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Scattering of TM waves by an impedance cylinder halfway immersed
between two half spaces of different electromagnetic properties has
been studied. Solutions are obtained from an application of a discrete
index of Hankel function transform. Expressions for the fields in both

half spaces are given.

Introduction: To investigate the features of various media by means
of electromagnetic radiation it is necessary to know the field scattered
by inhomogeneties of these media. This problem can be tackled by using
as a basis a rigorous solution of a basic structure. One of the basic struc-
tures is the one considered in this letter. The problem under considera-
tion has also acquired practical relevance in fields of optical engineering
such as the study of contaminated surfaces and the detection of defects.
Additionally the solution of canonical problems such as the one under
consideration is important in the sense of scattering and diffraction the-
ories. The aim of this letter is to present solutions, in terms of a discrete
index of Hankel function transform, to the problem of the scattering of
TM waves by a circular impedance cylinder immersed halfway between
two half spaces of different electromagnetic properties. Other configura-
tions of cylinder and two half spaces have been dealt with before in the
literature (references [1,2] using Fourier series expansions on the angular
variable and reference [3] using integral equations methods) but the one
discussed in this letter, to the best of the author’s knowledge, has not
been addressed before.

Formulation: We look into the problem of scattering by an im-
pedance cylinder of surface impedance Zs , radius a with half of which in
medium one and the other half in medium two. The interface between
the two media is the y = 0 plane. The axis of the cylinder is the z axis of
the coordinate system. The cylinder is infinite in the z direction. k1, ²1,
and µ1 are respectively the wave number, permittivity, and permeability
in medium one. k2, ²2 and µ2 are corresponding quantities in medium
two.
Continuity of tangential field components apply at the interface be-

tween the two media and impedance boundary conditions apply on the
cylinder surface.
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A time harmonic infinite electric line current source (in the z direc-
tion located at (ρ0,φ0) in medium one provides the illumination. Time
dependence e−iωt is assumed and suppressed from the analysis.
It should be pointed out that other forms of excitation are admitted.

To pass from a result derived from a unit strength line source located
at (ρ0,φ0) to the result for a unit amplitude plane wave incident along
the direction φ0, one first lets ρ0 →∞ in the fields’ expressions then sets
[1
4

q
2

πk1ρ0
ei(k1ρ

0+π
4
) = 1]. The fields due to beam excitation are derived

from those of plane wave excitation by attaching a profile to the incident
plane wave and making use of the superposition principle.
By using the symmetry of the problem structure with respect to

the plane ϕ = ±π/2, we split the problem into two independent sub-
problems. The boundary conditions on the symmetry plane correspond
to either a perfect electric conductor (PEC) or a perfect magnetic con-
ductor (PMC). So without loss of generality, we confine our attention to
the case of PEC wall only.

Mathematical model: We propose to solve the problem by means of
a discrete index of Hankel function transform.
The transform pair is given by [4]
f(ρ) =

P
pApΦp(kρ)

Ap =
R∞
a

1
ρ
f(ρ)Φp(kρ)dρ

Φp(kρ) = {−πi νpb(νp)

[ ∂
∂ν
d(ν)]νp

}1/2H(1)
νp (kρ)

b(ν) = J
0
ν(ka) + iCJν(ka)

d(ν) = H
0(1)
ν (ka) + iCH(1)

ν (ka)
Jν(z) is Bessel function; J

0
ν(z) =

d
dz
Jν(z); H(1)

ν (z) is Hankel function
of type one; H

0(1)
ν (z) = d

dz
H(1)

ν (z) ; C = Z/Zs; d(νp) = 0 for {νp} located
in the first quadrant of the complex ν plane; and Z =

q
µ/² the medium

impedance. Passivity requirement is met if Re C º 0.
Such an index transform has been used before [4] to analyze diffrac-

tion by an impedance cylinder in free space.
We represent the electric field in the z direction in medium one, E(1)z ,

as the sum over E(d)z which accounts for the source discontinuity (in the
φ direction) and an additional field E(r)z which accounts for the rest of
the field. In medium two we represent the electric field in the z direction
as E(2)z .

E(d)z =
X
p

[
sin ν1p(

π
2
− φ>) cos ν1pφ<

2ν1p cos ν1p
π
2

Φp(k1ρ
0)]Φp(k1ρ) (1)

E(r)z =
X
p

A1(ν1p) sin ν1p(φ− π

2
)Φp(k1ρ) (2)
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E(2)z =
X
p

A2(ν2p) sin ν2p(φ+
π

2
)Φp(k2ρ) (3)

From Ez the rest of the field components are derived
Hρ =

−iω²
k2

1
ρ
∂Ez
∂φ

Hφ =
iω²
k2

∂Ez
∂ρ

The continuity of the tangential fields on the interface between the
two media leads to
E(d)z +E(r)z = E(2)z at φ = 0

²1(
∂E

(d)
z

∂φ
+ ∂E

(r)
z

∂φ
) = ²2

∂E
(2)
z

∂φ
at φ = 0P

p{ sin ν1p(
π
2
−φ0)

2ν1p cos ν1p
π
2
Φp(k1ρ

0)−A1(ν1p) sin ν1p π2}Φp(k1ρ) =
P
pA2(ν2p) sin ν2p

π
2

Φp(k2ρ)P
p ν1pA1(ν1p) cos ν1p

π
2
Φp(k1ρ) = r

P
p ν2pA2(ν2p) cos ν2p

π
2
Φp(k2ρ)

with r = ²2
²1

The impedance boundary condition Ez = ZsHφ on the surface of
the cylinder is built in the eigen functions Φp(k1,2ρ). This is one advan-
tage of using the discrete index of Hankel transform for problems with
boundaries along ρ = constant.
We utilize the orthogonality relation of the ρ eigen functions to reach
sin ν1q(

π
2
−φ0)

2ν1q cos ν1q
π
2
Φq(k1ρ

0)−A1(ν1q) sin ν1q π2 =
P
pA2(ν2p) sin ν2p

π
2
Cpq ∀q

ν1qA1(ν1q) cos ν1q
π
2
= r

P
p ν2pA2(ν2p) cos ν2p

π
2
Cpq ∀q

Cpq =
R∞
a

1
ρ
Φq(k1ρ)Φp(k2ρ)dρ

We cast the linear system as
S−D[sin ν1 π2 ]A1 = C D[sin ν2

π
2
]A2

D[ν1 cos ν1
π
2
]A1 = C D[rν2 cos ν2

π
2
]A2

where S is the vector S = { sin ν1q(π2−φ0)
2ν1q cos ν1q

π
2
Φq(k1ρ

0)};
D[.] are diagonal matrices with diagonal elements [.] and A1,2 are

the vectors of spectral amplitudes.
From the above system we derive
A1 =M

−1 S,
A2 = D

−1[rν2 cos ν2 π2 ]C
−1 D[ν1 cos ν1 π2 ]A1

where
M = D[sin ν1

π
2
] +CD[sin ν2

π
2
]D−1[rν2 cos ν2 π2 ]C

−1D[ν1 cos ν1 π2 ]
It is not difficult to show, from the asymptotic expansion of Bessel

and Hankel functions as q → ∞ [4], that the series representations
in equations (1-3) converge exponentially with order of the pthterm
O(eiνp|φ−φ

0|) for equation (1) and O(eiνp(|φ|+φ
0)) for equations (2,3). The

only exceptions are when φ = φ0 in equations (1) and when φ = φ0 = 0
in equations (2,3) where the corresponding series diverges. A remedy is
given in the next section.
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Had we used Fourier expansion on the angular variable instead of the
discrete Hankel index transform, the lack of an orthogonality relation for
the Hankel functions of integer order would have resulted in the appear-
ance of additional dense matrices of the form

R∞
a

1
ρ
H(1)
q (k1ρ)H

(1)
p (k1ρ)dρ,R ρ0

a
1
ρ
H(1)
q (k1ρ)Jp(k1ρ)dρ and

R∞
ρ0

1
ρ
H(1)
q (k1ρ)H

(1)
p (k1ρ)dρ in the linear sys-

tem; and the convergence of the series is algebraic.
These are other advantages of using the discrete Hankel index trans-

form for problems with boundaries along φ = constant.

The isovelocity case: It is always instructive to look into the isove-
locity case (k1 = k2) wherein, for Zs = 0 or ∞, ν1p = ν2p, Cpq turns
diagonal and the linear system simplifies to

sin ν1q(
π
2
−φ0)

2ν1q cos ν1q
π
2
Φq(k1ρ

0)−A1(ν1q) sin ν1q π2 = A2(ν1q) sin ν1q π2
A1(ν1q) = rA2(ν1q)

A2(ν1q) =
1
1+r

sin ν1q(
π
2
−φ0)

2ν1q cos ν1q
π
2
sin ν1q

π
2
Φq(k1ρ

0)
leading to the above closed form analytic expressions for the coeffi-

cients A1,2(ν1q).
Therefore
E(2)z = 1

1+r

P
q

sin ν1q(
π
2
−φ0)

2ν1q cos ν1q
π
2
sin ν1q

π
2
sin ν1q(φ+

π
2
)Φq(k1ρ

0)Φq(k1ρ)

E(r)z = r
1+r

P
q

sin ν1q(
π
2
−φ0)

2ν1q cos ν1q
π
2
sin ν1q

π
2
sin ν1q(φ− π

2
)Φq(k1ρ

0)Φq(k1ρ)

For E(d)z , if one must compute the fields along φ = φ0 where the series
representation diverges and is not, relying on field continuity, satisfied by
interpolating from neighboring points then a convergent representation
for φ = φ0 is derived by
a) manipulating the summand part [ sin ν1p(

π
2
−φ>) cos ν1pφ<

2ν1p cos ν1p
π
2

] into [1
4
{ieiν1p|φ−φ0|−

2ieiπν1p

1+eiπν1p
cos ν1p(φ−φ0)+ sin ν1p(

π
2
−φ−φ0)

cos ν1p
π
2

}]. The second and third terms re-
sult in convergent series for all observation angles;
b) applying a Watson transform [5] on the partial series of the first

term reduces it to i
16
[
R
γ e

iν|φ−φ0|{H(2)
ν (k1ρ<)H

(1)
ν (k1ρ>)−H(1)

ν (k1ρ)H
(1)
ν (k1ρ

0)H
(2)
ν (k1a)

H
(1)
ν (k1a)

}dν]
with γ the contour around the zeros of d(ν) = 0 in the first quadrant

of the complex ν plane.
After asymptotic evaluation, the integrals are recognized as the geo-

metrical optical incident and reflected fields respectively.
The same treatment is applicable to E(r),(2)z when φ = φ0 = 0.
The presented solution method is extendable to other geometries: a

cylinder in the vicinity of two half spaces and a cylinder less|more than
halfway buried. These and extension to source excitations leading to
coupled TE|TM polarizations will be presented elsewhere.
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