→ TM

that has the property: α(dγ) ⊂ Ñ (c) and ω(dγ) ⊂ Ñ (c′).

Remark: We feel that the uniquely ergodic condition here is not necessary, but this
condition is automatically satisfied if k = 1 as we shall see later.

Proof: Since the map c → N (c,M) has upper semi-continuity, there are finite open
intervals {Ii}0≤i≤k such that

1, ∪Ii ⊃ [0, 1], Ii ∩ Ii+1 6= ∅ and Ii ∩ Ii±2 = ∅;

2, each Ii is defined in this way: if for all τ ∈ Ii the case (I) happens, then for all
τ ∈ Ii−1 ∪ Ii+1 the case (II) happens.

Since [0, 1] can be covered by finitely many open intervals Ii, without of losing
generality and for the simplification of notation, we study the case that I1∪ I2∪ I3 ⊃
[0, 1], the case (II) takes place for each τ ∈ I1 ∪ I3 while the case (I) takes place for
each τ ∈ I2. The general case can be treated in the same way.
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By the assumptions, there exists a finite sequence {si}0≤i≤i3 such that si ∈ I1 for
each integer i ∈ [0, i1], si ∈ I2 for each integer i ∈ [i1, i2] and si ∈ I3 for each integer
i ∈ [i2, i3]. For each integer i ∈ [0, i1] ∪ [i2, i3]:

1, there exists an orbit dγi: R→ TM of the Euler-Lagrange equation determined
by L such that α(dγ) ⊂ Ñ (ci) and ω(dγ) ⊂ Ñ (ci+1), where ci = Γ(si);

2, there is a non-negative function ψi(q, x, t) ≤ λi, a small number, such that
ψi = 0 when t ≤ 0 or when t ≥ t0. For each fixed t, ψ = constant when it is restricted
in an open, connected and homotopically trivial set Oi which has the properties:

Oi ∩N (ci, M̃)|0≤t≤t0\Nδ 6= ∅, ∂Oi ∩N (ci, M̃)|0≤t≤t0 = ∅,

Oi ∩Nδ = ∅, γi(t)|0≤t≤t0 ∈ int(Oi);

3, there exist a closed 1-forms ηi with [ηi] = ci and a 1-form µi depending on t
in the way that the restriction of µi on {t ≤ 0} is 0, the restriction on {t ≥ t0} is
a closed 1-form µ̄i on M such that [µ̄i] = ci+1 − ci. The support of µi is disjoint
with Oi. γi: R → M is a local minimal curve of Lη,µ,ψ = L − ψ − η − µ in the
sense of the definition 4.1. Consequently, there exist two open (k + n)-dimensional
topological disks V +

i and V −
i+1 with V̄ +

i ⊂ Nδ\M0(ci), V̄ −
i+1 ⊂ Nδ\M0(ci+1), two

positive integers T̃ 0
i , T̃ 1

i and a positive small number ε∗i > 0 such that

min
{

h∞ci
(ξ,m0) + h

T̃ 0
i ,T̃ 1

i

ηi,µi,ψi,e1
(m0,m1) + h∞ci+1

(m1, ζ) :

(m0,m1) ∈ ∂(V +
i × V −

i+1)
}

≥ min
{

h∞ci
(ξ,m0) + h

T̃ 0
i ,T̃ 1

i

ηi,µi,ψi,e1
(m0,m1) + h∞ci+1

(m1, ζ) :

(m0,m1) ∈ V +
i × V −

i+1

}
+ 5ε∗i , (5.1)

where ξ ∈ M0(ci), ζ ∈ M0(ci+1). Note (5.1) is independent of the choice of ξ and ζ
since ergodicity of M(ci) is assumed for each i.

For each integer i ∈ [i1, i2], there exist two closed 1-forms ηi, µ̄ defined on M , a
1-form µi defined on (u, t) ∈ M × R and an open set Ui ⊂ M such that [ηi] = ci,
[µ̄i] = ci+1−ci, µi = 0 when t ≤ 0, µi = µ̄i when t ≥ t0 > 0, µi is closed on Ui× [0, t0]
and

Cηi,µi(t) + δi ⊂ Ui, when t ∈ [0, t0] (5.2)

where δi > 0 is a small number. The possibility of choosing µi and Ui in this way
is the consequence of the following argument. By the assumption on I2, for each
τ ∈ I2, there is an open neighborhood Uτ of N0(Γ(τ)) in the configuration manifold
M such that such that the inclusion map H1(Uτ ,Z) → H1(M,Z) is the zero map,
thus for each c′ ∈ H1(M,R) there exists a closed 1-form µ̄ such that [µ̄] = c′ − Γ(τ)
and supp(µ̄) ∩ Uτ = ∅. Let ρ ∈ Cr(R, [0, 1]) such that ρ = 0 on (−∞, 0], 0 < ρ < 1
on (0, t0) and ρ = 1 on [t0,∞), let µ = λρ(t)µ̄. The upper semi-continuity of the
map (η, µ) → C̃η,µ guarantees that Cη,µ(t) ⊂ Uτ if λ is sufficiently small.



21

By the compactness of the manifold M , for a small ε∗i > 0 there exists (T̆ 0
i , T̆ 1

i ) =
(T̆ 0

i , T̆ 1
i )(ε∗i ) ∈ (Z+,Z+) such that

hT0,T1
ηi,µi

(m0,m1) ≥ h∞ηi,µi
(m0,m1)− ε∗i , (5.3)

holds for all T0 ≥ T 0
i , T1 ≥ T 1

i and for all (m0,m1) ∈ M × M . Obviously, given
(m0,m1) there are infinitely many T0 ≥ T 0

i and T1 ≥ T 1
i such that

|hT0,T1
ηi,µi

(m0,m1)− h∞ηi,µi
(m0,m1)| ≤ ε∗i . (5.4)

Let γi(t,m0,m1, T0, T1) : [−T0, T1] → M be the minimizer of hT0,T1
ηi,µi

(m0,m1), it
follows from the lemma 2.2 that if ε∗i > 0 is sufficiently small, T0 > T̆ 0

i and T1 > T̆ 1
i

are chosen sufficiently large so that (5.4) holds, then

dγi(t,m0,m1, T0, T1) ∈ C̃ηi,µi(t) + δi, ∀ 0 ≤ t ≤ 1. (5.5)

From the Lipschitze property of hT0,T1
ηi,µi

(m0,m1) in (m0,m1) there exist T̂ 0
j (ε∗i ) >

T̆ 0
i (ε∗i ) and T̂ 1

j (ε∗i ) > T̆ 1
i (ε∗i ) so that for each (m0,m1) there are Tj = Tj(m0,m1)

with T̆ j
i (ε∗i ) ≤ Tj ≤ T̂ j

i (ε∗i ) (j = 0, 1) such that (5.4) and (5.5) hold. Note that for
different (m0,m1) we may need different Tj ≥ T̆ j

i (j = 0, 1).

Before we go back to consider those i with 0 ≤ i < i1 or i2 ≤ i < i3, let us observe
some facts. We can define the set of forward and backward semi-static curves:

Ñ+(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|[0,+∞) is c-semi-static},

Ñ−(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|(−∞,0] is c-semi-static}.

Proposition 5.3. If M(c) is uniquely ergodic, u ∈ A0(c), then there exists a unique
v ∈ TuM such that (u, v) ∈ Ñ+

0 (c) (or Ñ−
0 (c)). Moreover, (u, v) ∈ Ã0(c).

Proof: Let us suppose the contrary. Then there would exist (u, v) ∈ Ã0(c) and a
forward c-semi-static curve γ+(t) with γ+(0) = u and γ̇+(0) 6= v. In this case, for
any u1 ∈ M0(c) there exist two sequences ki, k

′
i → ∞ such that π ◦ φki

L (u, v) →
u1, γ+(k′i) → u1 and

h∞c (u, u1) = lim
ki→∞

∫ ki

0

(L− ηc)(φt
L(u, v), t)dt + kiα(c)

= lim
k′i→∞

∫ k′i

0

(L− ηc)(dγ+(t), t)dt + kiα(c).

Thus, we obtain that

h∞c (π ◦ φ−1
L (u, v), u1)

=Fc(π ◦ φ−1
L (u, v), u) + h∞c (u, u1)

=Fc(π ◦ φ−1
L (u, v), u) + lim

k′i→∞

∫ k′i

0

(L− ηc)(dγ+(t), t)dt

>h∞c (π ◦ φ−1
L (u, v), u1)

where the last inequality follows from the facts that γ̇+(0) 6= v and the minimizer
must be a C1-curve. But this is absurd. ¤
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Proposition 5.4. Assume M(c) is uniquely ergodic, then for all ζ ∈ M(c) and all
m0,m1 ∈ M , we have

h∞c (m0, ζ) + h∞c (ζ, m1) = h∞c (m0,m1).

Proof: By definition,

h∞c (m0, ζ) + h∞c (ζ, m1) ≥ h∞c (m0,m1).

for all m0,m1, ζ ∈ M . Let γT : [0, T ] → M be a c-minimal curve connecting m0 with
m1. AsM(c) is uniquely ergodic, for any ε > 0, there exists positive integer T (ε) such
that for each integer T ≥ T (ε) there is T1 < T with the property γT (T1) ∈M(c) + ε.
Let T2 = T − T1. In this case, we have

hT
c (m0,m1) = hT1

c (m0, γT (T1)) + hT2
c (γT (T1),m1)

We claim that T1 →∞ and T −T1 →∞ as ε → 0. Indeed, if T1 is bounded by some
finite number, then there would be a point u ∈ M0(c) and a vector v ∈ TuM such
that φt(u, v) is a forward c-semi-static orbit as t → ∞ with (u, v) /∈ Ã(c). But this
contradicts to the proposition 5.3. Clearly, there exist ζ ∈ M(c) and a subsequence
{Ti} such that γTi

(T1) → ζ as Ti →∞. It implies that

h∞c (m0, ζ) + h∞c (ζ, m1) ≤ h∞c (m0,m1).

As M(c) is uniquely ergodic, for any ξ ∈ A(c)|t=0

h∞c (m0, ξ) + h∞c (ξ,m1)

=h∞c (m0, ζ) + h∞c (ζ, ξ) + h∞c (ξ, ζ) + h∞c (ζ, m1)

=h∞c (m0, ζ) + h∞c (ζ, m1).

This completes the proof. ¤
Let m0,m1 ∈ M , let γT : [0, T ] → M be a c-minimizer connecting m0 with m1.

For each integer i ∈ [0, i1] ∪ [i2, i3], by the similar reason to obtain (5.3) and (5.4),
there exists T̆i(ε∗i ) > 0, independent of m0 and m1, such that

hT
ci

(m0,m1) ≥ h∞ci
(m0, ζ) + h∞ci

(ζ, m1)− ε∗i , ∀ T ≥ T̆i(ε∗i ), ζ ∈M(c) (5.6)

there exists T̂i(ε∗i ) > T̆i(ε∗i ) such that for each (m0,m1) the following holds for some
integer T such that T̆i(ε∗i ) ≤ T ≤ T̂i(ε∗i ) and

|hT
ci

(m0,m1)− h∞ci
(m0, ζ)− h∞ci

(ζ, m1)| ≤ ε∗i , ∀ ζ ∈M(c). (5.7)

We define τi inductively for 0 ≤ i ≤ i3. We let τ0 = 0, for 0 < i < i1 and for
i2 < i < i3 we choose τi such that

T̆i + T̃ 1
i−1 + T̃ 0

i ≤ τi − τi−1 ≤ T̂i + T̃ 1
i−1 + T̃ 0

i ; (5.8)
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for i1 < i ≤ i2 we choose those τi such that

max{T̆ 0
i , T̆ 1

i−1 + 1} ≤ τi − τi−1 ≤ max{T̂ 0
i , T̂ 1

i−1 + 1}. (5.9)

To consider the case that i = i1 we note that both T̂i1 and T̂ 0
i1

can be taken large
enough such that for any m0,m1 ∈ M there exist T (m0,m1), T0(m0,m1) with
max{T̆i1 , T̆

0
i1
} ≤ T (m0,m1), T0(m0,m1) ≤ max{T̂i1 , T̂

0
i1
} such that (5.4) holds if we

set T0 = T0(m0,m1) there; (5.7) holds if we set T = T (m0,m1) there; (5.3) holds for
each T0 ≥ T0(m0,m1) and (5.6) holds for each T ≥ T (m0,m1). Thus, we choose

T̃ 1
i1−1 + max{T̆i1 , T̆

0
i1} ≤ τi1 − τi1−1 ≤ T̃ 1

i1−1 + max{T̂i1 , T̂
0
i1}. (5.10)

For the same reason, we cam choose large enough T̂i2 and T̂ 1
i2

and set the range for
τi2 :

max{T̆ 1
i2−1, T̆i2}+ T̃ 0

i2 ≤ τi2 − τi2−1 ≤ max{T̂ 1
i2−1, T̂i2}+ T̃ 0

i2 (5.11)

We define an index set for ~τ = (τ1, τ2, · · · , τi3−2, τi3−1):

Λ =
{
~τ ∈ Zi3−1 : (5.8 ∼ 11) hold

}
.

Consider τ as the time translation (q, x, t) → (q, x, t + τ) on M ×R, let ψi ≡ 0 for
i1 ≤ i < i2, we define a modified Lagrangian

L̃ = L− η0 −
i3−1∑

i=0

(−τi)∗(µi + ψi).

For (m,m′) ∈ M × M , Z = (z+
0 , z−1 , z+

1 , · · · , z+
i1−1, z

−
i1

, z+
i2

, z−i2+1, · · · , z+
i3−1, z

−
i3

) ∈
V +

0 × V −
1 × · · · × V −

i1
× V +

i2
× · · · × V +

i3−1 × V −
i3

= V we let

hK,K′

L̃
(m,m′, Z, ~τ) = inf

γ(−K)=m
γ(K′)=m′

γ(τi−T̃ 0
i )=z+

i

γ(τi+T̃ 1
i )=z−i+1

[γ|t∈Ji
]1 6=0

i∈I

∫ K′+τi3−1+T̃ 1
i3−1+T̂i3

−K

L̃(dγ(t), t)dt

+
i3−1∑

i=1

(τi − τi−1)α(ci) + Kα(c0) + K ′α(ci3)

where Ji = [τi − T̃ 0
i , τi + T̃ 1

i ] and I = {1, 2, · · · , i1 − 1, i2 + 1, · · · i3 − 1}.
Let hK,K′

L̃
(m,m′) be the minimizer of hK,K′

L̃
(m,m′, Z, ~τ) over V and Λ in z and ~τ

respectively:
hK,K′

L̃
(m,m′) = min

~τ∈Λ,z∈V
hK,K′

L̃
(m,m′, Z, ~τ),
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let Kj ,K
′
j →∞ be the subsequence such that

lim
Kj ,K′

j→∞
h

Kj ,K′
j

L̃
(m,m′) = lim inf

K→∞
K′→∞

hK,K′

L̃
(m,m′),

and let γ(t;Kj ,K
′
j ,m, m′) be the minimal curve, we claim that dγ(t;Kj ,K

′
j ,m, m′)

is a solution of the Euler-Lagrange equation determined by L if Kj and K ′
j are

sufficiently large. Indeed,

1, for each i1 ≤ i < i2, we have

(−τi)∗γ(t;Kj ,K
′
j) ∈ Cηi,µi(t) + δi ⊂ Ui, when τi ≤ t ≤ τi + 1. (5.12)

In fact, let us choose mi = γ(τi−1 +1), m′
i = γ(τi+1). Since γ(t;Kj ,K

′
j ,m, m′) is the

minimizer of hK,K′

L̃
(m,m′, Z, ~τ) over Λ, thus

AL̃((−τi)∗γ|τi+1
τi−1+1) + (τi − τi−1 + 1)α(ci) + (τi+1 − τi)α(ci+1)

= inf
ξ(−T0)=mi

ξ(T1)=m′
i

T̆ 0
i ≤T0≤T̂ 0

i

T̆ 1
i ≤T1≤T̂ 1

i

∫ T1

−T0

(L− ηi − µi)(dξ(t), t)dt + T0α(ci) + T1α(ci+1),

from which and (5.2), (5.5) as well as (5.9) it follows that (5.12) holds. Conse-
quently, γ(t;Kj ,K

′
j)|τi≤t≤τi+1 falls into the region where (−τi)∗µi is closed. Thus,

dγ(t;Kj ,K
′
j) is the solution of the Euler-Lagrange equation determined by L when

τi ≤ t ≤ τi + 1;

2, for 0 ≤ i < i1 and i2 ≤ i < i3, there is a local minimal curve connecting
mi ∈ V +

i and mi+1 ∈ V −
i+1 with the time T̃ 0

i + T̃ 1
i , so, it is easy to see that

(−τi)∗γ(t)|0≤t≤τ ∈ int(Oi)

if both V +
i and V −

i+1 are chosen suitably small. That also implies that dγ(t;Kj ,K
′
j)

is the solution of the Euler-Lagrange equation determined by L when τi ≤ t ≤ τi + 1
for 0 ≤ i < i1 and i2 ≤ i < i3;

3, We claim that the curve γ does not touch the boundary of V +
i at the time

t = τi − T̃ 0
i and does not touch the boundary of V −

i+1 at the time t = τi + T̃ 1
i for

each 0 ≤ i < i1 and for each i2 ≤ i < i3. If (γ(τi − T̃ 0
i ), γ(τi + T̃ 1

i )) = (mi,m
′
i) ∈

∂(V +
i ×V −

i+1) for some i, let m′
i−1 = γ(τi−1 + T̃ 1

i−1) and mi+1 = γ(τi+1− T̃ 1
i+1), from

(5.1) we can see that there exist (m̄i, m̄
′
i) ∈ V +

i × V −
i+1 such that for ξ ∈ M0(ci),
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ζ ∈M0(ci+1):

hTi
ci

(m′
i−1,mi) + h

T̃ 0
i ,T̃ 1

i

ηi,µi,ψi
(mi,m

′
i, e1) + hTi+1

ci+1
(m′

i,mi+1)

≥h∞ci
(ξ,mi) + h

T̃ 0
i ,T̃ 1

i

ηi,µi,ψi
(mi,m

′
i, e1) + h∞ci+1

(m′
i, ζ)

+ h∞ci
(m′

i−1, ξ) + h∞ci+1
(ζ, mi+1)− 2ε∗i

≥h∞ci
(ξ, m̄i) + h

T̃ 0
i ,T̃ 1

i

ηi,µi,ψi
(m̄i, m̄

′
i, e1) + h∞ci+1

(m̄′
i, ζ)

+ h∞ci
(m′

i−1, ξ) + h∞ci+1
(ζ, mi+1) + 3ε∗i

≥h
T ′i
ci (m′

i−1, m̄i) + h
T̃ 0

i ,T̃ 1
i

ηi,µi,ψi
(m̄i, m̄

′
i, e1) + h

T ′i+1
ci+1 (m̄′

i,mi+1) + ε∗i

but this contradicts to the fact that γ is a minimal curve of L̃ on V and Λ. In above
argument, (5.6) and (5.7) are used to obtain the first and the third inequality, (5.1)
is used to obtain the second inequality.

Let Kj ,K
′
j → ∞, let γ∞: R → M be an accumulation point of {γ(t,Kj ,K

′
j)}.

Obviously, α(dγ∞) ⊂ Ñ (ci) and ω(dγ∞) ⊂ Ñ (ci+1).

6, Hölder continuity

The task in this section is to build up some Hölder continuous dependence of h∞c
on some parameters if we set k = 1. These properties will be used to show that there
is a generic set for perturbation where the conditions for the theorem are satisfied.

Let Φt
H be the Hamiltonian flow determined by H, it is a small perturbation of

Φt
h1+h2

. Let ΦH and Φh1+h2 be their time-1-maps. As the cylinder T×R×{(x, y) =
(0, 0)} = Σ0 is the normally hyperbolic invariant manifold for Φh1+h2 and the a priori
unstable condition is assumed, it follows from the fundamental theorem of normally
hyperbolic invariant manifold (cf. [HPS]) that there is ε = ε(A,B) > 0 such that
if ‖P‖Cr ≤ ε on the region {‖(p, y)‖ ≤ max(|A|, |B|) + 1} the map Φs+k

H (k ∈ Z)
also has a Cr−1 invariant manifold Σ(s) ⊂ Rn+1 × Tn+1, provided that r ≥ 2. This
manifold is a small deformation of the manifold Σ0|{|p|≤max(|A|,|B|)+1}, and is also
normally hyperbolic and time-1-periodic. Let Σ = Σ(0), it can be considered as the
image of a map ψ: Σ0 → Rn × Tn, Σ = {p, q, x(p, q), y(p, q)}. This map induces a
2-form Ψ∗ω on Σ0

Ψ∗ω =

(
1 +

n∑

i=1

∂(xi, yi)
∂(p, q)

)
dp ∧ dq.

Since the second de Rham co-homology group of Σ0 is trivial, by using Moser’s
argument on the isotopy of symplectic forms [Mo], we find that there exists a diffeo-
morphism Ψ1 on Σ0|{|p|≤max(|A|,|B|)+1} such that

(Ψ ◦Ψ1)∗ω = dp ∧ dq.

Since Σ is invariant for ΦH and Φ∗Hω = ω, we have
(
(Ψ ◦Ψ1)−1 ◦ ΦH ◦ (Ψ ◦Ψ1)

)∗
dp ∧ dq = dp ∧ dq
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i.e. (Ψ ◦Ψ1)−1 ◦ ΦH ◦ (Ψ ◦Ψ1) preserves the standard area. Clearly, it is exact and
twist since it is a small perturbation of Φh1 . In this sense, we say that the restriction
of ΦH on Σ is obviously area-preserving and twist. If r > 4 there are many invariant
homotopically non-trivial curves, including many KAM curves. All these curves are
Lipschitz. Given ρ ∈ R there is an Aubry-Mather set with rotation number ρ, which
is either an invariant circle, or a Denjoy set if ρ ∈ R\Q, or periodic orbits if ρ ∈ Q.
Under the generic condition we can assume there is no homotopically non-trivial
invariant curves with rational rotation number for ΦH |Σ, there is only one minimal
periodic orbit on Σ for each rational rotation number.

Let us consider the Legendre transformation L. By abuse of terminology we
continue to denote Σ(s) and its image under the Legendre transformation by the
same symbol. Let

Σ̃ =
⋃

s∈T
(Σ(s), s),

which has the normal hyperbolicity as well. Under the Legendre transformation those
Aubry-Mather sets (invariant curves, Denjoy sets or minimal periodic orbits) on Σ
correspond to the support of some c-minimal measures. Recall H1(M,R) = Rn+1.
So we have

Lemma 3.1 (k=1). Given some large number K > 0 and a small number δ > 0
there exists a small number ε = ε(δ), if L1 ∈ Bε,K and if |cq| ≤ K then there exists
an n-dimensional convex set D(cq) which contains a neighborhood of (cq, 0)∩Rn such
that for each c ∈ int(D(cq)) the Mañé set Ñ (c) ⊂ Σ̃, the Mather set M0(c) is the
Aubry-Mather set for the twist map. If the rotation number is irrational, then M(c)
is uniquely ergodic.

Proof: We have shown that M(c) ⊂ Nδ. The normal hyperbolicity guarantees that
the invariant set in Nδ must be in the invariant cylinder. The time 1 map restricted
on the cylinder is then an area-preserving twist map. ¤

Consider a cohomology class c = (cq, 0) ∈ H1(M,R) such that it corresponds
to an invariant circle Γ in Σ with irrational rotation number. In the Hamiltonian
formalism, Γ = {(p, q, x, y) ∈ Rn+1 × Tn+1 : (p, x, y) = (p, x, y)(q), q ∈ T}. Based
on each point on this circle, there is a Cr−1-stable fiber as well as a Cr−1-unstable
fiber. These stable (unstable) fibers Cr−2-depends on the base point and make up
the local stable (unstable) manifold of that circle which are the graph of a Lipschitz
function in a small neighborhood of the circle, i.e.

Wu,s
loc (Γ) =

{
(q, x, (p, y)u,s(q, x)) : (q, x) ∈ Nδ ⊂ Tn+1

}

where (p, y)(q, x) is a Lipschitz function of (q, x).

Lemma 6.1. There exists a C1,1 function Ss,u: {‖x‖ ≤ δ} → R and a constant
vector c ∈ Rn+1 such that W s,u

loc (Γ) = {(q, x), dSs,u(q, x) + c : (q, x) ∈ Nδ}.
We use Ck,α to denote those functions whose k-th derivative is of α-Hölder.
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Proof: Let us consider the stable manifold. By the condition there is a Lipschitz
function (p, y): Nδ → R such that W s

loc(Γ) = {(q, x, (p, y)s(q, x)) : (q, x) ∈ Nδ}.
Let σ be an 2-dimensional disk in W s

loc. Since σ is in the stable manifold, Φk
H(∂σ)

approaches uniformly to Γ, i.e. Φk
H(∂σ) is such a closed curve going from a point to

another point and returning back along almost the same path when k is sufficiently
large. As ΦH is a symplectic diffeomorphism we have

∫∫

σ

(dp ∧ dq +
n∑

i+1

dyi ∧ dxi) =
∮

∂σ

(pdq +
n∑

i+1

yidxi)

=
∮

Φk
H(∂σ)

(pdq +
n∑

i+1

yidxi)

= 0.

Note the function (p, y)s(q, x) is Lipschitz, it is differentiable almost everywhere in
Nδ. As σ is arbitrarily chosen, for almost (q, x) ∈ Nδ the following holds:

∂p

∂xi
=

∂yi

∂q
,

∂yi

∂xj
=

∂yj

∂xi
, ∀ 1 ≤ i, j ≤ n. (6.1)

Consequently, there exists a C1,1-function Ss
c and c = (cq, 0) ∈ Rn+1 such that

(p, y)s = dSs
c + c. In the same way, we obtain a C1,1-function Su

c and c′ = (c′q, 0) ∈
Rn+1 such that (p, y)u = dSu

c + c′. Since W s
loc intersects Wu

loc on the whole Γ, c′ = c.
¤

Indeed, for almost all initial points (q, x, (p, y)s(q, x)) ∈ W s, (p, y)s is differentiable
at all Φk

H(q, x, (p, y)s(q, x)) for all k ∈ Z+. To see that, let O ⊂ Nδ be an open set,
for each k there is a full Lebesgue measure set Ok ⊂ π(Φk

H{O, (p, y)s(O)}) where
(p, y)s is differentiable. Since ΦH is a diffeomorphism, the set

O∗ =
∞⋂

k=0

π
(
Φ−k

H {Ok, (p, y)s(Ok)}
)

is a full Lebesgue measure subset of O. For any point (q, x) ∈ O∗, (p, y)s is differen-
tiable at the points π(Φk

H{(q, x), (p, y)s(q, x)} for all k ∈ Z+.

Let us consider the Hamiltonian flow. The local stable (unstable) manifold is a
graph of some function

W̃ s,u
loc = {(q, x, t), (p, y)s,u(q, x, t) : (q, x, t) ∈ Nδ × T}.

Obviously, we have ((p, y)s,u, t)∗Ω = 0 in M ×T, where Ω =
∑

dxi ∧ dyi + dq ∧ dp−
dH ∧ dt. Thus, in the covering space Rn+2 there exists a C1,1-function S̄s,u

c (q, x, t)
such that dS̄s,u

c = (p, y)s,u(q, x, t)−H((p, y)s,u(q, x, t), q, x, t)dt. Consequently, there
exists a function Ss,u

c (q, x, t) ∈ C1,1(Nδ × T,R) and c = (cq, 0) such that

Ls,u = L− cq(q̇ + ∂qS
s,u
c )− 〈∂xSs,u

c , ẋ〉 − ∂tS
s,u
c
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attains its minimum at LW s,u as the function of (q̇, ẋ). Note Ls,u
(q̇,ẋ) − ∂(q,x)S

s,u
c is

Lipschitz, dLs,u
(q̇,ẋ)/dt and Ls,u

(q,x) exist almost everywhere. Since LW s,u is a mani-
fold made up by the trajectories of the Euler-Lagrange flow, it follows from Euler-
Lagrange equation dLq̇,ẋ/dt = Lq,x and (6.1) that Lq,x|LW s,u

loc
= 0 almost everywhere.

The absolute continuity of L implies that Ls,u|LW s,u
loc

is a function of t alone. So, by
adding some function of t to Ss,u

c , Ls,u|LW s,u
loc

= −α(c).

Lemma 6.2. Let c = (cq, 0). If Γ is an invariant circle in the cylinder, the Aubry-
Mather set is uniquely ergodic, then for each ξ ∈ π(Γ) and each m ∈ Nδ, we have

h∞c (ξ,m) = Su
c (m)− Su

c (ξ), h∞c (m, ξ) = Ss
c (ξ)− Ss

c (m). (6.2)

Proof: Since there are the local stable manifold W s(Γ) and the unstable manifold
Wu(Γ) to the invariant circle Γ, for each point m ∈ Nδ there is a unique c-minimal
orbit γs,u(t) such that γs,u(0) = m and γs,u(k) → π(Γ) as Z 3 k → ±∞. Let ξ ∈
M0(c), there is an integer subsequence ks,u

i → ±∞ as i →∞ such that γs,u(ks,u
i ) → ξ

as i →∞. It means that

lim
i→∞

h
ks

i
c (m, γs(ks

i )) = h∞c (m, ξ), lim
i→∞

h
−ku

i
c (γu(ku

i ),m) = h∞c (ξ,m).

Since Ls,u + α(c) = 0 on W s,u, we have

∫ 0

ku
i

(
L(dγu

c (ku
i )− 〈c, γ̇u

c (ku
i )〉+ α(c)

)
dt =Su(γu

c (0))− Su(γu
c (ku

i )),

∫ ks
i

0

(
L(dγs

c (ku
i )− 〈c, γ̇s

c (ku
i )〉+ α(c)

)
dt =Ss(γs

c (ku
i ))− Ss(γs

c (0)).

That implies that (6.2) holds for each m ∈ Nδ and each ξ ∈M0(c). To see that (6.2)
holds for each ξ ∈ π(Γ), let us recall that, for a twist map, the sufficient and necessary
condition for the existence of an invariant circle is that the Peierl’s barrier function
is identically equal to zero. Consequently, passing each ζ ∈ π(Γ) there is a regular
c-minimal configuration (· · · ,mi, · · · ) such that ζ = m0. Since we have assumed the
unique ergodicity of the minimal measure, dc(ζ, ξ) = 0 for each ζ ∈ π(Γ) and each
ξ ∈M0(c). Thus, (6.2) holds for any ξ ∈ π(Γ). ¤

We now consider the local stable and unstable manifolds of all invariant circles.
Different invariant circle determines different stable and unstable manifolds, i.e. we
have a family of these local stable and unstable manifolds. We claim that this family
of local stable (unstable) manifolds can be parameterized by some parameter σ so
that both Su

c and Ss
c have 1

2 -Hölder continuity in σ. Indeed we choose one circle and
denote it Γ0 and parameterize another circle Γσ by the algebraic area between Γσ

and Γ0,

σ =
∫ 1

0

(Γσ(q)− Γ0(q))dq.
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This integration is in the sense that we pull it back to the standard cylinder by
Ψ ◦ Ψ1 ∈ diff(Σ0,Σ). In this way we obtain an one-parameter family curves Γ:
T× S→ Σ in which S ⊂ [A′, B′] is a closed set. Usually, S is a Cantor with positive
Lebesgue measure. A′ and B′ correspond to the curves where the action p ≤ A and
p ≥ B respectively. Clearly, for each σ ∈ S, there is only one cq = cq(σ) such that
Γσ = M̃0(c) for c = (cq, 0) ∈ H1(M,R) when the rotation number is irrational.
Clearly, cq is continuous in σ on S. We can think Γσ as a map to function space C0

equipped with supremum norm Γ: S→ C0(T,R),

‖Γσ1 − Γσ2‖ = max
q∈T

|Γ(q, σ1)− Γ(q, σ2)|.

Straight-forward calculation shows

|σ1 − σ2| ≥ 1
2Ch

(
max
q∈T

|Γ(q, σ1)− Γ(q, σ2)|
)2

,

where Ch is the Lipschitz constant for the twist map, it follows that

‖Γσ1 − Γσ2‖ ≤ Cs|σ1 − σ2| 12

where Cs =
√

2Ch. Since the stable (unstable) fibers have Cr−2-smoothness on their
base points on Σ, r ≥ 3, (p, y)s,u

σ is also 1
2 -Hölder continuous in σ. Let Ss,u

σ = Ss,u
c(σ),

we have

Lemma 6.3. Restricted in Nδ the functions Ss
σ(m), Su

σ (m) are 1
2 -Hölder continuous

in σ ∈ S.
Next, let us consider the dependence of the barrier function on σ and cq(σ) when

σ ∈ S. For each c = (cq, 0), each m ∈ M\Nδ and each ξ ∈ M0(c) there exist
m+,m− ∈ Nδ and k+, k− ∈ Z+ such that

h∞c (ξ,m) = h∞c (ξ,m+) + hk+

c (m+,m), h∞c (m, ξ) = hk−
c (m,m−) + h∞c (m−, ξ).

Clearly, there exists a uniform upper bound K ∈ Z such that for each c = (cq, 0),
each m ∈ M\Nδ and each ξ ∈M(c) we have k+ ≤ K, k− ≤ K.

Fix m ∈ M\Nδ, different σ determines different m+,m− ∈ Nδ. For each σ ∈ S,
each m ∈ M\Nδ can be covered by both ΦK

H(Wu
loc(Γσ)) and Φ−K

H (W s
loc(Γσ)) in the

sense that m ∈ π(ΦK
H(Wu

loc(Γσ))), m ∈ π(Φ−K
H (W s

loc(Γσ))). Let u be the coordinate
of m ∈ M and let z = (u, v) ∈ TM be the initial value such that φt

L(z): [0,∞) → TM

is a forward c-semi-static orbit, assuming m ∈ M\Nδ. Clearly, z ∈ L(Φ−k
H (W s

loc(Γσ)))
Consider another invariant circle Γσ′ close to Γσ. By the 1

2 -Hölder continuity there
exists a point z′ = (u′, v′) ∈ L(Φ−K

H (W s
loc(Γσ′))) with ‖z′ − z‖ ≤ C1

√
|σ − σ′|. We

claim that ∃ d1 ≥ 0 such that if C1

√
|σ − σ′| ≤ d1 then

‖φt
L(z′)− φt

L(z)‖ ≤ 2‖z′ − z‖, ∀ t ∈ [0, k+]. (6.3)
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To see that, we write the Lagrange equation into the form of first order ODE:

v̇ =
(

∂2L

∂u̇2

)−1 (
− ∂2L

∂u̇∂u
v − ∂2L

∂u̇∂t
+

∂L

∂u

)
,

u̇ = v. (6.4)

Since the convexity of L is assumed this equation is well-posed. If we write (6.4) in
the form

ż = F (z, t)

its variational equation along an orbit dγσ as follows

∆ż = DF (dγσ(t), t)∆z + f(dγ(t), t, ∆z)

where f(dγ(t), t, ∆z) = O(‖∆z‖2) as ∆z → 0. Let E(t, σ) be the fundamental matrix
solution of the linearized variational equation. Since the orbits dγ: [0,∞) → TM

concerned has the property that ω(dγσ) ⊂ Ñ (c) while we are only interested in
those co-homology classes {c ∈ H1(M,R) : c = (cq(σ), 0), |cq| ≤ max{|A|, |B|} +
1}, there exists a large but bounded constant C2 = C2(A,B) such that C2 ≥
max{Eij(t, σ), E−1

ij (t, σ) : 1 ≤ i, j ≤ n, 0 ≤ t ≤ K, σ ∈ S} where Eij , E−1
ij de-

note the (i, j)-entry of E and its inverse respectively. Since f is the higher order
term of ∆z, there exists a small constant d1 > 0 such that

‖f(dγ(t), t, ∆z)‖ ≤ 1
n2KC2

2

‖∆z‖, if ‖∆z‖ ≤ 2d1.

Since ∆z is the solution of the integral equation:

∆z(t) = ∆z(0) + E(t)
∫ t

0

E−1(s)f(dγ(s), s, ∆z(s))ds,

we have ‖∆z(t)‖ ≤ 2‖∆z(0)‖ for all t ∈ [0,K] if ‖∆z(0)‖ ≤ d1.

Let z ∈ L(Φ−k
H (W s

loc(Γσ))) so that φt
L(z): [0,∞) → M is a forward c-semi-static

orbit. Let c′ = (cq(σ′), 0). By the 1
2 -Hölder continuity of W s

loc(Γσ) in σ, there
is a point z′ = (u′, v′) ∈ L(Φ−k

H (W s
loc(Γσ′))) with the property that u′ = u(σ′)

1
2 -continuously depending on σ′, φt

L(z′): [0,∞) → M is a forward c′-semi static
orbit and (6.3) holds. Since the stable manifold may multi-fold, there might be no
z′ = (u, v′) such that φt

L(z) is a c′-semi static orbit and ‖z′ − z‖ = O(
√

σ − σ′). Let
uk+ = π(φk+

L (z)), u′k+ = π(φk+

L (z′)), we can write

h∞c(σ′)(u, ξ) = E1(σ′) + E2(σ′) + E3(σ) + c′qE4(σ′) + E5(c′q(σ))

where

E1(σ′) =h∞c(σ′)(u, ξ)− h∞c(σ′)(u
′, ξ),

E2(σ′) =h∞c(σ′)(u
′
k+ , ξ),

E3(σ′) =
∫ k+

0

L(dγ′(t), t)dt,

E4(σ′) =γ̄′q(k
+)− γ̄′q(0),

E5(σ′) =k+α(c′),
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γ′(t) = π(φt
L(z′)), γ̄′ is the lift of γ′ to the universal covering Rn+1. By the Lipschitz

property of h∞c (m,m′) in m,m′ and the choice of u′ = u(σ) we can see that Ei

(i = 1, 2, 3, 4) has 1
2 -Hölder continuity in σ′. Recall that the β function for a twist map

has no flat piece, and is differentiable at irrational numbers, E5 is Lipschitz in c. Thus,
we can formally define a function h∞c,σ = E1(σ) + E2(σ) + E3(σ) + cqE4(σ) + E5(cq)
regardless of the dependence of cq on σ. So we obtain

Lemma 6.4. Assume that m ∈ M\Nδ, |cq| ≤ max{|A|, |B|}+1. Let c = (cq, 0) and
ξ ∈M0(c), then we can extend the function h∞c(σ), defined on {A−1 ≤ σ ≤ B+1}, to a
function h∞c,σ(u, ξ) defined in a neighborhood of the continuous curve {σ, cq(σ)} ⊂ R2

such that h∞c(σ) = h∞c,σ(u, ξ)|cq=cq(σ) and

|h∞c,σ(ξ,m)− h∞c′,σ′(ξ, m)| ≤ C3(
√
|σ − σ′|+ |cq(σ)− cq(σ′)|),

|h∞c,σ(m, ξ)− h∞c′,σ′(m, ξ)| ≤ C3(
√
|σ − σ′|+ |cq(σ)− cq(σ′)|).

Remark: We do not know whether the function σ → cq(σ) has some Hölder conti-
nuity in σ.

7, Generic property

In this section we also assume that k = 1. The task in this section is to show that
there is a residual set in Bε,K such that if P is in this set then there is a generalized
transition chain {c ∈ H1(M,R) : cx = 0, A ≤ cq ≤ B}.

Let us consider this issue from the Hamiltonian dynamics point of view. Since the
system is positive definite in action variable v = (p, y), it has a generating function
G(u, u′) (u = (q, x))

G(u, u′) = inf
γ∈C1([0,1],M̃)
γ(0)=u,γ(1)=u′

∫ 1

0

L(γ(s), γ̇(s), s)ds,

where (u, u′) is in the universal covering space M̃ × M̃ = Rn+1 × Rn+1. Clearly,
G(u + 2kπ, u′ + 2kπ) = G(u, u′) for each k ∈ Zn+1. The map ΦH : (u, v) → (u′, v′) is
given by

v′ = ∂u′G(u, u′), v = −∂uG(u, u′).

Let π2 be the standard projection from Rn+1 → Tn+1, let c ∈ Rn+1 and

Gc(u, u′) = G(u, u′)− 〈c, u′ − u〉

then
hc(m,m′) = min

π2(u)=m
π2(u

′)=m′

Gc(u, u′) + α(c).



32

We consider the change of the function h∞c when the generating function is subject
to a small perturbation G → G + G1. Let m ∈ M\Nδ, ξ ∈ M0(c), c = (cq, 0). Let
{ki} be a subsequence such that

lim
i→∞

hki
c (ξ,m) = lim inf

k→∞
hk

c (ξ,m).

Let {u1, u2, · · · , uki = m} be the minimal configuration, we claim that there exists
b > 0 such that ui /∈ Bb(m), the ball centered at m with radius b, for each 1 ≤ i ≤
ki − 1. In fact, hk

c (m,m) ≥ 2A > 0 for each c = (cq, 0) ∈ H1(M,R) and for each
k ∈ Z+. If not, there exists a subsequence kj such that

lim
kj→∞

hkj
c (m,m) = 0.

It implies that m ∈ A0(c), which contradicts the lemma 3.1. Since hk
c (m,m′) is

Lipschitz in m,m′, there exists b > 0 such that if m′ ∈ Bb(m) then hk
c (m,m) ≥ A

for each k ∈ Z+. If there is ui ∈ Bb(m) for some i ∈ {ki}, let m′ be an accumulation
point of {ui} then there exists some k ∈ Z+ such that

h∞c (ξ, m) = h∞c (ξ, m′) + hk
c (m′,m).

Consequently,
h∞c (ξ, m′) ≤ h∞c (ξ,m)−A.

On the other hand, from the Lipschitz property we obtain that

h∞c (ξ,m′) ≥ h∞c (ξ,m)− CL‖m−m′‖.
It leads a contradiction if m′ is sufficiently close to m. The contradiction verifies
our claim. Consequently, if the generating function subjects to a small perturbation
G(u, u′) → G(u, u′) + G1(u′), where supp(G1) ⊆ Bb(m), h∞c will also undergo the
small perturbation:

h∞c (ξ, m′) → h∞c (ξ, m′) + G1(m′), ∀m′ ∈ Bb(m), ξ ∈M0(c);

while h∞c (m′, ξ) remains the unchanged.

Choose ξ, ζ ∈ M0(c), m ∈ M\Nδ. The change of h∞c,e1
(ξ,m, ζ) is a little bit

complicated when the generating function undergoes the same small perturbation as
above. Let {ki} be a subsequence such that

lim
i→∞

hki
c,e1

(ξ, m, ζ) = lim inf
k→∞

hk
c,e1

(ξ, m, ζ).

Let {u0 = ξ, u1, · · · , uli = m, · · · , uki
= ζ} be the minimal configuration that realizes

the minimal action hki
c,e1

(ξ,m, ζ), denote by γi: [0, ki] → M the corresponding mini-
mal curve. We claim that there exists b > 0 such that there is at most one uji ∈ Bb(m)
for some 1 ≤ ji < ki, ji 6= li when ki is sufficiently large. To a curve γ: [0, k] → M
with γ(0), γ(k) ∈ Bb(m) we can associate an element [γ] ∈ H1(M,Bb(m),Z). If
there were two other points uji

, uj′i ∈ Bb(m) (without losing of generality we assume
ji < j′i < li), then we would have two alternatives:
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1, either [γ|[ji,j′i]]x1 = 0, or [γ|[j′i,li]]x1 = 0, or both;

2, both [γ|[ji,j′i]]x1 6= 0 and [γ|[j′i,li]]x1 6= 0.

In the first case, we can cut off a piece γ|[ji,j′i] from the minimal curve and define
a curve γ′: [0, ki − j′i + ji] → M such that

γ′(t) =





γ(t) t ∈ [0, ji],
η(t) t ∈ [ji, ji + 1],
γ(t− j′i + ji + 1) t ∈ [ji + 1, ki − j′i + ji],

where η: [ji, ji + 1] → M is a minimal curve joining γ(ji) with γ(j′i + 1). Clearly,
[γ′]x1 6= 0. Since γ(ji) is close to γ(j′i), by the Lipschitz property of hc(m,m′) in
m,m′, we have

∫ ki−j′i+ji

0

L(dγ′(t), t)dt + (ki − j′i + ji)α(c) ≤ hki
c,e1

(ξ, m, ζ)−A. (7.1)

To see the absurdity of (7.1), let us observe a simple fact: if some uj ∈ Bb(m),
then ki − j → ∞, j → ∞ as i → ∞. It implies that ki − j′i + ji → ∞. So (7.1)
contradicts the definition of h∞c if we choose ki →∞ being such a subsequence that
limki→∞ hki

c,e1
(ξ,m, ζ) = h∞c,e1

(ξ,m, ζ). For the second alternative, by cutting off
one piece γ|[ji,j′i] or both γ|[ji,j′i] and γ|[j′i,li] we can construct a curve γ′ such that
[γ′]x1 6= 0. In the same way we can show this is also impossible. Thus, we have

Lemma 7.1. Assume that generating function is subject to a small perturbation
G(u, u′) → G(u, u′) + G1(u′), where supp(G1) ⊆ Bb(m), m ∈ M\Nδ. There exists
b > 0 such that for each c = (cq, 0) with |cq| ≤ max{|A|, |B|}+1, the barrier function
undergoes a small perturbation:

B∗
c,e1

(u) → B∗
c,e1

(u) + jG1(u) + a small constant j = 1, or 2.

The next step is to show that the density of the set {P ∈ Cr : {u ∈ M\Nδ :
B∗

c (u, e1) = minu B∗
c (u, e1)} is totally disconnected}. Let Rd = {u ∈ M : |q − q∗| ≤

d, |xi − x∗i | ≤ d, ∀ 1 ≤ i ≤ n} ⊂ Bb(u∗), Sc,σ = B∗
c(σ) + G1, we define

Z(σ) = {u ∈ Rd : Sc,σ = min
u∈Rd

Sc,σ}.

We say a connected set V is non-trivial for Rd if either Πq(V ∩Rd) = {q∗ − d ≤ q ≤
q∗ + d} or Πi(V ∩ Rd) = {x∗i − d ≤ xi ≤ x∗i + d} for some 1 ≤ i ≤ n. Here Πi is
the standard projection from Tn+1 to its i-th component. Let Md,u∗ = {u : S(u) =
minu∈Rd(u∗) S}, we define a set in the function space F(d, u∗) = C0(Rd(u∗),R),

Z(d, u∗) =
{

S ∈ F(d, u∗) : Md,u∗(S) contains a set non-trivial for Rd(u∗)
}

.
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For convenience of notation, we set x0 = q and define Zi (i = 0, 1, · · · , n):

Z0 =
{

S ∈ Z(d, u∗) : Πq(Md,u∗(S)) = {q∗ − d ≤ q ≤ q∗ + d}
}

,

Zi =
{

S ∈ Z(d, u∗) : Πi(Md,u∗(S)) = {x∗i − d ≤ xi ≤ x∗i + d}
}

.

Clearly:

Z(d, u∗) =
n⋃

i=0

Zi.

Our first task is to show for each generating function G ∈ Cr(M ×M,R) and each
ε > 0, there is an open and dense set H(d, u∗) of Bε(0) ⊂ Cr(Rd(u∗),R), for each
G1 ∈ H(d, u∗), the image of Sσ from [A′, B′] to F has no intersection with the set
Zi.

Obviously, the set Zi is a closed set and has infinite co-dimension in the following
sense, there exists N, an infinite dimensional subspace of F, such that (S + F ) /∈ Zi

for all S ∈ Zi and F ∈ N\{0}. In fact, for each non constant function F (xi) ∈
C0([x∗i − d, x∗i + d],R) with F (x∗i ) = 0 and each S + F /∈ Zi. Thus, we can choose
N = C0([x∗i − d, x∗i + d],R)/R, which we think as the subspace of C0(Rd(u∗),R)
consisting of those continuous functions independent of other coordinate components
xj (j 6= i).

On the other hand, since Sc,σ: [A,B]× [A′, B′] → F has 1
2 -Hölder continuity, the

image of the continuous curve {σ, c(σ)} ⊂ [A,B] × [A′, B′] is compact and its box
dimension is not bigger than 4,

DB(Fσ) ≤ 4,

where Fσ = {Sc(σ),σ : σ ∈ [A′, B′]}. Clearly, this set is determined by the generating
function G.

Lemma 7.2. There is an open and dense set N∗ ⊂ N such that for all F ∈ N∗

(Fσ + F ) ∩ Z = ∅. (7.2)

Proof: The open property is obvious. If there was no density property, for any k ∈ Z,
there would be a k-dimensional ε-ball Bε ⊂ N for some ε > 0, for each F ∈ Bε, there
would exist S ∈ Fσ such that F + S ∈ Zi. For each S ∈ Fσ there is only one F ∈ Bε

such that S + F ∈ Zi, otherwise, there would be F ′ 6= F such that S + F ′ ∈ Zi.
Since we can write F ′+S = F ′−F +F +S where S +F ∈ Zi and F ′−F ∈ N\{0},
this contradicts to the definition of N. Given F ∈ Bε, there might be more than
one element in SF = {S ∈ Fσ : S + F ∈ Zi}. Given any two F1, F2 ∈ Bε, for any
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S1 ∈ SF1 and any S2 ∈ SF2 we have

d(S1, S2) = max
u∈Rd(u∗)

|S1(u)− S2(u)|
≥ max
|xi−x∗i |≤d

| min
|xj−x∗j |≤d

j 6=i

S1(u)− min
|xj−x∗j |≤d

j 6=i

S2(u)|

= max
|xi−x∗i |≤d

|F1(xi)− F2(xi)|

= d(F1, F2) (7.3)

where d(·, ·) denotes the C0-metric. It follows from (7.3) and the definition of box
dimension that

DB(Fσ) ≥ DB(Bε) = k,

but this is absurd if we choose k > 4. ¤

We use symbol 2N = {F : 1
2F ∈ N}. (2N)∩N is clearly open and dense. As Cr

is dense in C0, an open and dense set H(d, u∗) ⊂ Cr(Rd(u∗),R) clearly exists such
that for each perturbation of generating function G1 ∈ H(d, u∗), we have

Fσ ∩ Z(d, u∗) = ∅, ∀ σ ∈ S,

where by abuse of terminology we continue to denote Sσ and its restriction to Rd(u∗)
by the same symbol.

Let U = M\Nδ, MU (S) = {u : S(u) = minu∈U S} and

Z =
{

S ∈ C0(U,R) : MU (S) is totally disconnected
}

.

Given di > 0, there are finitely many uij such that ∪jRdi
(uij) ⊇ U . Thus there

exists a sequence di → 0 and a countable set {uij} such that




∞⋂

i,j=1

H(di, uij)


 ⋂

Z = ∅.

Recall the lemma 3.5, we have the following

Lemma 7.3. There exists a residual set Sε ⊂ Bε ⊂ Cr(U,R), for each G1 ∈ Sε

π1N0(c(σ), M̃)\(N0(c(σ),M) + δ) = {is totally disconnected}.

Note we can write G1 =
∑

k G1k so that each G1k has simply connected support.
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The perturbation to the generating function G can be achieved by perturbing
the Hamiltonian function H → H ′ = H + δH. To do that, let us introduce a
differentiable function κ: M → R such that 0 ≤ κ(u − u′) ≤ 1, κ(u − u′) = 1 if
|u − u′| ≤ K and κ(u − u′) = 0 if |u − u′| ≥ K + 1. We choose sufficiently large
K so that {‖v‖ ≤ max(|A|, |B|) + 1} is contained in the set where |u − u′| ≤ K.
Let Φ′ be the map determined by the generating function G + κG1, the symplectic
diffeomorphism Ψ = Φ′ ◦ Φ−1 is closed to identity. We choose a smooth function
ρ(s) with ρ(0) = 0 and ρ(1) = 1, let Φ′s be the symplectic map determined by
G + ρ(s)κG1k, let Ψs = Φ′s ◦ Φ−1. Clearly, Ψs defines a symplectic isotopy between
identity map and Ψ. Thus, there is a unique family of symplectic vector field Xs:
T ∗M → TT ∗M such that

d

ds
Ψs = Xs ◦Ψs.

By the choice of perturbation, there is a simply connected and compact domain DK

such that Ψs|T∗M\DK
= id. It follows that there is a hamiltonian H1(u, v, s) such

that dH1(Y ) = dv ∧ du(Xs, Y ) holds for any vector field Y . Re-parameterizing s by
t we can make H1 smoothly and periodically depend on t. To see that dH1 is also
small, let us mention a theorem of Weinstain [W]. A neighborhood of the identity
map in the symplectic diffeomorphism group of a compact symplectic manifold M
can be identified with a neighborhood of the zero in the vector space of closed 1-forms
on M. Since Hamiltomorphism is a subgroup of symplectic diffeomorphism, there is
a function H ′, sufficiently close to H, such that ΦH1 ◦ ΦH = Φt

H′ |t=1.

The perturbation made to H does not change the dynamics around the cylinder,
it means that the set of invariant circles remains unchanged if H is subject to the
perturbation constructed this way.

In the case of twist map, each co-homology class corresponds to a unique rotation
number. Obviously, for each rotation number p/q ∈ Q, there is an open and dense set
in the space of area-preserving twist maps such that there is only one minimal (p, q)-
periodic orbit without homoclinic loop. Take the intersection of countably open dense
sets it is a generic property that there is only one minimal (p, q)-periodic orbit without
homoclinic loop for all p, q ∈ Z. Recall that the minimal measure is always uniquely
ergodic when the rotation number is irrational, there is a residual set in Bε,K , if L1 is
in this set, then there is a generalized transition chain Γ: [0, 1] → H1(M,R)∩{cx = 0}
which connects {cq ≤ A} with {cq ≥ B}. For each c in a transition piece, M(c) is
uniquely ergodic, thus the conditions of the theorem 5.2 are satisfied.

Therefore, the proof of the theorem 1.1 is completed.

Remark: Since the time for each orbit drifts from {p ≤ A} to {p ≥ B} is finite, the
smooth dependence of solutions of ODE’s on parameters implies that the theorem
still holds if the generic condition is replaced by the open and dense condition for
perturbation.
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